
101

Web of Digital Twins

ALESSANDRO RICCI and ANGELO CROATTI, Department of Computer Science and Engineering,

University of Bologna, Italy

STEFANO MARIANI, Department of Sciences and Methods of Engineering, University of Modena and

Reggio Emilia, Italy

SARA MONTAGNA, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Italy

MARCO PICONE, Department of Sciences and Methods of Engineering, University of Modena and

Reggio Emilia, Italy

In recent years, digital twins have been pervading different application domains—from manufacturing to
healthcare—as an approach for virtualising different kinds of physical entities (things, products, machines).
The dominant view developed in the literature so far is about the virtualisation of individual physical assets
in a closed-system perspective. In this article, we introduce and explore a broader perspective that we call
Web of Digital Twins (WoDT), in which the digital twin paradigm is exploited for the pervasive softwarisation
of possibly large-scale interrelated physical realities. A WoDT can be conceived as an open, distributed and
dynamic ecosystem of connected digital twins, functioning as an interoperable service-oriented layer for
applications running on top, especially smart applications and multiagent systems. The article introduces an
abstract model and architecture aimed to capture key aspects of the idea not bound to any specific application
domains or implementing technologies and discusses their adoption in engineering real-world systems. To
this purpose, two concrete case studies are considered, in the context of healthcare and smart mobility. Finally,
the article includes a discussion of a selected set of research directions.

CCS Concepts: • Computing methodologies → Multiagent systems; • Software and its engineering

→ Designing software; • Computer systems organisation → Embedded and cyber-physical systems; •
Information systems→World Wide Web;

Additional Key Words and Phrases: Digital twins, web, agents, MAS, WoDT

ACM Reference format:

Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone. 2022. Web of Digital
Twins. ACM Trans. Internet Technol. 22, 4, Article 101 (November 2022), 30 pages.
https://doi.org/10.1145/3507909

1 INTRODUCTION

In the past decade, the digital twin (DT) paradigm has been explored in different domains as
an approach to virtualise entities existing in the real world, creating software counterparts that
provide smart services upon them [16, 17, 28]. Such services may range from simple tracking of

Authors’ addresses: A. Ricci, via dell’Università 50, Cesena, Italy; email: a.ricci@unibo.it; A. Croatti, via dell’Università
50, Cesena, Italy; email: a.croatti@unibo.it; S. Mariani, via Amendola 4, Reggio Emilia, Italy; email: stefano.mariani@
unimore.it; S. Montagna, Piazza dela Repubblica 13, Urbino, Italy; email: sara.montagna@uniurb.it; M. Picone, Via Amen-
dola 2, Pad. Morselli, Reggio Emilia, Itay; email: marco.picone@unimore.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1533-5399/2022/11-ART101 $15.00
https://doi.org/10.1145/3507909

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.

https://orcid.org/0000-0002-9222-5092
https://orcid.org/0000-0001-5369-7444
https://orcid.org/0000-0001-8921-8150
https://orcid.org/0000-0001-5390-4319
https://orcid.org/0000-0001-8902-6909
https://doi.org/10.1145/3507909
mailto:permissions@acm.org
https://doi.org/10.1145/3507909
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3507909&domain=pdf&date_stamp=2022-11-14


101:2 A. Ricci et al.

the actual state of the physical entity or device, to smarter forms of monitoring to, e.g., detect and
predict possible critical situations, optimise performances, up to more general forms of augmenta-
tion of the capabilities of the physical counterpart. Relevant examples can be found in the Industry
4.0 context [52], healthcare [24], and smart cities [44]—the interested readers can refer to surveys
available in the literature [28]. Despite the specific domain and implementation, the models of
DT described in the literature share two main characteristics: (i) they typically concern virtualisa-
tion of individual, stand-alone assets, in a closed-system perspective—being them physical objects,
products, machines, buildings; (ii) they are used for vertical applications, designed for specific pur-
poses. Beyond this view, the DT principles and paradigm can be extended to the virtualisation
of complex realities composed of interrelated assets, possibly belonging to different domains and
different organisations, in a more open-system perspective [27, 39]. Such a stance, besides enabling
technologies, calls for a proper conceptual model and framework, abstract enough to capture key
aspects in spite of concrete application domains and technologies, and yet expressive enough to
be a reference for the development of concrete architectures and technologies.

To this purpose, in this article we introduce and discuss an approach in which the DT paradigm
is meant to be pervasively applied to virtualise large-scale, dynamic, possibly cross-domain physi-
cal realities of an organisation and across different organisations, resulting in an open distributed
ecosystem of connected DTs. We refer to such an ecosystem as Web of Digital Twins (WoDT),
being inspired by the main conceptual and architectural principles of the Web, and considering the
Web, and related technology stack and standards, as a natural underlying deployment architecture
and platform—although not necessarily the only one. In this view, a DT is not (necessarily) a verti-
cal application: Conversely, the WoDT of an organisation defines a service-oriented software layer
on top of which smart applications can be designed and integrated, exploiting functionalities to
access and interact with the interrelated physical assets as-a-service.

At the application level, a main kind of systems that can take advantage of WoDT as a ser-
vice are intelligent agents and multiagent systems (MASs) [20], that can exploit DTs as a vir-
tual environment (or, application environment [53]) enabling the access and interaction with the
physical world. In this view, a DT functions first of all as a shared medium used by agents to per-
ceive/observe and act upon the physical world. Besides, a DT may provide further higher-level
functionalities conceptually augmenting the basic ones provided by the physical world, that could
be exploited by agents to support their reasoning and decision making.

The remainder of the article is structured as follows. We first provide a broad overview and
background about DTs (Section 2), and their added value for reference contexts such as Internet

of Things (IoT). Then, the main aim of the article is to provide a comprehensive account of the
WoDT vision and approach. To this purpose, first, we describe an abstract model capturing key
concepts and features (Section 3) and the general traits of architectures based on that model (Sec-
tion 4), including a discussion about their integration with multiagent systems architectures and
technologies. Then, we discuss the application of the model to two real-world concrete case stud-
ies (Section 5), based on our previous work exploring the application of DTs in specific domains,
in particular healthcare, for major trauma management [29], and in smart mobility scenarios [36].
Finally, we provide an overview of the main research directions for the development of the WoDT
vision and approach (Section 6).

2 BACKGROUND AND STATE OF THE ART

The scientific literature has referred to DTs since 2003 when Michael Grieves introduced this con-
cept with an initial formulation in the aerospace field by the National Aeronautics and Space Ad-
ministration [16, 17]. As reported in References [28, 51], from there the concept has evolved and
attracted growing attention, from manufacturing industries to the IoT and Cyber-Physical Systems

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



Web of Digital Twins 101:3

contexts. In particular, Reference [28] surveys and analyses the state-of-the-art definitions also in-
vestigating the common characteristics of a DT and the domains in which they are currently being
developed and adopted.

The original definition introduced the core concepts associated with a DT, namely it is composed
by three dimensions: physical, virtual, and connection parts, where the virtual space represents the
digital or software representation and replication of the physical asset, and it is mapped to the
physical space through the connection part that exchanges information. Moreover, DT possibly
includes models of the structure, functionalities, and behaviour of the real counterpart [17, 32].
It can persist for the whole system lifecycle, and it is tightly linked with the physical entity: a
shadowing process enables the continuous update of DT’s internal state in near-real-time with
data acquired on the physical system by different devices—mainly sensors or other sources such
as existing IT systems (e.g., ERP, PLM)—and transferred digitally [7].

Recent advancements in IoT, big data, and machine learning have also significantly contributed
to the improvements in DTs regarding their real-time capabilities and forecasting properties. Col-
lected data constitute the so-called digital threads and are the grounding information on which
simulation or machine learning algorithms rely to make predictions, enabling failures to be antic-
ipated, to optimise the system, to design novel features, to ease and accelerate decision making,
and to improve productivity— to mention some [43, 52]. According to this definition, the DT is
not only a model of the physical asset, but it can autonomously evolve through simulation and
AI-enabled algorithms to understand the world, learn, reason, and answer to what-if questions.
Furthermore, whenever DTs encapsulate reasoning capabilities, the concept of DT has evolved
into Cognitive Digital Twin (CDT) [1, 13] that has been introduced in the literature to refer
to those DTs that autonomously perform some intelligent task within the context of the physical
asset, related to, e.g., smart management, maintenance, and optimisation of performances. This
corresponds to stage 4 DTs envisioned in Reference [43], as extended DTs delivering additional
capabilities besides the physical asset ones, possibly including an autonomous part flanking the
basic DT ones. To support cognitive and analytical solutions, some works in literature propose the
adoption of semantic models and technologies to extract knowledge from data, building on specific
domain-driven ontologies. Semantic relations among data may then be represented as knowledge
graphs [42], enabling the exploitation of a set of models and theories to enhance the DT with
cognitive capabilities. As such, DTs attracted a multitude of specific approaches related to data
analytics [41], behavioural modelling [45], ontology definition [49], or specific device mirroring
[46], and networking.

As clearly reviewed and pointed out also in Reference [28], the literature is conceptually aligned
on an idea and the importance of DT in multiple fields, but there is not yet a shared set of properties
and behaviours that can help to create common background, language, and a unifying model for
representing and properly work with DT across multiple application domains. The fragmentation
of existing solutions is mostly related to their specificity for a target sector and the missing detailed
definition of how DTs should be represented and operate. On the one hand, the resulting trend
generates innovative approaches in disparate fields. On the other hand, it limits the real potential
of uniformed DTs by creating an unnecessary substrate of heterogeneous proposals [50]. Currently,
it is almost impossible to create an ecosystem where devices, services, and users can efficiently
cooperate through a shared and interoperable DT vision. From this analysis, the definition of a
model that introduces concepts and principles on top of which building a DT, crosscutting the
different application domains and independent of specific technologies, emerges as an open issue.

The industrial world, particularly the Industrial IoT Consortium, is proposing a shared reference
architecture [25, 47] taking into account DTs relationships, composition, and main services (e.g.,
prediction, maintenance, safety). In the networking research field, DTs are also recently adopted

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:4 A. Ricci et al.

to support interoperability, reduce heterogeneity by providing a dynamic application-driven layer
on top of physical equipment [3]. Furthermore, the concept of network DTs appears also for the
first time as an informational draft [56] trying to define their role and main responsibilities to
mirror network assets. Similar works have been done by the Robotics and Robot Operating Sys-
tem communities [22, 23]. In this context, a set of platforms and solutions has been developed by
major industries. It is worth mentioning the vision of GE Digital,1 Siemens,2 and Azure Digital
Twin.3 The latter, in particular, provides a comprehensive approach for designing and developing
cross-domain digital twins, including—among the other features—a language called Digital Twin

Definition Language (DTDL), which makes it possible to describe graphs of DTs, representing
both their properties and their relationships. This feature is an essential one also in the WoDT pro-
posal, in which, however, a more open-system oriented perspective is explicitly adopted, taking
the Web and Semantic Web as main references.

The oneM2M organisation4 and the World Wide Web Consortium with Web of Things (WoT)5

are actively working to provide uniform access and description of physical assets to achieve prac-
tical interoperability across multiple application domains and deployments. Unfortunately, within
these fundamental standardisation activities, the definition of the role of DTs is at an early stage,
e.g., the WoT tries to introduce the concept mainly as a cloud-driven interaction pattern instead
of a fundamental tool to digitise and model physical assets. Market ready DTs approaches are
also mainly focused on legacy systems design, and providers like Amazon,6 Google,7 and Bosch8

already proposed their siloed implementations and DT services.
The broader perspective brought by the WoDT proposal shares many points with the Gemini

Principles vision [27], on which the National Digital Twin (NDT) Programme developed in the
UK is based. The NDT programme is nationwide, but focused mainly on the built environment. The
perspective of WoDT is even larger, considering the opportunity of virtualising physical assets
not limited to buildings or related physical objects. In the literature, this pervasive vision has
strong affinities with the idea of mirror worlds as introduced by D. Gelernter in Reference [15], and
further explored and developed in the context of agents and multiagent systems in Reference [40].
Following Gelernter, mirror worlds are “software models of some chunk of reality” [15], that is, “a
true-to-life mirror image trapped inside a computer,” which can be then viewed, zoomed, analysed by
real-world inhabitants with the help of proper software (autonomous) assistant agents. Following
Reference [15], the primary objective of a mirror world is to strongly impact the lives of the citizens
of the real world, offering them the possibility to exploit software tools and functionalities provided
by the mirror world, generically, to tackle the increasing life complexity. The same vision applies
to Web of Digital Twins, which could be considered a concrete approach to design and develop
mirror worlds under this perspective.

Finally, the literature already accounts for a few works that apply agents for modelling,
designing, implementing, or even exploiting DTs. In Reference [2] Belief-Desire-Intention

(BDI) agents—a main model/architecture adopted to implement knowledge-based intelligent
agents [38]—are proposed to represent DTs of real-life organisations claiming that beliefs, desires,
and intentions are suitable abstractions for characterising mental attitudes of anthropomorphic

1https://www.ge.com/digital/applications/digital-twin.
2https://new.siemens.com/global/en/company/stories/research-technologies/digitaltwin/digital-twin.html.
3https://azure.microsoft.com/en-gb/services/digital-twins/.
4https://www.onem2m.org/.
5https://www.w3.org/TR/wot-architecture/.
6https://aws.amazon.com/it/iot/.
7https://cloud.google.com/solutions/iot.
8https://www.bosch-iot-suite.com/.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.

https://www.ge.com/digital/applications/digital-twin
https://new.siemens.com/global/en/company/stories/research-technologies/digitaltwin/digital-twin.html
https://azure.microsoft.com/en-gb/services/digital-twins/
https://www.onem2m.org/
https://www.w3.org/TR/wot-architecture/
https://aws.amazon.com/it/iot/
https://cloud.google.com/solutions/iot
https://www.bosch-iot-suite.com/


Web of Digital Twins 101:5

Fig. 1. The WoDT layered view.

organisations. A similar approach is proposed in Reference [48] where agents are adopted as a
metaphor to revise the structure of a DT in an autonomous, behaviour-centred perspective en-
capsulating the inherent agent’s perception–decision–action cycle and intelligence. Compared to
these works, WoDT is more focused on exploring intelligent agents and MAS at the application
layer, modelling a DTs connected ecosystem as an agent application environment [53].

3 THE WODT MODEL

In this section, we provide a description of the main concepts and principles defining the WoDT
idea, abstracting from specific application domains and technologies. Nevertheless, to clarify the
concepts, we will use examples from concrete domains, the healthcare scenario in particular.

3.1 Overview

The WoDT idea is based on a background principle introduced in Reference [39] to broaden the
perspective about the application of the DT paradigm:

Every strategic physical asset of an organisation must have a corresponding digital twin,
mirroring and augmenting its functionalities and services at the digital level, resulting in
an ecosystem of connected digital twins.

A WoDT is meant to serve as a blueprint to shape that idea of ecosystem from a computational
point of view. The term physical asset (PA) mentioned in the principle is intentionally used
as a broad term, to include any entity that has some kind of manifestation and relevance in the
physical world of the organisation, with a well-defined temporal lifespan.9 It can include phys-
ical objects/resources, places, persons, but also activities and processes carried on by people in
places. For instance, in the context of the healthcare/clinical scenario later described in Section 5,
the organisation is a regional public health authority, involving multiple hospitals and structures
distributed on a regional land.

In that context, examples of PAs range from vehicles and devices (e.g., an ambulance or a vital
signs monitor), building and places (e.g., a hospital, an operating room), persons (e.g., a patient),
up to activities and processes happening real-time on the field (e.g., the management of a trauma,
a surgery in the operating room), as well as logical aggregated entities, such as a department or
the global organisation itself (see Figure 1).

In spite of specific cases, a DT is meant to capture and represent at a proper level of abstraction
the actual state and functionality of the PA, possibly augmented by the digital layer, and what’s

9The definition of entity used here is analogous to the one defined by the ISO 24760-1:2011: “entity is an item that has

recognisably distinct existence, e.g., a person, an organisation, a device, a subsystem, or a group of such items.”

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:6 A. Ricci et al.

happening to it (as well as what happened and what will happen). For a proper level of abstraction,
here we mean two things:

• the DT defines a model of the PA, so abstracting from aspects of the PA that are not relevant
for its purpose;
• the representation provided by the DT is about concepts that concern the PA at the domain

level—not technical aspects related to how its digitisation is being implemented.

Generally speaking, a DT could host multiple concrete models of the same PA, capturing different
aspects. In this article we will refer to a single abstract model, that may be ground then to multiple
concrete ones, without losing generality.

WoDT as Open, Dynamic System of Linked Systems. Two characterising points of DTs in WoDT
concern dynamism and relationships. In particular:

• The PAs part of a WoDT could include both entities that are stably part of the organisation,
sharing the same lifespan, and entities with a limited temporal existence, beginning to exist
or to be part of the organisation at some point in time and possibly ending or exiting the
organisation at some other time. Correspondingly, DTs bound to PAs could either be part of
a WoDT since the beginning, or dynamically created and possibly disposed.
• The PAs of an organisation are typically interrelated, and this set of domain-based relation-

ships could change dynamically. For instance, in the healthcare scenario, an ambulance be-
longs to a hospital and could take part in a mission related to an emergency event. In a WoDT,
these relationships are meant to be explicitly captured and represented at the DT level, by
means of links among the DTs, similarly to link in hypermedia-based environments (like the
Web), and with some defined semantics based on domain-level ontologies (like in the case
of Semantic Web).

WoDT Distributed Knowledge Graph. The PAs of an organisation could be in relationship with
PAs of other organisations, or even the same PA could take part in different organisations with
different roles. Accordingly, a DT of an asset inside an organisation could be linked/related to DTs
that are outside the organisation. This implies the capability in WoDT to deal with the problem
of interoperability, e.g., allowing to use multiple/different ontologies, possibly cross-domain, in an
open-system perspective. The semantic modelling of each virtualised physical asset into a corre-
sponding DT is an aspect of primary importance to foster interoperability and openness, as well as
the development of intelligent applications on top. To this purpose, each DT of a WoDT is meant to
be described by a knowledge graph (KG) [18, 19], interlinking domain knowledge and physical
asset data in a uniform graph representation. A WoDT is therefore represented by a Distributed
KG [21], linking independent KG, possibly based on different domain-specific ontologies ground
to the related physical asset contexts. Semantic Web technologies such as RDF and OWL are taken
as the main reference for this aspect.

WoDT at the Application Level. From an application model point of view, a WoDT is meant to
define a cross-application distributed base layer bridging the digital and physical levels and DTs
could serve as-a-service different applications, running inside or outside the organisation. In the
healthcare scenario, for instance, the DT of the ambulance could be useful for different specific
applications, e.g., one about maintenance of the vehicles and one about the allocation of vehicles
in the management of an emergency. Furthermore, the same DT can serve as a traffic management
application prioritising emergency vehicles over private traffic and public transportation. In the
most general case, for the same PA multiple and independent DTs can be available, each one with
a different model, specialised for different applications.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



Web of Digital Twins 101:7

Fig. 2. A representation of three DTs of three different PAs (Ambulance, Mission, Patient), including an

excerpt of their models, in terms of properties, relationships, and events that can be generated.

A main kind of applications that may benefit from the availability of WoDT is given by intelligent
agents [54] and multiagent systems [20], i.e., intelligent systems designed to autonomously per-
form tasks that need a flexible interaction with the physical/socio-technical environments where
they are situated. In this view, DTs can be considered as shared and modular services that intelli-
gent agents can exploit to perceive and observe the state and events of PAs, based on the semantic
models provided by the DTs in terms of knowledge graphs. Besides the support for perceiving
and observing, DTs may provide actions that allow agents to possibly affect, control and manage
the corresponding physical twins. In other words, from an intelligent agent perspective, a WoDT
would provide a distributed dynamic application environment [53] enabling, mediating and em-
powering the access to the physical reality.

After this broad overview, in the remainder of the section we describe an abstract model for
WoDT, to be useful as a reference for designing and developing WoDT platforms and technologies.

3.2 An Abstract Model

Each DT in WoDT is based on a model M of the corresponding PA, defining how the PA is repre-
sented at the digital/software/virtual level. Such a representation is defined in terms of properties,
relationships and events:

• Properties represent the observable attributes of the PA, as labelled data values (variables)
that can change dynamically according to the evolution of the PA state.
• Relationships represent relationships of the PA with other PAs, as links to other digital twins.

Like properties, even relationships can be observable, created dynamically and change over
time. Differently from properties, they do not purely concern the local state of the PA, but
they allow to refer other PAs, represented by the corresponding DTs.
• Events represent relevant observable events that occurred at the PA, at the domain level.

A concrete model defines the actual properties and relationships used by the DT to represent the
PA and the events that it can dynamically generate. An example related to the healthcare case
study is shown in Figure 2.

Given a model M , the dynamic state SDT of a DT can be defined by a tuple:

SDT = 〈P ,R,E, t〉,

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:8 A. Ricci et al.

Fig. 3. The shadowing process in the WoDT model.

where P is the current set of properties (including data values), R is the current set of relationships,
E is the sequence of events generated so far, and t is a logical timestamp representing the current
time of the PA as modelled by M .

Shadowing is the process to keep the DT state SDT synchronised to the PA state, according to
the model M . Any update involves a sequence of three main steps (see Figure 3(a)):

(1) any relevant change of the state SPA occurring at the PA is captured by an event evPA;
(2) the event evPA is propagated to the DT;
(3) given a new event evPA, the state SDT of the DT is updated by means of a shadowing function

ShadPA→DT that depends on the model M : S ′
DT
= ShadPA→DT (SDT , evPA).

In concrete systems, PAs can be complex entities, with a structured and distributed state. The
shadowing process then may involve multiple sources generating information flows and events.
Sources can also include other DTs, that is, a DT can shadow a high-level logical PA (e.g., the DT
of an organisation) by aggregating information and events provided by other DTs.

Besides mirroring the state, a DT may mirror also actions provided by the PA. A simple example
is the DT of a lamp, providing actions to switch the light on and off. Accordingly, the shadowing
process propagates actions requested on the DT down to the PA, eventually changing its state.
This case, too, involves a sequence of three main steps (see Figure 3(b)):

(1) an action aDT is requested on the DT, e.g., through the digital twin API;
(2) a new action request aPA for the PA is generated by means of a further shadowing function

ShadDT→PA, that is, aPA = ShadDT→PA (SDT ,aDT ), and propagated to the PA;
(3) the action request aPA is applied to the PA, determining a change of the PA state SPA.

It is worth remarking that an action request aDT does not directly change SDT . Changes to SDT are
uniquely caused by shadowing from PA to DT—so, in this case as a result of the PA state change,
after applying aPA.

Overall a WoDT is then a dynamic set of independent DTs, each one with its own model and
state, linked according to the relationships defined at the PA level.

A WoDT is then inherently asynchronous and decentralised—the DTs of a WoDT may have
different and independent time models, and evolve independently and asynchronously.

3.3 A Semantic Model Based on (Distributed) Knowledge Graphs

The abstract model defined above makes it quite straightforward to semantically describe an in-
stance of DT by a KG [19], and a WoDT as a Distributed KG. This is a key aspect of WoDT to enable
cross-application/domain interoperability, and support reasoning by intelligent systems running
at the application layer.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



Web of Digital Twins 101:9

Fig. 4. An example of a RDF-based KG (on the right) for a WoDT (on the left) in the healthcare context.

By using RDF as concrete representation language, the KG of each DT can be represented as
an RDF resource characterised by a unique IRI, using RDF triples to represent dynamic state in-
formation about properties, relationships, events and time, as well as the static information of the
DT. In triples about properties, the predicate is the property name (identifier) and the object is the
value of the property—that can be represented either by a literal or the IRI of another resource (in
a Linked Data perspective). In triples about relationships, the predicate identifies the relationship
name (identifier) and the object is the IRI of the linked DT, corresponding to the target PA that is
related to the source PA, mirrored by the linking DT.

Figure 4 shows a representation of a portion of Distributed KG related to the DTs of a previous
example, represented in RDF. Each KG can be based on different ontologies, expressed in OWL,
including both domain-specific ontologies and shared upper ontologies. For instance, the DTs in
the healthcare context example and case study can refer to FHIR RDF representation10 and FHIR
OWL Ontology.11

Dynamically, the KG of a DT instance evolves according to the shadowing process, involving
atomic updates of the set of triples. The Distributed KG of a WoDT evolves by virtue of the asyn-
chronous and concurrent evolution of the individual KGs.

3.4 Interaction Model

The interaction model is about the primitives (API) that are provided at the application level to
interact with DTs and exploit the functionalities of a WoDT.

The first core functionality is about making observable at the digital level any up-to-date infor-
mation about the current state of physical assets, as well as events relevant at the domain level.
The interaction primitives are then (i) to query and (ii) to track (observe) DTs, at two different
levels: (i) individual DTs (ii) and graphs of DTs.

Both querying and tracking (observing) account for getting information about the current state
SDT of a DT or a graph of DTs. Querying is about one-shot requests and—given the semantic
modelling adopted here—standard semantic query languages like SPARQL12 can be used as refer-
ence to this purpose. Tracking is about subscribing to either a DT or a graph of DTs to receive all
observable events (that is, all relevant events occurred in the PA), possibly filtered according to pat-
terns specified with the subscription. Subscription is meant to be dynamic, by means of interaction
primitives for start tracking (subscribing) and stop tracking (unsubscribing). Remarks:

10https://www.hl7.org/fhir/rdf.html, accessed September 2021.
11https://w3c.github.io/hcls-fhir-rdf/spec/ontology.html, accessed September 2021.
12https://www.w3.org/TR/sparql11-query/.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.

https://www.hl7.org/fhir/rdf.html
https://w3c.github.io/hcls-fhir-rdf/spec/ontology.html
https://www.w3.org/TR/sparql11-query/


101:10 A. Ricci et al.

• Queries and tracking cannot interfere or block the shadowing process. That is: updates from
the physical world have priority and are meant to be performed satisfying the requirements
(in terms of, e.g., latency, responsiveness, etc.) defined by the model. This is an important
constraint for concrete architectures and strategies to be adopted to design a platform sup-
porting the WoDT model (Section 3).
• In the most general case, queries (and tracking) that involve a graph of DTs concern Dis-

tributed KGs, where it cannot be assumed a priori neither a unique reference time, nor a
common model of time (which is defined by the model M of each DT).

Besides querying and observing, a DT can mirror also the actions provided by the physical asset
to command/control it. Therefore, interaction primitives may include application-specific requests
for asynchronously executing actions/commands, shadowing those provided by the PA.

Finally, a last core functionality is about creating (and disposing) DTs. In a WoDT, the creation
of a new DT can occur in three conceptually different ways:

• statically, when a DT is instantiated and configured by administrators. This typically con-
cerns either stand-alone systems or root DT of a possibly complex WoDT, where the other
DTs are then created dynamically;
• dynamically by shadowing, when a DT is created as effect of the shadowing of an existing DT

(and PA), possibly linking the new DT by means of some relationship (part of the R set, in
the abstract model). In this case the existing DT can be considered the parent of the new DT;
• dynamically by the application level, when a DT is created as effect of an action requested

from the application layer. It could concern the creation of a DT that is either unrelated to
any existing DTs, like in the first case, or created in the context of an existing parent DT
(linking it by some relationship).

3.5 Modelling Augmentation

A DT can be used not only to virtualise a PA, making its digital shadow accessible and exploitable,
but also to extend (augment) its functionalities by properly exploiting the digital/software
layer [28]. For instance, the DT of a room can provide a property about the number of people
inside the room (by exploiting different kind of tracking technologies), even if—at the physical
level—there could not be any physical counter. An another example, the DT of a patient can gen-
erate a warning event about the health state, given, e.g., rules defined by medics, possibly con-
textualised to the specific situation. Event prediction and simulation—which are main high-level
functionalities that are described in the literature for DTs—can be conceptually framed as aug-
mentation, since they are not part of the functionalities mirrored from the PA, but exploit the
model M , the state SDT and possibly other available data to generate information about the future
states/behaviour of the PAs.

In the abstract model, augmentation can be represented by means of an augmented state SAU

including a further set of properties, relationships, and events besides the ones generated by shad-
owing the PA. The augmentation behaviour can be modelled as an abstract functions Auдm part
of the model M , too, like the shadowing functions Shad , so that:

• an event evPA occurring at the PA level may trigger both the update of the state SDT , accord-
ing to the basic shadowing process, and the update of the augmented state SAU according to
the augmentation function: S ′

AU
= AuдmPA→DT (SAU , SDT , evPA);

• an action eventaDT part of the augmented behaviour may cause the update of the augmented
state into a S ′

AU
and (possibly, not necessarily) generate an event aPA to be propagated to

the PA, as in the basic shadowing process: aPA = AuдmDT→PA (SAU , SDT ,aDT ).

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



Web of Digital Twins 101:11

Fig. 5. Abstract representation of the state and transitions of a DT’s lifecycle.

In this modeling, the augmented state SAU is kept separated by the state SDT to remark the con-
ceptual difference between them: properties and relationships of the core state are strictly bound
to the PA and its evolution, and cannot be (directly) changed by the application layer, which is the
case, instead, of the properties and relationships of the augmented state.

4 BRINGING THE WODT MODEL INTO THE REAL WORLD

The WoDT model needs to be supported by an abstract DT’s lifecycle and an adequate software
architecture to be effectively and efficiently deployed as an operational artefact. We thus provide
here a plausible abstract representation of both.

Figure 5 depicts the envisioned DT lifecycle. After startup, the DT moves to the Operating &
Not Bound state where all the internal modules are active but the DT is not yet associated with
the PA. It is the binding procedure that connects the two, according to the existing domain-specific
requirements. In the Bound state the DT is correctly attached to its physical counterpart, hence
is able to handle bidirectional events, interact with the PA, and start the shadowing process to be
effectively synchronised in terms of events and state—reaching the Shadowed state.

Any error during synchronisation brings the DT into a new state denoted as Out of Sync, where
it is unable to handle events, to align its status, or to interact with the external world. Only once
synchronisation is correctly recovered (according to the defined model) the DT returns to the
Shadowed state. During its lifecycle, the DT can be also stopped and moved to the Done state,
where it is still active and accessible from external applications and consumers (maintaining its
memory and events log), but it is neither bound or synchronised anymore with the PA. At the end
of its lifecycle, the DT can be finally dismissed and associated to the Stop state.

Given the WoDT model and the DT’s lifecycle just described, we now present a WoDT blue-
print architecture, conceived by (i) making explicit the requirements put forth by the WoDT model
and (ii) devising out the abstract architectural components, as well as their role and relationships,
needed to fulfil them.

It is worth remarking that the described architecture is by no means meant to serve as the unique
reference architecture for implementing an ecosystem of DTs, rather, as an abstract architecture
where each component (hence its functional and non-functional responsibilities) may be possi-
bly realised by a slew of different existing models and technologies. We tackled the problem of
both platform and DTs’ complexity by decomposing them into a set of manageable event-driven
modules along with suitable adapters, with the aim of simplifying development, maintenance, and
scalability. This approach also reduces the barriers to adoption by not being bound to a specific tar-
get platform and domain-specific solution. Finally, this flexibility and modularity also enable each
component to be deployed independently and dynamically according to the application scenario
or the runtime context. For example, DTs can be executed both on the Edge and in the Cloud, or

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:12 A. Ricci et al.

Fig. 6. Overall abstract architecture of WoDT vision (inner DT and WoDT platform).

can migrate among multiple processing nodes. At the same time, the platform is responsible for
maintaining the event-driven communication and the distributed knowledge available.

4.1 An Architectural Perspective

By reflecting on the model described in Section 3 we can devise out the following architectural
requirements: (i) it should be possible to create DTs and bind them to PAs dynamically, which in
turn requires to dynamically associate DTs and PAs with an addressable and discoverable unique
identifier, and to provide the means to resolve and discover such address; (ii) changes in the state
of a PA, that is, PA events, should be captured and reified in a uniform representation, regardless
of the heterogeneity of the source PAs, by the bound DT, whose state may change in response as
defined by the DT model(s); (iii) a labelled multi-graph (the knowledge graph) is needed to track
dynamic linking amongst DTs, and means to navigate and query such labelled multi-graph should
be provided; (iv) the shadowing process must guarantee proper synchronisation between the PA
and the DT, according to the constraints put forth by the DT model(s)—e.g., in terms of quality
of service metrics, amongst which timing constraints; (v) an operational specification of the DT
model(s) must be available for execution at all times, to drive the processes of event capturing,
state update, shadowing itself, linking, namely the whole inner functioning of the DT; (vi) some
services must be available independently of any DT, such as for DT creation and querying; (vii)
observation of DTs’ current and past state and augmented state, model(s), thread of captured events,
context in terms of linking sub-graph it participates to, and any other relevant data related to DTs
functioning must be available at all times, to external entities, regardless of their heterogeneity
(e.g., web service vs. cognitive agent); and (viii) interaction with the DT, and consequently the PA,
to trigger actions and functions, also regarding augmentation, must be possible at all times, and
will spawn events giving feedback about the action itself (e.g., results), and possibly generate state
updates in the PA or the DT.

Based on these requirements, we define the abstract architecture depicted in Figure 6 as the
minimal architecture fulfilling all the requirements described above. Such architecture exposes (i)
elements that are part of each DT (e.g., Model Execution Engine), hence are conceptually inside of a
DT, (ii) elements that are at the boundary between DTs (e.g., Management Interface), (iii) elements
that are the boundary between DTs and client entities (e.g., Digital Adapter), and (iv) infrastructural
elements that are not part of any DT (e.g., DT Manager (DTM)), hence are conceptually outside
of a DT.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



Web of Digital Twins 101:13

First, we first focus on the inside of a DT, that is, what the components providing the functions
that each DT should be able to deliver autonomously are.

Physical Asset Adapter (PAA). The component in charge of capturing events ePA coming
from the PA(s) associated to the DT (due to, e.g., a change to the PA(s) state), as well as of
delivering events ePA to the PA(s), corresponding to actions to be carried out, as requested
by applications through the Digital Adapter. Despite heterogeneity of PAs, in terms of struc-
ture, purpose, behaviour, communication protocols, data representation formats, and so on,
such events must be mapped to a uniform representation eI so as to be seamlessly exchanged
amongst different DTs, filtered, manipulated, aggregated, and possibly dispatched to external
entities. A fundamental aspect of this mapping is the preservation of some temporal infor-
mation about ePA, such that, for instance, causal relationships could be established amongst
resulting eI , and synchronisation status can be assessed. Such eI will be processed within
the DT by the Binding & Shadowing Module and the Model Execution Engine, as described
below, thanks to the Event-driven Engine, which drives the internal behaviour of each DT.
In the case that the PA is mapped into another DT, events ePA are already represented as eI ,
hence no further translation is required.

Binding & Shadowing Module (BSM). The heart of the DT, that is, the component in charge
of both the one-time binding process associating a DT with its PA, usually done at DT creation
time and dismissed when the PA is disposed, and the perpetual shadowing process meant to
keep the DT and PA in synch. This module interacts with the Event-driven Engine to dispatch
events eI to the Model Execution Engine, and operates according to the policies put forth by
it regarding when and how to update the DT state and the Knowledge Graph. Finally, this
module also tracks and governs the lifecycle stages of a DT, from creation and binding, to
unbinding and disposal.

Event-driven Engine (EE). The nervous system of the DT, that is, the component binding to-
gether all the other internal components of a DT, by enabling their reciprocal interaction
through events eI . It is worth emphasising here that we interpret the DT as an event-driven
machinery conceptually, at the modelling level; however, as already said, we do not constrain
the DT to be actually implemented as such, hence the EE in turn may be not, for instance,
an internal or shared event bus, but anything else fitting the job.

Model Execution Engine (MEE). The brain of the DT, that is, the component in charge of
governing other components according to the model(s) defined by the DT designer. As such,
it dictates which events to capture, how they influence the DT state and behaviour, the ad-
missible linking operations on the KG, the admissible actions on the corresponding PA, and
so on. Conceptually, through the MEE, the DT designer has the means to make the model(s)
she defined operational, that is, capable of affecting the behaviour of the DT at runtime.

State Manager (SM). The component responsible for managing DT state updates, according
to the policies put forth by the MEE, the events dynamically captured, and the contextual
conditions defined by the linking relationships with other DTs. While doing so, particular
attention should be devoted in leaving the DT in a consistent state, in relation to the
constraints possibly defined by the MEE model(s), at all times.

Knowledge Graph Engine (KGE). The component responsible for managing the KG of the
DT, including the links to the other DTs, as tracked by the relationships attribute. Also, it
is in charge of serving

Cache & Storage (CS). The component providing to the DT those basic functionalities
related to storage and caching of data, for instance regarding state updates, KG updates,
events caching, and so on.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:14 A. Ricci et al.

Management Interface (MI). The set of functions a DT exposes to other DTs, the WoDT
platform, and external entities such as platform/administration tools and services, too.
Queries about the lifecycle state of a DT, and requests for linking to and creation of other
DTs are all expected to be served through the MI.

Digital Adapter (DA). The component complementary to the PAA, that is, in charge of
translating events eI into DT events eDT , namely, events generated by the DT toward some
external entity in response to invocation of some MI function—e.g., the track operation to
be notified upon changing of DT (PA) properties and the generation of observable events.

Augmentation Engine (AE). The module that allows the DT to extend its original capa-
bilities (inherited from the PA with the shadowing process) through the activation and
execution of one or multiple functional modules. Each AE module can operate with both
eDT and ePA (e.g., exposing a prediction action and making available predicted values of a
property) according to the implemented augmentation function, and enables the definition
of an additional set of properties, relationships, actions, and events exposed to the digital
world and accessible by external applications and services.

Then we can consider the outside of a DT, that is, the components providing those functions
that cannot be delivered by an individual DT alone but should be supported by platform mod-
ules, or that may be anyway practically convenient to have independently of individual DTs. The
Distributed Knowledge Graph Engine (DKGE) is in charge of providing the means to nav-
igate the entire web of DTs, that is, the labelled multi-graph where all the linking relationships
between DTs are tracked, without necessarily having prior knowledge about the DTs already in
the system. By doing so, the DKGE grants access to any of the DT of the platform, and to any of
its properties, events eI thread, and so on—namely, to the whole DT tuple as seen in the model
(Section 3)—by routing and forwarding requests for data access to the DTs involved in any given
query. The DTM is responsible instead to manage the DT lifecycle, from creation, and hence unique
ID and discoverable address generation, to DT disposal. The component also offers typical lookup
services such as white and yellow pages to lookup DTs based on ID or specific properties. The
Communication Layer (CL) enables interaction with external entities, whatever they are. Such
a component represents the entry point to the WoDT platform, by providing the API to interact
with the DKGE, the DTF, and the DTs themselves, through the DA.

It is worth clarifying that the architecture just presented is purely logical, in the sense that
we do not pose any restriction on (i) implementation of its components, e.g., whether the DT
Factory is a centralised registry or a distributed hashtable, or whether the EE is fragmented in
each DT, a globally available event bus, or a combination thereof, and (ii) deployment of such
components, e.g., whether the DT resides on the same host as the PA or even the PAA, or where a
DT should be placed across the Edge-Fog-Cloud spectrum. The reason for not doing so is that such
choices likely depend on many factors, such as (i) the target application domain, (ii) the available
computational resources and communication infrastructure, and (iii) the preferred technologies to
actually implement the components. Also, some of the components may be dynamically moved,
or replicated, or fragmented (akin to sharding for database technology) at runtime, thus imposing
design-time restrictions seems unnecessary and potentially limiting.

4.2 Interaction Flows

With the aim of clarifying the relationships between the DT’s architectural components we iden-
tified in the previous section, and provide further insights on DTs functioning with respect to
external applications, we here comment a few selected sequence diagrams explaining some of the
main operational phases of a DT.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



Web of Digital Twins 101:15

Fig. 7. DT binding and shadowing, and status update.

Fig. 8. Interaction of an external application with the DT: Query and track.

Figure 7 reports the internal DT operations related to PA’s binding and shadowing. Interactions
unfold as follows. (1) an external application (e.g., an agent) interacts with the DTM through the
CL to create a new DT The DTM then starts the DT, through the MI module, to shadow a target
PA. (2) The MI initiates the procedure by requesting to the BSM to perform coupling with the PA.
(3) The BSM then interacts with the PAA to perform binding according to PA’s nature, commu-
nication protocols, and data formats. (4) The BSM also interacts with the MEE to retrieve the
shadowing information as a function of the DT’s model and the received PA’s state. For example,
a PA can expose multiple properties but only a subset will be shadowed through the defined DT’s
model. (5) The BSM keeps interacting with the PAA to complete the shadowing process, and, finally,
(6) updates the KG to keep track of the DT’s local view in terms of linking, which in turn uses the
CS module to store the update and, if required, update its thread. ((7) and (8)) Notification of com-
pletion of the shadowing process is forwarded to the MI and the DTM. The remaining steps in
Figure 7 describe how the DT handles state changes coming from the PA: (9) the PA generates an
event associated with an internal change (or the PAA detects a variation on the PA), hence the PAA
notifies the BSM about the change and tracks it through the CS module; (10) the BSM generates a
new ePA; (11) the MEE executes the DT’s model according to the ePA, the current state, and any
other relevant information in the DT. Once the new state is correctly computed the MEE notifies
the SM about the variation. Finally ((12) and (13)), the SM validates the state, updates the CS, and
possibly generates a new eDT for the DA—possibly delivered to external applications tracking the
DT.

Figure 8 depicts how the query and track operations of the interaction model described in Sec-
tion 3.4 are carried out by the DT. In particular, in the case of a query operation (1), the DA
takes care of transforming such a request into a DT event (2), which is then forwarded to the
KGE through the MEE (3). Once the query request reaches the KGE, it is its sole responsibility to

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:16 A. Ricci et al.

Fig. 9. Interaction of an external application with the DT: Action on the PA.

appropriately forward the query to the (possibly) linked DTs (not shown). Then, once the query
results are available, they are propagated back to the requesting application ((4)–(6)). In the case
of tracking (7), the flow of interactions stops at the MEE (9), that simply keeps track that a new
observer should be associated with the updates coming from the shadowed PA. In fact, steps (10)–
(14) are akin to steps (9)–(13) already described for Figure 7, representing the shadowing process.
What is new here, is step (12) in which the PA state change is notified to the tracking application.

Finally, Figure 9 illustrates the internal DT operations necessary to trigger a specific action on
the PA as requested by an application. If the action involves also a status change on the PA, then a
new ePA will be generated to notify the variation. In particular: ((1) and (2)) the application acts on
the DT to, e.g., modify the status of, or trigger an action on, the PA through the DA; (3) the MEE
analyses the action event, applies the DT’s model, and triggers synchronisation with the BSM; (4)
the BSM uses the PAA to forward to the PA the action; (5) the BSM generates an ePA associated
to the action; ((6) and (7)) the MEE analyses the event, applies the model, and then sends a new
eDT for action completion to the DA. Then, if the action on the PA causes a status change, then
the PAA notifies the modification with the same interactions already seen in previous figures.

4.3 Integration with Agent-based Architectures and Platforms

As mentioned in Section 3.1, agent-based approaches are a main reference for modelling and engi-
neering smart applications and intelligent situated systems running on top of WoDT. In an agent-
based view, a WoDT defines a virtual environment where agents are logically situated, exploiting
the WoDT interaction model to perceive and act upon the PAs through the DTs. On the agent side,
the integration with such a virtual environment can be designed using two main conceptually
different approaches as follows:

• The first one is based on agentification of the virtual environment, that is, every DT is repre-
sented inside the MAS by an agent functioning as its representative (or proxy), and this kind
of agents provide an interface based on the Agent Communication Language (ACL)—e.g.,
FIPA ACL, based on speech acts—for the other agents of the MAS to interact with the DT. A
concrete example of this approach is shown in Figure 10(a), based on JADE [4], a well-known
FIPA compliant platform [5]. In this case, the agent representing the agentified DT would
encapsulate and hide the DA machinery to interact with the DT.
• The second one is based on modelling the WoDT virtual environment in terms of first-class

environment abstractions on the agent side. For instance, in the A&A metamodel [34], each
DT could be represented as an artifact, being artifacts the basic entities used to modularise
computational environments in A&A, organised in workspaces. In this case, agents would
interact with DTs perceiving their observable states, events and performing actions by in-
teracting with artifacts, i.e., perceiving/observing their observable properties (mapping the

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



Web of Digital Twins 101:17

Fig. 10. Examples of integration approaches using JADE (a) and JaCaMo (b) platforms. For the former, agents

wrap DAs to mediate interaction with the DTs; for the latter, DAs become artifacts.

DT state) and executing operations (representing actions). Figure 10(b) shows a concrete ex-
ample based on JaCaMo [6], a MAS platform that supports artifact-based environments and
BDI agents, that can be programmed in Jason.

These two simple approaches are useful just to enable the integration at a technical/platform level
between agents and DTs. A deeper form of integration can be explored by considering that a
WoDT is possibly a distributed hypermedia-based environment, being based on an open distributed
dynamic KG, which can be represented in terms of Semantic Web technologies. In the literature,
research on Hypermedia-based MAS [8] is exactly about agents that are situated in a distributed
hypermedia environment that they can navigate and use in pursuit of their goals. Accordingly, a
further way to understand and explore the design of agent-based applications running on a WoDT
is to view them as a special kind of Hypermedia based MASs, where the distributed hypermedia
environments in this case are meant to be virtualisations of physical assets.

Finally, architectures for designing intelligent agents—such as the BDI one—can be a relevant
reference not only for designing intelligent systems at the application level, but also at the Digi-
tal Twin Layer, as constituting elements of Cognitive Digital Twins. As a specific example, a CDT
based on the BDI architecture can exploit the sense-plan-act reasoning cycle to realise the shadow-
ing process of a DT as well as the augmentation counterpart: Through the event-driven sensing,
changes in the PA are mapped into beliefs, that can trigger the execution of reactive plans realising
the augmented behaviour, including pro-active tasks toward the achievement of goals as defined
by the stage 4 DT vision [43]. Conversely, requests for action coming from applications may be
encapsulated in messages sent to the agent-based DT, that through appropriate plans triggers the
needed actions on its associated PA. Indeed the opportunities about exploiting intelligent agent
architectures like BDI to design CDTs are manifold, and although some early research activities
are already started on the topic, much more will be needed to comprehensively understand the
extent and limits of agent-based DT modelling and engineering.

5 APPLYING WODT TO REAL-WORLD CASE STUDIES

The vision described in Section 3 has been devised by generalising our experience in the design
of real-world systems in specific domains, namely healthcare and smart city. In this section, we
briefly introduce these cases and discuss their modelling using the WoDT vision.

5.1 The Case of Major Trauma Management

Major Trauma Management is one of the most challenging scenarios where physicians can be
involved in the healthcare context. Like other time-dependent pathologies, major traumas ask

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:18 A. Ricci et al.

for a team of physicians with strong heterogeneous expertise (called trauma team), to promptly
identify a diagnosis and quickly provide medical aid. In fact, patient health outcomes strongly
depend on the first hour of treatment. In broad terms, the whole trauma management process can
be conceptually split into three main stages:

Stage #1 – Emergency Call Management. Following an emergency call to the Central

Emergency Unit (CEU), an operator collects information about the occurred event then
plans and starts a first-aid emergency mission, involving a particular rescuer and a specific
vehicle;

Stage #2 – Pre-Hospital Management. The rescuer reaches the patient with the aim of ad-
ministering him/her first aid basic life support, deciding the severity of the trauma and, fi-
nally, transferring the patient to the trauma centre;

Stage #3 – Trauma Management. At the emergency room of the trauma centre, the patient
is taken in charge by a team of expert physicians called trauma team, led by its trauma leader,
with the aim to do everything is required to save patient’s life according to the severity of
the occurred trauma.

Besides procedures that physicians have to accomplish to save patient’s life, this process requires
in every stage some collateral activities to (i) document the overall evolution of the ongoing trauma
(e.g., time tracks of procedures implementation and drugs administration, diagnostics results, and
so on) and (ii) have continuous monitoring of the real-time evolving state of the trauma process—in
particular, of the patient and other assets, including the trauma teams members.

To support this scenario, and in particular these two latter collateral needs, a research project
called TraumaTracker [10, 29] has been carried out in cooperation with an Italian Trauma Centre13

since 2017. Briefly, TraumaTracker has been designed and developed to support the trauma team at
Stage #3 of the major trauma management process. In particular, it acts as a personal assistant agent
of the trauma leader to produce the trauma documentation of the in-hospital stage and monitor
the evolution of the ongoing medical procedures, possibly producing alerts for the trauma leader.
The TraumaTracker prototype is currently being used: To date, over 1,600 trauma reports have
been collected. Since its first release, TraumaTracker has been constantly refactored and updated
according to a domain-driven design process. Recently it has also been extended to Stages #1 and
#2, refactoring its design toward a DT-oriented architecture [9, 39].

In this article, we demonstrate how the mission-critical scenario of major trauma management
can be designed according to the WoDT approach (and model). Table 1 describes the details of a
major trauma management scenario, considering its evolution both in the physical and the digital
worlds. To provide a better comprehension of how the WoDT can be designed to support the
scenario of this case study, in Figure 11 a graphical notation is used to model relations among
involved DTs and related PAs. This figure represents a kind of architectural view of the relations
among the PAs composing the scenario and the DTs modelling them. Moving from the top to the
bottom of this figure, for each stage a snapshot of DTs in execution in that stage is reported. In
particular, some of them are conveniently created with the purpose of shadowing emerging PAs in
the evolution of the scenario (e.g., the MissionDT at Stage #1, the TraumaTeamDT at Stage #2 or the
ShockRoomDT at Stage #3). Other DTs, instead, are in execution regardless of the specific stage and
scenario (e.g., the CentralEmergencyUnitDT at Stage #1 or the HospitalDT at Stage #3), because
they are part of the broader WoDT of the whole Local Health Department. In other words, these
latter DTs have been previously created in the context of other DTs, and they are in continuous
execution to support heterogeneous scenarios beyond the major trauma management one.

13The “M. Bufalini” Hospital Trauma Centre, AUSL della Romagna, Cesena, Italy.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



Web of Digital Twins 101:19

Table 1. The Evolution of a Major Trauma Management Scenario Both in the Physical

and in the Digital World

Physical World Digital World

Stage
#1

An emergency call is taken by the unique health num-
ber, and the CEU operator collects the first-contact in-
formation of the occurred event (e.g., the place of the
event, its status, the number of involved people, and
their rough health status). Then, for each involved
victim, a new mission is started with a specific vehicle

(e.g., an ambulance) and a particular physician quali-
fied to act as rescuer.

A new DT for the event (EventDT) is created in the
context of the running DT coupled to the CEU. This
new DT includes the information collected by the
operator about the event. According to the rescue
process, also a DT for each mission (MissionDT) is
instantiated and linked to DTs of both the vehicle
(AmbulanceDT) and the rescuer (RescuerDT), dynam-
ically discovered exploiting the CEU DT.

Stage
#2

The emergency crew arrives at the event place and
interact with the patient, possibly identified as a
qualified healthcare user with his health insurance
card. Here, the rescuer giving the first-aid evaluates
the patient medical condition to establish a diagno-

sis (a major/severe trauma, in this example). Accord-
ingly, a destination for the patient is decided (in this
case, the emergency department of the nearest hospi-

tal acting as trauma centre). So, the patient is moved
to the destination by the emergency crew and, in
the meanwhile, at the notified trauma centre a new
trauma team (led by its trauma leader, typically an
anaesthetist-resuscitator) is dynamically composed
and informed about the incoming patient health con-
ditions.

A new DT for the patient (PatientDT) tracking the
triage data collected by the rescuer is created and
linked to the MissionDT. In the case that the pa-
tient is properly identified (using his/her health id),
the corresponding DT (HealthcareUserDT) is discov-
ered and linked by the PatientDT. When the diag-
nosis is a major trauma, a new DT for the trauma
management process (OngoingTraumaDT) is created
in the context of the DT of the selected trauma centre
(TraumaCentreDT), and it is linked to the DT of the
patient, to start to collect information of the incom-
ing patient. Finally, the DTs of the physician of the
trauma team (TraumaTeamDT and TraumaLeaderDT)
are properly created and linked.

Stage
#3

The emergency crew arrives at the emergency de-
partment and entrusts the patient to the trauma team.
So, the mission of the emergency crew ends as well
as the involvement of the rescuer. The trauma man-
agement in-hospital process starts, possibly involv-
ing multiple rooms and facilities of the hospital. For
instance, the main room where the trauma is man-
aged, called shock-room, is equipped with adequate
facilities to support physician’s work, among them
most relevant are a display to refer to tracked infor-
mation and diagnostics’ results dynamically, and the
vital signs monitor to collect and observe the patient’s
vital signs trace. Other rooms of the trauma path are,
e.g., the computer-aided tomography (CT) room or a
dedicated operating room. Finally, when the trauma
management process ends, the patient is generally
hospitalised according to his/her new health condi-
tion, e.g., into the intensive-care unit.

The OngoingTraumaDT tracks all the relevant events
happening during the trauma management. In a
sense, this DT replaces the PatientDT in the in-
hospital phase: no more updates are reported to
this latter DT. The OngoingTraumaDT tracks the cur-
rent room where the patient (and trauma team)
are, by linking the corresponding DT (e.g., the
ShockRoomDT). The DT of the current room pro-
vides the links to the DTs of the physical facil-
ities in the room (e.g., the DisplayDT and the
VitalSignsMonitorDT). These facilities can be ex-
ploited by, e.g., the personal assistant agent of the
trauma team/leader, implementing context-aware
support. When the trauma management ends, the
OngoingTraumaDT is no longer updated, and a DT re-
ferring to the hospitalised patient is created by the
DT of the designed hospital ward. Likewise, the DTs
of the trauma team and trauma leader ends their
work.

It is worth noting that some of them (e.g., the PhysicianDT and RescuerDT at the Stage #1) can
be coupled to the same PA. This means that both DTs represent the same PA with different levels of
specialisation. In this case, the rationale behind this design choice is given by the specific domain,
that is, a physician working at the local health department has its own DT created by the time
when he/she was hired, representing his/her digital counterpart as individual (the PhysicianDT);
conversely, when the physician acts as a rescuer in the specific context of a rescue mission he/she
has to be coupled to a dedicated DT (the RescuerDT) conceived as a specialisation of the previous
DT having specific properties (e.g., the identifier of the rescuer for that specific mission) according

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:20 A. Ricci et al.

Fig. 11. The evolution of a Major Trauma Management Scenario in terms of relations among DTs and PAs.

Entities in bold represent new additions to the KG, entities in grey represent old entities but still active, faded

entities represent currently inactive entities.

to the role played at that moment. This latter DT’s life span is limited to the duration of the mission
in which he/she is involved.

Software agents are not explicitly represented in Figure 11, to avoid cluttering. Nevertheless,
they are the proactive actors observing and acting upon DTs. For instance, the personal assistant
agent of the trauma leader—as identified in the TraumaTracker system—is an agent that comes into
play mainly at Stage #3 of this scenario, when the trauma leader starts to coordinate the trauma
team in performing medical procedures to save patient’s life. In particular, considering, for instance
the aim to producing relevant alerts related to the ongoing trauma, such personal agent observes
all the DTs shadowing the in-hospital macro phase (OngoingTraumaDT, VitalSignsMonitorDT,
ShockRoomDT, . . . ) and, potentially, it exploits the DisplayDT API to show the alert (e.g., about the
fact that the patient heart rate is decreasing rapidly).

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



Web of Digital Twins 101:21

Fig. 12. The knowledge graphs related to the major trauma management scenario evolution.

Figure 12 shows instead (a portion of) the KG of the WoDT and how it evolves, from stage
to stage, according to the evolution of the case study as described in Table 1. The KG is repre-
sented in RDF using the Turtle notation and is built according to the specific domain glossary of
terms. For instance, the :ambulanceA instance at the Stage #1 is represented by two properties
(:position and :status) and it is related to the :CEU instance, with the :from relation. Note
that the :ambulanceA is also indirectly related to the :missionM concept, because this latter has
a relation :vehicle toward :ambulanceA. An agent that would like to track the position of an
ambulance of a specific mission in the context of a specific event, could observe changes of the
:position propriety of the :ambulanceA instance in the graph.

To further support agent reasoning, a KG may include not only ABox assertions, i.e., facts asso-
ciated with the actual state and situation of the PAs mirrored by the WoDT, but also TBox state-
ments, about classes and properties of the ontologies [14]. As an example, Figure 13(a) shows
a refinement of the KG at Stage #1 in which the subject of each RDF triple has been qualified,

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:22 A. Ricci et al.

Fig. 13. Refinements to the semantics of the major trauma management scenario stage #1.

introducing a proper domain-oriented parent concept to enhance the semantics and the reason-
ing upon it. For instance, we added the information about the fact that the :ambulanceA is a
:Vehicle (note that in the Turtle syntax the keyword “a” can be used to express an :is-a
relationship).

When considering concrete real-world domains, the knowledge graph of a WoDT may prof-
itably refer to existing standard ontologies available for those domains. A main example in the
healthcare context is given by FHIR,14 the standard for healthcare data exchange. Figure 13(b)
shows a refinement of the representation of the WoDT at Stage #1, in which domain concepts
have been rearranged according to the FHIR ontology. For instance, FHIR uses the concept
fhir:Location to identify all the heterogeneous set of healthcare locations (e.g., buildings, rooms,
streets, vehicles): for this reason, both :ambulanceA and :eventLocationEL are now instances
of the fhir:Location concept. Moreover, both :eventE and :missionM must be qualified as
fhir:Encounter instances, although they have a very different meaning in the specific major
trauma management scenario. Nonetheless, in FHIR every non-planned occurring event, involv-
ing practitioners and patients must be defined as encounters, with specific properties as, i.e.,
fhir:participant, fhir:status, fhir:identifier as shown in this example.

Finally, Figure 14 reports an example of a simplified SPARQL Query performed on a portion of
the KG of the Stage #3 related to the described Trauma Management scenario.

5.2 The Case of Mobility Intelligence

In a future cooperative driving scenario with both autonomous and non-autonomous vehicles shar-
ing the road infrastructure, basic services such as intersection crossing, parking, and ride-sharing

14https://www.hl7.org/fhir/.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.

https://www.hl7.org/fhir/


Web of Digital Twins 101:23

Fig. 14. An example of a SPARQL query on the KG.

will need to be re-designed [26]. A WoDT can play the role of the enabling coordination infras-
tructure: (i) each vehicle has its own DT created and bound when the vehicle is registered in the
municipality’s dedicated registry; (ii) each citizen may also have her own DT, whose creation and
binding could happen at birth upon registration in public health registries; (iii) each relevant road
infrastructure element—such as Road Side Units (RSUs) working as intersection managers, park-
ing lots managers, and so on—is also digitally represented as a DT; (iv) some of these, such as those
representing RSUs, are statically connected at design-time to provide application developers with
the means to shape the computational environment of intelligent mobility and traffic management
applications; and (v) some others, such as those representing vehicles, become connected dynam-
ically, at runtime, based on users’ adoption and the applications’ needs. Several use cases may
be described with the WoDT vision we defined in Section 3. Here we focus on intersection cross-
ing as the most challenging urban task for both autonomous and non-autonomous vehicles, but
other application scenarios may as well target smart parking, ride-sharing, and overall traffic flow
management.

Currently, most intersections are regulated by right of way signals placed on the road, traffic
lights, or roundabouts. These regulations means are suitable for human-driven vehicles but largely
inadequate (e.g., sub-optimal) for autonomous ones, which could leverage cooperative driving to
cross intersections more efficiently. Literature about autonomous intersection crossing is abundant
and features many different approaches, such as reservation-based, negotiation-based, distributed
constrained optimisation, solutions based on game-theoretic approaches, and so on [26]. Common
to all approaches is the assumption that either an intersection manager is available, as the compu-
tational component of the intersection road infrastructure in charge of coordinating vehicles, or
that vehicles are able to communicate with each other and reach an agreement about the crossing
order in a fully decentralised way. In Table 2, we take as a reference a reservation-based approach
to intersection crossing, one of the most successful and studied approaches [12], and describe the
relationships between what happens in the physical world and what happens in the digital world,
that is, in the WoDT representing the domain (the problem as well as the solution).

There, it is worth noting that the signalling operation mentioned in stage incoming can be re-
alised according to two approaches: The one described in Table 2 needs the Vehicle DT to be
pro-active, as it is the one who informs the intersection about its intention to cross; an alternative
would be to let the Intersection DT devise out the Vehicle DTs intentions through observation
(e.g., if both turning lights are off, then the vehicle is going straight). Preference of either approach
is a design choice whose discussion is out of scope here.

The many links established throughout the scenario lifespan are depicted in Figure 15, which
shows the temporal evolution (from top to bottom) of the knowledge graph of the WoDT, assumed
to be defined by RDF in Turtle notation, exploiting the SAREF4Auto ontology15 currently defined

15https://forge.etsi.org/rep/SAREF/saref4auto.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.

https://forge.etsi.org/rep/SAREF/saref4auto


101:24 A. Ricci et al.

Table 2. Description of the Intersection Crossing Scenario Using the Web of DTs Model

Physical World Digital World

Stage
setup

The municipality deploys the intelligent

mobility platform on a target intersection.
Relevant RSUs are deployed, such as smart
cameras to monitor traffic conditions and
a computational node (e.g., a RasberryPi)
to govern the crossing process according
to a policy given by the municipality. Vehi-
cles are registered to the municipality be-
fore hitting the streets, and are supposed
to be equipped with a suitable hardware
& software stack enabling at least identifi-
cation.

The Intersection DT is created and bound, representing the
status of the intersection area. The CrossingProcess DT is
created and bound, representing the policy of the crossing pro-
cess and its status. A :deployed link is established amongst
the two, to represent the fact that the intersection is currently
enforcing the given crossing policy on approaching vehicles.
In case of a fully autonomous vehicle, the Vehicle DT is cre-
ated and bound, representing the vehicle status and behaviour.
In case of a non fully autonomous vehicle, the Driver DT is
also created and bound, and linked to the Vehicle to repre-
sent the connection between a vehicle and its driver.

Stage in-

coming

A vehicle approaching the intersection is
detected by some RSU (e.g., a smart cam-
era with a given detection radius). The
vehicle somehow signals the intention to
cross the intersection, e.g., by activating
the turning lights in case of a non au-
tonomous vehicle, or by communicating
with the intersection manager over wire-
less networks in case of an autonomous
vehicle attempting to reserve a spatio-
temporal slot for occupying the intersec-
tion area [12].

A :crossing link is established between the Vehicle DT and
the Intersection DT, to track the presence of the vehicle
within the intersection area. A :managing link is established
between the CrossingProcess DT and the Vehicle DT, to
track the fact that the vehicle is now being managed by the
intersection policy. The Vehicle DT signals the intention to
cross to the Intersection DT, e.g., by raising an appropriate
event eDT , or by exploiting the dedicated service interface
on the Intersection DT. The CrossingProcess DT, by ob-
serving the Intersection DT, becomes aware of the crossing
request and includes the Vehicle DT in the coordination pro-
cess aimed at distributing right of ways.

Stage
outgoing

The intersection manager checks new re-
quests for crossing against pending ones
given the current crossing state, and de-
cides which vehicles get the right of way,
and which spatio-temporal constraints
they should abide to while crossing. The
vehicle eventually gets its right of way,
then can safely cross the intersection.

The CrossingProcess DT establishes :assigned and
:waiting links to Vehicle DTs already having a :managing
link with it, representing the crossing status of the vehicle—
respectively: right of way given, or not. The Intersection
DT establishes :leading links with Vehicle DTs leading
a queue of vehicles—that is, vehicles with a :waiting link
and an incoming :queuing link. The Vehicle DTs establish
:queuing links with the preceding vehicle, if any, tracking
the fact that to get the right of way they need the leading
VehicleDTs to get it first. The Vehicle DT loses all of its links
related to the CrossingProcess DT and the Intersection
DT, tracking the fact that it is no longer involved in the
intersection.

by the ETSI.16 In stage setup the basic road infrastructure is setup, and vehicles registered to the
municipality are bound to their DT. Links in this stage are rather static, as they resemble (mostly)
persistent relationships. In stage incoming the dynamic links tracking the status of the intersection
and of the crossing process begin to be established toward all vehicles approaching the intersection
area (e.g., within a 100-m radius). In stage outgoing further links are established to track the highly
dynamic process of intersection crossing. For instance, links resembling waiting queues are estab-
lished, as well as links tracking the crossing status of a vehicle, where :assigned means that the
vehicle got its right of way, whereas :waiting the opposite. It is worth noting that orientation of
links highly depend on their semantic: for instance, we decided to let the :queueing link go from
the queued vehicle to the leading one, but the opposite could be meaningful as well. However, it
is crucial to keep in mind that orientation of links has an impact on applications, as which links a

16https://www.etsi.org.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.

https://www.etsi.org


Web of Digital Twins 101:25

Fig. 15. Evolution of the knowledge graph in the mobility intelligence scenario.

DT can participate to as the subject of the relationship should be known at design-time, whereas
those involving the DT as the object can be unknown before runtime.

To conclude, we emphasise that on top of the WoDT infrastructure, we can envision a wide ar-
ray of applications. For instance, an application may continuously monitor the knowledge graph
linking together all the different intersections of an urban area, e.g., based on ownership of the
municipality, to provide to city governance a dashboard with a map charting the traffic flow. The
governance can then detect bottlenecks and, for instance, change the crossing policy of selected
intersections. A similar application may be given to drivers, or integrated with vehicles’ naviga-
tion systems, so that they can always choose the least congested route toward their destination.
Another kind of application instead may inform drivers about the crossing policy of intersections
along their route, so that they can decide which to avoid (e.g., auction-based policies to avoid
spending road credits to cross). More complex applications, such as for gaining actionable knowl-
edge through traffic flow prediction, may be engineered as well on the common, homogeneous,
interoperable substrate provided by the WoDT, depending on the augmentation capabilities of the
DT, as discussed in Section 6.

6 RESEARCH DIRECTIONS

The vision and model proposed in this article, as well as its application in the real world, intro-
duce potential opportunities and open issues that should drive future research and implementa-
tion activities, possibly in different areas. In this section, we provide an overview of a selection of
them.

Realising Interoperable WoDTs. In this article, we described the main concepts of WoDT using
an abstract conceptual framework and architecture. The possibility to apply and implement it
by preserving (cross-domain) interoperability is bound to the definition of shared concrete meta-
models and languages. For instance, in the case of WoT, standardised metadata and other re-usable
technological building blocks—such as the Thing Description—have been defined by the W3C WoT

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:26 A. Ricci et al.

Working Group, to ease the integration across IoT platforms and application domains. Analogously,
standardised metadata and technological building blocks can be devised as well for WoDT, possibly
layered upon enabling ones, such as Semantic Web and the ones defined by WoT. Main references
to be considered for exploring this direction include both standardisation initiatives (such as the
Digital Twin Consortium17), large scale projects (such as the Digital Twin Programme18 promoted
by the CDBB), but also concrete languages and technologies available from specific companies.
A main example for this is the DTDL by Microsoft. These technologies can be used to develop
specific incarnations of the WoDT model, for instance one specific to the WoT domain exploit-
ing standard Web technologies. Indeed, we deliberately described our reference architecture in
abstract terms, without specific constraints on design paradigm or technologies (except for event-
driveness), exactly to let the interested communities—be it the (Semantic) Web community, the
MAS community, and so on—develop their own technical solutions, depending on reference appli-
cations requirements and available technologies.

Design and Implementation of WoDT Middleware and Tools. Recent years clearly showed how the
lack of standards or common agreements for DTs design and development has led to the prolifer-
ation of several isolated platforms and domain specific solutions. This trend is also emphasised in
Reference [50] where the authors highlight how the real DTs’ potentials are seriously limited by the
existing fragmentation and heterogeneity. Each existing approach or platform is built from scratch
with a siloed centralised vision instead of a shared set of methodologies, models, and interaction
patterns. The WoDT contribution aims to overcome these limitations by creating an interopera-
ble vision where DTs can seamlessly cooperate within the same application domain and across
multiple domains at the same time. As previously illustrated, the WoDT does not impose any im-
plementation specifications or constraints, rather, it aims to operate at a higher layer supporting
multiple platforms and tools following the set of shared modelling principles and event-driven
design.

An open challenge for DTs and WoDT will be at first related to the definition of open imple-
mentations for both the DT’s core and the platform in order, on the one hand, to simplify the
shadowing and the augmentation management and, on the other hand, to support a distributed
and interoperable knowledge system and communication overlay. The natural next step will be to
quickly adopt the new implementations and start developing and integrating specific modules and
libraries dedicated to target PAs, domains, and use cases to exploit existing standards and creating
a set of shared features without the need to reinvent the wheel at each deployment, and limit the
risk to create siloed ecosystems. The perfect example will be the integration between WoDT with
the IoT world, where the benefits of introducing an interoperable and flexible DT’s layer will be
strategic at different levels and for several uses cases. In that specific domain, where the fragmen-
tation of the physical layer is a massive issue, the integration of WoDT with the standardisation
efforts provided by consortia such as oneM2M and W3C WoT represent an appealing and concrete
opportunity to quickly reach a standardised version of IoT DTs, capable of providing a scalable
digital abstraction on top of the physical layer.

Shadowing and Certified DTs. Shadowing is a key process for DTs, being responsible of making
the state of the DT a correct digital shadow of the PA, where the semantics of correctness is given
by the model M—it may include constraints about fidelity, responsiveness, accuracy, and so on.
Applications exploiting DTs—especially intelligent agent-based systems reasoning upon DTs and
taking autonomously decisions given the observable state of DTs—should have evidence that a DT

17https://www.digitaltwinconsortium.org/index.htm.
18https://www.cdbb.cam.ac.uk/what-we-do/national-digital-twin-programme.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.

https://www.digitaltwinconsortium.org/index.htm
https://www.cdbb.cam.ac.uk/what-we-do/national-digital-twin-programme


Web of Digital Twins 101:27

is working (or not) as promised by its model/specification. Accordingly, a proper level of certifica-
tion should be useful (or, rather, necessary) to define the quality of service expected from a DT, as
part of its Service Level Agreement.

Querying and Observing Graphs of DTs. Querying and observing graphs of DTs and, correspond-
ingly, Distributed KG is a challenging issue, given in particular the semantic constraints specified
in Section 3. This issue is strongly related to existing research works in Semantic Web literature
that are about querying distributed RDF data stores [37], and, more generally, to research that
deals with large-scale semantic integration of linked data [31]. The two aspects of Distributed
KG in WoDT that further characterise the open issue is about dynamism and shadowing, so that
individual KG continuously evolve, possibly with a high changing frequency, and the stream of
updates from the physical world cannot be blocked or be interfered by querying and tracking.

Design of Intelligent Agents Situated in WoDT. The adoption of a semantic model based on knowl-
edge graphs makes it particularly interesting to explore the usage of intelligent agents that adopt
an explicit knowledge level [33] to represent and reason about their tasks, goals, and environment.
In the case of BDI Agents, for instance, this translates to adopting a model for representing beliefs
based on KG triples. That is: each triple is represented by a belief and then a WoDT environment
observed by an agent is represented by a (dynamic) set of triples tracking the corresponding KGs,
properly updated according to the evolution of the WoDT. A main reference for this research in-
vestigation is given by existing works in the literature exploring the integration of BDI Agents and
Semantic Web [11] and ontology-based agents [30]. In these works, agents are equipped with basic
capabilities to access and query OWL-based knowledge based on some ontologies. That knowledge
is however almost static. The WoDT calls for agents capable of observing knowledge graphs that
could dynamically evolve, not only in terms of values in data properties but also in terms of rela-
tionships.

Besides knowledge representation, a further main research issue concerns the opportunity to
combine practical reasoning techniques—that are typically adopted on the agent side [54]—with
cognitive capabilities provided by DTs, such as predictive ones. Accordingly, to decide the course
of actions to perform to fulfil some task, the agent could consider not only the current observed
state of the WoDT (in terms of knowledge graph) but also exploiting the prediction/simulation
functionalities provided by the DT as-as-service. This calls for exploring the design of intelligent
agents (and MAS) exploiting anticipatory capabilities [35] to enhance the overall sense-making
process and improve decision-making.

Prediction and Historical Data Analysis based on Knowledge Graphs. In the literature, distinguish-
ing functionalities such as threading and prediction have been explored for individual DTs mirror-
ing specific physical assets [43]. The WoDT approach broadens this view by considering a graph of
linked but independent evolving DTs: A semantic model based on knowledge graphs makes it pos-
sible to explore these features in terms of the evolution of KGs and distributed KGs. A challenging
aspect here is that a WoDT may involve multiple DTs based on different models M , hence abstract-
ing away different facets of the observed reality, which in turn likely need different data being
available, following different distributions—features that complicate notably the task of learning
patterns that can be generalised. Existing works in the literature have explored such techniques
in the case of single models or a single data stream [55]. Nevertheless, these contributions can be
taken as a starting point for exploring extensions considering the integration of multiple hetero-
geneous models, as well as of multiple heterogeneous data sources for data-driven approaches.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:28 A. Ricci et al.

7 CONCLUDING REMARKS

The WoDT is an effort to take the lessons learned from the World Wide Web, the IoT, multia-
gent systems, and distributed systems, and apply them to the definition of an event-driven, decen-
tralised, interoperable, linkable and discoverable vision of digital twins. The proposed model and
abstract architecture define a basic conceptual framework, that can be mapped onto a variety of
concrete deployment scenarios and implementation technologies, with the aim to be a unifying
horizontal layer on top of the physical assets.

The use cases presented in Section 5 illustrated how the WoDT can be actually shaped into
specific application domains with peculiar challenges and constraints related, for example, to the
enrolment of heterogeneous physical assets, a structured hierarchical organisation, and dynamic
evolution in terms of interactions and knowledge representation. On the one hand, the WoDT
allowed to model DT’s properties, behaviours, and relationships, and consequently to represent
large-scale and complex physical environments as an open ecosystem of connected and interopera-
ble DTs. On the other hand, the proposed vision supports the definition of a new cyber layer where
applications, agents, and services can implement and orchestrate new smart and dynamic systems
of components by relying on a structured and integrated DT’s overlay, without the responsibility
to handle the fragmentation and the heterogeneity characterising the physical layer.

Moving forward from the local scope of a single application domain, the possibility to exploit
a uniform and interoperable Web of DTs also opens the way to the design of a new generation of
cross-domain computational infrastructures, trying to mirror the physical world where existing
assets seamlessly move and interact across multiple contexts at the same time. For example, a
person can be an employee for a company and a patient for the health system, or an ambulance
can be a vehicle on the street and a resource for the trauma management ecosystem. Through the
adoption of WoDT, DTs from multiple realms can start cooperating (potentially on demand) to
reach a shared goal or to opportunistically implement a new behaviour, that is something quite
difficult to achieve in the siloed environments representing the state of the art.

REFERENCES

[1] Sailesh Abburu, Arne J. Berre, Michael Jacoby, Dumitru Roman, Ljiljana Stojanovic, and Nenad Stojanovic. 2020.
COGNITWIN—Hybrid and cognitive digital twins for the process industry. In Proceedings of the IEEE International

Conference on Engineering, Technology and Innovation (ICE/ITMC’20). 1–8.
[2] Ahmad Alelaimat, Aditya Ghose, and Hoa Khanh Dam. 2020. Abductive design of BDI agent-based digital twins of

organizations. In Proceedings of the 23rd International Conference on Principles and Practice of Multi-Agent Systems

(PRIMA’20) (LNCS, Vol. 12568). Springer, 377–385.
[3] Paolo Bellavista, Carlo Giannelli, Marco Mamei, Matteo Mendula, and Marco Picone. 2021. Application-driven

network-aware digital twin management in industrial edge environments. IEEE Trans. Industr. Inf. 17, 11 (2021), 7791–
7801. DOI:10.1109/TII.2021.3067447

[4] Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. 2005. JADE—A java agent development
framework. In Multi-Agent Programming: Languages, Platforms and Applications. Multiagent Systems, Artificial Soci-
eties, and Simulated Organizations, Vol. 15. Springer, 125–147.

[5] Federico Bergenti, Giovanni Caire, Stefania Monica, and Agostino Poggi. 2020. The first twenty years of agent-based
software development with JADE. Auton. Agents Multi Agent Syst. 34, 2 (2020), 36.

[6] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro Ricci, and Andrea Santi. 2013. Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78, 6 (2013), 747–761.

[7] Stefan Boschert and Roland Rosen. 2016. Digital twin—the simulation aspect. In Mechatronic Futures. Springer, 59–74.
[8] Andrei Ciortea, Simon Mayer, Fabien Gandon, Olivier Boissier, Alessandro Ricci, and Antoine Zimmermann. 2019. A

decade in hindsight: The missing bridge between multi-agent systems and the world wide web. In Proceedings of the

18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS’19). IFAAMAS, 1659–1663.
[9] Angelo Croatti, Matteo Gabellini, Sara Montagna, and Alessandro Ricci. 2020. On the integration of agents and digital

twins in healthcare. J. Med. Syst. 44, 9 (04 Aug 2020), 161.

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.

https://doi.org/10.1109/TII.2021.3067447


Web of Digital Twins 101:29

[10] Angelo Croatti, Sara Montagna, Alessandro Ricci, Emiliano Gamberini, Vittorio Albarello, and Vanni Agnoletti. 2019.
BDI personal medical assistant agents: The case of trauma tracking and alerting. Artif. Intell. Med. 96 (2019), 187–197.

[11] Ian Dickinson and Michael J. Wooldridge. 2003. Towards practical reasoning agents for the semantic web. In Proceed-

ings of the 2nd International Conference on Autonomous Agents & Multiagent Systems (AAMAS’03). ACM, 827–834.
[12] Kurt M. Dresner and Peter Stone. 2008. A multiagent approach to autonomous intersection management. J. Artif.

Intell. Res. 31 (2008), 591–656.
[13] Pavlos Eirinakis, Kostas Kalaboukas, Stavros Lounis, Ioannis Mourtos, Jože M. Rožanec, Nenad Stojanovic, and

Georgios Zois. 2020. Enhancing cognition for digital twins. In Proceedings of the IEEE International Conference on

Engineering, Technology and Innovation (ICE/ITMC’20). 1–7.
[14] Dieter Fensel, Umutcan Simsek, Kevin Angele, Elwin Huaman, Elias Kärle, Oleksandra Panasiuk, Ioan Toma, Jürgen

Umbrich, and Alexander Wahler. 2020. Knowledge Graphs—Methodology, Tools and Selected Use Cases. Springer.
[15] David Gelernter. 1991. Mirror Worlds or the Day Software Puts the Universe in a Shoebox: How Will It Happen and What

It Will Mean. Oxford University Press, Inc., New York, NY.
[16] Edward Glaessgen and David Stargel. 2012. The digital twin paradigm for future NASA and US air force vehicles. In

Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.
[17] Michael Grieves and John Vickers. 2017. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in

Complex Systems. Springer International Publishing, Cham, 85–113.
[18] Claudio Gutierrez and Juan F. Sequeda. 2021. Knowledge graphs. Commun. ACM 64, 3 (February 2021), 96–104.
[19] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’Amato, Gerard De Melo, Claudio Gutierrez, Sabrina Kirrane,

José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al. 2021. Knowledge graphs. Comput. Surv. 54, 4 (Jul
2021), 1–37.

[20] Nicholas R. Jennings. 2001. An agent-based approach for building complex software systems. Commun. ACM 44, 4
(April 2001), 35–41.

[21] Tobias Käfer and Andreas Harth. 2020. Tutorial: Distributed knowledge graphs for the web of things. In Proceedings of

the 10th International Conference on the Internet of Things Companion (IoT ’20 Companion). Association for Computing
Machinery, New York, NY, Article 13, 4 pages.

[22] Niki Kousi, Christos Gkournelos, Sotiris Aivaliotis, Christos Giannoulis, George Michalos, and Sotiris Makris. 2019.
Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines. Proc. Manufact. 28 (2019), 121–126.

[23] Vladimir Kuts, Tauno Otto, Toivo Tähemaa, and Yevhen Bondarenko. 2019. Digital twin based synchronised control
and simulation of the industrial robotic cell using virtual reality. J. Mach. Eng. 19 (02 2019), 128–144.

[24] Ying Liu, Lin Zhang, Yuan Yang, Longfei Zhou, Lei Ren, Fei Wang, Rong Liu, Zhibo Pang, and M. Jamal Deen. 2019. A
novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access 7 (2019), 49088–49101.

[25] Somayeh Malakuti and Sten Grüner. 2018. Architectural aspects of digital twins in IIoT systems. In Proceedings of

the 12th European Conference on Software Architecture: Companion Proceedings (ECSA’18). Association for Computing
Machinery, New York, NY, USA, Article 12, 2 pages.

[26] Stefano Mariani, Giacomo Cabri, and Franco Zambonelli. 2021. Coordination of autonomous vehicles: Taxonomy and
survey. Comput. Surv. 54, 1, Article 19 (February 2021), 33 pages.

[27] Members of the Digital Framework Task Group. 2018. White Paper: The Gemini Principles. Technical Report. Centre
of Digital Built Britain.

[28] Roberto Minerva, Gyu Myoung Lee, and Noël Crespi. 2020. Digital twin in the IoT context: A survey on technical
features, scenarios, and architectural models. Proc. IEEE 108, 10 (2020), 1785–1824.

[29] Sara Montagna, Angelo Croatti, Alessandro Ricci, Vanni Agnoletti, Vittorio Albarello, and Emiliano Gamberini. 2020.
Real-time tracking and documentation in trauma management. Health Inf. J. 26, 1 (2020), 328–341.

[30] Álvaro F. Moreira, Renata Vieira, Rafael H. Bordini, and Jomi Fred Hübner. 2005. Agent-Oriented programming with
underlying ontological reasoning. In Proceedings of the 3rd International Workshop on Declarative Agent Languages

and Technologies III (DALT’05) (Lecture Notes in Computer Science, Vol. 3904). Springer, 155–170.
[31] Michalis Mountantonakis and Yannis Tzitzikas. 2019. Large-Scale semantic integration of linked data: A survey. ACM

Comput. Surv. 52, 5, Article 103 (September 2019), 40 pages.
[32] Elisa Negri, Luca Fumagalli, and Marco Macchi. 2017. A review of the roles of digital twin in CPS-based production

systems. Proc. Manufact. 11 (2017), 939–948.
[33] Allen Newell. 1982. The knowledge level. Artif. Intell. 18, 1 (1982), 87–127.
[34] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. 2008. Artifacts in the A&A meta-model for multi-agent systems.

Auton. Agents Multi-Agent Syst. 17, 3 (2008), 432–456.
[35] Giovanni Pezzulo. 2008. Coordinating with the future: The anticipatory nature of representation. Minds Mach. 18, 2

(2008), 179–225.
[36] Marco Picone, Stefano Mariani, Marco Mamei, and Franco Zambonelli. 2021. WIP: preliminary evaluation of digital

twins on MEC software architecture. In Proceedings of the IEEE 22nd International Symposium on A World of Wireless,

Mobile and Multimedia Networks (WoWMoM’21).

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.



101:30 A. Ricci et al.

[37] Bastian Quilitz and Ulf Leser. 2008. Querying distributed RDF data sources with SPARQL. In The Semantic Web: Re-

search and Applications, Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis Koubarakis (Eds.). Springer
Berlin Heidelberg, 524–538.

[38] Anand S. Rao and Michael P. Georgeff. 1991. Modeling rational agents within a BDI-Architecture. In Proceedings of

the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR’91). Morgan Kaufmann,
473–484.

[39] Alessandro Ricci, Angelo Croatti, and Sara Montagna. 2021. Pervasive and connected digital twins—A vision for digital
health. IEEE Internet Comput. (January 2021). Early Access. DOI:10.1109/MIC.2021.3052039

[40] Alessandro Ricci, Michele Piunti, Luca Tummolini, and Cristiano Castelfranchi. 2015. The mirror world: Preparing for
mixed-reality living. IEEE Perv. Comput. 14, 2 (2015), 60–63.

[41] Dominik Riemer. 2018. Feeding the digital twin: Basics, models and lessons learned from building an IoT analytics
toolbox (Invited Talk). In Proceedings of the IEEE International Conference on Big Data (Big Data’18). IEEE, 4212–4212.

[42] Joze M. Rozanec, Lu Jinzhi, Aljaz Kosmerlj, Klemen Kenda, Kiritsis Dimitris, Viktor Jovanoski, Jan Rupnik, Mario
Karlovcec, and Blaz Fortuna. 2020. Towards actionable cognitive digital twins for manufacturing. In Proceedings of

the International Workshop on Semantic Digital Twins co-located with the 17th Extended Semantic Web Conference

(SeDiT@ESWC 2020) (CEUR Workshop Proceedings, Vol. 2615).
[43] Roberto Saracco. 2019. Digital twins: Bridging physical space and cyberspace. Computer 52, 12 (2019), 58–64.
[44] Ehab Shahat, Chang T. Hyun, and Chunho Yeom. 2021. City digital twin potentials: A review and research agenda.

Sustainability 13, 6 (2021).
[45] Jack Sleuters, Yonghui Li, Jacques Verriet, Marina Velikova, and Richard Doornbos. 2019. A digital twin method for au-

tomated behavior analysis of large-scale distributed IoT systems. In Proceedings of the 14th Annual Conference System

of Systems Engineering (SoSE’19). IEEE, 7–12.
[46] Eugene Y. Song, Martin Burns, Abhinav Pandey, and Thomas Roth. 2019. IEEE 1451 smart sensor digital twin federa-

tion for IoT/CPS research. In Proceedings of the IEEE Sensors Applications Symposium (SAS’19). IEEE, 1–6.
[47] Viniciu Souza, Robson Cruz, Walmir Silva, Sidney Lins, and Vicente Lucena. 2019. A digital twin architecture based

on the industrial internet of things technologies. In Proceedings of the IEEE International Conference on Consumer

Electronics (ICCE’19). 1–2.
[48] Christian Stary. 2021. Digital twin generation: Re-Conceptualizing agent systems for behavior-centered cyber-

physical system development. Sensors 21, 4 (2021).
[49] Charles Steinmetz, Achim Rettberg, Fabíola Gonçalves C. Ribeiro, Greyce Schroeder, and Carlos E. Pereira. 2018. In-

ternet of things ontology for digital twin in cyber physical systems. In Proceedings of the VIII Brazilian Symposium on

Computing Systems Engineering (SBESC’18). IEEE, 154–159.
[50] Fei Tao and Qinglin Qi. 2019. Make more digital twins. Nature 573, 7775 (2019), 490–491.
[51] Fei Tao, He Zhang, Ang Liu, and A. Y. C. Nee. 2019. Digital twin in industry: State-of-the-Art. IEEE Trans. Industr. Inf.

15, 4 (2019), 2405–2415.
[52] Thomas H.-J. Uhlemann, Christian Lehmann, and Rolf Steinhilper. 2017. The digital twin: Realizing the cyber-physical

production system for Industry 4.0. Procedia Cirp 61 (2017), 335–340.
[53] Danny Weyns, Andrea Omicini, and James J. Odell. 2007. Environment as a first-class abstraction in multi-agent

systems. Auton. Agents Multi-Agent Syst. 14, 1 (February 2007), 5–30.
[54] Michael J. Wooldridge and Nicholas R. Jennings. 1995. Intelligent agents: Theory and practice. Knowl. Eng. Rev. 10, 2

(1995), 115–152.
[55] Yan Xu, Yanming Sun, Xiaolong Liu, and Yonghua Zheng. 2019. A digital-twin-assisted fault diagnosis using deep

transfer learning. IEEE Access 7 (2019), 19990–19999.
[56] Cheng Zhou, Hongwei Yang, Xiaodong Duan, Diego Lopez, Antonio Pastor, Qin Wu, Mohamed Boucadair, and

Christian Jacquenet. 2021. Concepts of Digital Twin Network. Internet Engineering Task Force. Retrieved from
https://datatracker.ietf.org/doc/html/draft-zhou-nmrg-digitaltwin-network-concepts-03.

Received 21 May 2021; revised 15 December 2021; accepted 20 December 2021

ACM Transactions on Internet Technology, Vol. 22, No. 4, Article 101. Publication date: November 2022.

https://doi.org/10.1109/MIC.2021.3052039
https://datatracker.ietf.org/doc/html/draft-zhou-nmrg-digitaltwin-network-concepts-03

