
Real‐Time Flood InundationModelingWith FlowResistance
Parameter Learning
Alexander Young1 , John D. Albertson1 , Giovanni Moretti2 , and Stefano Orlandini2

1School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA, 2Dipartimento di Ingegneria Enzo
Ferrari, Università degli Studi di Modena e Reggio Emilia, Modena, Italy

Abstract Emergency response to flood plain inundations requires real‐time forecasts of flow depth,
velocity, and arrival time. Detailed and rapid flood inundation forecasts can be obtained from numerical solution
of 2D unsteady flow equations based on high‐resolution topographic data and geomorphologically informed
unstructured meshes. However, flow resistance parameters representing the effects of land surface topography
unresolved by digital terrain model data remain uncertain. In the present study, flow resistance parameters
representing the effects of roughness, vegetation, and buildings are determined hydraulically in real‐time using
flow depth observations. A detailed numerical reproduction of a real flood has been largely corroborated by
observations and subsequently used as a surrogate of the ground truth target. In synthetic numerical
experiments, flow depth observations are obtained from a network of in‐situ flow depth sensors assigned to
hydraulically relevant locations in the flood plain. Starting from a generic resistance parameter set, the
capability of a tandem 2D surface flow model and Bayesian optimization technique to achieve convergence to
the target resistance parameter set is tested. Convergence to the target resistance parameter set was obtained with
50 or fewer tandem flow + optimization iterations for each forecasting cycle in which the difference between
simulated and observed flow depths is minimized. The flood arrival time errors across a 52 km2 flood plain
inundation area were reduced by 3.13 hr with respect to results obtained without optimization from a fixed range
of flow resistance parameters. Performance metrics like critical success index and probability of detection reach
values above 90% across the flood plain.

Plain Language Summary When a flood inundation occurs over a populated flood plain due, for
instance, to a levee or dam failure, emergency response requires numerical solutions of 2D unsteady flow
equations to provide real‐time forecasts of flow depth, velocity, and arrival time. These forecasts are important
for supporting decisions regarding how emergency personnel resources should be allocated, and how evacuation
of citizens and animals should be managed. As high‐resolution topographic data and terrain analysis methods
have recently made possible detailed and efficient flood plain inundation models based on geomorphologically
informed meshes, an effort can now be made to hydraulically determine flow resistance parameters from flow
observations in real time. In this work, illustrated with a synthetic case study, flow observations are provided by
an optimally designed network of in‐situ sensors that record flow depth over time. 2D flow model resistance
parameters are determined with a Bayesian optimization technique based on observations collected by sensors
with sufficient lead time for real‐time forecasting applications. With the proposed methods, flood inundations
are numerically reproduced in real‐time in a hydraulically meaningful manner, and this has the potential to
provide reliable flood forecasts and guidance for post‐event recovery.

1. Introduction
Riverine (or fluvial) flooding continues to pose a major hazard to communities across the globe (Bates
et al., 2021; Merz et al., 2021; Schubert et al., 2022). This is especially true for regions that use levees as flood
protection, as the resulting flood from a levee breach can be unpredictable and particularly devastating (Orlandini
et al., 2015). Communities may be built closer to rivers due to the relative safety that a levee provides, but this can
increase the resulting damage when a breach occurs (Di Baldassarre et al., 2015). Predicting the location of
potential levee breaches is difficult because of the uncertainty around levee failure mechanisms such as slope
stability (Rossi et al., 2021) or piping due to burrowing mammal activity (Balistrocchi et al., 2021; Ceccato &
Simonini, 2023; Orlandini et al., 2015). Traditional flood management involves mapping potential floods based
on a wide array of possible scenarios using physics‐based flood inundation models (Association of State
Floodplain Managers, 2020; Wu et al., 2020). While this approach gives a good idea of high‐risk areas, it cannot
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predict how a specific flood will unfold (Cooper et al., 2022). Accurate and efficient predictions of how an in-
dividual flood will unfold are especially needed for real‐time management of a flood inundation event (Rajib
et al., 2020). These predictions are important for supporting decisions regarding how emergency personnel re-
sources should be allocated, and how evacuation of citizens and animals should be managed (Potočki et al., 2022).
For instance, it is critical for emergency personnel to know what conditions they are going to find in the field
during a rescue mission so that the most appropriate means and equipment is selected (Fire Brigades
Union, 2015). In addition, since the location and severity of levee failures is generally unknown before a breach
occurs, attempting to simulate and prepare for all possible breach scenarios quickly becomes an enormous task.
Therefore, levee breach floods call for a real‐time forecasting approach that can generate accurate forecasts with
sufficient lead time to be actionable immediately after the breach is discovered. This study provides a proof of
concept demonstrating that a flood inundation modeling system can use high‐resolution topographic data, flow
depth observations from a sensor network, and Bayesian optimization for flow resistance learning to enable
timely, actionable forecasts after levee breaches.

In general, the accuracy of flood inundation forecasts based on the 2D unsteady flow equations (also known as the
shallow‐water equations) depends on knowledge of the flow forcing, the site geometry, the operation of flood
infrastructure, and resistance parameters (Pappenberger et al., 2008; Teng et al., 2017). There is uncertainty in all
of these factors, but for this study the focus is on the uncertainty in flow parameters specifically. Hence, a scenario
is considered whereby the flow forcing, site topography and hydraulic infrastructure are all known, and the
feasibility of adjusting flow resistance parameters on the fly (based on flood depth data collected from a sensor
network) to improve forecast accuracy is explored. The case considered in the present study is the one in which
real‐time flood inundation forecasting commences upon the discovery of the levee breach, and thus the exact
position in terms of geographical coordinates of a levee breach can be considered known. Under this assumption,
the breach hydrograph can be modeled using a riverflowmodel with its own set of inputs (precipitation, initial and
boundary flow conditions), parameterizations (channel roughness), and geometry (river cross sections, levee
breach evolution, and breach repairs). In practice, the hydrograph is derived from upstream and downstream
gauge readings of river flow as well as observations of breach evolution (Orlandini et al., 2015). The uncertainty
due to flood plain topography can be addressed by increasing the resolution of the digital terrain model (DTM)
used to represent the geometry of the land surface (Bates, 2004, 2022; Kahl et al., 2022; Sanders & Schu-
bert, 2019) or by using geomorphologically informed unstructured meshes preserving the important lines
following the lowest part of valleys or channels (thalwegs) and the important lines of intersection at the top
between opposite slopes (ridges), and relaxing the level of detail where these topographic features are inessential
(Moretti & Orlandini, 2023; Pizzileo et al., 2024). Land surface topography that is not resolved by DTM data,
including roughness, is in any case, a major source of uncertainty in a 2D flood inundation model and is also
difficult to estimate (Marks & Bates, 2000; Raudkivi, 1967). In fact, a more general distinction can be made
between resolved land surface topography formed by natural and human‐made structures that are described
explicitly by DTM data, and unresolved land surface topography that is not captured by DTM data such as
variations on a smaller scale than the DTM cell (e.g., human‐made structures like vehicles and agricultural swales
or small‐scale geologic features like sand bars and rills) or topographic structures that are filtered out when DTM
data are obtained from digital surface model (DSM) data (e.g., buildings and vegetation). Part of the unresolved
land surface topography like buildings or vegetation has previously been reintroduced explicitly in flood inun-
dation models as done, for instance, by Schubert and Sanders (2012) or has been described explicitly from DSM
data as reported by Pizzileo et al. (2024). In the present study, no attempt has been made to reintroduce or describe
explicitly unresolved land surface topography, and its effects on surface flow propagation are represented by flow
resistance parameters.

While the levee breach hydrograph and flood plain topography can in principle be measured and modeled, a
rigorous determination of resistance to flow due to unresolved land surface topography implies the use of
observed flows, which are rare and unique in the case of flood plain inundations. Uncertainty in flow resistance
parameters is, at least in part, ascribed to variability in space and time. This is especially true for flow resistance
parameters describing vegetation, which change throughout the year due to agriculture, seasonality of foliage and
herbaceous plants, and the impact of previous flood events, thus invalidating the use of previously calibrated
parameters (Arcement & Schneider, 1989). Historically, resistance parameters were assigned to different land
surface types (e.g., urban, agriculture, forest) based on land cover maps and corresponding values from empirical
studies (Arcement & Schneider, 1989; Chow, 1959). More recently, improvements in the estimation of the spatial

Water Resources Research 10.1029/2024WR038424

YOUNG ET AL. 2 of 27

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038424 by Stefano O

rlandini - U
niversity M

odena , W
iley O

nline L
ibrary on [04/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



distribution of vegetation have been made with aerial imagery (Hossain et al., 2009) and lidar surveys
(Bates, 2022). Although there is also some disagreement about whether the optimal resistance parameterization of
a flood model corresponds to the land cover distribution, this assumption is often the best that can be made prior to
a flood or without significant observations and computational resources (Hostache et al., 2010). Even today, the
resistance parameters in many 2D flood inundation models use either empirical resistance coefficients or mod-
elers optimize them with a basic grid search (Ming et al., 2020; Ongdas et al., 2020; Quirogaa et al., 2016).

A variety of model calibration strategies have been explored in the literature, broadly classified into static and
dynamic approaches. Static approaches find the optimal parameter set or parameter probability distribution given
a set of measurements. Dynamic approaches such as data assimilation continuously update the states and pa-
rameters of the model as new measurements become available over time. Gallagher and Doherty (2007) explore
the use of the PEST (Parameter Estimation & Uncertainty Analysis) software to calibrate a lumped hydrologic
model with seven parameters requiring 7,500 model evaluations. Fabio et al. (2010) also make use of PEST to
calibrate a 2‐D flood model with up to five flow resistance parameters, requiring around 200 model iterations.
Quantification of the joint parameter probability distribution has been explored by Vrugt et al. (2008) and Hall
et al. (2011), both making use of the Markov chain Monte Carlo algorithm to estimate the joint posterior
parameter distribution for hydrologic and flood model parameters. Data assimilation approaches have increas-
ingly been used to estimate flood states and parameters. Moradkhani et al. (2005) present a dual‐state method for
the estimation of hydrologic model parameters. In this study, a clear distinction is made between models
developed for understanding physical processes and models developed for predicting or forecasting events, and
the focus is explicitly made on the latter aim. Many data assimilation studies have shown how flood inundations in
river systems and flood plains are forecasted accurately when the system states, and in some cases also the
boundary conditions, are updated (Annis et al., 2022; Hostache et al., 2018; Lai et al., 2014; Neal et al., 2007;
Pensoneault et al., 2023; Pujol et al., 2022; Revilla‐Romero et al., 2016; Van Wesemael et al., 2019). Data
assimilation can also be used for estimating or tuning model parameters (Annan et al., 2005; Hendricks Franssen
& Kinzelbach, 2008; Madsen & Skotner, 2005). Flow resistance parameters are, however, often updated together
with systems states making it hard to distinguish the respective contributions of the two updates. In addition,
Annan et al. (2005) highlight how the problem of parameter estimation in climate modeling commonly uses
simpler models than the current state‐of‐the‐art models to meet computational efficiency requirements. Penso-
neault et al. (2023) present an inverse ensemble Kalman estimation of distributed surface flow parameters in a
drainage basin without updating system states. Both static and dynamic parameter calibration often requires 100
or more model evaluations for convergence criteria to be met. This computational expense may limit the
application in real‐time flood inundation modeling applications based on the numerical solution of 2D unsteady
flow equations. In addition to the poor efficiency of numerical models, the scarcity of (integrated) in‐situ ob-
servations and adequate satellite data, especially in the early stage of the flood, is another limiting factor for
understanding and predicting flood inundations (Barthélémy et al., 2018; García‐Pintado et al., 2013; Nguyen
et al., 2022). Annis et al. (2022) develop a data assimilation method for incorporating crowdsourced data into a
flood inundation model. The poor efficiency of detailed numerical models and the scarcity of reliable observa-
tions remain, however, critical issues in understanding and predicting flood inundations.

Instead of preselecting parameters or using ensemble forecasting, the real‐time flood inundation model described
in the present study is conditioned on the latest observations of flood behavior to produce, at any given time,
hydraulically meaningful flow resistance parameter estimates that provide the best agreement between simulated
and observed flows up to that time, and hence more accurate flood predictions for future times (Kim et al., 2019).
Two‐dimensional flood models are notoriously expensive to evaluate, and even with increasing computational
power, evaluation times can range from hours to days (Ming et al., 2020). However, a recent development in
geomorphologically informed mesh generation techniques based on thalweg and ridge networks extracted from
high‐resolution topographic data using the LANDMARK algorithm has dropped the run time from the order of
hours to the order of minutes while retaining a forecast resolution of 1‐m or less where strictly needed (Moretti &
Orlandini, 2023; Pizzileo et al., 2024). Even so, model evaluation times on the order of minutes begin to com-
pound because each time a forecast is requested, the model must be recalibrated with any new observation data
available, potentially requiring hundreds or thousands of evaluations. Consequently, the number of model
evaluations to arrive at a calibrated flow resistance parameter set must be kept to a minimum. To tackle the
challenge of real time flood forecasting with a high‐fidelity model, this present study implements an efficient
Bayesian optimization approach. The Bayesian optimization approach converges to the optimal parameter set
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with as few model evaluations as possible by efficiently minimizing the difference between the simulated and
observed flow depths (Frazier, 2018). Bayesian optimization is a powerful, derivative‐free model calibration tool
that was designed to find the optimal parameter set for computationally expensive models (Frazier, 2018).
Though there are limited applications to hydrologic models found in the literature, Ma et al. (2022) were able to
reduce the number of model evaluations required to calibrate the SWAT model from 1,500 to 150 using a
Bayesian optimization approach. No applications of Bayesian optimization of high‐fidelity flood inundation
models were found during the literature search, and so this research presents a novel application of the algorithm
to the area of flood forecasting. Reducing the number of model evaluations required to calibrate model parameters
will help open the door to high‐resolution, real‐time flood inundation flood forecasting.

Real‐time flood forecasting requires observation data of past and current flood states in order for the calibration
strategy to produce accurate forecasts. Historically, flood models could only be calibrated with data acquired after
the event, using eyewitness reports and high water marks as benchmarks (Arcement & Schneider, 1989;
Barnes, 1967; Hicks & Mason, 1991). Recent developments in satellite remote sensing have allowed for high‐
resolution spatial observation of flood extents, thus providing a robust source of data to calibrate against.
However, in real‐time forecasting scenarios, satellite imagery is often too temporally sparse or obstructed by
clouds to provide a reliable source of flood observations (Bates, 2022). In levee breach flooding scenarios, an
alternative to a remote sensing approach is to use in‐situ flow depth sensors in the flood plain to obtain a nearly
continuous set of flood observations. Even in urban areas where sensors may seem more accessible, there is still a
scarcity of readily available flood observation data (Gallien, 2016; Rosenzweig et al., 2021). Previous research
has investigated techniques for locating flow depth sensors in the flood plain, finding that sensor locations are
most informative when they observe the largest difference in flood behavior from previously placed sensors
(Liggett & Chen, 1994; Van Wesemael et al., 2019). The idea that sensor location should be sensitive to model
parameters is critical for accurate and rapid model calibration, however, due to the scarcity of in‐situ flood plain
sensing research, this approach has not yet been explored in this context. In the present study, flow resistance
parameters of the Manning type are determined directly from the observation of the flow occurring in the specific
flood plain and under the specific circumstances of interest. To maximize the feasibility of this strategy during
real flood inundation events, preplacement of flow depth sensors or their housings in the flood plain is informed
prior to a breach by an intensive simulation of multiple possible breach locations. Due to the inherent a priori
uncertainty in flow resistance parameters, an approach anchored in hydraulics and sensitivity is the appropriate
strategy for determining hydraulically equivalent resistance parameters with respect to those originally used in
laboratory experiments under controlled flow conditions (Chow, 1959; Ligrani &Moffat, 1986; Nikuradse, 1950;
Raudkivi, 1967; Shockling et al., 2006).

The contribution of the present research centers on the necessity for an accurate flood inundation modeling
framework in effective real‐time flood forecasting. Model detail and efficiency in the numerical solution of the 2D
unsteady flow equations are achieved through the use of geomorphologically informed unstructured meshes that
capture the topographic detail offered by lidar surveys. Based on the combined use of the LANDMARK algo-
rithm and of the HEC‐RAS 2D flood inundation model, a framework is presented that addresses the combined
challenge of designing a distributed flood observation network and efficiently incorporating the observations into
a continuous forecasting system. The methods are presented in Section 2, the applicability and impact of these
methods are evaluated in Section 3, the results are discussed in Section 4, and the conclusions are finally given in
Section 5.

2. Methods
The proposed real‐time flood forecasting framework is presented in Section 2.1. The attention is then focused on
the HEC‐RAS 2D surface flow model in Section 2.2, on the characterization of the land surface topography in
Section 2.3, on flow resistance parameters in Section 2.4, on the design of a sensitivity‐based flow depth sensor
network in Section 2.5, and on real‐time calibration of flow resistance parameters with Bayesian optimization
techniques in Section 2.6.

2.1. Real‐Time Flood Forecasting Framework

The real‐time flood forecasting framework presented in this paper is designed around three key objectives: flood
simulation accuracy, spatial resolution, and evaluation efficiency. Simulation accuracy ensures that flood
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forecasts have utility for guiding emergency planning during flood events. Spatial resolution is key for under-
standing the spatial impact of a flood event. Simulation evaluation efficiency ensures there is sufficient time to act
on flood forecasts. Figure 1a is a schematic of the framework components that, when combined, address all three
objectives. The framework consists of pre‐flood model instantiation (shown by the black boxes) and a real‐time
resistance parameter calibration procedure that is performed during the flood event (shown by the red boxes).
Before the flood, a 2D surface flow model is created to represent possible inundations of the flood plain domain.
On the left side of Figure 1a, this involves generating an unstructured computational mesh that conforms to the
flood plain terrain using the LANDMARK terrain analysis algorithm developed by Moretti and Orlandini (2023)
and described further in Section 2.3. The black box on the right side of Figure 1a represents the delineation in the
2D surface flow model of unresolved land surface topography due, for instance, to roughness and vegetation
features that are not captured by the numerical mesh based on DTM data.

Since the flow resistance parameterization is unique to each flood event and may even vary during the event, the
parameter values in the model must be calibrated as the flood occurs. The procedure of continual updating of
parameters is described in the red boxes and arrows in Figure 1a. The sensors collect time series of flood flow
depth that are used as the observations in a real‐time resistance parameter calibration algorithm which selects
parameter values that result in the closest match between the simulated and observed flood up to that point in time.
Figure 1b is an illustration of how the real‐time forecasting framework would be implemented during a flood
event. A levee breach occurs at time t0, which begins the real‐time forecasting process. Once flow depth sensors
are deployed, measurements are collected by the network of distributed flow depth sensors throughout the flood
plain during the flow depth sensing step. Finally, the calibration algorithm updates the resistance parameters
representing the effects of land surface topography unresolved by DTM data and thus not contributing to the flood
plain hydraulic geometry in the 2D surface flow model as more flood observation data becomes available. During
the flood event, data is collected from the sensor network over a period of time Δt. This data is fed into the
calibration algorithm, the model is evaluated until the flow resistance parameter set converges to the optimum,
and a downstream forecast is generated from the calibrated model. After a second sensing period, the calibration
cycle is repeated, and a second forecast is generated. The sensing and calibration process continues until forecasts
are no longer necessary. It should be noted that in this framework, the model parameters are calibrated on the full
time series of observed surface flow data from t0, rather than only on the data collected since the previous forecast.

2.2. HEC‐RAS 2D Surface Flow Model

The choice of the 2D surface flow model influences the forecast accuracy and run time. When forecasting floods
in real time, it is desirable to use any surface flow model which captures all topographic features that are resolved
by DTM data and affect flow propagation. Roads and buildings are often only a few meters wide, and therefore
assessing whether inundation will occur at a given location requires a resolution finer than that of the subject of
interest. More generally, providing finer‐scale data about flood inundation events better informs all aspects of
flood management. Fine‐resolution regular grids capable of describing macrotopographic structures affecting
surface flow propagation may require prohibitive computational costs that are especially unsuitable to the pro-
posed real‐time forecasting framework. Recent advances in terrain analysis, however, make it possible to preserve
thalweg and ridge networks extracted automatically, and thus objectively, from unaltered high‐resolution topo-
graphic data when an unstructured computational mesh is generated (Moretti & Orlandini, 2023; Pizzileo
et al., 2024). The combined use of the Moretti and Orlandini's (2023) LANDMARK terrain analysis algorithm
and the HEC‐RAS 2D surface flow model make possible significantly more accurate and efficient simulations of
flood inundations than more traditional methods based on regular grids (Hydrologic Engineering Center, 2016;
Moretti & Orlandini, 2023). The HEC‐RAS 2D surface flow model requires three components for instantiation:
(a) a representation of the land surface topography, (b) a boundary condition (e.g., a levee breach hydrograph),
and (c) a parameterization of the surface roughness, more generally of the land surface topography that is un-
resolved by DTM data. The model accepts a DTM as the representation of the flood plain topography. The flood
domain is discretized into an unstructured numerical solution mesh with the above‐mentioned mesh generation
algorithm. In the case of a levee breach, the model takes a levee breach hydrograph as input and solves the 2D
unsteady flow equations across the mesh to simulate the flood inundation.

The 2D unsteady flow equations are derived by assuming that the water density is constant in space and time.
When the terrain slope is small, the mass balance equation can be written as
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Figure 1.

Water Resources Research 10.1029/2024WR038424

YOUNG ET AL. 6 of 27

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038424 by Stefano O

rlandini - U
niversity M

odena , W
iley O

nline L
ibrary on [04/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



∂Z
∂t
+
∂(Zu)
∂x

+
∂(Zv)
∂y

= q, (1)

where t is time, x and y are horizontal coordinates, Z (capital ζ) is the flow depth along the normal coordinate to
the land surface, u is the component of flow velocity v along the x‐direction, v is the component of flow velocity v
along the y‐direction, and q is the lateral inflow discharge per unit planar area. The projections of the momentum
equation along the x and y directions can be written, respectively, as

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
+ g

∂h
∂x
− c f u = 0, (2)

and

∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
+ g

∂h
∂y
− c f v = 0, (3)

where g is the acceleration due to gravity, h = z + Z is the piezometric head, or hydraulic head, z is the land
surface elevation, c f u = gn2|v|u/Z4/3 and c f v = gn2|v|v/Z4/3 are the friction slopes expressed by using the
Manning's resistance coefficient n multiplied by g. In the HEC‐RAS 2D flood model, the spatial distribution of
Manning's n is encoded in a categorical raster file where each pixel value corresponds to a particular value of
Manning's n. The wall‐clock run time of each model evaluation is on the order of 10 minutes, and thus an efficient
calibration algorithm is still required to enable real‐time forecasting. As part of the real‐time forecasting
framework, preprocessing the land surface topography resolved by the DTM data in order to obtain a geo-
morphologically informedmesh in the flood inundation model is time intensive and is performed prior to the levee
breach. A second preprocessing step is to make an initial guess of the resistance parameters that represent the
effects of unresolved land surface topography based on land surface features. Upon discovery of the levee breach,
the real‐time model configuration steps are the characterization of the breach geometry including repair and
parameterizations of flow resistance parameters representing unresolved land surface topography.

2.3. Land Surface Topography

A detailed and accurate description of the land surface topography is essential for ensuring a reliable prediction of
surface flow propagation (Hydrologic Engineering Center, 2022, p. 14). In the present study, a distinction is made
between macrotopography resolved by DTM data and used to determine the hydraulic geometry of the flood
plain, and microtopography due to surface features, buildings, and vegetation that is not resolved by DTM data
and is represented by flow resistance parameters. Resolved land surface topography can be described by a high‐
resolution (1‐m or less) DTM capturing natural and human‐made topographic structures such as ridges or levee,
road, and railway embankments. Thalwegs and ridges are the essential topographic features that need to be
extracted from observed topographic data and retained when terrain is partitioned. Thalwegs indicate main flow
collectors and depression bottoms. Ridges indicate flow divides and barriers to flow. Since depression bottoms
are thalwegs and depression borders are ridges, the preservation of depressions and the preservation of thalweg
and ridge network structures are interrelated requirements. Using the LANDMARK terrain analysis algorithm
described in Moretti and Orlandini (2023), natural and human‐made thalwegs and ridges are extracted auto-
matically, and thus objectively, from the original high‐resolution (1 m or less) DTM without the need to apply
coarsening or depression filling in the extraction procedure. The detail with which the extracted thalweg and ridge
networks are represented is selected by setting a critical drainage area for thalweg representation and a critical
dispersal area for ridge representation. The generation of an unstructured computational mesh that adapts to the

Figure 1. (a) Schematic of the flood forecasting framework showing how the LANDMARK terrain analysis and real‐time resistance parameter algorithm fit together to
generate accurate and efficient flood forecasts. The red arrows and boxes are the components presented in this paper. A sensitivity‐based sensor network is overlaid on
an illustration of the observed and simulated floods due to a levee breach. The true positive, false positive, and false negative areas are also shown. (b) Timeline of the
continuous model calibration process after the levee breach. The breach occurs at time t0 and forecasts are generated every Δt time step after model calibration with new
observations.
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extracted thalwegs and ridges makes it possible to describe accurately land surface topography and the related
surface flows, as mesh element facets adapts to observed topographic features, while also increasing computa-
tional efficiency with respect to the use of regular grids, as a small number of mesh elements displaying variable
size are used.

Extracted ridges are set as breaklines in HEC‐RAS 2D so that an unstructured computational mesh adapting to
these topographic features can be generated and the 2D unsteady flow equations can be accurately solved. It is
specified that the 1‐m DTM describing the land surface macrotopography is fully assimilated by HEC‐RAS 2D
along the facets of mesh elements and is only used to determine the distribution of surface water storage within the
mesh elements (Hydrologic Engineering Center, 2022, p. 201). Ridges extracted by the LANDMARK algorithm
act in HEC‐RAS 2D as barriers to flow if they are set as breaklines and aligned to the mesh element facets. If
extracted ridges are not aligned to the mesh element facets, they only affect the distribution of surface water
storage within the mesh elements and are not seen as barriers to flow by the HEC‐RAS 2D solver of the 2D
unsteady flow equations. To ensure accurate and efficient surface flow simulations, it is therefore essential that
ridges are identified and incorporated in HEC‐RAS 2D as breaklines to obtain computational mesh that captures
the topographic detail offered by high‐resolution topographic data where needed, yet coarsens the mesh elements
where terrain is regular. With respect to existing flood inundation models, the innovation in the combined use of
LANDMARK and HEC‐RAS 2D is not just a simple use of observed ridges as breaklines, which can even be
performedmanually, but rather the ability of LANDMARK to fully penetrate high‐resolution topographic data for
extracting ridges at any desired level of detail. Ridges and breaklines can in principle be identified and incor-
porated in HEC‐RAS 2D independently from LANDMARK, but in practice this process becomes a prohibitive
task without LANDMARK as the level of mesh refinement increases (Moretti & Orlandini, 2023; Pizzileo
et al., 2024). The combined use of the LANDMARK algorithm and HEC‐RAS 2D surface flow model makes it
possible to obtain accurate and computationally efficient simulations of flood inundations as reported in Moretti
and Orlandini (2023). The 1‐mDTM used in the present study is obtained from the cloud of points acquired from a
lidar survey by filtering vegetation and buildings. The effects of these filtered topographic structures and of the
land surface microtopography that is not resolved by the DTM are represented in the HEC‐RAS 2D surface flow
model by seeking equivalent flow resistance parameters.

2.4. Flow Resistance Parameters

Land surface topography unresolved by DTM data is parameterized with flow resistance parameters of the
Manning type. The resistance to flow in channels or flood plains of fixed geometry carrying clear water in a steady
uniform flowcan be predicted quite accurately (Nikuradse, 1950). Butwhen the same channels or flood plains carry
clear water in a nonuniform state of flow, the resistance problem becomes more complex. Past field studies have
found that Manning's n for vegetation can range from 0.03 to 0.11 m− 1/3 s depending on the density and height of
plants (Arcement&Schneider, 1989; Chow, 1959). Aswill be seen in Section 3, the impact ofManning's n on flood
arrival time shows that changes as small as 0.02 m− 1/3 s can produce arrival time differences of more than 2 hr for
downstream locations over a flood inundation with an area of 52 km2 and a length of 28 km. Floods are highly
sensitive to surface roughness, and accurate estimates of Manning's n are critical for ensuring that flood forecasts
provide useful information. Flow resistance parameters are not the only source of uncertainty in a flood model,
however, they are difficult to estimate prior to a flood and thus are the sole focus of the present study.

In the present study, flow resistance parameters are initially estimated on the basis of the best existing methods,
and are then refined iteratively in real time by comparing forecasted and observed flows. Prior to a flood, the
distribution of Manning's n is delineated based on assumptions about the land surface. This involves deciding on
the number of land cover classes to include, each with its own Manning's n, and where to place those classes.
Traditionally, land cover maps have been used to create the land cover classes used in hydrologic models
(Arcement & Schneider, 1989). Given limited computational resources, optimization of the corresponding
Manning's n parameters becomes computationally intensive when many different classes are delineated. Instead,
it is preferable to discretize the land surface into only a few classes, thus preserving model efficiency and avoiding
overparameterization. These parameters can then be refined using the real‐time flood forecasting framework as
new flood observations are collected and can be compared with the corresponding model forecasts. Due to the
complex and integrated effect of flow resistance, refinement of a resistance parameter requires that the flood wave
has interacted with the land area associated with that resistance parameter and then been measured by a flow depth
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sensor. Land cover classes that have not influenced the propagation of the
flood are not able to have their flow resistance parameters calibrated, and thus
best estimates from literature must be used.

2.5. Sensitivity‐Based Flow Depth Sensor Network

Refinement of the flow resistance parameters requires observations of the
flood state. Ideal observations are distributed in space and continuous in time.
However, in practice there is usually a trade‐off between spatial and temporal
coverage. Satellites provide high spatial coverage but suffer from long return
periods on the order of days and the image can be obscured by clouds
(Bates, 2022). For this reason, this research examines using a network of in‐situ
flow depth sensors as the source of calibration data. In‐situ sensors observe
flow depths over time at a known geospatial location and operate continuously
throughout the flood. They have the added benefit of being a flexible network

where new sensors can be added and replaced as needed. Due to the uncertainty of a breach location and the rapid
response needed after a breach occurs, the sensor locationsmust be preallocated based on an intensive simulation of
possible breach locations as depicted in Figure 1b. Upon determination of a sensor network design that addresses
multiple breach locations, the sensors or their housings can be permanently installed in the flood plain. If only the
housings are installed, it is assumed that during emergency mobilization after the discovery of a breach, there is
sufficient time to place sensors in the housings that are most appropriate for observing the resulting flood. The
design of a flow depth sensor should be robust, cost‐effective, and easy to install. A recent project inNewYorkCity
called FloodNet has developed and installed ultrasonic flow depth sensors, which serves as an example of a flood
observation network (Silverman et al., 2022). An important part of sensor network design is determining where
sensors should be located to provide as much information as possible about the state of the flood. To achieve this, a
sensitivity‐based sensor placement algorithm was developed. The design of the flood plain sensor network in this
paper focuses on its efficacy in enabling accurate calibration of the flow resistance parameter set (i.e.,Manning's n).
Locations in the flood plain that are sensitive to changes in upstreamManning's n are logically the best locations to
place sensors. Conversely, if a location is not sensitive to changes in upstreamManning's n, it will not be useful for
calibrating the resistance parameter set. The strategy for allocating sensors in the flood plain is to find those lo-
cations that are most sensitive to changes in all of the upstream Manning's n values that require calibration. For
example, if the land surface has been divided into three roughness classes (vegetation, urban, and canal), the sensors
should be in locations that see the greatest difference in flow depth as each Manning's n is varied. Disambiguating
the sensitivity of specific locations to individual resistance parameters is complicated by the integrated effect of
these parameters across the upstream contributing area. This requires a procedure that isolates each parameter's
influence on the downstream area.

Sensitivity of locations to changes in Manning's n are assessed with a factorial experiment design. As an example,
the land surface is partitioned into three resistance parameter classes and assigned Manning's n ranges of
n = (n1,n2,n3) . Using values from literature, for example, from Chow (1959), the minimum and maximum
realistic values of (n1,n2,n3) are collected into two treatment arrays for “high,” n+ = (n+1 ,n+2 ,n+3 ) , and “low,”
n− = (n−1 ,n−2 ,n−3 ) . The factorial experiment design is shown in Table 1 where “+” denotes the high Manning's n
treatment for class f , n+f , and “− ” denotes the low Manning's n treatment for class f , n+f . Each of the eight com-
binations of Manning's n are then used to run the flood model up to time T, generating eight corresponding depth
time series for each location in the flood plain. The matrix of depth time series for the ith location is as follows

Di =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

di,1 (t1) di,1 (t2) ⋯ di,1 (tT)

di,2 (t1) di,2 (t2) ⋯ di,2 (tT)

⋮ ⋮ ⋮ ⋮

di,8 (t1) di,8 (t2) ⋯ di,8 (tT)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

Table 1
Factorial Experiment Design for Three Roughness Classes of Manning's n

Treatment n1 n2 n3

1 + + +

2 + + −

3 + − +

4 + − −

5 − + +

6 − + −

7 − − +

8 − − −
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where each row ofDi corresponds to the depth time series at location i for one of the eight factorial experiments in
Table 1. The power of factorial experiments is that the sensitivity of a location to changes in each Manning's n can
be quantified separately. Each depth time series in Di can be assigned to a treatment group for each ni based on
whether the value of nf was high or low. For example, rows 1− 4 inDi correspond to n+1 and rows 5− 8 correspond
to n−1 . The sensitivity to changes in Manning's n is then quantified by the difference in means between the high
group and the low group. When the group means are far apart, the location is relatively more sensitive to changes
in Manning's n as to when the means are close together. Since the goal is to find the location that is most sensitive
to changes in Manning's n, only the relative difference between locations matters.

The procedure is as follows:

1. Assign all depth time series in Di to a factor's treatment group (i.e., n+f and n−f ).
2. Compute the ensemble mean vectors of each group as

μ+i, f (t) = 〈D+i, f (t)〉 (5)

and

μ−i, f (t) = 〈D−i, f (t)〉. (6)

3. Compute the Euclidean distance between the two mean vectors, called the class sensitivity, K f .

K f = [∑
T

t=1
(μ+i, f (t) − μ−i, f (t))

2
]

1/2

. (7)

Sensors are then assigned to the locations with the highest value of K f . In practice, because the algorithm
identifies numerical mesh cells that are sensitive to changes in Manning's n rather than point locations on the land
surface, the last step is to identify the location within the cell that the sensor should be allocated. This can be done
by visual inspection of inundated areas at the scale of the DEM or simply by choosing the location with the lowest
elevation within the cell. Figure 2 shows the mean depth time series for the high and low treatment groups, μ+i, f (t)
and μ−i, f (t), for two numerical mesh cells in the model used in the case study (Section 3.5). Cell 2 has a larger
difference between the group means and thus is more sensitive to changes in Manning's n. The class sensitivities
for cell 1 and cell 2 are K f = 37.7 m and K f = 6.2 m, respectively.

2.6. Real‐Time Calibration Algorithm

Real‐time flood inundation modeling places a strict time constraint on the calibration procedure. A forecast must
be issued with sufficient lead time to allow for evacuation and other preparation. In this study, we first define an
objective function that quantifies the modeled flow depths in relation to the flood observations. This is done by
computing the root‐mean‐square error (RMSE) between the modeled and observed response at each sensor
location, denoted RMSEj for the jth location as given by

RMSEj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K
∑
K

k=1
(d̂(tk) − d(tk))

2

√
√
√

, (8)

where d̂(tk) is the simulated flow depth at time tk and time step k and d(tk) is the observed flow depth at time tk and
time step k. The mean of all the RMSE values from each sensor location, 〈RMSE(n)〉, is then the objective
function value given a set of Manning's n, n = (n1,n2,… ) as given by

〈RMSE(n)〉 =
1
N
∑
N

j=1
RMSEj. (9)
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The goal of calibration is to find the set of Manning's n that minimizes 〈RMSE(n)〉. Each time the calibration
procedure is run, the model is calibrated on the full depth time series from each flow depth sensor starting from the
levee breach initiation.

For calibration of the resistance parameters, a Bayesian optimization algorithm is implemented to converge on the
parameter set that minimizes 〈RMSE(n)〉. Bayesian optimization has been primarily used in the field of machine
learning for finding optimal parameter sets for computationally expensive neural networks using the fewest model
iterations. It is most useful for models that are expensive to evaluate and when an analytical solution is intractable
(Frazier, 2018). HEC‐RAS 2D fits this profile because evaluations require minutes of wall‐clock time and the
solution is computed numerically. Mathematically, the goal of Bayesian optimization is to efficiently solve the
inverse problem as given by

n∗ = arg max
n

f (n), (10)

where n∗ is the parameter set that produces the global optimum of the objective function f (n). The Bayesian
optimization procedure is comprised of two steps: a Gaussian process regression surrogate, which approximates
the objective function and an acquisition function, which chooses the next parameter set with which to evaluate
the model. The Gaussian process surrogate provides a flexible representation of the objective function surface and
allows for new function observations to be incorporated while retaining its Gaussian properties (Rasmussen &
Williams, 2006).

A Gaussian process can be thought of as a multivariate normal distribution over a set of functions that span the
parameter space. The distribution is fully specified by a mean function, μ, that governs the objective function
mean at any location n = (n1,n2,… ) and a covariance matrix, Σ, that encodes the covariance structure of the
objective function. The mean function is often taken to be a constant mean of the observed values of the objective
function. Some assumptions have to be made about the covariance structure of the objective function like, for
instance, if it is isotropic and homogeneous. The covariance function between points, also known as the kernel, is
then used to generate the covariance matrix. The Matérn kernel is commonly used because of its flexibility in

Figure 2. Mean depth time series from each treatment group for two cells. Cell 1 has a class sensitivity of K f = 37.7 m and
cell 2 has a class sensitivity of K f = 6.2 m.
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representing covariance structures (Frazier, 2018). The Gaussian process distribution is generally written as
f ∼ N(μ,Σ) where f is the objective function, μ is the mean function, and Σ is the covariance matrix. As new
observations of the objective function are made at locations in parameter space, the Gaussian process prior
distribution is updated to reflect the additional information and the posterior distribution remains Gaussian. The
posterior distribution, following Rasmussen andWilliams (2006), is computed with the conditional distribution of
the multivariate normal distribution as given by

ftest|ntest, nobs, fobs ∼ N(μ,Σ), (11)

where fobs are all the previous observations of the objective function at locations nobs and ftest is the objective
function value to estimate at location ntest. The mean function, μ, is given by

μ = K(ntest, nobs)K(nobs, nobs)− 1fobs, (12)

and the covariance matrix, Σ is given by

Σ = K(ntest, ntest) − K(ntest, nobs)K(nobs, nobs)− 1K(nobs, ntest), (13)

where K(⋅, ⋅) is the covariance function or kernel between two locations in parameter space.

The acquisition function uses the properties of the Gaussian process surrogate to select new sets of parameters that
have the highest probability of producing the global minimum or maximum of the objective function (Fraz-
ier, 2018). For example, the expected improvement (EI) acquisition function finds the location in parameter space
that maximizes the expected value of the difference between the posterior distribution given a new sampling
location in parameter space, f (n), and the current maximum observed value, f ∗(n) (Jones et al., 1998). The EI is
given by

EI(n)≔ E[( f (n) − f ∗(n))+], (14)

where a+ = max(a, 0) (Frazier, 2018). The parameter set n with the maximum EI(n) is then the new sampling
location for the next model evaluation. Expected improvement is not the only possible acquisition function, and
others have been developed for different use cases such as the knowledge gradient and entropy search among
others (Frazier et al., 2009; Hennig & Schuler, 2012). The Bayesian optimization procedure is run serially where
in each iteration a parameter set is chosen by the acquisition function, the model is evaluated, and the Gaussian
process surrogate is updated with the new value of the objective function. An illustration of the Bayesian opti-
mization procedure is shown in Figure 3. An initial parameter set is chosen based on the best estimate of
Manning's n from land surface characteristics and the HEC‐RAS 2D flood inundation model is evaluated. The
simulated water depths are compared to the true water depths using a predetermined metric (e.g., 〈RMSE(n)〉)
that serves as the objective function. Given the parameter set and the objective function value, the Gaussian
process surrogate is updated and the acquisition function is evaluated to determine the next parameter set. The
process is repeated until a convergence criterion is met or the computational budget for evaluation time is reached.

2.7. Forecast Assessment

Once forecasts are generated from the calibrated parameter values for each experiment, the accuracy is assessed
with two sets of metrics that are relevant to emergency planning and public confidence in flood prediction. The
first metric addresses the timing of the flood wave at locations throughout the domain. The second set of metrics
measures how well the forecast predicted inundation at all locations in the flood plain.

2.7.1. Flood Wave Arrival Time

During a flood, it is important to predict when water will inundate critical locations such as roads and infra-
structure so that emergency resources can be allocated efficiently. To address this, a critical flow depth, dc, is
defined as the depth of flood water above which roads become impassable or there is damage to critical infra-
structure. This depth could be different for different types of infrastructure and can be adjusted based on the
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forecast goals. In this study, the critical flow depth was defined as 10 cm at each location in the flood plain. The
critical flow depth of 10 cm was chosen because vehicle speed slows by 80% as flow depths reach that level, thus
significantly slowing evacuation (Pregnolato et al., 2017). The time to the critical flow depth, tc, is the elapsed
time between the levee breach and when the water reaches dc at a given location. The observed time to critical
flow depth is denoted tc, while the simulated or forecasted time to critical flow depth is denoted t̂c. The difference
in time to critical flow depth between the observations and simulation is termed the critical flow depth time
discrepancy and is denoted δtc (Figure 4). A positive value of δtc means that the simulated flood wave arrived later
than the observed flood wave. A negative value of δtc means that the simulated flood arrival time is earlier than
what was observed. Negative values are therefore a more conservative case, while positive values mean that the
model forecasted a later arrival time than in reality. Model performance is evaluated by computing the critical
flow depth time discrepancy for all flooded cells over the duration of the flood. With a more accurate model
calibration, the critical flow depth time discrepancy should move closer to zero for all inundated cells.

δtc = t̂c − tc (15)

2.7.2. Inundation Metrics

Inundation metrics quantify how well the model simulation captured the
observed inundation extent. This is a binary classification where cells are
either inundated or not inundated. Flood model performance is grouped into
three categories: true positive (TP), false negative (FN), and false positive
(FP). True positive is the area where the simulated and observed inundation
overlap; FN is defined as the area where inundation was observed, but not
simulated; and FP is defined as the area where inundation was simulated, but
not observed. True negative is unbounded and thus not useful. In the equa-
tions below, TP is TP, FP is FP, and FN is FN. The diagram at the top of
Figure 1a shows an illustration of the TP, FP, and FN areas along with the
simulated flood extent, As, and the observed flood extent, Ao. Three metrics
are calculated to quantify how the simulated inundation compares with the
observed inundation. The false alarm ratio (FAR) is the ratio of the FP area,
FP, to the simulated flood extent, Ae = TP + FP, that is

FAR =
FP

TP + FP
. (16)

Figure 3. Illustration of the Bayesian optimization procedure as applied to the HEC‐RAS model that is parameterized with a
single value for Manning's n. Parameters n1,n2,n3,n4 are obtained from sequential iterations. After four iterations, n4 is the
best estimate of the optimal parameter set since it produces the current global maximum. The solid red line represents the mean
function and the dotted lines represent the 95% confidence interval.

Figure 4. Illustration of the critical flow depth time discrepancy for a single
location. In this example, the simulation predicted the flood wave would
exceed the critical depth earlier than reality, thus δtc < 0.
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The FAR is zero when there are no false positives and the flood extent is equal to or entirely contained within the
observed flood extent. The second metric is the critical success index (CSI) which is the ratio of the TP area to the
extent of the union of the simulated and observed flood extents, that is

CSI =
TP

TP + FP + FN
. (17)

The CSI takes a value of unity when the simulated and observed flood extents overlap completely. The presence
of either false positives or negatives will reduce the value toward zero. The third metric is the probability of
detection (POD) which is the ratio of the TP area to the observed flood extent, that is

POD =
TP

TP + FN
. (18)

The POD takes a value of unity when the TP area completely encompasses the observed inundation area. A value
of unity also implies that the model produces no false negatives.

3. Case Study
The real‐time forecasting framework is illustrated for a flood event that occurred in Northern Italy in January 2014
(Orlandini et al., 2015). After the flood, a detailed HEC‐RAS 2D model of the scenario was developed for the
purpose of understanding the flood dynamics. The aim of this case study is to demonstrate how the real‐time
forecasting framework can be implemented during a flood event and to evaluate its performance with respect
to flood wave timing and the spatial extent of inundation. Due to the lack of in‐situ flow depth sensors present
during the flood event, synthetic “ground truth” data generated from a HEC‐RAS 2D model of the event, which
have been largely corroborated by observations, were used instead. Aerial imagery of the flood provided a source
of inundation extent information to assess the influence of the vegetation and urban resistance parameters on the
accuracy of the flood inundation model (Figures S1–S118 in Supporting Information S1).

3.1. Scenario

In Northern Italy, the Secchia and Panaro Rivers flow 150 km north from their origins in the Apennines
Mountains to the Po River. They enclose a strip of land that contains a mix of agricultural lands and settlements
that range in size from small villages to the city of Modena with a population of nearly 200,000 people. The land is
protected from the rivers by a long system of levees that serve as the primary flood control measure. An unusually
large rainstorm storm in January 2014 led to a collapse in a section of the levee along the Secchia River 6 km north
of Modena that was found to be altered by mammal bioerosion (Orlandini et al., 2015). The breach, located at
44 ° 41′57.85′′N and 10 ° 56′41.68′′E, occurred at 6:30 in the morning on January 19th and rapidly widened to
80 m by the end of the day. The resulting flood traveled approximately 28 km, inundated 52 km2 over the
following week, and had a volume of approximately 36 × 106 m3 and a peak flow of 434 m3 s− 1. This resulted in
the displacement of people who lived in the downstream towns and caused one fatality (see Figure 1 in Orlandini
et al. (2015) for graphical map of the flood). Views of the developed HEC‐RAS 2D model and observations used
for the corroboration of the obtained results are shown, for instance, in Figures 5 and 6, respectively (Figures S1–
S118 in Supporting Information S1).

3.2. Surface Flow Model

Two HEC‐RAS models were constructed to better understand the flood dynamics. The first model is a 1D dy-
namic wave model of the Secchia River that generates the flood hydrographs from the levee breach. This model
takes as boundary conditions the inflow and outflow hydrographs derived from river gauges for the selected
channel reach and the observed evolution of the levee breach. The resulting hydrograph from the levee breach
gives an estimate of the water volume that escaped through the Secchia River levee breach (Orlandini et al., 2015).
The breach hydrograph from this model is then used as the input to a HEC‐RAS 2D flood plain model, the
mechanics of which were described in Section 2. The DTM data used in the 2D model was derived from a 1‐m
lidar survey collected between 2008 and 2015 with a point cloud density of 1.5 points/m2. The DTM exhibits a
vertical accuracy not greater than 15 cm and a planimetric accuracy not greater than 30 cm (Di Martire

Water Resources Research 10.1029/2024WR038424

YOUNG ET AL. 14 of 27

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038424 by Stefano O

rlandini - U
niversity M

odena , W
iley O

nline L
ibrary on [04/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



et al., 2017). The LANDMARK terrain analysis algorithm (Moretti & Orlandini, 2023) is then run on the DTM
and partitions the flood plain into a geomorphologically informed unstructured mesh consisting of 65,704 cells
ranging from 0.03 to 1 ha in area. An example of the mesh is shown in Figure 5. The complete flood is modeled
over an approximately 5‐day interval starting on 19 January 2014 at 02:40 UTC+ 01:00 and ending on 25 January
2014 at 00:00 UTC + 01:00. The computational time step is 1‐min and the state of the flood at each mesh cell is
saved in 10‐min intervals. Conventional performance metrics such as FAR, CSI, and POD, as well as error
functions such as mean error, mean absolute error, RMSE, volume conservation error eV , type‐1 error, and type‐2
error are used to evaluate the flood inundation model (Pizzileo et al., 2024). The HEC‐RAS 2D “full momentum”
solver (an Eulerian‐Lagrangian method) is found to provide accurate solutions when the 1‐min time step is used in
preference to smaller time steps for model efficiency requirements (Figures S119–S122 in Supporting
Information S1).

3.3. Spatial Distribution of Flow Resistance Parameters

Flow resistance is parameterized in HEC‐RAS 2D with a raster layer where each 10‐m by 10‐m pixel is assigned
to user‐delineated land cover classes, each with its own Manning's n. For the calibration model, the land surface

Figure 5. Terrain partitioning of a lowland terrain located between the Secchia and Panaro Rivers (Po River valley, Italy)
obtained by using an unstructured mesh that adapts to the ridge network extracted through the LANDMARK algorithm by
setting the critical value for the dispersal area Sc = 104 m2 (Moretti & Orlandini, 2023). Shown in shades of blue is the
related simulation of flood areas during the event of 19 January 2014.
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was divided into three land cover classes: vegetation, urban, and canal. The spatial locations of each land cover
class were delineated based on land cover maps of the flood plain. The map of the land cover delineation used in
the calibration model is shown in Figure 7a. Additional complexity was added to the ground truth model land
cover classes by further dividing the three classes into subclasses (Figure 7b). This procedure is further described
in Section 3.6.

Figure 6. Comparison between simulated and observed flood areas in the terrain located between the Secchia and Panaro
Rivers (Po River valley, Italy) during the event of 19 January 2014. The terrain partitioning obtained by using the
automatically extracted ridge network reported in Figure 5 is essential to accurately describe human‐made macrotopographic
structures such as road embankments and the related hydraulic effects on surface flow propagation.

Figure 7. Land cover class distribution used to assign Manning's n values in panels (a) the simulation model and (b) the
ground truth model with each land cover class further broken into subclasses.
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3.4. Accuracy Assessment of Surface Flow Model

To ensure that the HEC‐RAS simulation is a faithful representation of the real‐world flood processes, the per-
formance of the surface flow model is compared to images of the flood event captured at 11:40 a.m. on 20 January
2014 by emergency personnel. Based on the flood extent shown in each image, certain geospatial locations were
manually labeled as “inundated” or “non‐inundated” (Figures S1–S118 in Supporting Information S1). Because
images were captured by emergency personnel at an oblique angle from the ground, it was not feasible to
automatically extract the inundated and non‐inundated areas. Due to this constraint, care was taken to system-
atically choose locations in the images that were clearly inundated or non‐inundated. In addition, points that were
easy to map by using reference structures in their proximity were selected. Figure 8 shows the locations of the
image‐derived inundation samples along with the simulated flood extent at 11:40 a.m. on 20 January 2014 using
the same model configuration as in Orlandini et al. (2015). The results from this analysis are also used to define
the set of reference Manning's n values in the ground truth simulation model. The accuracy of the model with
respect to the choice of Manning's n for vegetated and urban land cover classes was assessed with three metrics:
FAR, CSI, and POD (Section 2.7.2). The canal land cover class was not yet inundated at the time the observations
were made, and thus does not influence the propagation of the flood up to that point. Each metric was computed
for a vegetation Manning's n range between 0.03 and 0.09 m− 1/3 s. For each of these values the urbanManning's n

Figure 8. Observations of inundated and non‐inundated locations obtained from aerial imagery at 11:40 a.m. on 20 January
2014. Simulated flood extent from the reference model is shown for comparison.
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was varied between 0.14 and 0.28 m− 1/3 s. Figure 9 shows the resulting behavior of each metric over the range of
Manning's n values. The FAR shows a positive relationship with both the vegetation and urban Manning's n and a
stronger sensitivity to vegetation. The CSI peaks between a vegetation n value of 0.04 and 0.05 m− 1/3 s and then
drops off as n increases, however, some of this drop‐off is attenuated by an increasing value of the urban
Manning's n. The POD increases with an increasing urban Manning's n until n = 0.26.

3.5. Flow Depth Sensor Allocation

A feasibility requirement for a sensitivity‐based flow depth sensor network is partial deployment before a levee
breach. Optimal sensor locations can be identified based on potential flood hydrographs from various breach
points, with some housings permanently equipped with sensors and others set up for quick installation upon
breach detection. The case study examines an ideal scenario with known breach location and hydrograph, serving
as a preliminary model for more extensive future sensor network designs. The factorial experiment design
described in Section 2.5 assigned low and high Manning's n values to each of the three land cover classes totaling
eight model runs with each combination: Manning's n values for vegetation, urban area, and canals were
n1 = (0.030,0.120) m− 1/3 s, n2 = (0.120,0.200) m− 1/3 s, and n3 = (0.025,0.060) m− 1/3 s, respectively. The
model is run for the full 5‐day duration of the flood with a computational time step of one second. Sensor locations
are assigned at hourly intervals following the start of the breach to ensure coverage throughout the duration of the
flood. Two processing steps were performed before the final sensor locations were chosen. The first was to filter
out numerical mesh cells that exhibited numerical instabilities. Numerical instabilities in the flow depth time
series were found to cause erroneously high values for K f and thus sensors would be misallocated. Instabilities
were identified when the depth time series of a cell exhibited more than four oscillations of 4 cm or more over the
course a 3‐hr moving window. This operation filtered out approximately 2,367 numerical mesh cells, or 3.6% of
the 65,704 total cells. Spatial and temporal correlations were found at the most sensitive locations in the flood
plain. In other words, locations sensitive to Manning's n at one time were likely to be sensitive to Manning's n at
temporally proximal times. Highly sensitive areas were also spatially correlated in that they were often found
within close spatial proximity to one another. As a final processing step, the DBSCAN algorithm with a
neighborhood radius of 100 m was used to find spatial clusters of sensor locations (Ester et al., 1996). The final
sensor location was chosen as the location in the cluster situated first temporally. For example, if there are two
locations in a cluster, the first found at hour 3 and the second found at hour 4, the first location is used for sensor
placement. A total of 34 sensor locations were found for the flood (11 for vegetation, 16 for urban, and 7 for canal)
and the resulting map is shown in Figure 10.

A theoretical maximum sensor density network scenario treating all 23,180 inundated mesh cells in the ground
truth model as “sensors” is presented for comparison (shown as white points in Figure 10). This case is clearly
impractical, but is theoretically informative about the performance of the proposed learning methods when the
availability of sensors is not a limiting factor. The presence of a low ridge in the topography results in tight
packing of the maximum sensor locations near the breach; mesh cells are smaller near ridges and thalwegs as
specified in the LANDMARK mesh generation algorithm (Moretti & Orlandini, 2023).

Figure 9. False alarm ratio, critical success index, and probability of detection over a range of values for vegetation and urban
Manning's n.
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3.6. Synthetic Ground Truth Model

Flow depth sensor information is not available for the January 2014 Secchia River flood inundation event, so
synthetic observation data was generated using the HEC‐RAS 2D model of the flood inundation. The synthetic
ground truth model is run for the full 5‐day duration of the flood and serves as both a source of calibration ob-
servations and forecast performance benchmark for the real‐time forecasts. A major pitfall of using synthetically
generated data is that it may not reflect the same complex dynamics as would be seen in the real world since any
model is inherently a simplification. This is especially true when the same model is used for generating synthetic
data and for testing a calibration procedure on that data. This is because a deterministicmodel can exactly reproduce
previously generated outputs given the same set of parameters and initial conditions. Therefore, to create a
representative study, complexity was added to the synthetic ground truth model by separating each of the three
initial land cover classes into subclasses using a terrain roughness index. The terrain roughness indexwas generated
for the flood plain by computing the standard deviation of a moving three‐pixel by three‐pixel window centered on
each pixel of the DTM raster. The index was then binned into eight equal‐interval subsets and used to create
Manning's n subclasses, resulting in 6 subclasses for vegetation, 7 for urban, and 8 for canal. The differing number
of subclasses is a result of the uneven spatial distribution of terrain roughness, where the relatively smooth
vegetated area does not reach the two highest roughness classes found in the urban and canal classes. The subclass
Manning's n values were then drawn from a normal distribution with variance equal to 0.020 m− 2/3 s2 and
centered on 0.060 m− 1/3 s for vegetation, 0.220 m− 1/3 s for urban, and 0.025 m− 1/3 s for canal. The resulting
values of Manning's n were defined for vegetation as n1 = (0.0328,0.0430,0.0505,0.0637,0.0691,0.0772)
m− 1/3 s, for urban as n2 = (0.1780,0.1930,0.1990,0.2110,0.2130,0.2210,0.2250) m− 1/3 s, and for canal as
n3 = (0.0189,0.0206,0.0211,0.0255,0.0260,0.0343,0.0415,0.0555) m− 1/3 s. Figure 7b shows the final Man-
ning's nmap for the ground truth model. This procedure ensures there is no “true” Manning's n parameter set that
can exactly replicate the ground truth model output, thus better approximating a real world scenario where there is
also no exact parameter set. The flood simulation from obtained this model is then used as the calibration target.

Figure 10. Flow depth sensor locations. Sensors are labeled according to which land cover class they are sensitive to. The
white circular markers represent the maximum sensor density network scenario where all 10‐cm inundated mesh cells are
used as a sensor network.
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3.7. Calibration and Forecasting

To demonstrate real‐time forecasting, the HEC‐RAS 2D model was calibrated at 10 hr after the breach and 43 hr
after the breach using the sensor array and maximum sensor density network cases as shown in Figure 10 for a
total of four calibration experiments. The two calibration times (10 and 43 hr) represent two calibration cycles out
of many that could be conducted as the flood wave progresses downstream; refer to Figure 1 for the continuous
calibration framework. At 10 hr after the breach, only the vegetation and urban land cover classes had been
inundated, and at 43 hr, all three classes had been inundated, thereby demonstrating two‐ and three‐parameter
calibration cases. As discussed in Section 2.6, the Bayesian Optimization algorithm converges on the param-
eter set that produces the global minimum of the objective function. The algorithm was implemented in Python
using the BoTorch package which automatically fits the Gaussian process surrogate and allows for different
acquisition function options (Balandat et al., 2020). An Intel Xeon 2.40 GHz CPU was used to run the optimi-
zations; each 10‐hr simulation required 3–5 min of wall clock time and each 43‐hr simulation required 30 min of
wall clock time. For these experiments, the Gaussian process surrogate is fit on an objective function which is
taken to be the ensemble root mean squared error (i.e., 〈RMSE(n)〉) between all the observed and simulated flow
depth sensor time series. The acquisition function was chosen to be “Noisy EI,” which is a variation on the
commonly used “Expected Improvement” acquisition function as described in Section 2.6. Noisy EI is robust to
any noise that may be present in the flow depth sensor readings and hence the objective function (Letham
et al., 2017).

For each experiment, the parameter search space was seeded by running the model five or six times with Sobol‐
sampled values for Manning's n for the 10‐hr and 43‐hr cases, respectively (Sobol, 1967). The parameter search
space was bounded using ranges derived from Chow (1959), thus the Manning's n bounds for vegetation, urban
area, and canals were n1 = (0.02,0.20) m− 1/3 s, n2 = (0.12,0.26) m− 1/3 s, and n3 = (0.01,0.06) m− 1/3 s,
respectively. The Sobol‐sampled points ensure there is an even distribution across the parameter space. Then, the
Bayesian optimization algorithm was run serially for an additional 25 iterations for the 10‐hr cases, and 44 it-
erations for the 43‐hr cases. Since each iteration requires a single model evaluation, the model was evaluated 30
and 50 times for the 10‐hr and 43‐hr cases, respectively. The number of iterations was chosen based on prior
observations of howmany Bayesian optimization cycles were required to achieve parameter convergence. In both
experiments, convergence to an optimal set of parameters was achieved after 10 iterations for the vegetation
Manning's n and 20 for the urban and canal Manning's n (supporting information, Figure S123 in Supporting
Information S1). Since the flood has progressed longer in the 43‐hr case than the 10‐hr case, there is greater
interaction between the flood and the land cover, leading to different dynamics that show up as differences in the
urban Manning's n value. For each of the four experiments, a forecast for the entire 5‐day flood duration was
generated using the optimal flow resistance parameter set obtained from calibration. The calibrated Manning's n
values are reported in Table 2.

3.8. Impact of Resistance Parameters and Depth Sensors

The accuracy of the forecasts generated from the four experiments are assessed using the critical flow depth time
discrepancy and the inundation metrics. Prior to a flood, the best estimate of flow resistance parameters is to use
empirical studies and expert knowledge of the flood plain. For this reason, the forecast performance of the ex-
periments is compared against empirical estimates of the vegetation flow resistance parameter obtained from
literature while holding the urban and canal parameters constant at n = 0.020 m− 1/3 s and n = 0.025 m− 1/3 s,
respectively (Arcement & Schneider, 1989; Chow, 1959). The accuracy of the experiment forecasts is depends on

Table 2
Calibrated Manning's n Values in m− 1/3 s From the 10‐hr and 43‐hr Land Cover Class Experiments for Each Sensor Array
and Maximum Sensor Density Network Cases

Calibration run n1: Vegetation n2: Urban n3: Canal

10‐hr 0.0576 0.203 –

10‐hr maximum sensor density network 0.0576 0.208 –

43‐hr 0.0576 0.175 0.0376

43‐hr maximum sensor density network 0.0548 0.175 0.0307
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how well the Manning's n for each dynamic class captures the roughness effects as well as the amount of in-
formation about the flood state provided by the sensor network.

Figure 11 shows box plots of the time to critical flow depth discrepancy, δtc, for all inundated mesh cells between
the Bayesian optimization calibration forecast and the synthetic ground truth model over the entire flood duration.
In this figure, a value of zero means that there was no difference between the true and predicted arrival time. In
Figure 11a, the results from the four Bayesian optimization experiments show that calibrating resistance pa-
rameters using observations from flow depth sensors result in median arrival time discrepancies of 0.16 hr for the
10‐hr, 10‐hr max, and 43‐hr experiments, and − 0.16 hr for the 43‐hr max experiment. The impact of increasing
the number of sensors to the maximum sensor density network case does not have a marked impact on forecast
performance as measured by arrival time discrepancy. The comparison box plots in Figure 11b are the results of
five forecasts using a fixed range of Manning's n values for the vegetation land cover class in Figure 7a while
holding the urban and channel Manning's n values constant at 0.2 m− 1/3 s and 0.025 m− 1/3 s, respectively.
According to Chow (1959), short grass has a Manning's n value of 0.030 m− 1/3 s and dense brush has a Manning's
n value of 0.110 m− 1/3 s, both of which are commonly present in agricultural areas and thus serve as a reasonable
range for the vegetation Manning's n. In the case that there are no flow depth sensors installed in the floodplain,
the flood modeler must estimate the vegetation flow resistance parameter from experience, and the comparison
boxes represent the forecast performance from a potential selection. In the case that flow depth sensors have been
installed in the floodplain, the five vegetation Manning's n values represent a simple, five‐increment grid search
approach to estimating the optimal parameter value, which would be chosen to be n = 0.050 m− 1/3 s, as it
produces the smallest arrival time discrepancy. All Bayesian optimization calibration cases reduce the median
arrival time discrepancy over all comparison cases and tighten the box plot whiskers (defined as 1.5 times the
interquartile range) for all but the n = 0.050 m− 1/3 s comparison case. The magnitude of the reduction in forecast
arrival time discrepancy between the calibration and comparison cases across the floodplain depends on the
comparison case Manning's n. Across all inundated locations in the floodplain, the arrival time discrepancy is
reduced, on average, by 4.13 hr when comparing the 10‐hr and 43‐hr calibration cases to the n = 0.03 m− 1/3 s
case, but by 28.2 min when comparing the 10‐hr and 43‐hr calibration cases to the n = 0.05 m− 1/3 s case. The
average reduction in arrival time discrepancy when comparing the 10‐hr and 45‐hr calibration cases to all
comparison cases is 3.13 hr. The box plots are marked by a significant number of outliers, or points that fall
outside of the whiskers, and are shown by the plus signs in Figure 11. The fractions of outliers as percentages of
the total number of points included in the box plots are 18.4%, 18.8%, 11.9%, and 7.8% for the 10 hr, 10 hr max,
43 hr, and 43 hr max experiments (where max indicates the maximum sensor density network), respectively.

The inundation statistics FAR, CSI, and POD were computed for each of the four calibration experiments when
the ground truth inundation was at its maximum areal extent; this corresponded to 21 January 2019 at 09:30 or
54 hr and 50 min after the breach. Inundation was defined as a numerical mesh cell having an average depth
greater than 10 cm. Table 3 shows the values of the three metrics for each of the four experiments. The calibrated
model for all four experiments has a high degree of accuracy with FAR remaining under 0.04, CSI remaining

Figure 11. Arrival time discrepancy for 10‐hr and 43‐hr Bayesian optimization calibration experiments, and experiments
using the maximum sensor density network are denoted by “max” (a). Comparison provided with varying value of vegetation
land cover class Manning's n (b).
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above 0.93, and POD remaining above 0.098. The high POD values means
that the calibrated model inundation nearly overlaps completely with the
observed inundation with a low fraction of false negatives. The presence of
false positives lowers the value of the CSI with respect to the POD, implying
that the calibrated model is slightly over‐predicting inundation. This is
especially true for the 43‐hr cases, where the addition of false positives in the
CSI calculation reduces the POD from 0.994 to 0.936. As in Figure 11, the
maximum sensor case does not showmarked improvement over the 34‐sensor
array in any of the inundation metrics for the 10‐hr experiments. For the 43‐hr
case, there is a slight improvement in the FAR and CSI when using the
maximum sensor density network.

4. Discussion
This study investigates the potential for a flood inundation model based on the numerical solution of the 2D
unsteady flow equations to be used in real‐time flood forecasting in combination with a flow depth sensor network
design method and a resistance parameter learning procedure (Figure 1). While detail and efficiency of the flood
inundation model are ensured by the use of a geomorphologically informed unstructured mesh preserving thal-
wegs and ridges observed in high‐resolution topographic data (Figures 5 and 6), reliability is sought in the present
study by estimating flow resistance parameters based on observed flow depth (Figures 3 and 7). Flow resistance
parameterization is an important source of uncertainty and is difficult to accurately quantify prior to a flood, not
least because microtopography and vegetation roughness unresolved by DTM data vary widely from season to
season. Even floods closely spaced in time will experience different flow resistance effects due to altering of
vegetation by the previous flood. In fact, in river systems delimited by well‐defined banks or levees as well as in
flood plains inundated by levee failures, microtopography and vegetation effects on surface flow propagation are
not time invariant. Rather, they depend on agricultural practices, vegetation season, soil moisture status and flow
conditions (Arcement & Schneider, 1989). This suggests a generalizable forecasting approach where flow
resistance parameterizations are updated based on observed flood behavior. To do this, a framework is developed
that addresses the combined challenge of observing flow behavior and calibrating a computationally detailed
flood inundation model. Flow depth sensors placed at strategic locations in the flood plain serve as the source of
calibration data. The sensor locations are assigned with a sensor network algorithm that chooses locations most
sensitive to flow resistance (Figures 2 and 10; Sections 2.5 and 3.5). Efficient calibration of the model is achieved
with a Bayesian optimization approach, which reduces the number of model evaluations required to find the
optimal parameter set to 50 or fewer (Figure 3, Sections 2.6 and 3.7). The forecasts from the framework must be
made readily accessible to emergency planners throughout and after the flood. This could be accomplished
through a cloud‐based platform that distributes flood alerts and other information through an online dashboard
(Deren et al., 2021). With these pieces in place, when a flood occurs, the observation‐calibration‐forecasting cycle
seamlessly integrates with the management procedures already in place.

Binary inundation observations obtained from aerial videography provided a unique source of model validation
data that served two purposes in the case study (Section 3.4, Figure 8; Figures S1–S118 in Supporting Infor-
mation S1). The first purpose was to validate that the flood model was a realistic representation of the true flood
dynamics and the second purpose was to help inform the choice of vegetation and urbanManning's n values in the
synthetic ground truth model. Based on the FAR, CSI, and POD metrics plotted in Figure 9, the vegetation
resistance parameter has a greater influence on flow propagation than the urban resistance parameter. Taken
together, these three metrics paint a picture of how the model most accurately reproduces the observations at low
values of vegetation Manning's n and higher values of urban Manning's n. However, as Manning's n for both
classes increase past a certain point, the model begins to overpredict inundation (Figure 9). This analysis high-
lights the need for accurately estimating flow resistance parameters to generate actionable flood forecasts. Binary
point inundation measurements derived from aerial imagery are an additional source of model validation data that
have the potential to augment in‐situ and satellite measurements. However, extra care must be taken in the
interpretation of inundation metrics due to spatial clustering or biases in where the images are collected and the
method by which they are digitized.

The placement process for the sensor network is outlined in Sections 2.5 and 3.5, and since it relies on simple
hydraulic theory, it is sufficiently flexible to apply to any flood plain. The requirements are a 2D unsteady surface

Table 3
Inundation Metrics for the Four Calibration Experiments at the Time Step of
Ground Truth Maximum Inundation Extent (21 January 2019 at 09:30 or
54 hr and 50 min After Breach)

Calibration run FAR (–) CSI (–) POD (–)

10‐hr 0.029 0.958 0.986

10‐hr maximum sensor density network 0.029 0.955 0.983

43‐hr 0.031 0.936 0.994

43‐hr maximum sensor density network 0.026 0.968 0.993
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flow model and time to evaluate the model for a range of land surface roughness parameterizations (eight times in
the case study described in Section 2.5). The forecast prediction results presented in Section 3.8, Figure 11, and
Table 3 demonstrate that 34 in‐situ sensors result in nearly identical calibration performance as the maximum
sensor density network, with only slight improvements in the CSI and FAR for the 43‐hr, maximum sensor
density network case. By discretizing the heterogeneous “true” land surface into three land cover classes
(vegetation, urban, and canal), the assumption is that the aggregate influence of the land cover can be captured by
three resistance parameters. Furthermore, the sensors are assigned based on simulated sensitivity to these three
aggregate classes, rather than sensitivity to the “true,” heterogeneous land cover due to the difficulty of accurately
determining the latter. The aggregation of the true land cover into three aggregate classes may require further
evaluation as demonstrated by the presence of outliers in Figure 11. In this study, representing the true spatial
distribution of flow resistance with three aggregate land cover classes is the limiting factor in producing accurate
forecasts, rather than the allocation of the sensor network. This study did not investigate the minimum number of
sensors to achieve an accurate forecast, but it is expected that some redundancy, as demonstrated here, increases
the probability that reliable flow depth observations will be available during a flood event.

The Bayesian optimization algorithm found parameter sets that outperformed most of the comparison cases with
fewer than 50 model evaluations (Figure 11). In other words, the algorithm avoided any local optimum traps that
would lead to a large misidentification of parameters and poor forecast performance. The comparison cases in
Figure 11b represent the performance of either a selection of a single vegetation resistance parameter if flow depth
sensor data is not available, or a simple grid search approach to estimating the best flow resistance parameter
value if flow depth sensors have been installed in the flood plain. In the absence of flow depth sensors, the
vegetation flow resistance parameter used to generate a forecast could diverge from the optimal value and lead to
large discrepancies in forecasted flood arrival time as illustrated by the box plots in Figure 11b for Manning's n
values of 0.09 m− 1/3 s or 0.11 m− 1/3 s. With the addition of flow depth sensors, the grid search approach to
calibrating the vegetation resistance parameter could, in theory, be performed automatically instead of the
Bayesian optimization procedure. However, this approach does not scale well with increasing parameter
dimensionality. The relative improvement in median flood arrival time of the forecasts using Bayesian optimi-
zation to calibrate all three flow resistance parameters over simply using the best performing parameter from this
grid search approach (0.05 m− 1/3 s) is at minimum 28.2 min across the flood inundation extent (Figure 11b). The
relatively small difference between the two approaches may result from the large fraction of the floodplain that the
vegetation resistance parameter represents, rendering the effects of urban and canal flow resistance parameters
negligible (Figure 7). A more complex flow resistance parameter distribution would reduce the efficacy of a grid
search approach due to the lack of a clear single representative flow resistance parameter, potentially leading to a
larger relative improvement by the Bayesian optimization approach. The greatest benefit of the Bayesian opti-
mization approach is when there exist multiple flow resistance parameters that must be calibrated automatically.
With the five‐increment grid search approach, 125 model evaluations would be needed to estimate vegetation,
urban, and canal flow resistance parameters, 75 more than the Bayesian optimization approach.

The practical implementation of the real‐time forecasting framework has inherent limitations, the nature of which
are related to the fundamental uncertainties in flood forecasting and the computational expense required to run a
high‐resolution flood inundation model. The uncertainty due to flow resistance parameterization was addressed in
this paper. Flow forcing, site geometry, and operation of flood infrastructure all constitute other sources of un-
certainty, but were not addressed by the Bayesian optimization procedure. The presented flood forecasting
framework could, in theory, be extended to these other sources of uncertainty as long as they are parameterized in
the flood inundation model. Because flow resistance parameters are represented by a single constant Manning's n,
they are particularly amenable to the presented approach and other sources of uncertainty may be better‐addressed
through other means: increased DTM resolution or a better understanding of the physics of levee breaches, for
example, Prior to a flood, the exact position of the levee breach is unknown, and thus the determination of flow
depth sensor locations should be based, in principle, on multiple breach locations and with varying breach
hydrographs. Sensors or their housings would then be preallocated in the floodplain, and, upon discovery of a
breach, activated or installed to match the optimal sensor layout for the most similar simulated breach scenario. In
this study, this extensive analysis is not considered, and we have instead used a single breach location and
hydrograph to illustrate the sensor placement procedure. This corresponds to the best‐case scenario where the true
breach location and hydrograph exactly match one that had been presimulated. Future work could investigate the
number of breach locations and flow hydrographs that need to be presimulated to ensure the flow depth sensor
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network is able to provide valuable observations for any breach. The real‐time flood forecasting framework is
generalizable to flood plains in any geographical area since the choice of sensors and calibration algorithm is
independent of land surface characteristics. However, larger and flatter flood plains are more amenable to real‐
time forecasting than short and steep catchments due to the slower progression of the flood wave. In steep
catchments, observation of a sufficiently long flow depth time series may significantly cut into forecast lead time.
This lead time is greatly improved by the Bayesian optimization approach, but is still limited by the computational
expense required to evaluate the flood model. In this study, each 10‐hr flood simulation required 3 min for ge-
ometry preprocessing and around 3 min for simulation with commonly available workstations. This meant that
with 25 optimization iterations, a forecast was available after 2.5 hr. Each 43‐hr flood simulation required 3 min
for geometry preprocessing and 25 min for simulation. With a total of 50 model iterations, the full calibration
process required nearly 24 hr of wall clock time. For flood inundations of this scale (52 km2 in terms of area,
28 km in terms of length), the computation time required by surface flow simulation make the proposed
framework useful with commonly available workstations at early times in the flood, but may become too
computationally expensive later in the flood (Moretti & Orlandini, 2023).

The promising results of the case study presented in this research outline a roadmap toward the development of a
real‐time flood forecasting system. A field trial should be conducted to elucidate some of the challenges that come
with the transition from a synthetic study to a real‐world application. Real‐time flood forecasting is continuously
evolving as new technologies (terrain analysis, computational fluid mechanics, satellites, sensors, computers)
make detailed modeling and observation feasible. As technology advances, new conceptual improvements
become possible. This study illustrates the added value of including continuous flow depth observation for real‐
time estimation of resistance parameters in a flood modeling framework. It is shown that real‐time calibration of
resistance parameters leads to significant improvement in our ability to predict inundations in terms of timing and
inundation extent (Section 3.8). The availability of an accurate and efficient 2D flood inundation model based on
geomorphologically informed unstructured terrain partitioning, effective sensor network design methods, and a
robust and efficient Bayesian optimization technique are the essential requirements to enable real‐time resistance
parameter learning. Although the proposed flood modeling framework has not been tested during a real flood
inundation event, the numerical experiments reported in this study are a sound proof‐of‐concept and support
further research in the field with real sensors and direct application in a flood inundation emergency.

5. Conclusions
This study presents a physics‐based real‐time flood inundation modeling framework that produces flood forecasts
with sufficient lead time for emergency planning and evacuation. This is achieved with an iterative cycle of flow
depth sensing, calibration, and forecasting. The model accuracy and efficiency rely on the use of geo-
morphologically informed unstructured computational meshes (Section 2.3). The framework reliability relies on
the use of fast model evaluations and rapid calibration of resistance parameters to provide the most up‐to‐date and
accurate forecasts of flood extent possible (Figure 1). Flow depth sensing with in‐situ sensors allows for the flow
resistance parameterization of the flood inundation model to be hydraulically representative of the effects of
unresolved land surface topography on the flood at hand (Section 2.5). The location of the depth sensors are
chosen based on their sensitivity to the land surface roughness, thus enabling accurate calibration (Figures 2 and
10). Model calibration employs a Bayesian optimization algorithm, which was chosen because it converges
rapidly to the optimal parameter set with as few model evaluations as possible, a key requirement for sufficient
forecast lead time (Section 2.6 and Figure 3). A case study using synthetic flow depth data describes how the
forecasting framework would be applied in a real flood scenario (Section 3 and Figure 6). A numerical repro-
duction of a real flood inundation event is created with a HEC‐RAS 2D model as the ground truth target for
calibration (Section 3.6). The case study analyzes the framework forecast performance at two times during the
flood and for two sensor array layouts (Section 3.7). The resulting flood forecasts are compared against the ground
truth simulation with two sets of metrics to assess the calibration performance (Section 3.8).

Flood inundation model calibration required fewer than 50 model evaluations to converge to the target resistance
parameter set (Section 3.7). The computer workstation used to perform the experiments in this study was fast
enough to produce forecasts 10‐hr after the breach, but too slow to provide meaningful lead time for the 43‐hr
calibration (Section 3.7). Therefore it is essential to ensure that there is sufficient computational resources at
hand during a flood event. The four experiments showed that with 34 in‐situ flow depth sensors allocated in
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hydraulically meaningful locations throughout the floodplain, the framework can produce downstream forecasts
with accuracy comparable to those produced with a high‐density sensor network as measured by flood arrival time
and inundation extent (Figure 11 and Table 3). The median flood arrival time forecast errors across the flood plain
are reduced by 1.67 hr or 86% on average (Section 3.8). After optimization, correct classification of inundation
extent as measured by FAR is below 4% and above 90% for CSI and POD (Section 3.8 and Table 3). Future work
is required to design a pilot‐scale study to investigate the challenges that will be faced during real‐world
implementation. The transition from calibrating on synthetic data to real flow depth observations may reduce
the efficacy of the calibration algorithm due to sensor noise, malfunctions, and poor placement within the flood
plain. Locating flow depth sensors may be more complicated in topographically varied environments and larger
networks will be required when levee breach location uncertainty is high. Extensive preliminary modeling must
be carried out before the framework is made operational. Differently from other existing real‐time flood inun-
dation models, flow resistance parameters are calibrated using real‐time flow depth observations to represent the
effects of land surface topography unresolved by DTM data in a hydraulically meaningful manner and this makes
the results of the proposed modeling framework specifically suitable to guide post‐event recovery and prevention
of flood inundations.

Data Availability Statement
Data used to generate the results reported in this manuscript are available on Zenodo at https://zenodo.org/record/
11643497 (Young et al., 2024). The link allowing editors and reviewers to access the data during the review
process can be found in the TXT file “zenodo‐shared‐link.txt” provided as part of the submission material. The
HEC‐RAS optimization code used for this study is available through the “rasopt” Python package at https://
github.com/alex‐l‐young/rasopt.

References
Annan, J. D., Hargreaves, J. C., Edwards, N. R., & Marsh, R. (2005). Parameter estimation in an intermediate complexity earth system model

using an ensemble Kalman filter. Ocean Modelling, 8(1), 135–154. https://doi.org/10.1016/j.ocemod.2003.12.004
Annis, A., Nardi, F., & Castelli, F. (2022). Simultaneous assimilation of water levels from river gauges and satellite flood maps for near‐real‐time

flood mapping. Hydrology and Earth System Sciences, 26(4), 1019–1041. https://doi.org/10.5194/hess‐26‐1019‐2022
Arcement, G. J., & Schneider, V. R. (1989).Guide for selecting mannings roughness coefficients for natural channels and flood plains. U.S. Geol.

Surv. Water Supply. Paper 2339.
Association of State Floodplain Managers. (2020). Flood mapping for the nation: A cost analysis for completing and maintaining the Nation’s

NFIP flood map Inventory (Tech. Rep.). Retrieved from https://asfpm‐library.s3‐us‐west‐2.amazonaws.com/FSC/MapNation/ASFPM_
MaptheNation_Report_2020.pdf

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham, B., Wilson, A. G., & Bakshy, E. (2020). BoTorch: A framework for efficient Monte‐
Carlo Bayesian optimization. In Advances in neural information processing systems (Vol. 33). Retrieved from https://proceedings.neurips.cc/
paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a‐Abstract.html

Balistrocchi, M., Moretti, G., Ranzi, R., & Orlandini, S. (2021). Failure probability analysis of levees affected by mammal bioerosion. Water
Resources Research, 57(12), e2021WR030559. https://doi.org/10.1029/2021WR030559

Barnes, H. H. (1967). Roughness characteristics of natural channels. U. S. Geological Survey Water‐Supply Paper, 1849.
Barthélémy, S., Ricci, S., Morel, T., Goutal, N., Le Pape, E., & Zaoui, F. (2018). On operational flood forecasting system involving 1D/2D

coupled hydraulic model and data assimilation. Journal of Hydrology, 562, 623–634. https://doi.org/10.1016/j.jhydrol.2018.05.007
Bates, P. D. (2004). Remote sensing and flood inundation modelling. Hydrological Processes, 18(13), 2593–2597. https://doi.org/10.1002/hyp.

5649
Bates, P. D. (2022). Flood inundation prediction. Annual Review of Fluid Mechanics, 54(1), 287–315. https://doi.org/10.1146/annurev‐fluid‐

030121‐113138
Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., et al. (2021). Combined modeling of us fluvial, pluvial, and coastal flood

hazard under current and future climates. Water Resources Research, 57(2), e2020WR028673. https://doi.org/10.1029/2020WR028673
Ceccato, F., & Simonini, P. (2023). The effect of heterogeneities and small cavities on levee failures: The case study of the Panaro levee breach

(Italy) on 6 December 2020. Journal of Flood Risk Management, 16(2). https://doi.org/10.1111/jfr3.12882
Chow, V. T. (1959). Open‐channel hydraulics. McGraw‐Hill.
Cooper, C. M., Sharma, S., Nicholas, R. E., & Keller, K. (2022). Toward more actionable flood‐risk information. Earth's Future, 10(11),

e2022EF003093. https://doi.org/10.1029/2022EF003093
Deren, L., Wenbo, Y., & Zhenfeng, S. (2021). Smart city based on digital twins. Computational Urban Science, 1(1), 4. https://doi.org/10.1007/

s43762‐021‐00005‐y
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., & Blöschl, G. (2015). Debates‐perspectives on socio‐hydrology:

Capturing feedbacks between physical and social processes. Water Resources Research, 51(6), 4770–4781. https://doi.org/10.1002/
2014wr016416

Di Martire, D., Paci, M., Confuorto, P., Costabile, S., Guastaferro, F., Verta, A., & Calcaterra, D. (2017). A nation‐wide system for landslide
mapping and risk management in Italy: The second Not‐ordinary Plan of Environmental Remote Sensing. International Journal of Applied
Earth Observation and Geoinformation, 63, 143–157. https://doi.org/10.1016/j.jag.2017.07.018

Ester, M., Kriegel, H. P., Sander, J., & Xiaowei, X. (1996). A density‐based algorithm for discovering clusters in large spatial databases with
noise. AAAI Press. Retrieved from https://www.osti.gov/biblio/421283

Acknowledgments
The authors declare no conflicts of interest
relevant to this study. The research
reported in the present paper was
supported by Fondazione Cassa di
Risparmio di Modena through the Grant
2018‐0093, by the University of Modena
and Reggio Emilia through the Grant FAR
2020 Mission Oriented, by the European
Union NextGenerationEU/NRRP, Mission
4 Component 2 Investment 1.5, Call DD
3277 (12/30/2021), Award 0001052 (06/
23/2022), under the project ECS00000033
“Ecosystem for Sustainable Transition in
Emilia‐Romagna,” Spoke 6 “Ecological
Transition Based on HPC and Data
Technology,” CUP E93C2200110001, by
the European Union NextGenerationEU/
NRRP, Mission 4 Component 2
Investment 1.1, Call PRIN 2022 D.D. 104
(02/02/2022), under the project
2022M4798K “Rivers Affected by
Mammal Bioerosion (RAMB)” CUP
E53D23004420006, and by the European
Union NextGenerationEU/NRRP, Mission
4 Component 2 Investment 1.3, Call DD
2356 (02/23/2024), under the project
PE00000005 “Multi‐Risk sciEnce for
resilienT commUnities undeR a changiNg
climate (RETURN),” Spoke VS1 “Water,”
subproject “Riduzione del Rischio di
Collasso Arginale (R2CA),” CUP
D43C22003030002. High‐resolution
topographic data were provided by
Ministero dell’Ambiente, della Tutela del
Territorio e del Mare (Rome, Italy),
Agenzia Interregionale per il Fiume Po
(Parma, Italy), and Regione Emilia‐
Romagna (Bologna, Italy). The
observations of the flood event occurred
along the Po Valley flood plain on 19
January 2014 were provided by the Civil
Protection of the Regione Emilia‐
Romagna (Italy) and by the National Fire
and Rescue Service (Modena, Italy). The
authors thank the Editor Peter Troch, the
Associate Editor Ryan Morrison, the
Reviewer Brett Sanders, and three
anonymous reviewers for comments that
led to improvements in the manuscript.

Water Resources Research 10.1029/2024WR038424

YOUNG ET AL. 25 of 27

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038424 by Stefano O

rlandini - U
niversity M

odena , W
iley O

nline L
ibrary on [04/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://zenodo.org/record/11643497
https://zenodo.org/record/11643497
https://github.com/alex-l-young/rasopt
https://github.com/alex-l-young/rasopt
https://doi.org/10.1016/j.ocemod.2003.12.004
https://doi.org/10.5194/hess-26-1019-2022
https://asfpm-library.s3-us-west-2.amazonaws.com/FSC/MapNation/ASFPM_MaptheNation_Report_2020.pdf
https://asfpm-library.s3-us-west-2.amazonaws.com/FSC/MapNation/ASFPM_MaptheNation_Report_2020.pdf
https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://doi.org/10.1029/2021WR030559
https://doi.org/10.1016/j.jhydrol.2018.05.007
https://doi.org/10.1002/hyp.5649
https://doi.org/10.1002/hyp.5649
https://doi.org/10.1146/annurev-fluid-030121-113138
https://doi.org/10.1146/annurev-fluid-030121-113138
https://doi.org/10.1029/2020WR028673
https://doi.org/10.1111/jfr3.12882
https://doi.org/10.1029/2022EF003093
https://doi.org/10.1007/s43762-021-00005-y
https://doi.org/10.1007/s43762-021-00005-y
https://doi.org/10.1002/2014wr016416
https://doi.org/10.1002/2014wr016416
https://doi.org/10.1016/j.jag.2017.07.018
https://www.osti.gov/biblio/421283


Fabio, P., Aronica, G. T., & Apel, H. (2010). Towards automatic calibration of 2‐d flood propagation models. Hydrology and Earth System
Sciences, 14(6), 911–924. https://doi.org/10.5194/hess‐14‐911‐2010

Fire Brigades Union. (2015). Inundated: The lessons of recent flooding for the fire and rescue service (Tech. Rep.). https://www.fbu.org.uk/
publications

Frazier, P. I. (2018). A tutorial on Bayesian optimization (Tech. Rep. No. arXiv:1807.02811). https://doi.org/10.48550/arXiv.1807.02811
Frazier, P. I., Powell, W., & Dayanik, S. (2009). The knowledge‐gradient policy for correlated normal beliefs. INFORMS Journal on Computing,
21(4), 599–613. https://doi.org/10.1287/ijoc.1080.0314

Gallagher, M., & Doherty, J. (2007). Parameter estimation and uncertainty analysis for a watershed model. Environmental Modelling & Software,
22(7), 1000–1020. https://doi.org/10.1016/j.envsoft.2006.06.007

Gallien, T. (2016). Validated coastal flood modeling at Imperial Beach, California: Comparing total water level, empirical and numerical
overtopping methodologies. Coastal Engineering, 111, 95–104. https://doi.org/10.1016/j.coastaleng.2016.01.014

García‐Pintado, J., Neal, J. C., Mason, D. C., Dance, S. L., & Bates, P. D. (2013). Scheduling satellite‐based SAR acquisition for sequential
assimilation of water level observations into flood modelling. Journal of Hydrology, 495, 252–266. https://doi.org/10.1016/j.jhydrol.2013.
03.050

Hall, J. W., Manning, L. J., & Hankin, R. K. S. (2011). Bayesian calibration of a flood inundation model using spatial data. Water Resources
Research, 47(5). https://doi.org/10.1029/2009WR008541

Hendricks Franssen, H. J., & Kinzelbach, W. (2008). Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of
states and parameters and the filter inbreeding problem. Water Resources Research, 44(9). https://doi.org/10.1029/2007WR006505

Hennig, P., & Schuler, C. J. (2012). Entropy search for information‐efficient global optimization. Journal of Machine Learning Research,
13(null), 1809–1837.

Hicks, D. M., & Mason, P. (1991). Roughness characteristics of New Zealand rivers. Water Resources Survey, DSIR Marine and Freshwater.
Hossain, A., Jia, Y., & Chao, X. (2009). Estimation of Manning’s roughness coefficient distribution for hydrodynamic model using remotely

sensed land cover features. In 2009 17th International Conference on Geoinformatics. IEEE. https://doi.org/10.1109/geoinformatics.2009.
5293484

Hostache, R., Chini, M., Giustarini, L., Neal, J., Kavetski, D., Wood, M., et al. (2018). Near‐real‐time assimilation of SAR‐derived flood maps for
improving flood forecasts. Water Resources Research, 54(8), 5516–5535. https://doi.org/10.1029/2017WR022205

Hostache, R., Lai, X., Monnier, J., & Puech, C. (2010). Assimilation of one satellite SAR image for flood simulations. Method and test case
(Moser river). In AOGS 2010—Asia oceania geosciences society (Vol. 22, pp. 49–65). World Scientific. Retrieved from https://hal.archives‐
ouvertes.fr/hal‐00908214

Hydrologic Engineering Center. (2016). HEC‐RAS: River analysis system (hydraulic reference manual). US Army Corps of Engineers Hydro-
logic Engineering Center.

Hydrologic Engineering Center. (2022). Development of the 2D computational mesh (training document). US Army Corps of Engineers Hy-
drologic Engineering Center.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black‐box functions. Journal of Global Opti-
mization, 13(4), 455–492. https://doi.org/10.1023/a:1008306431147

Kahl, D. T., Schubert, J. E., Jong‐Levinger, A., & Sanders, B. F. (2022). Grid edge classification method to enhance levee resolution in dual‐grid
flood inundation models. Advances in Water Resources, 168, 104287. https://doi.org/10.1016/j.advwatres.2022.104287

Kim, B., Choi, S. Y., & Han, K.‐Y. (2019). Integrated real‐time flood forecasting and inundation analysis in small–medium streams.Water, 11(5),
919. https://doi.org/10.3390/w11050919

Lai, X., Liang, Q., Yesou, H., & Daillet, S. (2014). Variational assimilation of remotely sensed flood extents using a 2‐D flood model. Hydrology
and Earth System Sciences, 18(11), 4325–4339. https://doi.org/10.5194/hess‐18‐4325‐2014

Letham, B., Karrer, B., Ottoni, G., & Bakshy, E. (2017). Constrained Bayesian optimization with noisy experiments. arXiv. https://doi.org/10.
48550/ARXIV.1706.07094

Liggett, J. A., & Chen, L.‐C. (1994). Inverse transient analysis in pipe networks. Journal of Hydraulic Engineering, 120(8), 934–955. https://doi.
org/10.1061/(ASCE)0733‐9429(1994)120:8(934

Ligrani, P. M., &Moffat, R. J. (1986). Structure of transitionally rough and fully rough and fully rough turbulent boundary layers. Journal of Fluid
Mechanics, 162(162), 69–98. https://doi.org/10.1017/s0022112086001933

Ma, J., Zhang, J., Li, R., Zheng, H., & Li, W. (2022). Using Bayesian optimization to automate the calibration of complex hydrological models:
Framework and application. Environmental Modelling & Software, 147, 105235. https://doi.org/10.1016/j.envsoft.2021.105235

Madsen, H., & Skotner, C. (2005). Adaptive state updating in real‐time river flow forecasting—A combined filtering and error forecasting
procedure. Journal of Hydrology, 308(1), 302–312. https://doi.org/10.1016/j.jhydrol.2004.10.030

Marks, K., & Bates, P. (2000). Integration of high‐resolution topographic data with floodplain flow models. Hydrological Processes, 14(11–12),
2109–2122. https://doi.org/10.1002/1099‐1085(20000815/30)14:11/12〈2109::AID‐HYP58〉3.0.CO;2‐1

Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C. J. H., Bates, P., et al. (2021). Causes, impacts and patterns of disastrous river floods.
Nature Reviews Earth & Environment, 2(9), 592–609. https://doi.org/10.1038/s43017‐021‐00195‐3

Ming, X., Liang, Q., Xia, X., Li, D., & Fowler, H. J. (2020). Real‐time flood forecasting based on a high‐performance 2‐d hydrodynamic model
and numerical weather predictions. Water Resources Research, 56(7), e2019WR025583. https://doi.org/10.1029/2019WR025583

Moradkhani, H., Sorooshian, S., Gupta, H. V., & Houser, P. R. (2005). Dual state–parameter estimation of hydrological models using ensemble
Kalman filter. Advances in Water Resources, 28(2), 135–147. https://doi.org/10.1016/j.advwatres.2004.09.002

Moretti, G., & Orlandini, S. (2023). Thalweg and ridge network extraction from unaltered topographic data as a basis for terrain partitioning.
Journal of Geophysical Research: Earth Surface, 128(4), e2022JF006943. https://doi.org/10.1029/2022JF006943

Neal, J. C., Atkinson, P. M., & Hutton, C. W. (2007). Flood inundation model updating using an ensemble Kalman filter and spatially distributed
measurements. Journal of Hydrology, 336(3), 401–415. https://doi.org/10.1016/j.jhydrol.2007.01.012

Nguyen, T. H., Ricci, S., Fatras, C., Piacentini, A., Delmotte, A., Lavergne, E., & Kettig, P. (2022). Improvement of flood extent representation
with remote sensing data and data assimilation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–22. https://doi.org/10.1109/
TGRS.2022.3147429

Nikuradse, J. (1950). Laws of flow in rough pipes. NACA TM 1292 (English Traslation of “Str’ómungsgesetze in rauhen Röhren,” VDI For-
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