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ON CORON’S PROBLEM FOR THE p-LAPLACIAN

CARLO MERCURI, BERARDINO SCIUNZI, AND MARCO SQUASSINA

Abstract. We prove that the critical problem for the p-Laplacian operator admits a nontrivial
solution in annular shaped domains with sufficiently small inner hole. This extends Coron’s result
[4] to a class of quasilinear problems.

1. Introduction

We want to extend the classical result of Coron [4]. Consider the problem

(1.1)

{ −Δpu = |u|p∗−2u in Ω
u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N , 1 < p < N, p∗ := Np/(N −p) is the critical Sobolev

exponent, Δpu := div(|∇u|p−2∇u) is the p-Laplace operator. Solutions on the whole space will
be considered in

D1,p(RN ) := {u ∈ Lp∗(RN ) : ∇u ∈ Lp(RN ;RN )}
endowed with the norm

‖u‖ := ‖∇u‖Lp(RN ).

We denote by W 1,p
0 (Ω) the closure of C∞

c (Ω) in D1,p(RN ) and define on W 1,p
0 (Ω) the functional

J(u) :=
1

p

ˆ
Ω
|∇u|pdx− 1

p∗

ˆ
Ω
|u|p∗dx.

As it is well-known in tackling problem (1.1) with variational techniques, the main difficulty is due

to the fact that the embedding W 1,p
0 (Ω) ⊂ Lp∗(Ω) is not compact. We refer to [14] for a sample

of the extensive literature on semi-linear problems involving the critical Sobolev exponent, largely
inspired by the pioneering paper of Brezis and Nirenberg [3]. We also define

S := inf
{ ˆ

RN

|∇u|pdx, u ∈ D1,p(RN ) :

ˆ
RN

|u|p∗dx = 1
}

the best Sobolev constant, attained by nowhere zero functions in R
N , see e.g. [15]. Equivalently

(1.2) S = inf
u∈D1,p(RN )

u �=0

´
RN |∇u|pdx(´
RN |u|p∗dx) p

p∗
,

where by a simple scaling argument the infimum remains unchanged if taken on competing func-
tions supported in an arbitrary subdomain of RN . In light of the Pohozaev identity obtained
by Guedda and Veron [9, Corollary 3.1], we know that problem (1.1) does not admit positive
solutions on a strictly star-shaped domain.

The main result of the paper is the following
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Theorem 1.1. Let 2N/(N + 2) ≤ p ≤ 2, x0 ∈ R
N and radii R2 > R1 > 0 such that

(1.3) {R1 ≤ |x− x0| ≤ R2} ⊂ Ω, {|x− x0| ≤ R1} �⊂ Ω.

Then problem (1.1) admits a positive solution for R2/R1 sufficiently large.

Theorem 1.1 is, mainly, a consequence of Lemma 2.3, in which the compactness result [11, The-
orem 1.2] and the symmetry result of [5] play a key role. There are several difficulties arising
in the present quasilinear setting which are partially highlighted in Lemma 2.3, which make the
proof more delicate than for dealing with the semilinear case p = 2. One of those is the fact that
the classification of all positive solutions of the critical problem in R

N is not yet available for all
p ∈ (1, N). We observe that an extension of Lemma 2.3 to a broader range of p would immedi-
ately yield an extension of Theorem 1.1. We conjecture that the symmetry result of [5] and hence
Lemma 2.3 and Theorem 1.1 hold for all values of p ∈ (1, N). Another open problem, arising in
the proof of Lemma 2.3, is the nonexistence of sign-changing solutions of the critical problem in
the half-space for p �= 2. Such a limiting problem arises because of the boundary of Ω. We show
that in fact only the nonexistence result of the positive solutions of the critical problem in the
half-space [11, Theorem 1.1] is needed. The nonexistence of sign-changing solutions to problem
(1.1) on strictly star-shaped domains is still an open problem, and this seems to be related to the
fact that the unique continuation principle for the p-Laplacian operator is still another major open
question. We incidently notice that in [11, p.482] it has been observed that if Ω = B(0, 1) the unit
ball, no nontrivial radial solutions to (1.1) exist if p is in the range of Theorem 1.1. In the case
N = 2, Theorem 1.1 holds for all 1 < p < 2, which is the desired range for a p-Laplacian extension
of the classical result of Coron. Theorem 1.1 extends [10, Theorem 1.1], where problem (1.1) had
been studied assuming that Ω is invariant under the action of a closed subgroup of O(N). In the
case Ω is non-symmetric our result on problem (1.1) seems to be the first since Coron’s classical
paper [4] appeared in 1984. Even though our proof follows the original homotopy argument given
in [4] (see also e.g. [14]) for the case p = 2, we point out that the present paper provides the first

proof of the key fact that the Palais-Smale condition holds at energy levels c ∈ (SN/p/N, 2SN/p/N)
by using the recent results [5, 11]. This allows to carry on with a classical homotopy argument
by constructing a pseudo gradient flow, as given e.g. in [14, pp.191-193].
It is an open problem whether (1.1) has nontrivial solutions when a Z2-homology group of Ω is
nontrivial. This is the case for p = 2, see the celebrated analysis done in [1]. In several contribu-
tions dealing with the semi-linear case p = 2, see e.g. [6, 7, 12], it is shown that the existence of
a nontrivial solution is possible also in contractible domains, hence conditions on the homology
of Ω are not necessary for problem 1.1 to have solutions. A very well-known and challenging
problem, even in the case p = 2, would be to exploit the combined effect of both the topology
and the geometry of Ω in order to characterize the existence of a positive solution to problem (1.1).

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1.

2.1. Palais-Smale condition. We define R
N
+ := {x ∈ R

N : xN > 0} and denote by D1,p
0 (RN

+ )

the closure of C∞
c (RN

+ ) in D1,p(RN ) after extending by zero on R
N \ RN

+ .

Lemma 2.1. Let u ∈ W 1,p
0 (Ω) be a sign-changing solution to (1.1). Then J(u) ≥ 2SN/p/N . More-

over, the same conclusion holds for the sign-changing solutions of −Δpu = |u|p∗−2u in D1,p(RN )

or in D1,p
0 (RN

+ ).
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Proof. If u ∈ W 1,p
0 (Ω) is a sign-changing solution to (1.1), then u± ∈ W 1,p

0 (Ω)\{0} and by testing
(1.1) with u± yieldsˆ

Ω
|∇u+|pdx =

ˆ
Ω
|u+|p∗dx,

ˆ
Ω
|∇u−|pdx =

ˆ
Ω
|u−|p∗dx.

In turn, using the definition of (1.2), we obtain

J(u) = J(u+) + J(u−) =
1

N
‖u+‖p∗p∗ +

1

N
‖u−‖p∗p∗ ≥ 2SN/p/N,

concluding the proof. The same argument works for the problem on R
N and on R

N
+ . �

The following lemma is a consequence of the recent result [5].

Lemma 2.2. Let 2N/(N+2) ≤ p ≤ 2 and u ∈ D1,p(RN ) be a positive solution of −Δpu = |u|p∗−2u.
Then up to translation, and for a suitable a > 0,

u(x) =
(
Na

(N − p

p− 1

)p−1)(N−p)/p2

(a+ |x|p/(p−1))(p−N)/p, a.e. on R
N .

Proof. By [5] for some strictly decreasing function v : [0,+∞) → (0,+∞) and for some x0 ∈ R
N

there holds u(x) = v(|x−x0|). The assertion then follows by [8, Theorem 2.1(ii)] (see also [2]). �
Lemma 2.3. Assume that 2N/(N + 2) ≤ p ≤ 2. Then J satisfies the Palais-Smale condition for

all c ∈ (SN/p/N, 2SN/p/N).

Proof. Assume that for some c ∈ (SN/p/N, 2SN/p/N), (un) ∈ W 1,p
0 (Ω) is such that J(un) → c,

and J ′(un) → 0 in W−1,p′(Ω). We define on D1,p(RN )

J∞(u) :=

ˆ
RN

|∇u|p
p

dx−
ˆ
RN

|u|p∗
p∗

dx.

On D1,p
0 (RN

+ ) we define the same functional J∞ extending by zero on R
N \ RN

+ .
By applying [11, proof of Theorem 1.2], which extends [13], passing if necessary to a subsequence,

we can infer that there exists a (possibly trivial) solution v0 ∈ W 1,p
0 (Ω) of

−Δpu = |u|p∗−2u in Ω,

k ∈ N ∪ {0}, nontrivial solutions {v1, ..., vk} of

−Δpu = |u|p∗−2u in Hi, i ∈ {0, 1, ...k},
where Hi is either R

N or (up to rotation and translation) R
N
+ , with either vi ∈ D1,p(RN ) or

(respectively) vi ∈ D1,p
0 (RN

+ ), and there exist k sequences {yin}n ⊂ Ω̄ and {λi
n}n ⊂ R+, satisfying

1

λi
n

dist (yin, ∂Ω) → ∞, n → ∞,

if Hi ≡ R
N or

1

λi
n

dist (yin, ∂Ω) < ∞, n → ∞,

if (up to rotation and translation) Hi ≡ R
N
+ , and

‖un − v0 −
k∑

i=1

(λi
n)

(p−N)/pvi((· − yin)/λ
i
n)‖ → 0, n → ∞,

‖un‖p →
k∑

i=0

‖vi‖p, n → ∞,
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(2.1) J(v0) +
k∑

i=1

J∞(vi) = c.

The restriction on the levels c and Lemma 2.1 immediately yield the bound k ≤ 1. If k = 0
compactness holds and we are done. If instead k = 1, we have two cases, namely v0 ≡ 0 or v0 �≡ 0.
If v0 �≡ 0, since

J(v0) ≥ SN/p/N, J∞(v1) ≥ SN/p/N,

(actually J(v0) > SN/p/N, as the Sobolev constant is never achieved on bounded domains) we

obtain a contradiction by combining (2.1) with the assumption c < 2SN/p/N . If, instead, v0 ≡ 0,
then formula (2.1) reduces to J(v1) = c. Again by Lemma 2.1 v1 does not change sign and by the
nonexistence result [11, Theorem 1.1] H1 ≡ R

N , namely v1 ∈ D1,p(RN ) solves

−Δpu = up
∗−1 in R

N ,(2.2)

u > 0 in R
N .

Now, by Lemma 2.2, after translation in the origin, for a suitable value of a > 0 v1 is a Talenti
function

v1(x) =
(
Na

(N − p

p− 1

)p−1)(N−p)/p2

(a+ |x|p/(p−1))(p−N)/p,

whose associated energy is c = J∞(v1) = SN/p/N [15], since v1 achieves the best Sobolev constant

S. This is a contradiction again, since c > SN/p/N. This concludes the proof. �

Remark 2.1. The above compactness property holds for a more general class of functionals. Let
Ω be a smooth bounded domain of RN and, as in [11], define on W 1,p

0 (Ω)

φ(u) :=

ˆ
Ω

|∇u|p
p

+ a(x)
|u|p
p

− |u|p∗
p∗

dx,

and consider the following hypotheses on a:

• H1) a ∈ LN/p(Ω).
• H2) The Palais-Smale sequences are bounded. This occurs e.g. assuming

inf
‖∇u‖Lp=1

ˆ
Ω
|∇u|p + a(x)|u|pdx > 0.

• H3) For every nontrivial critical point u of φ, there holds

φ(u) ≥ SN/p/N

(this is the case e.g. if a is a nonnegative function).

With the same proof of Lemma 2.3 we can achieve that if 2N/(N + 2) ≤ p ≤ 2, then φ satisfies

the Palais-Smale condition for all c ∈ (SN/p/N, 2SN/p/N).

2.2. Proof of Theorem 1.1 concluded. Let R1, R2 be the radii of the annulus as in the state-
ment of Theorem 1.1. As observed in [4, 14], without loss of generality, we may assume that
x0 = 0, R1 = 1/(4R) and R2 = 4R where R > 0 will be chosen sufficiently large. Let us set
Σ := {x ∈ R

N : |x| = 1} and consider the family of functions

uσt (x) :=

[
1− t

(1− t)p + |x− tσ| p
p−1

]N−p
p

∈ D1,p(RN ), for σ ∈ Σ and t ∈ [0, 1).
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Moreover, let us now consider a function ϕ ∈ C∞
c (Ω) be such that 0 ≤ ϕ ≤ 1 on Ω, ϕ = 1 on

{1/2 < |x| < 2} and ϕ = 0 outside {1/4 < |x| < 4}, then define

ϕR(x) :=

⎧⎪⎨
⎪⎩
ϕ(Rx) on 0 ≤ |x| < 1

R ,

1 on 1
R ≤ |x| < R,

ϕ(x/R) on |x| ≥ R.

Finally, let us set

wσ
t (x) := uσt (x)ϕR(x) ∈ W 1,p

0 (Ω), w0(x) := u0(x)ϕR(x), u0(x) :=
[ 1

1 + |x| p
p−1

]N−p
p

.

Then, we have the following

Lemma 2.4. For σ ∈ Σ and t ∈ [0, 1), ‖uσt ‖ = ‖u0‖, ‖uσt ‖p∗ = ‖u0‖p∗ and ‖uσt ‖p = S‖uσt ‖pp∗.
Furthermore, there holds

lim
R→∞

sup
σ∈Σ,t∈[0,1)

‖wσ
t − uσt ‖ = 0.

Proof. The first properties of uσt follow by [15]. In the following C will denote a generic positive
constant, independent of σ ∈ Σ and t ∈ [0, 1), which may vary from line to line. We have the
inequality ˆ

RN

|∇(wσ
t − uσt )|pdx ≤ C

4∑
i=1

Ii,

where we have set

I1 :=

ˆ
RN\B2R

|∇uσt |pdx,

I2 :=

ˆ
B(2R)−1

|∇uσt |pdx,

I3 :=
1

Rp

ˆ
B4R\B2R

|uσt |pdx,

I4 := Rp

ˆ
B(2R)−1

|uσt |pdx.

Taking into account that

|∇uσt (x)| ≤
C

((1− t)p + |x− tσ| p
p−1 )

N
p

≤ C |x| ≤ 1

2
, |∇uσt (x)| ≤

C

|x|N−1
p−1

|x| ≥ 2,

we obtain

I1 =

ˆ
RN\B2R

|∇uσt |pdx ≤ C

ˆ
RN\B2R

1

|x|
p(N−1)

p−1

dx ≤ C

R
N−p
p−1

,

I2 =

ˆ
B(2R)−1

|∇uσt |pdx ≤ C

ˆ
B(2R)−1

dx ≤ C

RN
.

Moreover, we have

I3 =
1

Rp

ˆ
B4R\B2R

[ 1− t

(1− t)p + |x− tσ| p
p−1

]N−p
dx ≤ C

Rp

ˆ
B4R\B2R

1

|x|
p(N−p)

p−1

dx ≤ C

R
N−p
p−1

,

I4 = Rp

ˆ
B(2R)−1

[ 1− t

(1− t)p + |x− tσ| p
p−1

]N−p
dx ≤ RpC

ˆ
B(2R)−1

dx ≤ C

RN−p
.
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This concludes the proof. �
Let us now define

(2.3) S(u) :=
‖∇u‖p

‖u‖p
Lp∗ (RN )

, u ∈ D1,p(RN ) \ {0} ,

with the understanding that

(2.4) S(u; Ω) =
‖∇u‖pLp(Ω)

‖u‖p
Lp∗ (Ω)

, u ∈ W 1,p
0 (Ω) \ {0} ,

after extending by zero outside Ω.

As a consequence of Lemma 2.4, we have the following

Lemma 2.5. If vσt (x) := ‖wσ
t ‖−1

Lp∗ (RN )
wσ
t (x) and v0(x) = ‖w0‖−1

Lp∗ (RN )
w0(x), then

lim
R→∞

S(vσt ; Ω) = S(uσt ) = S,

uniformly with respect to σ ∈ Σ and t ∈ [0, 1).

We observe that J satisfies the Palais-Smale condition between the levels SN/p/N and 2SN/p/N .
Therefore, as it can be readily verified, the functional S(·; Ω), constrained to

M = {u ∈ W 1,p
0 (Ω) : ‖u‖p∗p∗ = 1},

satisfies the Palais-Smale condition between S and �S, for some � > 1 depending upon p and
N . Then, taking Lemma 2.5 into account, and assuming by contradiction that the problem does
not admit any positive solution, by arguing exactly as in [14, pp.191-193] one proves Theorem 1.1
by performing a well-established deformation argument on S(·; Ω) as restricted to M, yielding a
contradiction with the geometrical properties (1.3) of Ω. We point out that under our assumption
2N/(N + 2) ≤ p, it follows p∗ ≥ 2 so that M is a C1,1 smooth manifold. �
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