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1 Introduction and summary

A distinguishing feature of three-dimensional supersymmetric conformal field theories are the
vast moduli spaces of BPS line operators annihilated by some supercharges. For operators
that are conformal, this was understood from an algebraic point of view in [1], but many
examples of conformally invariant circular line operators, including continuous families of
them, were found before, see for example [2–10] and [11] for a review.
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In the absence of an approach allowing for a full classification, we continue here to
develop and employ constructive methods of identifying BPS Wilson loop operators called
hyperloops, finding a plethora of new observables, some of which are conformally invariant
and some of which are not, greatly enlarging the known moduli spaces.

The theories we study are N = 4 supersymmetric Chern-Simons-matter with either
linear or circular quiver structure, characterized by the coupling of the gauge multiplet to
hypermultiplets and twisted hypermultiplets [12–15]. The 2-node circular quiver has N = 6
supersymmetry and is the ABJ(M) theory [16, 17], so most of what we say applies there as
well. For concreteness, we consider theories on S3 and focus on operators supported along
a great circle.1

In a recent paper [10], some of us already studied Wilson loops in this same setting.
Those hyperloops were written as deformations of bosonic Wilson loops that preserve 2
or 4 supercharges (so they are 1/8 or 1/4 BPS). Starting with particular block-diagonal
combinations of bosonic connections Lbos annihilated by a supercharge Q, it was found
that one can deform them as follows

Lbos → L = Lbos − iQG+G2, (1.1)

where G is a matrix constructed out of bosonic fields in the hypermultiplets. The resulting
operator is still supersymmetric, by construction, and is defined in terms of a superconnection
containing the fermionic fields, which is something typical of supersymmetric Chern-Simons
theories [22]. Another peculiarity of three-dimensional theories is that the Q variation of L
does not vanish per se, as it happens in the four-dimensional counterpart of these objects,
but it is instead a total covariant derivative, so the entire Wilson loop, which is a gauge
invariant object, is still annihilated by Q.

In the current work we apply a similar philosophy to [10], but we employ as the starting
point of the deformation the 1/2 BPS Wilson loop found in [4] (see also [3]), rather than a
bosonic loop:

L1/2 → L = L1/2 + deformation, (1.2)

with the details of the deformation given after (4.1) below. The 1/2 BPS loop is also a
particular deformation of the bosonic loop as in (1.1), so our current construction includes
all of those found previously.

Moreover, unlike the construction in [10], where a single choice of supercharge based
on the original Wilson loops was employed, here we consider any supercharge annihilating
the 1/2 BPS loop, so any linear combination of a basis of 8 supercharges. In particular,
in cases when the supercharge Q has an appropriate kernel, we find infinite-dimensional
moduli spaces, since (roughly speaking) we can insert any of the operators in the kernel
any number of times at any point along the loop.

1Of course, it would be interesting to consider other contours, such as latitudes, or generic curves on an
S2 ⊂ S3, along the lines of what has been done in [18–20] for N = 4 super Yang-Mills in four dimensions
and in [21] for the ABJ(M) theory.
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This new procedure allows us to uncover new families of supersymmetric line operators.
For example, we have discovered:

• Previously unrecognized bosonic loops preserving 2 and 3 supercharges, which are
therefore 1/8 and 3/16 BPS, in addition to the known ones preserving 2 or 4 super-
charges, see section 6.1.

• New 1/8 and 1/4 BPS loops that do not share supercharges with any known bosonic
Wilson loops, so could not have been found by relying on (1.1). Of particular note is a
subclass of these loops, which depends on one parameter (after fixing 4 supercharges),
for which the variation of the superconnection under conformal transformations of
the circle is a total derivative, see section 6.3.2.
This forms a new class of previously unrecognized line operators that are classically
conformally invariant. Unlike the 1/2 BPS or 1/4 BPS bosonic loops, the one-
dimensional conformal algebra is not generated by the supercharges that they preserve,
but is an outer automorphism of it. As we cannot rely on supersymmetry to guarantee
conformality, it would be extremely interesting to examine them at the quantum level
and verify whether they are truly conformally invariant.

There are various natural directions that could be pursued starting from these results.
The most obvious one is to try to compute the expectation value of these operators, using
localization for example. This typically starts with determining to which cohomological
class the various operators belong. In previous examples [10] based on (1.1), as well as
in the original papers [2, 4], it was found that the bosonic operators and their fermionic
deformations are cohomologically equivalent. In this context we know however that this
does not hold, as we find loops, such as the latitudes, that are known to have different
expectation values from the 1/2 BPS circle [23–26]. This of course makes these new classes
of operators even more interesting.

The next natural question is about the holographic duals. While the holographic duals
of 1/2 BPS loops in some N = 4 Chern-Simons-matter theories have been identified [3, 4, 27],
the question of what is dual to less supersymmetric (and/or higher representation) operators
has not been addressed yet.2

Finally, it would be interesting to study the moduli spaces of conformal loops as defect
conformal manifolds and analyze the defect conformal field theory they define, along the lines
of what has been done for the ABJ(M) theory in [30] and see also [31]. For non-conformal
loops it would be interesting to understand their renormalisation group flows [32, 33].

This paper is organised as follows. In the next section we present the notation for the
theories and the supersymmetry variations of the fields. In section 3 we present the simplest
1/2 BPS Wilson loop in these theories, which is the starting point of the deformations. The
bulk of the calculations is in sections 4 and 5, focusing respectively on loops involving only
two nodes of the quiver and those involving more, respectively. For the benefit of the casual
reader we collect the main results and present a detailed analysis of special interesting
examples in section 6. Some details are presented in the appendices.

2A first examination of a possible moduli space of 1/6 BPS loops in ABJ(M) theory was done in [28, 29].
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Figure 1. The quiver and field content of the N = 4 theory.

2 N = 4 Chern-Simons-matter theories on S3

The theories we study are N = 4 Chern-Simons-matter theories, which can be represented
in terms of either circular or linear quiver diagrams [12–15]. For the most part we focus on a
node labeled by I with gauge field AI and its adjacent node with AI+1, but in section 5 we
also consider more nodes. The edges of the diagram represent hypermultiplets and twisted
hypermultiplets. The hypermultiplet (qaI , ψIȧ) couples to AI and AI+1, while the twisted
hypermultiplet (q̃I−1 ȧ, ψ̃

a
I−1) couples to AI and AI−1, and so on in an alternate fashion.

The field content is summarized in the quiver diagram of figure 1, where the solid lines
between nodes represent the matter fields.

The scalar fields in the hypermultiplet have indices a, b = 1, 2 and are doublets of
the SU(2)L R-symmetry. The fermions with indices ȧ, ḃ = 1̇, 2̇ are charged instead under
SU(2)R. This is reversed in the twisted hypermultiplets. These indices are raised and
lowered using the appropriate epsilon symbols: va = εabvb and va = εabv

b with ε12 = ε21 = 1,
and similarly for the dotted indices.

To write down the Wilson loops and the supersymmetry variations, it is useful to define
moment maps and currents, following [4, 10]

µI
a
b = qaI q̄I b −

1
2δ

a
b q
c
I q̄I c , jaḃI = qaI ψ̄

ḃ
I − εacεḃċψI ċq̄I c ,

µ̃I
ȧ
ḃ

= ¯̃q ȧI−1q̃I−1 ḃ −
1
2δ

ȧ
ḃ

¯̃q ċI−1q̃I−1 ċ , ̃ ḃaI = ¯̃q ḃI−1ψ̃
a
I−1 − εḃċεac ¯̃ψI−1 cq̃I−1 ċ ,

νI = qaI q̄I a , ν̃I = ¯̃q ȧI−1q̃I−1 ȧ .

(2.1)

These are bilinears of the matter fields and transform in the adjoint representation of U(NI).
Note that other bilinears of the same matter fields can transform in the adjoint of U(NI±1).
For example, νI+1 = q̄Iaq

a
I is built out of the same fields as νI , but it transforms in the

adjoint of U(NI+1) because of the reversed order.
As stated in the Introduction, we define the theory on S3 and the hyperloops we

construct are supported along the equator of this sphere. The corresponding on-shell N = 4
supersymmetry transformations were derived in [10] by relying on the decomposition of
N = 4 to N = 2 theories and the transformation rules of the latter in [15, 34]. They are

δAµ I = i

k
ξaḃγµ(jaḃI − ̃ ḃaI ) ,

δqaI = ξaḃψI ḃ , δq̄I a = ξaḃψ̄
ḃ
I ,

δq̃I−1 ḃ = −ξaḃψ̃aI−1 , δ ¯̃q ḃI−1 = −ξaḃ ¯̃ψI−1 a ,
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δψI ȧ = iγµξbȧDµq
b
I + iζbȧq

b
I −

i

k
ξbȧ(νIqbI − qbIνI+1) + 2i

k
ξbċ
(
µ̃I

ċ
ȧq
b
I − qbI µ̃I+1

ċ
ȧ

)
,

δψ̄ȧI = iγµξbȧDµq̄I b + iζbȧq̄I b −
i

k
ξbȧ(q̄I bνI − νI+1q̄I b) + 2i

k
ξbċ
(
q̄I b µ̃I

ȧ
ċ − µ̃I+1

ȧ
ċ q̄I b

)
,

δψ̃aI−1 = −iγµξaḃDµq̃I−1 ḃ − iζaḃq̃I−1 ḃ + i

k
ξaḃ(q̃I−1 ḃν̃I − ν̃I−1q̃I−1 ḃ)

− 2i
k
ξbċ (q̃I−1 ċµI

a
b − µI−1

a
b q̃I−1 ċ) ,

δ ¯̃ψI−1 a = −iγµξaḃDµ ¯̃q ḃI−1 − iζaḃ ¯̃q ḃI−1 + i

k
ξaḃ(ν̃I ¯̃q ḃI−1 − ¯̃q ḃI−1ν̃I−1)

− 2i
k
ξbċ
(
µI

b
a
¯̃q ċI−1 − ¯̃q ċI−1µI−1

b
a

)
, (2.2)

where ξaḃ are the Killing spinors and ζaḃ = 1
3γ

µ∇µξaḃ. The covariant derivative acts as, for
instance, Dµq

a
I = ∂µq

a
I − iAµ,IqaI + iqaIAµ,I .

Specifically, each supersymmetry parameter ξaḃ is a linear combination of four (confor-
mal) Killing spinors on S3 denoted {ξl, ξ l̄, ξr, ξr̄}, i.e.

ξaḃα = ξaḃı ξ
ı
α + ξaḃı̄ ξ

ı̄
α , (2.3)

where ı = l, r and ı̄ = l̄, r̄ label doublets of the SO(2, 1) conformal symmetry along the
circle. All together they form a quartet of the SO(4, 1) symmetry of S3. The index α = ±
is the spinor index.

The Killing spinors obey

∇µξl,l̄ = i

2γµξ
l,l̄ , ∇µξr,r̄ = − i2γµξ

r,r̄ . (2.4)

Along the circle we take γϕ = σ3 and the Killing spinors reduce to [35]

ξlα =
(

1
0

)
, ξ l̄α =

(
0
1

)
, ξrα =

(
e−iϕ

0

)
, ξr̄α =

(
0
eiϕ

)
, (2.5)

whence one finds ζ l,l̄
aḃ

= i
2ξ
l,l̄

aḃ
and ζr,r̄

aḃ
= − i

2ξ
r,r̄

aḃ
.

We work in Euclidean signature and take the gamma-matrices, (γµ) β
α , to be given by

the Pauli matrices. As usual, the spinor contractions are such that

ξ1ξ2 ≡ ξα1 ξ2,α = +ξ2ξ1 , ξ1γ
µξ2 ≡ ξα1 (γµ) β

α ξ2,β = −ξ2γ
µξ1 . (2.6)

It follows that the Killing spinors in (2.5) satisfy ξ l̄ξl = ξlξ l̄ = 1 and ξ l̄γµξl = −ξlγµξ l̄ = δµϕ,
and similarly for the contractions involving ξr and ξr̄.

3 The 1/2 BPS Wilson loop and its symmetries

The starting point of the deformation (1.2) considered in this paper is a particular 1/2
BPS loop of the theory. As shown originally for the ABJ(M) theory in [22] and for N = 4
theories in [4] (see also [3]), such a Wilson loop must couple to at least two vector fields, as
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well as to the matter fields charged under them. We take the loop built around the I and
I + 1 nodes of the particular form

W1/2 = sTrP exp i
∮
L1/2 dϕ , L1/2 =

(
AI −iᾱψI1̇−

iαψ̄1̇
I+ AI+1 − 1

2

)
, (3.1)

with

AI = Aϕ,I+ i

k

(
νI − µ̃ 1̇

I 1̇ + µ̃ 2̇
I 2̇

)
, AI+1 = Aϕ,I+1+ i

k

(
νI+1 − µ̃ 1̇

I+11̇ + µ̃ 2̇
I+12̇

)
. (3.2)

The constants α and ᾱ (which are not complex conjugate to each other) satisfy αᾱ = 2i/k
and the Wilson loop does not depend on their actual value, so we could fix them to be
equal, but we leave them instead as a constant gauge parameter. We could allow for them
to depend on ϕ at the expense of a U(1) gauge transformation at the bottom right entry:
AI+1 − 1

2 → AI+1 − 1
2 − iα−1∂ϕα. The origin of the shift −1/2 in the connection (and the

resulting appearance of the supertrace if compared with the original definition in [4] in
terms of the trace) is explained in [11].

As we verify below, the eight supercharges preserved by this loop are

Q2̇a+
ı , Q1̇a−

ı̄ . (3.3)

The spinor indices α = ± are taken upstairs, to contract with the downstairs indices
of the Killing spinors in (2.5). To relate to the notation in (2.2), we can represent the
supersymmetry transformation as δ = −ξı

aḃα
Qḃaαı − ξ ı̄

aḃα
Qḃaαı̄ .

Looking at the form of the Killing spinors along the circle (2.5), one can write a general
superposition of the preserved supercharges (3.3) as

Q = ηıaQ
2̇a+
ı + η̄ıa(σ1) ı̄

ı Q
1̇a−
ı̄ = ηıav̄ıQ

2̇a+ + η̄ıavıQ
1̇a− , (3.4)

with Grassmann-even parameters ηıa, η̄ıa (which, again, are not complex conjugate) and
auxiliary SO(2, 1) spinors

vı =
(
e+iϕ

1

)
ı

, v̄ı =
(

1
e−iϕ

)
ı

. (3.5)

The supersymmetry variations generated by a supercharge parameterised in such fashion
can then be computed by reading off

ξa1̇ =
(

(ηv̄)a
0

)
, ξa2̇ =

(
0

(η̄v)a

)
. (3.6)

In the right-most expression in (3.4), Qȧa acts in the same way as Qȧal , that is without the
extra phases e±iϕ, which have been absorbed in the definition of vı and v̄ı. There are four
ηıa and four η̄ıa parameters, but the supercharges are identified up to rescalings, so the space
of real supercharges is in fact RP7.

– 6 –
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As noted already in [4], there exists another Wilson loop with the same gauge fields
and preserving the exact same symmetries, but coupling instead to other fields in the
hypermultiplets. This other operator has the superconnection

L′1/2 =
(
AI −iᾱψI2̇+

iαψ̄2̇
I− AI+1 + 1

2

)
, (3.7)

with the opposite sign for the ν’s compared to the ones appearing in (3.2). All the moduli
spaces that we find include in them also this operator as a special point of enhanced
supersymmetry. It is then just a matter of choice to do the analysis around (3.1), rather
than around this one.

Before examining in detail the supersymmetries preserved by the loop defined in (3.1),
let us compute its bosonic symmetries. Our notation and further details on the algebra
can be found in appendix A. Firstly, notice that the superconnection (3.1) contains only
singlets of the su(2)L R-symmetry, which is clearly preserved. The bosonic part of L1/2 is
also annihilated by transverse rotations T⊥, but it acts on the fermions by the Pauli matrix
σ3, see (A.6). Since spinor indices appear in L1/2 accompanied by opposite R-symmetry
indices, we can cancel the action of T⊥ by an appropriate multiple of the R̄3 generator
of the unbroken u(1)R R-symmetry, and, indeed, the combination L⊥ ≡ −i

(
T⊥ + iR̄3/2

)
annihilates L1/2. As for the action of the conformal generators J0 and J± on the 1/2 BPS
loop, using the expressions (A.4) and (A.5)

iJ0 L1/2 =
dL1/2
dϕ

− ∂L1/2
∂ϕ

− [σ3,L1/2] . (3.8)

Since the L1/2 does not contain any explicit ϕ-dependence, we may bring this into the form3

iJ0 L1/2 = DL1/2
ϕ

(
L1/2 + σ3

)
. (3.9)

Total covariant derivatives can be integrated away, so this guarantees invariance of the 1/2
BPS loop under J0. Similar arguments show that J± are preserved as well. Finally, note
that while acting on L1/2 with T⊥ (or equivalently R̄3) gives a non-zero result, it still takes
the form of a covariant derivative

T⊥L1/2 ∝ [σ3,L1/2] = DL1/2
ϕ σ3 . (3.10)

Consequently, R̄3 and T⊥ are preserved separately.
We now proceed to evaluate the action of the supercharge Q in (3.4) on the supercon-

nection L1/2 (3.1) and to verify that it is equal to a total derivative. This also introduces a
lot of the notation required in the rest of the paper.

First, to write the action of Q on the hypermultiplet fields it is useful to define rotated
scalar fields

r1 ≡ (ηv̄)aqa , r2 ≡ (η̄v)aqa , r̄1 ≡ εab(η̄v)aq̄b , r̄2 ≡ −εab(ηv̄)aq̄b , (3.11)
3The precise definition of the covariant derivative DL1/2

ϕ is in appendix B.

– 7 –
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where (ηv̄)a = ηıav̄ı and likewise for (η̄v)a. Now

Qr1 = −Πψ2̇+ , Qr2 = Πψ1̇− , Qr̄1 = Πψ̄2̇
− , Qr̄2 = −Πψ̄1̇

+ , (3.12)

where the ± subscripts are spinor indices and

Π ≡ εab(η̄v)a(ηv̄)b (3.13)

is a quantity that plays a central role in our analysis.
It is not too hard to show, using (2.2), that the second variation of the rotated scalars is

Q2r1 = Π
(
i(ηv̄)a∂ϕqa −

1
2(ησ3v̄)aqa +AIr1 − 2i

k
νIr

1 − r1AI+1 + 2i
k
r1νI+1

)
,

Q2r2 = Π
(
i(η̄v)a∂ϕqa −

1
2(η̄σ3v)aqa +AIr2 − r2AI+1

)
.

(3.14)

Now, using

2i∂ϕ(ηv̄)a = (ηv̄)a − (ησ3v̄)a , −2i∂ϕ(η̄v)a = (η̄v)a + (η̄σ3v)a , (3.15)

and
r1r̄1 + r2r̄2 = Π(q1q̄1 + q2q̄2) = Πν , (3.16)

these second variations can be written as

Q2r1 = Π
(
i∂ϕr

1 − 1
2r

1 +AIr1 − r1AI+1

)
− 2i
k

(r2r̄2r
1 − r1r̄2r

2) ,

Q2r2 = Π
(
i∂ϕr

2 + 1
2r

2 +AIr2 − r2AI+1

)
.

(3.17)

Likewise, the anti-chiral components have double variations given by

Q2r̄1 = Π
(
i∂ϕr̄1 + 1

2 r̄1 +AI+1r̄1 − r̄1AI
)
− 2i
k

(r̄2r
2r̄1 − r̄1r

2r̄2) ,

Q2r̄2 = Π
(
i∂ϕr̄2 −

1
2 r̄2 +AI+1r̄2 − r̄2AI

)
.

(3.18)

It is now straightforward to check that, when Π 6= 0, the off-diagonal entries in L1/2
are equal to −iΠ−1QH, with

H =
(

0 ᾱr2

αr̄2 0

)
. (3.19)

One can combine this with the results above to find that the supersymmetry variation of
the 1/2 BPS connection is

QL1/2 = DL1/2
ϕ H . (3.20)

The covariant derivative used here includes a commutator with the diagonal part of L1/2
and an anticommutator with the off-diagonal part, as explained in detail in appendix B.

For the purpose of this calculation it was not needed to evaluate the action of Q2 on r1,
but only on r2. The former is included here as it is of relevance for the rest of the paper.
Also, if one wanted to repeat the calculation for the other 1/2 BPS loop in (3.7), one would
need to replace r2 and r̄2 in H in (3.19) with r1 and r̄1.
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4 Two-node hyperloops

Here we systematically study continuous deformations of the L1/2 in (3.1) preserving the
supercharge Q defined in (3.4). Again, the strategy is not to find a superconnection which
is strictly annihilated by Q, but that rather transforms as a total covariant derivative,
precisely as L1/2 in (3.20) above. For the moment, we focus on the case in which the
hyperloop couples to only two nodes of the quiver of the theory, but in the next section we
generalize this to longer quivers.4

Following [10], we take a deformation of the form

L = L1/2 + F +B + C , (4.1)

where F is off-diagonal and Grassmann-odd, B is a diagonal bilinear of the scalar fields
and C is annihilated by Q. This is the most general form consistent with the gauge group
representations, the supermatrix structure and with all dimensions being equal to one.
BPS non-conformal loops with higher dimension insertions are also possible, but are not
considered here.

The condition QC = 0 distinguishes two cases: when the supercharge annhilates some
of the matter fields and when it does not. Nontrivial solutions include any BPS bosonic loop
where the supersymmetry variation should be simply zero, rather than a total derivative.
We exclude that case at the moment, because for a compact gauge group the coefficient
of the gauge field in the Wilson loop is the identity (or more precisely i). As the gauge
field already appears in the appropriate form in L1/2, we should not allow for extra gauge
field terms in C. An exception to this would arise if B also has gauge fields, a possibility
discussed in appendix C.

The other possibility is that Q annihilates fields from the hypermultiplet. Note that the
action of Q on the scalars in (3.12) is always proportional to the bilinear of the parameters
ηıa and η̄ıa that we called Π. When Π is identically zero, we see that Q has a nontrivial
kernel (in this case r1 ∝ r2, so they do not form a basis of the scalar fields). One has
therefore to distinguish the cases when Π does not vanish (or has isolated zeros) and the
case when Π = 0, studied later in section 4.2.

4.1 Deformations with Π 6= 0

Starting from the ansatz (4.1), we want to determine the most general F , B and C giving
BPS loops, under the assumption that Π 6= 0.

The simplest term to address is C. The only solutions to QC = 0 which is at most
bilinear in the fields and excluding the gauge field is C = diag(cI , cI+1), a numerical matrix
not containing the fields. Note that we set the radius R of S3 to 1, otherwise this should
scale with 1/R on dimensional grounds. The term proportional to the identity is completely
trivial, so we remove it and take C = diag(0, c).

4The representation of the hyperloops in terms of quiver diagrams, which may include some or all of the
nodes and edges of the original quiver defining the gauge theory, is explained in detail in [9, 10].
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Moving on to F , in order for QF to involve a derivative in the ϕ direction, F is
restricted to have the fermions in (3.12). Therefore, if Π 6= 0, one can take

F = −iQG , G =
(

0 b̄ar
a

bar̄a 0

)
. (4.2)

Here the ba, b̄a parameters may be functions of ϕ.
In terms of G, we can combine (3.17) and (3.18) into

−iQ2G = ∂ϕ(ΠG)− i[LB1/2,ΠG] + i[H2, G]−ΠĜ , (4.3)

with the remainder

ΠĜ =
(

0 ∂ϕ(Πb̄a)ra − iΠb̄1r1

∂ϕ(Πba)r̄a + iΠb1r̄1 0

)
. (4.4)

To evaluate the supersymmetry variation, it is sometimes useful to split the connection into
the diagonal (bosonic) and off-diagonal (fermionic) part: L = LB + LF , and likewise for
L1/2. One can then write

QL = QL1/2 − iQ2G+QB

= DL1/2H + ∂ϕ(ΠG)− i[LB1/2,ΠG] + i[H2, G] +QB −ΠĜ
= DL1/2(H + ΠG)− i{LF1/2,ΠG}+ i[H2, G] +QB −ΠĜ
= DL(H + ΠG) + i[B,H + ΠG] + i[C,H + ΠG] + i[H2, G]−ΠĜ
− {QG,H + ΠG} − {QH,G}+QB .

(4.5)

The terms on the last line are all diagonal and vanish by setting B = {G,H}+ ΠG2. With
this form for B, also the second and fourth terms on the previous line (which are cubic in
the scalar fields) vanish. Another way to write these equations is in terms of the variations
of the extra terms in L in (4.1)

QB = i{F,H}+ {LF1/2 + F,∆H} ,
QF = ∂ϕ∆H − i[LB1/2,∆H]− i[B + C,H + ∆H] .

(4.6)

We see that this is indeed satisfied with ∆H = ΠG.
The deformed connection can then be written as

L = L1/2 − iQG+ {G,H}+ ΠG2 + C , (4.7)

and it is a total derivative if we further impose that the remainders in the last equality
of (4.5) cancel

i[C,H + ΠG]−ΠĜ = 0 . (4.8)

These are four differential equations for ba and b̄a
∂ϕ(Πb1)− i(c− 1)Πb1 = 0 ,
∂ϕ(Πb2)− ic(α+ Πb2) = 0 ,
∂ϕ(Πb̄1) + i(c− 1)Πb̄1 = 0 ,
∂ϕ(Πb̄2) + ic(ᾱ+ Πb̄2) = 0 .

(4.9)
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Taking ĉ(ϕ) to be the primitive of c, the general solution can be written as

Πb1 = e−iϕ+iĉβ1 , Πb2 = eiĉβ2 − α , Πb̄1 = eiϕ−iĉβ̄1 , Πb̄2 = e−iĉβ̄2 − ᾱ , (4.10)

with constant β1, β2, β̄1, β̄2.
There is a lot of freedom in choosing c. It can in principle be an arbitrary function of

ϕ, but this is a gauge symmetry, which is absorbed in AI+1. We can always fix to the same
gauge as in (3.1) by setting c = 0. Note that in generic gauges, when ĉ is not periodic, the
parameters b and b̄ are also not periodic (as it was in the original paper [22]).

In the gauge c = 0, the deformed connection (4.7) is

L =
(
Aϕ,I +M b

a r
ar̄b − i

k (µ̃ 1̇
I 1̇ − µ̃ 2̇

I 2̇) −iβ̄2ψI1̇− + ieiϕβ̄1ψI2̇+
iβ2ψ̄1̇

I+ − ie−iϕβ1ψ̄2̇
I− Aϕ,I+1 +M b

a r̄br
a − i

k (µ̃I+1 1̇
1̇ − µ̃I+1 2̇

2̇)− 1
2

)
,

(4.11)
where

M = Π−1
(
β̄1β1 + i

k eiϕβ̄1β2

e−iϕβ̄2β1 β̄2β2 − i
k

)
. (4.12)

After fixing a supercharge Q, the possible space of hyperloops it generates can be represented
by the matrix M in (4.12). It is given by 4 complex parameters βa and β̄a, modded out by
a C∗ action, which is the conifold. This is the same type of moduli space found in [10, 11].

Note that the effect of the shift of β2 and β̄2 by α and ᾱ in (4.10) means that the
“origin of β space”, which is the tip of the conifold, is a bosonic loop. We can thus view
all the hyperloops that we find here as deformations around some bosonic loop by some
supercharge that it preserves. This is similar to the structure in [10], but here we have far
more general bosonic loops (see section 6.1) and choose any of the supercharges that they
preserve.

Specific examples of hyperloops of this type are presented in section 6.2. Their symmetry
algebras are also studied there, as well as a closer inspection of the connection between
them and the hyperloops of [10].

4.1.1 The condition Π 6= 0 from an algebraic point of view

The conditions on Π being zero or not can be interpreted from an algebraic point of
view. To do that, let us start by looking at the square of the supercharge (3.4), which
using (A.9) reads

Q2 = −Π−J− −Π0J0 + Π+J+ − λL⊥ −
1
2λabR

ab , (4.13)

with Π± and Π0 the Fourier coefficients of Π, defined through

Π ≡ Π−e−iϕ + Π0 + Π+e
+iϕ , (4.14)

and
λab ≡ εıη̄ıaηb , λ ≡ εabλab . (4.15)
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As mentioned in section 3, J0 and J± are the generators of the conformal group along the
circle, Rab are su(2)L generators, and L⊥ is a combination of rotation orthogonal to the
circle and the unbroken u(1)R (see appendix A for further details).

As manifest from (4.13), Q2 generically generates sl(2,R)⊕ su(2)L ⊕ u(1)L⊥ , which is
the algebra preserved by the 1/2 BPS Wilson loop. When Π 6= 0 the conformal generators
are part of this preserved algebra (at least in part). It is now possible to consider subcases of
the condition Π 6= 0 in which one progressively decouples some of the generators on the right
hand side of (4.13). This imposes conditions on the parameters η and η̄, which we derive
below and which are going to be useful in section 6, where we construct specific examples.

We start by considering cases in which the su(2)L is “turned off”. In order for the
contribution of Rab to Q2 to vanish, one must require that λab in (4.15) be antisymmetric.
This implies that

λ11 = εıη̄
ı
1η

1 = 0 , (4.16)

which allows to deduce η̄ı1 ∝ ηı1, and similarly for λ22 and η̄ı2, ηı2. We may then factorize
these parameter in terms of some other quantities carrying a single index, as follows (bars
do not indicate complex conjugation, as usual)

η̄ı1 = w̄1s
ı , ηı1 = w1s

ı ,

η̄ı2 = w̄2t
ı , ηı2 = w2t

ı.
(4.17)

It remains to impose
λ12 + λ21 = (εısıt)(εabw̄awb) = 0 , (4.18)

which can be achieved by setting either sı ∝ tı or w̄a ∝ wa. As a consequence, the remaining
parameters that determine Q2 are given by

λ = (εısıt)(w̄1w2 + w̄2w1) , Π =
(
sle+iϕ/2 + sre−iϕ/2

)2
εabw̄awb . (4.19)

In order to avoid that Π = 0, we must ensure εabw̄awb 6= 0, which implies εısıt = 0. In
particular, the contribution of L⊥ vanishes automatically. In other words, Q2 ∈ so(2, 1).
More restrictive cases can be easily constructed by considering special choices of sl, sr. In
particular, setting sr = 0 gives Q2 ∝ J+ and similarly sl = 0 gives Q2 ∝ J−.

Next, one could maintain the su(2)L and set instead individual Fourier coefficients of Π
to zero, looking, for example, to the case Q2 ∈ u(1)J0 ⊕ su(2)L ⊕ u(1)L⊥ . The contributions
of J± to Q2 vanish if and only if

εabηlaη̄
l
b = 0 , εabηraη̄

r
b = 0 , (4.20)

namely if the η’s are linearly dependent
ηla = tlwa , ηra = trza ,

η̄la = t̄lwa , η̄ra = t̄rza .
(4.21)

Without loss of generality, one can take z, w to be normalized, finding the corresponding
parameters

Π = (εabzawb) (εıt̄ıt) ,

λab = (εıt̄ıt)z(awb) + 1
2 t̄
ı

(
0 1
1 0

)
ı

t(εcdzcwd)εab .
(4.22)
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One could go on and, for example, turn off Π− and Π0 by imposing

0 = εabη̄raη
r
b , 0 = εabη̄raη

l
b + εabη̄laη

r
b , (4.23)

which is achieved by taking
ηra = swa, η̄ra = s̄wa , (4.24)

and yields
λab = s̄

(
ηlawb − waηlb

)
− twawb . (4.25)

The specific cases considered above do not form an exhaustive classification of super-
charges with Π 6= 0, but have been selected because they are of interest in the study of
some loops, like the bosonic loops in section 6.1. Supercharges whose squares are a linear
combination of both su(2)L and conformal generators can nonetheless be easily constructed.

4.2 Deformations with Π = 0

The analysis above gives Wilson loops rather similar to those already studied in [10] (though
far more general). As seen, it requires that the function Π be non-zero. Now we turn to
look at the interesting case when

Π = (η̄v)1(ηv̄)2 − (η̄v)2(ηv̄)1 = 0 , (4.26)

and define
ξ = (ηv̄)1

(η̄v)1
= (ηv̄)2

(η̄v)2
, (4.27)

thus ξ(ϕ) ∈ C ∪ {∞}.
This case is subtle because the supercharge Q in (3.4) annihilates the rotated

scalars (3.12) and, furthermore, the pairs of rotated fields are not linearly independent

r1 = ξr2 , r̄2 = −ξr̄1 . (4.28)

For convenience we define (assuming (η̄v)1 6= 0)

r‖ = r2 , r̄‖ = −r̄1 , (4.29)

and an orthogonal pair which are not annihilated by Q

r⊥ = (η̄v)2q
1 − (η̄v)1q

2 , r̄⊥ = (η̄v)1q̄1 + (η̄v)2q̄2 . (4.30)

We then find that

Qr⊥ = Λ(ξψ1̇− + ψ2̇+) , Qr̄⊥ = −Λ(ψ̄1̇
+ − ξψ̄2̇

−) ,

Q2r⊥ = −Λ
(

(i∂ϕξ − ξ)r‖ −
2i
k
ξ(νIr‖ − r‖νI+1)

)
,

Q2r̄⊥ = Λ
(

(i∂ϕξ − ξ)r̄‖ + 2i
k
ξ(νI+1r̄‖ − r̄‖νI)

)
,

(4.31)

where
Λ ≡ (η̄v)2

1 + (η̄v)2
2 , (4.32)
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and similarly to (3.16)

r‖r̄⊥ + r⊥r̄‖ = ΛνI , r̄⊥r
‖ + r̄‖r

⊥ = ΛνI+1 . (4.33)

We can apply now the same formalism as in the Π 6= 0 case and take

L = L1/2 − iQG+ {G,H}+ C , QC = 0 . (4.34)

H is the same as above, see (3.19), which in the new notations becomes

H =
(

0 ᾱr‖

αξr̄‖ 0

)
. (4.35)

In G we include only r⊥ and r̄⊥ and C may contain scalar bilinears as well as the numerical
factors discussed before

G =
(

0 β̄⊥r⊥

β⊥r̄⊥ 0

)
, C =

(
β̄‖r‖r̄‖ 0

0 β‖r̄‖r‖ + c

)
. (4.36)

QG gives a single linear combination of the fermions ξψ1̇−+ψ2̇+. In appendix C we explore
the possibility of adding another combinations of the fermions, but find that this can only
be done in the case of ξ = 0, presented in section 4.2.1 below.

Going back to the deformation (4.26), one can get QL = DLϕH, provided that

Q2G = [G,H2] + [C,H] . (4.37)

Unlike the Π 6= 0 case, here H remains the same regardless of the deformation.
Besides, one can check that the cubic terms inside Q2G cancel [G,H2]+ [C,H ] provided

β‖ = β̄‖. The remaining equations for the terms linear in the scalars are

Λβ̄⊥∂ϕ(eiϕξ) = −ieiϕcᾱ , Λβ⊥∂ϕ(eiϕξ) = −ieiϕξcα , (4.38)

which are simple algebraic relations on β⊥, β̄⊥ and c.
In the generic case, we can have

L =
(
Aϕ,I +Ma

brar̄b − i
k (µ̃ 1̇

I 1̇ − µ̃ 2̇
I 2̇) −i(ᾱ+ ξΛβ̄⊥)ψ1̇− − iΛβ̄⊥ψ2̇+

i(α+ Λβ⊥)ψ̄1̇
+ − iξΛβ⊥ψ̄2̇

− Aϕ,I+1 +Ma
br̄br

a − i
k (µ̃ 1̇

I+11̇ − µ̃ 2̇
I+12̇ ) + c− 1

2

)
,

(4.39)
where

Ma
b =

(
0 i

kΛ + ξαβ̄⊥
i
kΛ + ᾱβ⊥ β‖

)
, (4.40)

with a, b =⊥, ‖. Plugging in the solutions of (4.38), the resulting loops generically preserve
only one supercharge. However, at some special points we find supersymmetry enhancement.
In fact, we find some very interesting subclasses of those loops, which are analyzed in detail
in section 6.3.
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4.2.1 The special cases: ξ = 0 and ξ = ∞

Two further degenerations of the Π = 0 supercharges are when ξ in (4.27) vanishes or is
infinite. Both cases are equivalent under the replacement of η with η̄ (or Q2̇a+

ı and Q1̇a−
ı̄ )

and for simplicity we focus on ξ = 0. This means that the supercharge Q is comprised of
only the four supercharges Q1̇a−

ı̄ and is nilpotent Q2 = 0.
In all cases when Π = 0, we have two scalar fields r‖ and r̄‖ in (4.29) that are annihilated

by Q. For ξ = 0, as can be seen from (4.31), there are also two fermionic field in the
hypermultiplet annihilated by Q. Those are ψ2̇+ and ψ̄1̇

+ and we can therefore insert any
distribution of these fields in the hyperloop while still preserving supersymmetry.

As the bottom left entry in L1/2 is comprised of ψ̄1̇
+, see (3.1), the matrix H appearing

in the variation of L1/2 is upper-triangular, as can indeed be read off from (4.35). To
construct the deformed loops we take G as in (4.36) and add the extra fermionic fields to
C. Alternatively, they can also be added as extra terms into F beyond QG

G =
(

0 β̄⊥r⊥

β⊥r̄⊥ 0

)
, C =

(
β̄‖r‖r̄‖ δ̄ψ2̇+
δψ̄1̇

+ β‖r̄‖r‖ + c

)
. (4.41)

Plugging G and C into QL = DLϕH, one gets again the same condition that appeared
in (4.37), which can be solved by

δ = c = 0 , β̄‖ = β‖ . (4.42)

This gives the superconnection

L =
(
Aϕ,I +Ma

brar̄b − i
k (µ̃ 1̇

I 1̇ − µ̃ 2̇
I 2̇) −iᾱψ1̇− + (δ̄ − iΛβ̄⊥)ψ2̇+

i(α+ Λβ⊥)ψ̄1̇
+ Aϕ,I+1 +Ma

br̄br
a − i

k (µ̃ 1̇
I+11̇ − µ̃ 2̇

I+12̇)− 1
2

)
,

(4.43)
where Ma

b is the same as (4.40) with ξ = 0. Note that δ̄ and β̄⊥ appear only as the
combination δ̄ − iΛβ̄⊥, so we can eliminate any one of them.

The same answer is found from a different approach in appendix C, where extra
fermionic fields are added in F .

4.2.2 The condition Π = 0 from an algebraic point of view

As done for Π 6= 0 in section 4.1.1, one can consider the condition Π = 0 from an
algebraic point of view. Here we give a complete classification of all possible subcases.
From the discussion around (4.20), with Q2 ∈ u(1)J0 ⊕ su(2)L ⊕ u(1)L⊥ , the conditions
on η̄ıa, η

ı
a for Π to vanish are easily derived, since one only needs to enforce Π0 = 0, so

that Q2 ∈ su(2)L ⊕ u(1)L⊥ . By (4.22), there are two possibilities: either εabzawb = 0
which implies λab = λba and Q2 ∈ su(2)L, or εıt̄ıt = 0, which implies λab = −λba and
Q2 ∈ u(1)L⊥ .

In the former case, Q2 ∈ su(2)L, one can let za = wa without loss of generality,
leading to

Q2 ∝ wawbRab . (4.44)
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The functions ξ and Λ are given by

ξ = tl + e−iϕtr

e+iϕt̄l + t̄r
, Λ = (e+iϕt̄l + t̄r)2 . (4.45)

In the case Q2 ∈ u(1)L⊥ , one may write instead tı = t sı, t̄ı = t̄ sı, leading to

Q2 ∝ εabzawb L⊥ , (4.46)

as well as to

ξ = te−iϕ

t̄
, Λ = t̄2eiϕ

(
eiϕ(sl)2 + e−iϕ(sr)2 + 2slsr(εabzawb)

)
. (4.47)

Finally, when both of the conditions above are met the supercharge becomes nilpotent,
Q2 = 0. The parameters are of the form

ηıa = aρıwa , η̄ıa = āρıwa . (4.48)

This factorisation is expected since each term in (4.13) antisymmetrises over either ı,  or
a, b (or both). The functions ξ and Λ take the simple form

ξ = ae−iϕ

ā
, Λ = ā2(eiϕρl + ρr)2 . (4.49)

Note that the function ξ provides a handy way of distinguishing these cases. Concretely,
∂ϕ
(
eiϕξ

)
= 0 if and only if Q2 ∈ u(1)L⊥ . ξ vanishes identically if and only if Q is composed

entirely of barred supercharges.

5 Longer quivers and twisted hypers

All the constructions in section 4 involve only two nodes of the quiver. Here we turn
to hyperloops coupling to more nodes. As a guiding example and starting point of the
deformation, we consider the 1/2 BPS loop on two pairs of nodes, with undeformed
superconnection given by

L1/2 =


AI −iᾱIψI,1̇− 0 0

iαI ψ̄
1̇
I,+ AI+1 − 1

2 0 0
0 0 AI+2 − c −iᾱI+2ψI+2,1̇−
0 0 iαI+2ψ̄

1̇
I+2,+ AI+3 − c− 1

2

 . (5.1)

We introduce a constant shift c between the two pairs of nodes representing the effect of
a U(NI+1) gauge freedom. In this block-diagonal form, there is no restriction on c. The
resulting Wilson loop is well defined with constant αI+2 and ᾱI+2 satisfying αI+2ᾱI+2 = 2i/k.
We find (the supertrace sums lines with signs +,−,+,−)

W = sTrP exp i
∮
L dϕ = W(I,I+1) + exp

(
−i
∮
c dϕ

)
W(I+2,I+3) . (5.2)

Clearly with this block-diagonal structure, we can take any linear combination of the
two Wilson loops. Adding deformations by the hypermultiplets keeps the block-diagonal
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structure, so again it works with any c. As already noted in [10], deformations by twisted
hypermultiplets with q̃ȧI+1 are more subtle and fix c.

The Wilson loop based on (5.1) still satisfies QL1/2 = DL1/2
ϕ H, this time with

H =


0 ᾱIr

2
I 0 0

αI r̄I 2 0 0 0
0 0 0 ᾱI+2r

2
I+2

0 0 αI+2r̄I+2 2 0

 . (5.3)

It is now natural to rotate the fermions from the twisted hypermultiplets

ρ̃1
− = −(ηv̄)aψ̃a− , ρ̃2

+ = (η̄v)aψ̃a+ , ¯̃ρ1+ = εab(η̄v)a ¯̃ψb+ , ¯̃ρ2− = εab(ηv̄)a ¯̃ψb− , (5.4)

such that the supersymmetry transformations are

Qq̃1̇ = ρ̃2
+ , Qq̃2̇ = ρ̃1

− , Q ¯̃q1̇ = ¯̃ρ2− , Q ¯̃q2̇ = ¯̃ρ1+ . (5.5)

The double variations are then

Q2q̃1̇ = Π
(
i∂ϕq̃1̇ +AI+1q̃1̇ − q̃1̇AI+2

)− 2i
k

(r̄2r
2q̃1̇ − q̃1̇r

2r̄2)− 1
2ε

ab(η̄v)a(ησ3v̄)bq̃1̇ ,

Q2q̃2̇ = Π
(
i∂ϕq̃2̇ +AI+1q̃2̇ − q̃2̇AI+2

)− 2i
k

(r̄2r
2q̃2̇ − q̃2̇r

2r̄2)− 1
2ε

ab(η̄σ3v)a(ηv̄)bq̃2̇ ,

Q2 ¯̃q1̇ = Π
(
i∂ϕ ¯̃q1̇ +AI+2 ¯̃q1̇ − ¯̃q1̇AI+1

)− 2i
k

(r2r̄2 ¯̃q1̇ − ¯̃q1̇r̄2r
2)− 1

2ε
ab(η̄σ3v)a(ηv̄)b ¯̃q1̇ ,

Q2 ¯̃q2̇ = Π
(
i∂ϕ ¯̃q2̇ +AI+2 ¯̃q2̇ − ¯̃q2̇AI+1

)− 2i
k

(r2r̄2 ¯̃q2̇ − ¯̃q2̇r̄2r
2)− 1

2ε
ab(η̄v)a(ησ3v)b ¯̃q2̇ .

(5.6)

Using (3.15), the linear terms above can rewritten as

εab(η̄v)a(ησ3v̄)b = −i∂ϕΠ− λ , εab(η̄σ3v)a(ηv̄)b = −i∂ϕΠ + λ , (5.7)

such that the double variations become

Q2q̃1̇ = Π
(
i∂ϕq̃1̇ −

1
2 q̃1̇ + Γq̃1̇ +AI+1q̃1̇ − q̃1̇AI+2

)
− 2i
k

(r̄2r
2q̃1̇ − q̃1̇r

2r̄2) ,

Q2q̃2̇ = Π
(
i∂ϕq̃2̇ + 1

2 q̃2̇ + Γ̄q̃2̇ +AI+1q̃2̇ − q̃2̇AI+2

)
− 2i
k

(r̄2r
2q̃2̇ − q̃2̇r

2r̄2) ,

Q2 ¯̃q1̇ = Π
(
i∂ϕ ¯̃q1̇ + 1

2
¯̃q1̇ + Γ̄¯̃q1̇ +AI+2 ¯̃q1̇ − ¯̃q1̇AI+1

)
− 2i
k

(r2r̄2 ¯̃q1̇ − ¯̃q1̇r̄2r
2) ,

Q2 ¯̃q2̇ = Π
(
i∂ϕ ¯̃q2̇ − 1

2
¯̃q2̇ + Γ¯̃q2̇ +AI+2 ¯̃q2̇ − ¯̃q2̇AI+1

)
− 2i
k

(r2r̄2 ¯̃q2̇ − ¯̃q2̇r̄2r
2) ,

(5.8)

where for latter convenience we introduce

Γ = 1
2

(
i∂ϕ ln Π + λ

Π + 1
)
, Γ̄ = 1

2

(
i∂ϕ ln Π− λ

Π − 1
)
. (5.9)
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5.1 Deformations with Π 6= 0

We now proceed to deform the loop (5.1) as in (4.1). We take G to be of the form

G =


0 b̄Iar

a
I 0 0

baI r̄Ia 0 d̄1̇
I+1q̃I+1 1̇ 0

0 dI+1 1̇ ¯̃q1̇
I+1 0 b̄I+2 ar

a
I+2

0 0 baI+2r̄I+2 a 0

 . (5.10)

We allow a coupling to all the scalars in the hypermultiplets, but in the twisted hypers we
restrict to q̃I+1 1̇ and ¯̃q1̇

I+1. The second pair of scalar fields is examined below.
Using (5.8), the analogue of (4.3) adapted for a longer quiver is

− iQ2G = ∂ϕ(ΠG)− i[LB1/2,ΠG] + i[H2, G]−ΠĜ , (5.11)

with

ΠĜ =


0 ∂ϕ(Πb̄I a)raI 0 0

∂ϕ(ΠbaI )r̄I a 0 ∂ϕ(Πd̄1̇)q̃I+1 1̇ 0
0 ∂ϕ(Πd1̇)¯̃q1̇

I+1 0 ∂ϕ(Πb̄I+2 a)raI+2
0 0 ∂ϕ(ΠbaI+2)r̄I+2 a 0



+


0 −iΠb̄I 1r

1
I 0 0

iΠb1I r̄I 1 0 −iΠ(c− Γ)d̄1̇q̃I+1 1̇ 0
0 iΠ(c+ Γ̄)d1̇ ¯̃q1̇

I+1 0 −iΠb̄I+2 1r
1
I+2

0 0 iΠb1I+2r̄I+2 1 0

 .
(5.12)

Proceeding as before, the analogue of (4.5) sets B = {G,H}+ ΠG2 and supersymmetry
invariance of L now requires solving

i[C,H + ΠG]−ΠĜ = 0 , C = diag(cI , cI+1, cI+2, cI+3) . (5.13)

We recover two copies of the equations (4.9), now for bI , b̄I , bI+2, and b̄I+2. In addition,
using Γ + Γ̄ = i∂ϕ ln Π, we find the two following equations for dI+1 1̇ and d̄1̇

I+1

∂ϕ(d̄1̇
I+1)− i(cI+1 − cI+2 + c+ Γ̄)d̄1̇

I+1 = 0 ,
∂ϕ(ΠdI+1 1̇) + i(cI+1 − cI+2 + c+ Γ̄)ΠdI+1 1̇ = 0 .

(5.14)

Note that these involve not only the numerical factors arising from C but also the relative
shift c that was left arbitrary in (5.1). In particular, we can make use of this gauge freedom
to make the convenient choice cI+1 = cI+2 = 0 and then with c = −Γ̄, the equations above
are solved by

d̄1̇
I+1 = δ̄1̇

I+1 , dI+1 1̇ =
δI+1 1̇

Π , (5.15)

with constant δ’s. Other gauges are possible, but they are completely equivalent to this one.
One can write the explicit expression for L using (4.7). Two points to note are that

in addition to the diagonal bosonic terms and first off-diagonal fermionic terms, there are
also off-off-diagonal bosonic terms that contain the bilinears q̃I+1 1̇r

a
I+2 and ¯̃q1̇

I+1r̄Ia. Also,
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the diagonal terms in the central nodes now include the modification of the bilinears of the
scalars in the twisted hypermultiplets via

M̃ ȧ
ḃq̃I+1 ȧ ¯̃qḃI+1 , M̃ =

(
−i/k + δ̄1̇

I+1δI+1 1̇ 0
0 i/k

)
. (5.16)

Instead of writing the full complicated 4× 4 form of the general L, we look at some special
cases in section 6.4.

To couple L to q̃I+1 2̇ and ¯̃q2̇
I+1, we take instead

G =


0 b̄Iar

a
I 0 0

baI r̄Ia 0 d̄2̇
I+1q̃I+1 2̇ 0

0 dI+1 2̇ ¯̃q2̇
I+1 0 b̄I+2 ar

a
I+2

0 0 baI+2r̄I+2 a 0

 , (5.17)

then (5.11) holds with

ΠĜ =


0 ∂ϕ(Πb̄I a)raI 0 0

∂ϕ(ΠbaI )r̄I a 0 ∂ϕ(Πd̄2̇
I+1)q̃I+1 2̇ 0

0 ∂ϕ(ΠdI+1 2̇)¯̃q2̇
I+1 0 ∂ϕ(Πb̄I+2 a)raI+2

0 0 ∂ϕ(ΠbaI+2)r̄I+2 a 0



+


0 −iΠb̄I 1r

1
I 0 0

iΠb1I r̄I 1 0 −iΠ(c− Γ̄− 1)d̄2̇
I+1q̃I+1 2̇ 0

0 iΠ(c+ Γ− 1)dI+1 2̇ ¯̃q2̇
I+1 0 −iΠb̄I+2 1r

1
I+2

0 0 iΠb1I+2r̄I+2 1 0

 .

(5.18)
This time, (5.13) gives two equations for dI+1 2̇ and d̄2̇

I+1

∂ϕ(d̄2̇
I+1)− i(cI+1 − cI+2 + c+ Γ− 1)Πd̄2̇

I+1 = 0 ,
∂ϕ(ΠdI+1 2̇) + i(cI+1 − cI+2 + c+ Γ− 1)dI+1 2̇ = 0 .

(5.19)

In this case the convenient gauge is cI+1 = cI+2 = 0 where these equations are solved with
c = −Γ + 1 and

d̄2̇
I+1 = δ̄2̇

I+1 , dI+1 2̇ =
δI+1 2̇

Π , (5.20)

with constant δ’s. Now M̃ is given by

M̃ =
(
−i/k 0

0 i/k + δ̄2̇
I+1δI+1 2̇

)
. (5.21)

Notice that we performed the analysis separately for the two pairs of scalars in the
twisted hypermultiplets and the resulting expressions required different conditions on c,
namely c = −Γ̄ and c = −Γ + 1. To allow L to couple to all scalars of the twisted
hypermultiplet at the same time, these need to be related by a gauge transformation,
requiring

ĉ(ϕ) = −
∫ ϕ

0

(
Γ̄− Γ + 1

)
dϕ′ =

∫ ϕ

0

λ

Π dϕ′ , (5.22)
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to be single valued. Thus, if

eiĉ(2π) = exp i
∮
λ

Π dϕ = 1 , (5.23)

is satisfied, L may couple to all twisted scalars, otherwise it may couple either to the pair
q̃1̇, ¯̃q1̇ or to q̃2̇, ¯̃q2̇.

To be concrete, if we choose the gauge cI = cI+1 = cI+2 = cI+3 = 0 and c = −Γ̄, a
G including all twisted scalars is then composed from (5.10) and the gauge transformed
version of (5.17), giving

G =


0 b̄Iar

a
I 0 0

baI r̄Ia 0 d̄1̇
I+1q̃I+1 1̇ + eiĉ(ϕ)d̄2̇

I+1q̃I+1 2̇ 0
0 dI+1 1̇ ¯̃q1̇

I+1 + e−iĉ(ϕ)dI+1 2̇ ¯̃q2̇
I+1 0 b̄I+2 ar

a
I+2

0 0 baI+2r̄I+2 a 0

 .
(5.24)

The construction then follows as before. Differential equations for b̄Ia, baI , b̄I+2 a, baI+2
and for dI+1 1̇, d̄1̇

I+1 are as in (4.9) and (5.14) and are solved by (4.10) and (5.15). As for
dI+1 2̇, d̄

2̇
I+1, we find the equivalent to (5.19) in the c = −Γ̄ gauge

∂ϕ(Πeiĉ(ϕ)d̄2̇
I+1)− iλeiĉ(ϕ)d̄2̇

I+1 = 0 ,
∂ϕ(Πe−iĉ(ϕ)dI+1 2̇) + iλe−iĉ(ϕ)dI+1 2̇ = 0 ,

(5.25)

which is still solved by (5.20).
We found therefore the form of L coupling to both twisted scalars, under the condi-

tion (5.23). Now M̃ is given by

M̃ =
(
−i/k + δ̄1̇

I+1δI+1 1̇ e
−iĉ(ϕ)δ̄1̇

I+1δI+1 2̇
eiĉ(ϕ)δ̄2̇

I+1δI+1 1̇ i/k + δ̄2̇
I+1δI+1 2̇

)
. (5.26)

A special case of this construction was already carried out in [10]. In the parameterization
of that paper, Π = 1 and λ = cos θ, with θ the so-called “latitude” angle. It was then
possible to include all scalar fields in G for θ = 0 (see equation (4.9) of [10]). The analog
of the obstruction (5.23) arose there for θ 6= 0 (see the comment below (5.15) of [10]).
The reasoning for that is precisely the fact that eiĉ(ϕ) = eiϕ cos θ considered there is not
single valued.

5.2 Deformations with Π = 0

Generalizing section 4.2 to allow for twisted hypers, we start again with the 1/2 BPS loop
with four nodes in (5.1). H is the same as in (5.3), now written generalizing (4.35) to

H =


0 ᾱIr

‖
I 0 0

−αIξr̄I ‖ 0 0 0
0 0 0 ᾱI+2r

‖
I+2

0 0 −αI+2ξr̄I+2 ‖ 0

 . (5.27)
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As before, the fact that Π = 0 implies that the variation of the deformed loop is still a
covariant derivative of H regardless of the deformation. Since H does not include twisted
scalars, we do not expect the relative shift between the two pairs of nodes (c in (5.1)) to be
fixed by the requirement that the deformed loop is supersymmetric. Below we see that this
is indeed the case.

The Π = 0 version of the double transformations (5.6) is

Q2q̃1̇ = 2i
k
ξ(r̄‖r‖q̃1̇ − q̃1̇r

‖r̄‖) + λ

2 q̃1̇ ,

Q2q̃2̇ = 2i
k
ξ(r̄‖r‖q̃2̇ − q̃2̇r

‖r̄‖)−
λ

2 q̃2̇ ,

Q2 ¯̃q1̇ = 2i
k
ξ(r‖r̄‖ ¯̃q1̇ − ¯̃q1̇r̄‖r

‖)− λ

2
¯̃q1̇ ,

Q2 ¯̃q2̇ = 2i
k
ξ(r‖r̄‖ ¯̃q2̇ − ¯̃q2̇r̄‖r

‖) + λ

2
¯̃q2̇ .

(5.28)

The building blocks are then the 4 × 4 versions of G and C (we set cI = cI+2 = 0 for
convenience)

G =


0 β̄I ⊥r⊥I 0 0

β⊥I r̄I ⊥ 0 d̄ȧq̃I+1 ȧ 0
0 dȧ ¯̃qȧI+1 0 β̄I+2⊥r⊥I+2
0 0 β⊥I+2r̄I+2⊥ 0

 ,

C =


β̄I ‖r

‖
I r̄I ‖ 0 0 0

0 β
‖
I r̄I ‖r

‖
I + cI+1 0 0

0 0 β̄I+2 ‖r
‖
I+2r̄I+2 ‖ 0

0 0 0 β
‖
I+2r̄I+2 ‖r

‖
I+2 + cI+3

 .
(5.29)

With these in hand, the superconnection L = L1/2 − iQG+ {G,H}+ C is supersymmetric
provided that the same condition as in (4.37) is obeyed.

The analysis for the β parameters follows as in the 2-node case. Cubic terms on the
fields cancel for β̄I ‖ = β

‖
I and β̄I+2 ‖ = β

‖
I+2. Linear terms are such that we find, in addition

to (4.38), its I + 2-node version

Λβ̄I+2⊥∂ϕ(eiϕξ) = −ieiϕcI+3ᾱI+2 , Λβ⊥I+2∂ϕ(eiϕξ) = ieiϕcI+3αI+2ξ . (5.30)

For the central block containing the d parameters, one realizes that the cubic term in
the double variations (5.28) is exactly equal to [G,H2]. There is no contribution related to
d from [C,H], so one is left with the linear terms arising from Q2G

. . .

0 λ

2 (d̄1̇q̃1̇ − d̄2̇q̃2)

−λ2 (d1̇ ¯̃q1̇ − d2̇ ¯̃q2̇) 0
. . .


= 0 . (5.31)
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Solutions with nonvanishing d parameters and a non block-diagonal structure are only
possible for supercharges with

λ = 0 . (5.32)

In this case there are no constraints on d̄ȧ and dȧ, and they can be arbitrary functions.
At the level of the algebra, see section 4.2.2, this means that loops in this section are
constructed from Q’s that square only to su(2)L generators Rab.

Note that as anticipated the derivation above does not set restrictions on the relative
shift c appearing in (5.1), in contrast to the Π 6= 0 case. We examine some special cases of
the resulting operators in section 6.5.

5.2.1 The special cases: ξ = 0 and ξ = ∞

The analysis of ξ = 0 and ξ = ∞ follows in analogy with section 4.2.1. As before, both
cases are equivalent under the replacement of η and η̄, so we focus only on the ξ = 0 case.

Here, since we are considering longer quivers coupling to twisted hypermultiplets, we
need to include in G not only r⊥, r̄⊥ but also the twisted scalars that are not annihilated
by Q. From (5.5) we see that these are q̃1̇ and ¯̃q2̇, so we have

G =


0 β̄I⊥r⊥I 0 0
β⊥I 0 d̄1̇q̃I+1 1̇ 0
0 d2̇ ¯̃q2̇

I+1 0 β̄I+2r
⊥
I+2

0 0 β⊥I+2r̄I+2⊥ 0

 . (5.33)

Conversely, the fields q̃2̇ and ¯̃q1̇ are annihilated by Q and are included in the matrix C.
In addition to them, we should also include ρ̃2

+ and ¯̃ρ1+, which are the linear combination
of fermionic fields from the twisted hypermultiplet that are annihilated by Q. Thus, we
have (setting again cI and cI+2 to zero for convenience)

C =


K̄I δ̄IψI2̇+ γ1r

‖
I q̃I+1 2̇ 0

δI ψ̄
1̇
I+ KI + cI+1 δ̄I+1ρ̃

2
I+1,+ γ2q̃I+1 2̇r

‖
I+2

γ3 ¯̃q1̇
I+1r̄I‖ δI+1 ¯̃ρI+1,1+ K̄I+2 δ̄I+2ψI+2 2̇+
0 γ4r̄I+2‖ ¯̃q1̇

I+1 δI+2ψ̄
1̇
I+2,+ KI+2 + cI+3

 , (5.34)

with KI ≡ β‖I r̄I‖r
‖
I + τI+1q̃I+1 2̇ ¯̃q1̇

I+1 and K̄I ≡ β̄I‖r‖I r̄I‖ + τI ¯̃q1̇
I−1q̃I−1 2̇.

As before, the superconnection L = L1/2 − iQG + {G,H} + C is supersymmetric
provided that (4.37) is obeyed. This is solved by

β̄I‖ = β
‖
I , β̄I+2‖ = β

‖
I+2 , γ1ᾱI+2 = γ2ᾱI , (5.35)

and by setting the remaining parameters in C to zero, except for δ̄I , δ̄I+2 and δI+1, which
are left arbitrary. We write down the resulting operator at the end of section 6.5.

6 Special cases

Having carried out the systematic construction of BPS hyperloops described above, we
turn now to some special examples of the constructions. This includes making contact with
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previously described operators and identifying new ones. Our emphasis is on operators
preserving more than one supercharge.

6.1 Single node bosonic loops

We start with the simplest possible BPS Wilson loops in three-dimensional Chern-Simons-
matter theories, those involving only a single node and L is a 1 × 1 block with only the
gauge field and bilinears of the scalars. The first such bosonic loops were constructed by
Gaiotto and Yin in off-shell N = 2 language in [36]. Analogues of them in ABJ(M) theory
were described in [37–39] and that description carries over also to N = 4 theories. Such
loops preserve at most four supercharges. The other previously identified family of bosonic
loops are the “bosonic latitude” loops of [10, 21, 26], which preserve a pair of supercharges.

To get such loops in our setting we may decouple the nodes by simply setting β1 =
β2 = β̄1 = β̄2 = 0 in the analysis of section 4 for the case Π 6= 0 (we comment below on
the case Π = 0). This eliminates all the fermions in the superconnection L, which becomes
block-diagonal with a connection in the I-th block taking the form

A = Aϕ + i

k
Π−1

(
r1r̄1 − r2r̄2

)
− i

k

(
µ̃1̇

1̇ − µ̃2̇
2̇

)
, (6.1)

It is easy to show that these loops preserve at least two supercharges. Consider in fact
the supercharge Q′ gotten by the replacement η̄ıa → −η̄ıa in (3.4)

Q′ = ηıaQ
2̇a+
ı − η̄ıa

(
σ1
) ı̄

ı
Q1̇a−
ı̄ . (6.2)

Under this change of sign, Π → −Π, r2 → −r2 and r̄1 → −r̄1, such that (6.1) is left
invariant. Note that because Π 6= 0, Q is the sum of barred and unbarred supercharges and
by the above argument these must be preserved separately.

Alternatively, this can be seen by investigating the bosonic symmetries. In particular,
note that the transverse rotation T⊥ keeps the loop fixed pointwise, and therefore acts
trivially on the scalars as well as on the parallel component of the gauge field, the only
fields in the bosonic loop. Closure of the symmetry algebra then implies that, in addition to
Q, the supercharge [T⊥, Q] is preserved by the loop. From (A.6) we see that this generates
Q′, so we come to the same conclusion as above (an analogous argument can be made using
the generator R̄3).

A useful way to write the connection (6.1) is in terms of the moment maps µab as

A = Aϕ + i

k

1
(χ− χ̄)

(
(χ+ χ̄)(µ1

1 − µ2
2) + 2µ2

1 − 2χχ̄ µ1
2
)
− i

k
(µ̃1̇

1̇ − µ̃2̇
2̇) , (6.3)

with
χ = (ηv̄)1

(ηv̄)2
, χ̄ = (η̄v)1

(η̄v)2
, (6.4)

which are generally linear fractional transformations of eiϕ (3.5) (and as usual, they are not
conjugates).

The most degenerate case is when both χ and χ̄ have no ϕ dependence. This requires the
numerators and denominators to be proportional to each-other, spanning a two dimensional
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space of η’s and likewise η̄’s. This implies that the loop preserves 4 supercharges and
having no ϕ dependence, it also preserves the SO(2, 1) conformal group. To recover the
Gaiotto-Yin Loop [36] we take χ = 1/χ̄ → ∞. Other values of χ, χ̄ are related by the
action of the complexification of the broken SU(2)L symmetry.

When χ is a constant and χ̄ depends on ϕ (or vice versa), there is only partial degeneracy,
and the loops preserve three supercharges, or are 3/16 BPS. Such loops have not been
previously discussed in the literature.

When both χ and χ̄ depend on ϕ, the loops preserve a pair of supercharges. A
simple example is when they are just monomials, for example χ = − tan(θ/2)e−iϕ and
χ̄ = cot(θ/2)e−iϕ. The connection takes the form

A = Aϕ −
i

k

(
cos θ(µ1

1 − µ2
2) + sin θ e−iϕµ1

2 + sin θ eiϕµ2
1
)
− i

k
(µ̃1̇

1̇ − µ̃2̇
2̇) . (6.5)

These are the latitude loops found in [21] and studied in [10, 26]. As the ϕ dependence
breaks conformal invariance, acting with the (complexified) conformal group SL2(C) on the
loop above generates many other loops, including those where χ and χ̄ are proper rational
functions and not mere monomials.

There are yet more peculiar bosonic loops that preserve two supercharges, but are not
similar to the latitude loops. Representatives of those have

χ = e−iϕ + ν , χ̄ = e−iϕ − ν , (6.6)

with an arbitrary parameter ν.
Despite all the machinery in the previous sections, the analysis of the most general

BPS bosonic loop requires yet further techniques, so those will be explored in a future
publication [40]. That exploration will also relax the condition in this paper that the loops
arise from continuous deformations of the 1/2 BPS loop, which could give rise to further
BPS bosonic loops.

6.2 Two-node hyperloops with Π 6= 0

Let us look now at some special examples of the hyperloops with two nodes constructed in
section 4.1. Examining (4.12), the most symmetric possibility is that M is proportional
to the identity, restoring SU(2)L symmetry. There are two such solutions. The first with
β1 = β̄1 = 0 and β2β̄2 = 2i/k, which is just the original 1/2 BPS loop in (3.1). The second
has β2 = β̄2 = 0 and β1β̄1 = −2i/k, which is the second 1/2 BPS loop with the same
symmetries in (3.7) (albeit written in a different gauge).

A less symmetric case is when M is diagonal, but not necessarily proportional to the
identity, so when β̄1β2 = β̄2β1 = 0. If β1 = β2 = 0 or β̄1 = β̄2 = 0, the connection
becomes upper or lower triangular, respectively. As discussed in [9–11], the resulting loops
are effectively the same as if all the βa = β̄a = 0, since they are all identical as quantum
operators. The interesting case is then when β̄1 = β1 = 0 or β̄2 = β2 = 0. Taking the
former as an example, we find

L =
(
Aϕ,I +M b

a r
ar̄b − i

k (µ̃ 1̇
I 1̇ − µ̃ 2̇

I 2̇) −iβ̄2ψI1̇−
iβ2ψ̄1̇

I+ Aϕ,I+1 +M b
ar̄br

a − i
k (µ̃I+1 1̇

1̇ − µ̃I+1 2̇
2̇)− 1

2

)
,

(6.7)
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with
M = Π−1

(
i
k 0
0 β̄2β2 − i

k

)
. (6.8)

In addition to the supercharge Q, these hyperloops preserve a supercharge Q′ arising from
same ηıa but with η̄ıa → −η̄ıa. The argument is identical to the case of the bosonic loops
presented in section 6.1. In this case we see that the fermionic terms are unchanged if we
keep the same β’s and M → −M , so the diagonal entries M 1

1 r1r̄1 and M 2
2 r2r̄2 are also

left invariant. The requirement that M is diagonal guarantees, therefore, that the loop is
also invariant under Q′ and is 1/8 BPS.

Thus, for any choice of Q with Π 6= 0, if we restrict the parameters such that β1 = β̄1 = 0,
we find a family of 1/8 BPS hyperloops parametrized by β2 and β̄2. However, as we can
conjugate L by a constant matrix

L →
(

1 0
0 x−1

)
L
(

1 0
0 x

)
, (6.9)

this gauge transformation eliminates one of the parameters, and we end up with a one
(complex) dimensional moduli space.

This is very similar to the discussion in [10], but it is much more general, as it works
with any of the supercharges Q in (3.4) with Π 6= 0. To make contact with the constructions
in [10] we can look at the moduli space of 1/4 BPS hyperloops studied there, which are
all deformations of the usual bosonic Gaiotto-Yin loops [36]. Those loops preserve a one-
dimensional conformal group, under which the supercharges are charged. Looking at the
algebra (4.13) and requiring only conformal transformations in the square of the supercharge
imposes εı

(
η̄ıaη


b + η̄ıbη


a

)
= 0. To realize this, we choose two vectors w̄a and wa (as usual,

bar does not indicate complex conjugation). For an arbitrary vector sı, define parameters
η̄, η as

ηıa = was
ı , η̄ıa = w̄as

ı . (6.10)

The resulting supercharges are all linear combinations of

waQ
2̇a
ı , w̄aQ

1̇a
ı̄ , (6.11)

whose anticommutators generate the bosonic algebra so(2, 1)⊕u(1), where the u(1) summand
is generated by L⊥ + 1

2waw̄bR
ab (see section 4.1.1 for details).

In [10] the vector wa was δ2
a and w̄a was δ1

a. Other choices can be achieved by an
SU(2)L rotation. What was more restrictive there is that only a single choice of Q (or
sı) was used. As long as we turn on only the parameters as in (6.8), we preserve all the
supercharges in (6.11), so any choice (with Π 6= 0) is equivalent. When turning on more
β parameters, we find different moduli spaces, depending on the exact choice of Q. Our
analysis here therefore generalizes also this simple case of deformations of the 1/4 BPS
bosonic loop.

As discussed in section 6.1, there are several new bosonic loops generated by our
construction that are not related to those in [10]. Clearly their deformations with β 6= 0
are also new.
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6.3 Two-node hyperloops with Π = 0

This case is presented in section 4.2, where it is shown that the general deformation is of
the form (4.34) with G and C as in (4.36), subject to the constraints that β̄‖ = β‖ and the
conditions on β̄⊥, β⊥ and c in (4.38). The resulting expression for L is then in (4.39).

A simple way to find loops with enhanced supersymmetry is when the superconnection
is invariant under su(2)L, which arises when M b

a r
ar̄b ∝ νI . Looking at the expression for ν

in (4.33) and M in (4.40), we see that one needs to impose

β‖ = 0 , ξαβ̄⊥ = ᾱβ⊥ . (6.12)

These equations are consistent with (4.38),5 combining all the parameters to a single periodic
function γ = 1− ikΛᾱβ⊥ appearing in the superconnection as

L =
(
Aϕ,I + i

kγνI − i
k (µ̃ 1̇

I 1̇ − µ̃ 2̇
I 2̇) − iᾱ

2 (γ + 1)ψ1̇− − iᾱ
2 (γ − 1)ξ−1ψ2̇+

iα
2 (γ + 1)ψ̄1̇

+ − iα
2 (γ − 1)ξψ̄2̇

− Aϕ,I+1 + i
kγνI+1 − i

k (µ̃ 1̇
I+11̇ − µ̃ 2̇

I+12̇) + c− 1
2

)
,

(6.13)
and c = iγ−1

2 ∂ϕ log(ξeiϕ).
The degree of supersymmetry enhancement depends on the choice of supercharge Q.

Specifically, following section 4.2.2, we distinguish three cases.

6.3.1 1/8 BPS loops

First, suppose 0 6= Q2 ∈ su(2)L. Putting together (4.21) and (4.24), one sees that the
parameters η, η̄ may be cast into the form

ηıa = tıwa , η̄ıa = t̄ıwa , (6.14)

with some vector wa 6= 0 and εıtıt̄ 6= 0. Acting on the resulting supercharge with su(2)L,
we find that, regardless of the choice of wa, the loop preserves the two supercharges (with a
convenient normalization)

Q1 = 1√
εıtıt̄

(
tıQ2̇1

ı + t̄ı (σ1) ̄ı Q1̇1
̄

)
, Q2 = 1√

εıtıt̄

(
tıQ2̇2

ı + t̄ı (σ1) ̄ı Q1̇2
̄

)
. (6.15)

Using (A.9) it is easy to verify that their anticommutators generate su(2)L

{Q1, Q1} = 1
2R+ , {Q1, Q2} = −R3 , {Q2, Q2} = −1

2R− .
(6.16)

6.3.2 1/4 BPS loops and conformal loops

Another case is when the supercharge satisfies 0 6= Q2 ∈ u(1)L⊥ . In this case, as derived
in (4.47), we have ξ = ξ0e−iϕ, which immediately implies c = 0. As discussed in section 4.2.2,
the parameters of Q take the form

ηla = tslwa , ηra = tsrza ,

η̄la = t̄slwa , η̄ra = t̄srza ,
(6.17)

5(4.38) is also solved with ξ = ξ0e
−iϕ, with a constant ξ0 6= 0, arbitrary β⊥, β̄⊥, β‖ = β̄‖ and c = 0.
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where both εabwazb 6= 0 and slsr 6= 0. Knowing that the loop is invariant under su(2)L we
can project (6.17) to those terms involving either only wa or only za. Acting then with
raising and lowering operators projects further to the two components a = 1, 2, removing
the dependence on wa and za altogether, and leaving us with four supercharges

Q1 = tQ2̇1
r + t̄Q1̇1

l̄
, Q2 = tQ2̇1

l + t̄Q1̇1
r̄ ,

Q3 = tQ2̇2
r + t̄Q1̇2

l̄
, Q4 = tQ2̇2

l + t̄Q1̇2
r̄ .

(6.18)

Examining these, we see that they form doublets of so(2, 1) (exchanging l and r).
The algebra generated by these supercharges is very simple, with the only non-vanishing

anticommutators
{Q1, Q4} = −2tt̄L⊥ , {Q2, Q3} = 2tt̄L⊥ . (6.19)

Note that the bosonic part of this 1/4 BPS algebra is just u(1)L⊥ , while su(2)L and the
one-dimensional conformal algebra so(2, 1) act as outer automorphisms.

We noted that the superconnection (6.13) is invariant under su(2)L. It is interesting to
check whether it is also invariant under so(2, 1). This clearly requires γ to be a constant, as
otherwise L is not invariant even under rotations. Considering then a general conformal
generator J = a+J+ + a0J0 + a−J− and using (A.4)–(A.5), one finds that the conformal
transformation of L in (6.13) is a total derivative

JL = DLϕ(aL+H), (6.20)

with
a = a+e

iϕ − ia0 + a−e−iϕ, H =
(

0 0
0 a/2

)
. (6.21)

The resulting Wilson loops are then invariant under so(2, 1)⊕ su(2)L ⊕ u(1)L⊥ , providing a
previously unidentified family of conformal 1/4 BPS loops.

Note that the argument here is classical and as the superalgebra (6.19) does not include
the conformal generators, we cannot be sure that it is not spoiled by quantum corrections.

6.3.3 Further 1/8 BPS loops

The last example arising from (6.13) are loops with nilpotent Q. Since this case lies at the
intersection of the previous two, we have to impose all the conditions discussed above. For
the parameters, we have

ηıa = aρıwa , η̄ıa = āρıwa . (6.22)

They give a pair of nilpotent supercharges

Q1 = aρıQ2̇1
ı + āρı(σ1) ̄ı Q2̇1

̄ ,

Q2 = aρıQ2̇2
ı + āρı(σ1) ̄ı Q2̇2

̄ ,
(6.23)

whose anticommutator vanishes as well.
Another family of loops with enhanced supersymmetry arises if, instead of su(2)L

symmetry (as in (6.13)), we demand conformal invariance from the beginning. Generalising
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the discussion in section 6.3.2, we impose the equation (6.20) directly on the supercon-
nection (4.39). The off-diagonal components of this matrix equation are satisfied, as in
section 6.3.2, as long as ξ = ξ0e−iϕ and c = 0, which identically solves the supersymmetry
conditions (4.38). Additionally, if we redefine

β⊥ = α

2Λ(γ − 1), β̄⊥ = ᾱ

2Λξ (γ̄ − 1), β‖ = i

kΛγ
‖, (6.24)

then we need to impose that γ, γ̄ and γ‖ are constants.
The expression for the superconnection (4.39) then becomes

L =
(
Aϕ,I +Ma

brar̄b − i
k (µ̃ 1̇

I 1̇ − µ̃ 2̇
I 2̇) − iᾱ

2 (γ̄ + 1)ψ1̇− − iᾱ
2 (γ̄ − 1)ξ−1ψ2̇+

iα
2 (γ + 1)ψ̄1̇

+ − iα
2 (γ − 1)ξψ̄2̇

− Aϕ,I+1 +Ma
br̄br

a − i
k (µ̃ 1̇

I+11̇ − µ̃ 2̇
I+12̇)− 1

2

)
,

(6.25)
with the couplings to the rotated scalars (4.40) given by

Ma
b = i

kΛ

(
0 γ̄

γ γ‖

)
. (6.26)

The remaining check is whether the diagonal part of equation (6.20) is satisfied, which
imposes that the couplings to the unrotated scalars qa, q̄a are constant. This can be arranged
in two ways. Firstly, by (4.33) we can set γ̄ = γ, γ‖ = 0 to obtain scalar terms proportional
to νI , νI+1 without any explicit ϕ dependence. These loops are just the conformal 1/4 BPS
loops described in the previous section.

Alternatively, constant scalar couplings can be obtained for arbitrary γ, γ̄, γ‖ by de-
manding instead εabη̄laη̄rb = 0 or, equivalently, Q2 = 0. In order to derive the symmetries
preserved by these loops, we parametrise the supercharge using (4.48) and act on it with
the conformal generators. This process generates another supercharge, so in total we have

Q1 = wa
(
aQ2̇a

l + āQ1̇a
r̄

)
, Q2 = wa

(
aQ2̇a

r + āQ1̇a
l̄

)
. (6.27)

Both these supercharges are nilpotent and their anticommutator vanishes. By construction,
so(2, 1) acts on the algebra as an outer automorphism.

There is yet another example of supersymmetry enhancement without su(2)L symmetry,
but with invariance under T⊥ (but not L⊥ in (A.8)). Recalling that T⊥ acts diagonally
and separates barred from unbarred supercharges, it is easily seen that the commutator
Q′ = [T⊥, Q] is linearly independent of Q, provided Q comprises both barred and unbarred
supercharges (so ξ 6= 0,∞). To see which loops are invariant under Q′, we note that keeping
ηıa and changing η̄ıa → −η̄ıa leaves Π = 0, likewise Λ is unmodified, and ξ → −ξ. Noticing
that (4.39) contains terms proportional to both Λβ⊥ and ξΛβ⊥, we have to set β⊥ = 0 and
similarly for β̄⊥, which by (4.38) also fixes c = 0. The resulting superconnection is

L = L1/2 +
(
β‖r‖r̄‖ 0

0 β‖r̄‖r‖

)
, (6.28)

where β‖ can be an arbitrary periodic function of ϕ. One can check that generically the
supersymmetry is not enhanced further.
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6.3.4 The special cases: ξ = 0 and ξ = ∞

When ξ = 0, the superconnection of loops are the same as (4.39) with ξ = c = 0 and β⊥, β̄⊥
and β‖ free. If we want to study the su(2)L enhanced points, we should impose β⊥ = β‖ = 0
and get the loops

L = L1/2 +
(

0 −iΛβ̄⊥ψ2̇+
0 0

)
. (6.29)

The case ξ =∞ is similar with a term on the lower left corner.
In all of these examples the free parameters β‖, β⊥ (and in the last case also β̄⊥) are

any periodic functions of ϕ. The reason is most transparent with regards to β‖, as Q
annihilates r‖r̄‖ and we can insert any density of them along the loop.

In sections 6.1, 6.2 and 6.3 above, we noted multiple examples of hyperloops that in
addition to Q preserve also Q′ with η̄ıa → −η̄ıa. They clearly also preserve Q±Q′, which
are supercharges with Π = 0 and ξ = 0 and ξ =∞.

6.4 Hyperloops with twisted hypers and Π 6= 0

To couple our hyperloops to the twisted hypermultiplets, the starting point in section 5
is a 4× 4 superconnection (5.1) which takes a block-diagonal form and is deformed with
parameters β and δ. Here we focus on special examples of these loops. As a first step, we
set all the β’s to zero. In the absence of the δ terms, this would give a diagonal connection
with only bosonic fields.

With β = 0 and δ 6= 0, we find instead a block-diagonal form, with a 2 × 2 block
involving the nodes I + 1 and I + 2, and two decoupled nodes I and I + 3. We ignore in
the following the decoupled nodes and concentrate only on the remaining 2× 2 block. Note
that often the decoupled nodes do not preserve the symmetries of the central block. This
can be remedied in the setting of a circular quiver.

In the case of a deformation with δI+1 1̇ and δ̄1̇
I+1, the central block takes the form

L=
(
Aϕ,I+1 +M b

ar̄I br
a
I +M̃ ȧ

ḃ
q̃I+1 ȧ ¯̃qḃI+1− 1

2 −iδ̄1̇
I+1ρ̃

2
I+1+

−iΠ−1δI+11̇ ¯̃ρI+12− Aϕ,I+2 +M b
a r

a
I+2r̄I+2 b+M̃ ȧ

ḃ
¯̃qḃI+1q̃I+1 ȧ+Γ̄

)
(6.30)

with (see (6.1))

M = i

k
Π−1

(
1 0
0 −1

)
, M̃ =

(
−i/k + δ̄1̇

I+1δI+1 1̇ 0
0 i/k

)
. (6.31)

This structure is the analog of the two-node quiver with a coupling to a single pair of scalars
in the hypermultiplets as in (6.8). Just as in that example, these loops have enhanced
supersymmetry with the second supercharge Q′ given by exchanging η̄ıa → −η̄ıa. So all these
loops are at least 1/8 BPS.

Further supersymmetry enhancement arises in the schemes explained in section 6.1 lead-
ing to operators that can preserve either 3 or 4 supercharges. Even further supersymmetry
enhancement arises by setting δI+1 1̇δ̄

1̇
I+1 = 2i/k, as then the loop enjoys su(2)R symmetry.

In this case, the analysis of the previous paragraph is extended to supercharges with 1̇↔ 2̇
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and we have a doubling of the amount of preserved supersymmetry. Note that because of
the 1̇ ↔ 2̇ exchange, these supercharges are not preserved by the original 1/2 BPS loop,
see (3.3). The 1/4 BPS loop becomes the 1/2 BPS operator coupling to the single pair of
scalars q̃1̇, ¯̃q1̇ from the twisted hypermultiplet. The 1/8 BPS operator becomes 1/4 BPS
and for the particular parameterization

η̄r1 = ηl2 = cos θ2 , η̄l2 = −ηr1 = sin θ2 , (6.32)

we recover the “fermionic latitude” loops constructed first in ABJM theory in [21] and
generalized to N = 4 theories in [10], see also [26]. The 3/16 BPS operator becomes
3/8 BPS.

Completely analog constructions arise with δI+1 1̇ = δ̄1̇
I+1 = 0 and nonzero couplings

δI+1 2̇ and δ̄2̇
I+1. The most symmetric loop of this class is the second 1/2 BPS loop coupling

instead to the pair of scalars q̃2̇, ¯̃q2̇. The cases with all four δ parameters non-vanishing is
allowed, as long as (5.23) is satisfied. The analysis follows as before, but su(2)R symmetry
is preserved only when we restrict to a single pair of δ.

6.5 Hyperloops with twisted hypers and Π = 0

These operators are considered in section 5.2, where we find supersymmetric loops built
out of the G and C in (5.29). In particular, the β parameters that couple to scalars from
the untwisted hypermultiplet satisfy the same constraints as in the 2-node case, while the
couplings to the twisted scalars, d̄ȧ and dȧ, are arbitrary periodic functions as long as λ = 0.

Denoting the superconnection in (4.39) as LΠ=0, the expression we find for L is

L =


LΠ=0

ᾱI d̄
ȧr
‖
I q̃I+1 ȧ 0

d̄1̇ρ̃2
I+1,+ + d̄2̇ρ̃1

I+1,− d̄ȧᾱI+2q̃I+1 ȧr
‖
I+2

−dȧαIξ ¯̃qȧI+1r̄I‖ d1̇ ¯̃ρI+1,2− + d2̇ ¯̃ρI+1,1+
0 −αI+2dȧξr̄I+2‖ ¯̃qȧI+1

LΠ=0

 .
(6.33)

Note that the coupling to the twisted scalar bilinears is unchanged and the M̃ in the central
nodes does not receive contributions from the d’s. In general, these loops preserve a single
supercharge.

One special case is similar to the 1/4 BPS hyperloop of section 6.3, when ξ (4.27) is
of the form ξ0e−iϕ with constant ξ0. This can arise with either ξ0 = ηr/η̄r or ξ0 = ηl/η̄l

leading to a two fold degeneracy. This is a symmetry of the superconnection (6.33) when

d̄1̇ = d2̇ = 1
(ηv̄)1

, d̄2̇ = d1̇ = 1
(η̄v)1

, (6.34)

and (η̄v)1 = (η̄v)2, (ηv̄)1 = (ηv̄)2. The resulting hyperloop preserves two supercharges and,
as before, so(2, 1) acts as an outer automorphism on the preserved superalgebra. Unlike
the 2-nodes case in (6.13), there is no way to restore su(2)L symmetry and find further
supersymmetry enhancement.
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6.5.1 The special cases: ξ = 0 and ξ = ∞

In section 5.2.1 the analysis of the case of ξ = 0 is extended to include the twisted
hypermultiplets. Denoting the superconnection in (4.43) as Lξ=0, the extension to include
twisted hypermultiplets gives

L =


Lξ=0

r
‖
I (γ1q̃I+1 2̇ + ᾱI d̄

1̇q̃I+1 1̇) 0
−id̄1̇ρ̃2

I+1,+
ᾱI+2
ᾱI

(γ1q̃I+1 2̇ + ᾱI d̄
1̇q̃I+1 1̇)r‖I+2

0 (δI+1 − id2̇)¯̃ρI+1,1+
0 0 Lξ=0

 .

(6.35)
Note that, as δI+1 and d2̇ appear only through the linear combination δI+1 − id2̇, we can
eliminate one of them. Supersymmetry enhancement relying on manifest su(2)L symmetry
happens only by setting to zero off-block-diagonal parameters, in which case we simply
recover two decoupled copies of (6.29).
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A Symmetries of the 1/2 BPS Wilson loop

We start by recalling that the symmetries of an N = 4 superconformal theory on S3 form
an osp(4|4) ∼= D(2, 2) superalgebra, with the bosonic symmetries so(4, 1) ⊕ so(4). These
are, respectively, the three-dimensional conformal algebra and the R-symmetry algebra.
The latter is conveniently thought of as so(4) ' su(2)L ⊕ su(2)R. The 16 supercharges
transform as conformal spinors under so(4, 1) and in the fundamental representations of
both R-symmetry su(2)’s.

The circular 1/2 BPS loop breaks part of these symmetries. Specifically, of the conformal
generators, it preserves only the one-dimensional conformal algebra along the contour of
the loop and the rotations in the plane perpendicular to it

so(2, 1)⊕ u(1)⊥ . (A.1)

su(2)L is preserved by the loop, whereas su(2)R is broken to u(1)R.6

6Of course, the choice of which of the R-symmetry factors is broken and which one is preserved is a
matter of which 1/2 BPS loop one considers, as explained in [4].
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We denote the conformal generators along the circle by J0 and J±, with nonvanishing
commutators

[J0, J±] = ±J± , [J+, J−] = 2J0 . (A.2)

Parametrising the circle by the angular coordinate ϕ, these generators can be represented
by differential operators

J0 = −i∂ϕ, J± = e±iϕ∂ϕ . (A.3)

The action on the fields can be obtained by evaluating the usual conformal transformations
on the circle. Suppressing R-symmetry indices, we find for the bosonic fields involved in
our Wilson loops

J0Aϕ = −i∂ϕAϕ , J±Aϕ = e±iϕ (∂ϕ ± i)Aϕ ,
J0q = −i∂ϕq , J±q = e±iϕ(∂ϕ ± i/2)q ,
J0q̄ = −i∂ϕq̄ , J±q̄ = e±iϕ(∂ϕ ± i/2)q̄ .

(A.4)

The second term in the action of J± picks up the scaling dimension of the respective fields.
Similarly, for the fermions

J0ψ = −i (∂ϕ + iσ3/2)ψ , J±ψ = e±iϕ(∂ϕ ± i+ iσ3/2)ψ ,
J0ψ̄ = −i (∂ϕ + iσ3/2) ψ̄ , J±ψ̄ = e±iϕ(∂ϕ ± i+ iσ3/2)ψ̄ .

(A.5)

We denote by T⊥ the generator of rotations u(1)⊥ in the orthogonal plane to the contour,
which commutes with all other preserved conformal generators. The normalization of T⊥ is
fixed such that

T⊥ψ = i

2σ3ψ , [T⊥, Qȧaı ] = i

2Q
ȧa
ı ,

T⊥ψ̄ = i

2σ3ψ̄ , [T⊥, Qȧaı̄ ] = − i2Q
ȧa
ı̄ .

(A.6)

The generators of su(2)L are R±, R3, with commutation relations

[R3, R±] = ±R± , [R+, R−] = 2R3 . (A.7)

As mentioned above, these symmetries are preserved by the loop. We distinguish su(2)R
with bars: R̄±, R̄3. Only R̄3 is preserved by the loop. It is also useful to defined the twisted
generator

L⊥ ≡ −i
(
T⊥ + i

2R̄3

)
, (A.8)

which mixes the rotations in the perpendicular plane in u(1)⊥ with the R-symmetry rotations
in u(1)R [1].

The supercharges preserved by the loop are given in (3.3) and anticommute to

{Q2̇a
l , Q

1̇b
l̄
} = εab (J0 + L⊥) +Rab , {Q2̇a

l , Q
1̇b
r̄ } = εabJ+ ,

{Q2̇a
r , Q

1̇b
l̄
} = −εabJ− ,

{Q2̇a
r , Q

1̇b
r̄ } = εab (J0 − L⊥)−Rab .

(A.9)
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Here, we have contracted the su(2)L generators with the Pauli matrices in the usual fashion
and raised one index by εab (with ε12 = 1), such that

Rab =
(
R+ −R3
−R3 −R−

)
. (A.10)

In order to fully specify the superalgebra, one computes the commutators of bosonic and
fermionic generators using the super-Jacobi identities. Explicitly, we find that the residual
conformal generators act on the supercharges as follows

J+

(
Ql
Qr

)
=
(

0
−Ql

)
, J+

(
Ql̄
Qr̄

)
=
(
−Qr̄

0

)
,

J−

(
Ql
Qr

)
=
(
−Qr

0

)
, J−

(
Ql̄
Qr̄

)
=
(

0
−Ql̄

)
,

J0

(
Ql
Qr

)
= 1

2

(
Ql
−Qr

)
, J0

(
Ql̄
Qr̄

)
= 1

2

(
−Ql̄
Qr̄

)
,

T⊥

(
Ql
Qr

)
=
(
Ql
Qr

)
, T⊥

(
Ql̄
Qr̄

)
= −

(
Ql̄
Qr̄

)
.

(A.11)

These (anti-)commutators together with the bosonic structure outlined above define the Lie
superalgebra sl(2|2). As is easily checked, L⊥ commutes with all supercharges as well as all
bosonic generators. Indeed, sl(2|2) is a central extension of the classical Lie superalgebra
A(1, 1) by u(1), so this structure is expected [41].

B The covariant derivative

Here we explain what it concretely means when a supersymmetry transformation on a
superconnection L acts as a total covariant derivative, as in (3.20)

QL = DLϕH . (B.1)

Consider the open Wilson loop (we shall worry about taking the supertrace later)

W2π,0 = P exp i
∫ 2π

0
dϕL , (B.2)

and act with Q on the loop. It is crucial that the superconnection L = LB + LF is
an even supermatrix, i.e. a matrix whose diagonal entries LB are exclusively bosonic
and whose off-diagonal entries LF are exclusively fermionic, and likewise for the Wilson
loop. Commuting Q through a product of two such superconnections L1 and L2, one gets
Q(L2L1) = Q(L2)L1 + σ3L2σ3QL1, where the Pauli matrix is introduced to flip the sign of
the odd part of L1.

Acting with Q on W2π,0, one needs to apply the Leibniz rule, as Q can act on any L(ϕ).
Keeping track of the sign changes, one finds

QW2π,0 = iσ3

∫ 2π

0
dϕW2π,ϕ (σ3QL(ϕ))Wϕ,0 . (B.3)
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Now let us assume it exists an H(ϕ), such that QL = σ3DLϕ(σ3H(ϕ)). Then, by the
standard relations for Wilson loops, one finds

QW2π,0 = iσ3

∫ 2π

0
dϕW2π,ϕDLϕ(σ3H(ϕ))Wϕ,0 = iH(2π)W2π,0 − iσ3W2π,0σ3H(0) . (B.4)

Assuming H(ϕ) to be periodic and taking the supertrace, one gets

QW = i sTr(H(0)W2π,0 − σ3W2π,0σ3H(0)) = iTr([σ3H(0),W2π,0]) = 0 . (B.5)

This implies that the covariant derivative that should appear in the supersymmetry trans-
formations is

QL = σ3DLϕ(σ3H) = ∂ϕH − i[Lbos, H] + i{Lfer, H} . (B.6)

In the main text we write this as DLϕH, but we really mean the expression above with the
anticommutator of the fermionic part of the superconnection.

If one prefers working instead with bosonic variations, one can introduce a Grassmann
parameter ξ and write δ = ξQ. The analogous supersymmetry condition reads

δL = DLϕ(ξH) . (B.7)

C Extra fermionic terms

In this appendix we examine the possibility to add extra fermionic terms to the F in the
superconnection, beyond the term −iQG in (4.34). This term arises in the case of Π = 0
in section 4.2, where G includes only two scalar fields (4.36) and, consequently, QG has
only two linear combinations of the fermions (4.31). To generalize it, we take an extra term
related to the fermions in the original 1/2 BPS connection

F = −iQG+ (D − 1)LF1/2 . (C.1)

Here D = diag(d̄, d).
The result of the analysis below is that such addition is only possible for ξ = 0 or

ξ =∞, and those cases are already treated in section 4.2.1. So this appendix leads to no
further hyperloops beyond those described in the main text.

Taking (C.1) and using the same equations for the variations QB and QF in (4.6), one
gets ∆H = (D − 1)H, because there is no derivative term in Q2G. Plugging everything
known into (4.6) yields

−iQ2G = (∂ϕD)H − i[B + C,DH ] ,
QB = {QG,DH}+ i(detD − 1){LF1/2, H} .

(C.2)

Focusing on the second equation for now and using QH = 0 and QLB1/2 = i{LF1/2, H},
one gets

QB = Q{DH,G}+ (detD − 1)QLB1/2 , (C.3)

which is simply solved by

B = {DH,G}+ (detD − 1)LB1/2 . (C.4)

Extra terms annihilated by Q are included in C.
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The case of detD = 1 is simply a gauge transformation, changing α and ᾱ. So we are
left with examining the case detD 6= 1. This results in B having a term proportional to
LB1/2, which includes the gauge fields. Since the gauge fields cannot appear in a Wilson loop
with an arbitrary prefactor (they should have prefactor i), one needs to cancel part of this
term with factors of the gauge field in C. This amounts to finding a connection annihilated
by Q, which one can assume to be purely bosonic: LB′ = diag(A′I ,A′I+1 − 1/2). We take

A′I = Aϕ −
i

k
(Ma

brar̄b + µ̃1̇
1̇ − µ̃2̇

2̇) , (C.5)

where a, b ∈ {‖,⊥}, and the task is now to find the coefficient matrix Ma
b. Using

r‖(ψ̄1̇
+ + ξψ̄2̇

−)− (ξψ1̇− − ψ2̇+)r̄‖
= Λ(M‖⊥r‖ +M⊥

⊥r⊥)(ψ̄1̇
+ − ξψ̄2̇

−)− Λ(ξψ1̇− + ψ2̇+)(M⊥‖r̄‖ +M⊥
⊥r̄⊥) ,

(C.6)

and imposing QA′I = 0 results in

Q

(
Aϕ −

i

k
(−νI + µ̃1̇

1̇ − µ̃2̇
2̇)
)

= −2i
k

(ξψ1̇−r̄‖ + r‖ψ̄1̇
+) , (C.7)

which is solved by
ξ = M⊥

⊥ = 0, M‖
⊥ = −M⊥‖ = 1/Λ . (C.8)

We see that indeed this works only for ξ = 0 and therefore it falls under the cases already
analyzed in section 4.2.1.

To compare with the analysis in section 4.2.1, we note that for ξ = 0 there are many
specific features, such as Q2G = H2 = 0. We can also check that LB1/2−LB commutes with
DH and the only remaining supersymmetry conditions is

∂ϕd̄ = −icd̄ . (C.9)

Including the bosonic loop

A′I = Aϕ −
i

kΛ(ΛM‖‖r‖r̄‖ + r‖r̄⊥ − r̄⊥r̄‖)−
i

k
(µ̃1̇

1̇ − µ̃2̇
2̇) , (C.10)

and the analogous expression for A′I+1 in C with prefactors 1− detD and combining all
the terms, one finally gets the superconnection

L =
(
Aϕ,I +Ma

brar̄b − i
k (µ̃ 1̇

I 1̇ − µ̃ 2̇
I 2̇) −iᾱd̄ψ1̇− − iΛβ̄⊥ψ2̇+

i(αd+ Λβ⊥)ψ̄1̇
+ Aϕ,I+1 +Ma

br̄br
a − i

k (µ̃ 1̇
I+11̇ − µ̃ 2̇

I+12̇) + c− 1
2

)
,

(C.11)
with c = i∂ϕ log d̄ and

Ma
b =

(
0 i

kΛ
β⊥d̄ᾱ+ (2d̄d− 1) i

kΛ β‖

)
, (C.12)

where M‖‖ has been absorbed into β‖, since both of them are free parameters. One can
further absorb d̄ into ᾱ and β̄⊥, which sets c = 0 and replaces α → αd̄ and β⊥ → β⊥d̄.
Then, with β̂⊥ = (α(dd̄− 1) + Λβ⊥d̄)/Λ the bottom left entry in L becomes i(α+ Λβ̂⊥)ψ̄1̇

+
and the bottom left entry in Ma

b becomes ᾱβ̂⊥ + i/kΛ.
This eliminates the parameters d and d̄ from L, so they are completely redundant.

Furthermore, we see that these loops are exactly those found directly in the ξ = 0 case
in (4.43) in section 4.2.1.
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