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This paper is the design of a Radio Environment Map (REM) with a real-time tool to sense the radiofrequency spectrum and
optimally places with Surrogate Modelling and Sequential Experimental Design tools a total of 72 SDR sensors in the selected area,
using LoRa and/or NB-IoT technologies for networking. It permits the regulatory body to check the correct use of the assigned
spectrum and constitutes a communication alternative in case of a catastrophic event, such as a hurricane or an earthquake, where
radio and TV broadcasting play an important role in keeping people informed after such meteorological event. The radiobroadcast
services use large antennas and high towers, making them vulnerable to such events. Regardless of the chosen technology, the IoT
monitoring network will be more robust, since it uses small antennas and lower towers, and often a given area is covered by multiple
base stations. The tool can be used to deploy new services in the nonserved area (e.g., 4G in the 700 MHz band at a lower cost or
using TVWS techniques to provide communications and internet connection) and optimal interference management.

1. Introduction

Wireless communications and broadcasting play a vital role
in connecting people around the world. These systems are
used to inform, entertain, educate, and protect citizens.
However, in developing countries, financial resources are not
always available to have them operate efficiently.

Many developed countries introduce new broadband
services, e.g., fourth-generation networks (4G), at higher
frequencies (Long Term Evolution, LTE) band 38, 2570 MHz-
2620 MHz). However, at higher frequencies, base stations will
have a reduced coverage area, requiring much more base
stations for the same service area. This densification of base
stations is not feasible in underdeveloped countries because
of the high cost. Moving these services to lower frequencies
(e.g., 700 MHz) the numbers of base stations will be lower
covering more area.

Some underdeveloped countries deploy their network
in a progressive way based in coverage area without any

planning tool. The major unsolved issue in efficiently shar-
ing radio frequency spectrum between different services is
related to the coverage area and radiated power by base
stations.

Spectrum sensing performed by Cognitive Radio (CR)
seems adequate due to its lower infrastructure requirement
and wide application areas [1, 2]. In the case of CR, the
spectrum-sensing task is to obtain the characteristics of
spectrum usage. Moreover, it determines the type of signals
that occupy the spectrum (digital or analog signals) and their
features like the waveform, modulation, carrier frequency,
and bandwidth, among others. However, this needs more
precise signal analysis techniques which adds computational
complexity to the detection algorithms [3].

CRs can avoid interference with primary users. Reliable
sensing techniques identify the possible availability of spec-
trum opportunities to increase dynamic access to cognitive
networks capacity. The most valuable parameters of the
CR concept are the ability to sense, detect, learn, and be
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aware of the radio operating environment, the state of the
communication channel, the spectrum availability, the user
requirements and applications, the local policies, the available
networks (infrastructures), and the operating restrictions
determined by the regulatory body. But the principal feature
is its capacity of flexible autonomous autoreconfiguration [4].

Software Defined Radio (SDR) is one of the most signifi-
cant and latest technologies already and profusely commer-
cially in use for modern wireless communication-related
systems. SDR, the hardware platform of almost all CR, can
tune different frequency ranges and implement various (de-
)modulation schemes and various standards in the same
device/hardware by using a reconfigurable hardware and
software system [5]. In SDR, a broader range of capa-
bilities depends on elements which are basically software
configurable [6]. The two major advantages of SDR are
flexibility and easy adaptation. However, the deployments of
SDR sensors technology with the capability of transmitting
information are usually expensive [7]. Most recent advances
on standardization and industrialization for the Internet of
Things (IoT) technologies could contribute to solving the
interconnection of the SDR devices.

Cubea is yearly hit by tropical storms (e.g., hurricane Irma
in 2017) causing a lot of damage in the telecommunications
infrastructure, destroying people’s houses and making the
circulation impossible. In this case, the recovery process
should have good synchronization among the involved enti-
ties. Regardless of the chosen technology, the IoT moni-
toring network (using SDR sensors as sensing devices) will
be more robust, since it uses small antennas and lower
towers and often a given area is covered by multiple base
stations. Having a Dynamic Monitoring Tool (DMT) able
to detect in real time the radiofrequency spectrum and
making suggestions with possible solutions is helpful to cover
the damaged zone by the hurricane and keep the people
informed.

The novelty of this paper is the design of a tool that senses
and monitors in real time the radiofrequency spectrum and
optimally places with Surrogate Modelling (SUMO) and
Sequential Experimental Design (SED) tools a number of
SDR sensors in the selected area, using LoRa and/or NB-
IoT technologies for networking [1]. This tool will build a
REM of the selected radiofrequency spectrum and use this
information for the following purposes. First, it permits the
regulatory body to check the correct use of the assigned
spectrum. Second, it constitutes an alternative during recov-
ery process in case of a catastrophic event, such as a hur-
ricane or an earthquake, where radio and TV broadcasting
play an important role in keeping people informed. The
radiobroadcast services use large antennas and high towers,
making them vulnerable to such events. Third, the tool
will be useful for decision-making authorities and service
providers, showing the real-time available frequencies and
coverage interference about nonserved or underserved areas
because of the damage caused by the event. Fourth, the tool
can be used to deploy new services in the nonserved area
(e.g., 4G in the 700 MHz band at a lower cost or using
TVWS techniques to provide communications and internet
connection).
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This paper continues as follows. Section 2 presents the
related work and the IoT platform solution. Section 3 pro-
poses a network’s architecture for our system. A real broad-
casting scenario is considered, including the optimization for
sensor position and IoT base stations. Section 4 shows the
results for the network design, the feedback loop for different
IoT platforms, and spectrum usage efficiency. Conclusions
are presented in Section 5.

2. Related Work and IoT Platform Solutions

2.1. Related Work. A surrogate model is a cheap-to-evaluate
replacement model of expensive, highly accurate computer
simulations (e.g., sensors positioning). Hence, the SUrrogate
MOdeling and Sequential Design tools are an alternative to
deeply explore the design space by evaluating large amounts
of samples. In [8], the authors use a surrogate model to
simulate the behavior of RF circuits. In [9], the same authors
use a surrogate model to find the best approximation of a LNA
describing functions.

Using SED, all the data points are chosen at once and the
modelling algorithm proceeds from there, without evaluating
any additional samples later. In [10], the authors present a
comparison and analysis of different space-filling sequential
design methods, where the results are compared to traditional
one-shot Latin hypercube designs. In [I1], a comparison
is made among different Sequential Experimental Design
methods for global surrogate modeling on a real-world
electronics problem.

Spectrum sensing, as a key enabling functionality in
CRNs, needs to reliably detect weak Primary Radio (PR)
signals of possibly unknown device types [4]. Spectrum
sensing should also monitor the activation of primary users to
vacate the occupied spectrum segments for secondary users.
However, it is difficult for CR to capture such information
instantaneously due to the absence of cooperation between
the primary and secondary users. Recent research efforts on
spectrum sensing have focused on the detection of ongoing
primary transmissions by CR devices. Generally, spectrum-
sensing techniques fall into two categories: wideband sensing
and narrowband sense. Narrowband sensing splits coherent
[12] and noncoherent detection. For coherent detection, no
knowledge about the parameters of the primary signal is
required, while noncoherent detection is the most appropri-
ate one when the SDR has limited information on the primary
signals (e.g., only the local noise power is known) [13]. Energy
detector [14] is an example of noncoherent detection, while
the waveform detector and the cyclostationary detector are
coherent [3].

Collecting measurements for constructing the REM can
be done by SDRs. Therefore, developing dedicated sensors to
increase the quality of the REM must be considered. In [16],
the effect of sensor geometries on Primary Users (PU) and the
environmental parameter estimation are studied. Distributed
spectrum sensing with Cognitive Radio Networks (CRNs) by
exploiting sparsity is proposed in [17].

To obtain knowledge about the network, a generic
approach to develop CR based on the REM is proposed in [18,
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FIGURE 1: Dynamic network architecture.

19]. AREM is envisioned as an integrated database consisting
of multidomain information, which supports global cross-
layer optimization by enabling CR to “look” through various
layers. The cognitive radio engine (CE) for various cognitive
functionalities such as situation awareness, reasoning, learn-
ing, planning, and decision support can exploit the REM, as
a vehicle of network support to CR. In [18], simulation results
are presented. However, the authors do not consider different
metrics for performance evaluation (e.g., the environmental
noise interferences produced by cars, weather, and adjacent
transmitters).

2.2. IoT Platform Solution. In recent years, IoT networks
have increased quickly. The LoRaWAN (Long-Range Wide
Area Network) is one of the most adopted IoT standards
in the world [20]. Long-Range (LoRa) technology is gener-
ally implemented in the unlicensed 433 MHz and 868 MHz
bands, with a channel bandwidth of 125kHz. The physical
layer (PHY) implements a Chirp Spread Spectrum mod-
ulation (CSS), which provides excellent robustness against
interference [20].

Narrowband Internet of Things (NB-IoT) is a new cellu-
lar technology introduced in Third-Generation Partnership
Project (3GPP) Release 13 for providing wide-area coverage
for IoT. It includes relevant improvements for better perfor-
mance of IoT applications. Narrowband-IoT (NB-IoT) allows
flexibility by using a small portion of the traditional LTE
network spectrum [21] requiring 180 kHz of bandwidth for
both downlink and uplink. The choice of a minimum system

bandwidth enables a number of deployment options (e.g.,
replacing one GSM carrier (200 kHz) with NB-IoT).

The air interface of NB-IoT is optimized to ensure
harmonious coexistence with LTE, and thus such an “in-
band” deployment of NB-IoT inside an LTE carrier will not
compromise the performance of LTE or NB-IoT. An LTE
operator also has the option of deploying NB-IoT in the
guard-band of the LTE carrier by upgrading the software of
the LTE BS.

3. Methods

3.1. Network Architecture. 'To implement a dynamic network,
we designed a network architecture able to retrieve the
required feedback data to the DMT in real time through an
IoT feedback loop. Figure 1 shows a block diagram of the
proposed network architecture.

The DMT (Block V in Figure 1) collects and analyses
Quality of Service (QoS) (Block II, Figure 1) data retrieved
from the sensing devices (Block I, Figure 1) to build the REM
(Block VI, Figure 1) of the real propagation conditions in the
covered area. The QoS data also allows detecting frequencies’
interference from secondary services (e.g., adjacent transmit-
ters) and available coverage and taking further actions (Block
IV, Figure 1). The actions to take will depend on the scenario
that the DMT is working on (e.g., normal conditions or after a
disaster caused by a hurricane). In this way, a bridge between
the broadcasting network and the DMT network (Block III,
Node1, Node 2, and Node N, Figure 1) was implemented. The



TABLE 1: Parameters to retrieve by the sensing device at the receiver
location.

Parameters Size Unit
Channel 7 bit
Frequency offset 10 bit
SNR 7 bit
Bit Error Rate 13 bit
Total 5 Bytes

IoT network has to be designed and optimized to overlap with
the broadcasting network coverage.

To build the sensing device, a Raspberry Pi (RPI), an SDR
USB device, and an IoT transceiver were combined (Block I,
Figure 1). The RPI has enough computational performance
to drive both devices [22]. To detect Digital Terrestrial
Multimedia Broadcast (DTMB) signals, the measurement
device implemented by hardware using an SDR USB device
must accomplish at least with the following parameters: (i)
covering the radiofrequency UHF band (470-806MHz), (ii)
bandwidth 6 MHz, and (iii) Signal-to-Noise Ratio (SNR)
from 14 dB to 30 dB.

Table 1 lists the required parameters to implement the
dynamic radiofrequency map and to provide feedback about
interference issues to the DMT of Figure 1. The bit size for
each parameter is software dependent. The frequency offset is
required to correct the local frequency reference and achieve
a higher measurement accuracy. A 5-byte packet is sent to the
DMT. An IoT transceiver will collect the data packets from
the sensing devices and later transmit it to the optimization
servers every 5 minutes. Retrieved data is based on the 96-
percentile for the previous 5 minutes. For LoRa packets of 10
bytes, the time on air with SF =7 is around 40 ms [23]. Hence,
the latency of the IoT network is not a critical constraint for
this application.

3.2. Configuration and Scenario. First, define the proper link
budgets for each technology, to sense the broadcasting net-
work and to design and optimize the IoT network. Consider
the IoT transceiver and the SDR sensor to be integrated as
shown in Figure 1, Block I. Table 2 lists the most relevant
link budget parameters for DTMB, SDR sensor, LoRa, and
NB-IoT. A link budget accounts for all the gains, losses, and
implementation margins in the transmitters, the receiver,
and the propagation channel. Based on the link budget, it
is possible to calculate the maximum allowable path loss
(PLmax) for each technology in a certain scenario [24].

3.3. Broadcasting Network and Hurricane Effects. To make
the dynamic map of the radiofrequency spectrum, a realis-
tic suburban scenario in Havana, Cuba, and the currently
deployed DTMB network (UHF band) was considered. Three
DTMB transmitters (operating on 575 MHz, 677 MHz, and
689 MHz; the last two transmitters are situated in the same
building) are covering an area of 50 km?. Figure 2 shows
the coverage area of the broadcast transmitters and avail-
able cellular base stations (BSs) (dotted line). To sense the
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FIGURE 2: Broadcast transmitters, covered area, and cellular BSs
(delimited with dotted line).

radiofrequency spectrum we deploy a number of sensors to
cover the area and a number of IoT base stations (BSs) to
collect the information from the sensors. The optimization
and deployment of the sensors and IoT BSs will be described
in Sections 3.5 and 3.6, respectively.

The OFDM parameters (including Frequency Sampling
Factor) and bitrate of the broadcast transmitter were retrieved
from the DTMB standard specifications [25]. Another speci-
fication of the broadcasting network, such as radiated power,
radiation efficiency, frequency, bandwidth, antenna parame-
ters, and receiver parameters, depends on the setup, network
planning, and technology in use by the service provider
(currently deployed network). Notice that the transmitter
efficiency takes into consideration both the high-power
amplifier and radiation system efliciency.

The shadowing standard deviation was retrieved from
the Regulation for Digital Television Broadcast by the local
regulatory authorities.

The wind speed in a tropical cyclone in the Caribbean
could reach between 250 km/h and 400 km/h (e.g., hurri-
cane Irma in 2017) [26]. The buildings have its structure
prepared to support the wind speed, but the cyclone can
destroy the windows, knock down the trees, and destroy the
electrical service in the area making the circulation almost
impossible. Let us suppose that, after the hurricane, two of
the three transmitters and approximately 60% of the BSs
are destroyed (Figure 3). The TV coverage zone and the
operation of the DMT will be affected due to the lack of
available infrastructure. The DMT will be helpful to check
the spectrum availabilities. Hence, there are two options to
get the DMT back: (i) giving priority to the BSs of the cellular
network in the recovery process, deploying the DMT using an
NB-IoT network, or (ii) deploying a LoRa network without
dependencies on the existing or destroyed infrastructure. In
both cases, the design of a network redundancy will be taken
into account in case the base stations used for the DMT are
destroyed by the hurricane.
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TaBLE 2: Link budget parameters.

Parameter DTMB LoRa NB-IoT Unit
Frequency 575 677 689 868 716 MHz
Radiated Power 50 60 58.45 14 23 dBm
Radiation efficiency 16.8 19.6 191 15.0 14.6 %
Bandwidth 6 0.125 0.015 MHz
0.180
OFDM Subcarriers 3780 - 12 -
OFDM Used 3744 - 12 -
Subcarriers
Frequency Sampling 0.420 0 1536 )
Factor
Cell Iyterference 0 0 ) 4B
Margin
BS Antenna Height 40 145 145 20-31 30 m
Receiver Antenna
Height 3 3 3 m
Re;elver Antenna 3 8 3 dB
Gain
Receiver Feeder 0.6 0.6 0.6 4B
Losses
Noise Figure 35 6 3 dB
Sha(.iov.vmg Standard 75 75 75 4B
Deviation
-20.0
-17.5
Receiver SNR 35 150 -12.6 dB
125 3.0
-10.0
-7.5
0.24
0.44
Bitrate 18274 0.97 2()6(4)128 kbps
1.75 ’
3.12
5.46

3.4. IoT Infrastructure. To evaluate the required resources
(i.e., infrastructure and spectrum usage) for the IoT feed-
back loop, we designed, optimized, and compared the
two IoT networking solutions in the proposed scenario:
LoRa and NB-IoT. Notice that the SigFox constraint of
maximum packets delivered per day does not fit this
application.

LoRa devices can radiate a signal level higher than 14
dBm (Class A end-devices), but due to the regulation of the
maximum allowable radiated power in the 868 MHz, the
maximum Equivalent Isotropically Radiated Power (EIRP) is
limited to 14 dBm [27]. The maximum EIRP in NB-IoT end-
devices is 23 dBm [28].

Using different configurations, LoRa BSs allow emulating
up to 49 virtual channels [27]. Here, the maximum available
physical channels only are considered (eight channels) [27].
The LoRa PHY layer implements a larger range of modulation

schemes, allowing bit rates for a single channel from 0.25 kbps
to 5.5 kbps [27]. The SNR is in the range from -7.5dB to -
20 dB. The spread spectrum modulation encodes each bit of
information into multiple chirps. Hence, the spread spectrum
processing gain allows receiving signal powers below the
receiver noise floor.

For NB-IoT, we consider a joint deployment with LTE
(band B8-900MHz) BS infrastructure, considering n-band
mode. The occupied bandwidth per channel for LoRa is 125
kHz [27], and for NB-IoT is 180 kHz using a single LTE PRB
[21]. The radiation efficiency of the NB-IoT power amplifier,
radiation system, and the sampling factor will be the same as
for LTE [29].

An additional 2dB loss should be accounted for NB-
IoT in the cell interference margin. This is because the LTE
cell frequency distribution requires considering a permissible
interference among nearby cells [24].
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TaBLE 3: The four different categories for sequential design and examples [15].

Input-based Output-based

Model output-based Model-based

Uses input and output
values from previous
samples to determine next

Uses only input values from
previous samples to
determine next sample.

Uses previous samples and
model properties and
parameters to determine

Uses previous samples and
model evaluations to
determine next sample

sample. next sample.

Examples: Examples:

(i) Random sampling (i) Adaptation to

(ii) Low-discrepancy irregularities
sequences Examples: (ii) Slope, local optima and Examples:
(iii) Sequentially nested (i) LOLA-Voronoi variance criteria (i) Kriging-based
Latin hypercubes (iii) Sequential Exploratory

. . Experimental Design
igll\)’l‘i’;;n""based method (SEED)

(V) M Carl (iv) Model error sampling

v) Monte Carlo
Optimization-based
sampling
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FIGURE 3: Broadcast transmitters, covered area, and cellular BSs
(delimited with dotted line) after some meteorological event.

3.5. Sensing Network Optimizations. To optimize the sensing
networks, several parameters need to be taken into account.
Firstly, we have to cover an area of 50 km? in a suburban area
with three TV transmitters working in the UHF band (470-
806MHz). Hence, the propagation loss plays an important
role at the moment to decide how many sensors we are going
to use. To estimate its behavior, the Okumura-Hata model for
propagation loss in a suburban scenario is considered, which
is fully explained in [30].

Secondly, we have to calculate the required number of
sensors to fit the area avoiding the errors trying to estimate
the received power among adjacent sensors. To achieve that,
the received power was estimated using the Okumura-Hata
model in a suburban area varying the receiving distance
in steps of 1km. Figure 5 shows the results for the three
transmitters in the area.

As can be seen, the received power drops dramatically
in the first 10km for all the transmitters. However, for the

575 MHz frequency and transmitted power of 50 dBm, after
5 km the received power drops under the TV sensitivity
threshold established in a Cuban regulation for UHF band
(-84 dBm) [31]. Hence, the proposition is to work with a
resolution of one sensor per km?.

To optimize the deployment the SUMO was used [32, 33].
The SUMO is a MATLAB tool that automatically builds
accurate surrogate models (also known as meta-models or
response surface models) of a given data source (simulation
code, dataset, script, etc.) within the accuracy and time
constraints set by the user. The tool minimizes the number
of data points (which it chooses automatically) and tries to
be as adaptive and autonomous as possible, requiring no user
input besides some initial configuration [32, 33].

Usually, the simulations require expensive computational
hardware. Hence, the SUMO tool is an alternative to deeply
explore the design space by evaluating large amounts of
samples. The goal of surrogate modeling is to find a model
that mimics the original system’s behavior but can be evalu-
ated much faster. This function is constructed by calculating
multiple samples at key points in the design space, analyzing
the results, and selecting a model that approximates the
samples and the system behavior.

Table 3 shows a wide variety of model types available;
their limitations depend on the system that is being modeled.
Popular choices are polynomial and rational functions [34],
Kriging models [35], neural networks [36], and radial basis
function (RBF) models [37]. These can be used to perform
optimization and sensitivity analysis once the model is
constructed [38].

Also, the SED [11, 39] was used trying to achieve a similar
result and thus compare both deployments. The SED is a
powerful tool for sequential Design of Experiments (DoE).
In traditional experimental design, all the design points
are selected up front, before performing any (computer or
real-life) experiment, and no additional design points are
selected afterward. This traditional approach is prone to
oversampling and/or undersampling because it is often very
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difficult to estimate the required number of design points
in advance. The SED tool solves this problem by providing
the user with state-of-the-art algorithms that generate an
experimental design in a sequential way, i.e., one point at a
time, without having to provide the total number of design
points in advance. The SED was designed to be extremely fast
and easy to use, yet very powerful [11, 39].

The traditional DoE is chosen based only on the available
information in the first simulation, such as the input variables
and the result of the measurements. This information is then
added to the experimental design in the simulator, which
evaluates all the information in the Surrogate Model. This
is a one-shot run, where all the points are assessed at once,
and the modeling algorithm proceeds without evaluating any
additional samples [40].

Sequential Experimental Design (SED) improves on this
approach by transforming the unique algorithm into an
iterative process. SED methods analyze data (samples) and
models from previous iterations to select new samples in
areas that are more difficult to approximate, resulting in
a more efficient distribution of samples compared to the
traditional DoE.

Figure 4 shows the flow graph to work with both tools
(SUMO and SED). In the first step (initial configuration),
the coordinates (UMT format to SUMO tool and degree
format to SED tool) of the area under evaluation need to
be added. In addition, constraints are defined with, e.g.,
buildings, lakes, or rivers, not allowed areas to place the
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FIGURE 5: Received power variation using the Okumura-Hata model
in steps of 1km. The inputs parameters were taken from Table 2.

sensors. In both tools, these are known as “constraints.”
Finally, the number of samples to add in every iteration and
the final number of samples to deploy need to be assigned.
The rest of the process continues with a loop until finding
the optimal number of sensors to deploy is defined. In the
case of the SUMO tool, it starts adding known samples with
their received power (dBm). If the number of samples does
not satisfy the requirements, the tool advises new locations
(samples), where the received power should be measured.
There are then new samples and the whole process is repeated
again. In the case of SED, putting the desired number of
sensors to deploy is only needed and it will design the whole
deployment.

Table 3 lists some of the available methods to work
with SUMO and SED tools. A model is considered accurate
enough when its root relative square error is lower than
0.05 [8]. The maximum number of samples allowed for each
frequency was fixed at 65. In this paper, the output-based
(LOLA-Voronoi) and model-based (Kriging-based) sampling
were used because both use the input and output values
from previous samples to determine the next samples. By
adding samples after every simulation, the REM can be built
as precisely as we want.

3.6. IoT Networks Optimizations. To optimize the IoT net-
work, the power consumption of the dedicated feedback
channel has to be minimized. To this aim, an IoT LoRa and
an NB-IoT network (Table 2) are designed, optimized, and
benchmarked.

To account for the minimally required infrastructure
and optimize the network power consumption, the heuristic
algorithm presented in [41, 42] and improved in [1] was used
to reduce the number of base stations required in the IoT
physical layer. Figure 6 shows the process for the design
and optimization for minimal infrastructure and power
consumption of the IoT feedback network. The design and
the optimization are performed in two different steps (two
heuristic cycles of the algorithm). In the original algorithm
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presented in [11, 41], only one cycle is present (no optimal
BS location selection is implemented). The network design
tool is capacity-based, meaning that the traffic density and
end-devices density are input parameters. The software also
receives as input parameters the target area and a number of
possible BS geo-locations including the BS antenna height.
Forty simulations are performed to assess the mean power
consumption of the whole network, where the progressive
average for all simulations is calculated to validate a proper
estimation of the percentage of users covered.

In the first step (Figure 6), the best set of BSs among
the whole set of possible BS locations is chosen. Forty-one
available BS locations were considered in the scenario of
Section 3.2. The software optimizes the power consumption
connecting each user to the active BS with the lowest path loss
if this BS still has enough capacity to support the user. Only if
no other active BS can support the current end-device, then
a new BS is marked as active.

The best BS locations in terms of path loss are statis-
tically chosen after 40 simulations (step 1). The maximum
number of BSs chosen will depend on the traffic demand
and effective coverage per BS that guarantee at least 96% of
end-devices actually covered by the network. The Path Loss
(PL) [dB] between the end-devices and each base station
(BS) is calculated as a function of the distance d [km], the
frequency f [MHz], the BS antenna height #b [m], and the
end-device antenna height /m [m]. For our scenario, we use
the Okumura-Hata path loss model [30], which fits well with
the scenario topology and related technology parameters (i.e.,
frequency, maximum range, and effective heights).

In the second step of the algorithm (Figure 6), the power
consumption is further optimized by connecting users to the
active BSs with the lowest path loss and by reducing the EIRP
while the PL between the base station and end-devices is less
than the maximum PL.

4. Results and Discussion

This section presents the results of the network simulations
and optimizations in the considered scenario.
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FIGURE 7: Sensing network deployment for the UHF band using
SUMO and SED for optimal positioning and number of sensors for
spectrum monitoring.

4.1. Sensing Network Optimization. As mentioned in Sec-
tion 3.5, we calculated the optimal position for sensors using
SUMO and SED tools. The main constraint of both tools is
that they use approximation algorithms. As a result, we will
obtain a new deployment every time we run the application
(number and position of the sensors might be different) until
the optimal position is found.

In order to improve the accuracy, an adaptive sam-
pling procedure drives the selection and simulation of new
samples. Modeling starts with 30 known samples using
LOLA-Voronoi. Afterwards, a Kriging-based model adaptive
sampling is applied. After each sampling iteration, 10 more
samples are required, the received power (in dBm) for every
new sample is estimated, and the process is repeated until
one of the following conditions [9] is satisfied: (i) the user
required accuracy has been achieved and (ii) the maximum
allowed number of samples has been reached.

Once the 65 samples for each frequency (one per trans-
mitter) are obtained, the results should be combined to
obtain the final deployment, with the condition of every
sensor having to receive information from the three available
transmitters in the selected zone. The difference among
sensors is fairly small to assume one final position for the
same sensor. Only seven more sensors were required to cover
the entire area. Finally, an optimal deployment of 72 sensors
in the selected area was obtained. Figure 7 shows the sensors’
deployment in the selected area.

Figure 8 shows the coverage zone for the three trans-
mitters in the area. Figure 8(a) represents the coverage zone
for the transmitter working on 575 MHz. It does not cover
the entire zone (50 dBm of radiated power and 40m of
antenna height) because the received power in some parts
of the selected area is under the TV sensitivity threshold for
UHF band (-84 dBm). However, the other two transmitters
transmitting on 677 MHz (Figure 8(b)) and 689 MHz (Fig-
ure 7¢) located in the same building (60 dBm and 58.45
dBm, respectively, of radiated power and 145m of antenna
height) can cover the selected area without reaching the
TV sensitivity threshold (-84 dBm) in any part of the area.
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FIGURE 8: Coverage map simulation-based in the selected area, (a) 575 MHz, (b) 677 MHz, (c) 689 MHz, and (d) coverage map with the 3
transmitters (black square) working in the area without interference among them.

Every one of those transmitters is working at a different
frequency and transmitting different information. Hence,
there is no interference between them. Figure 8(d) shows the
three transmitters together; 100 percent of the area is covered
by the TV signal with a received power higher than -84 dBm
in every point.

4.2. IoT Feedback Network Optimization. Figure 9 shows the
two obtained solutions for the IoT feedback network coverage
map in the considered area, for LoRa (Figure 9(a)) and
NB-IoT (Figure 9(b)), using the method and scenarios of
Section 3.2. The BSs chosen to optimally satisfy the density
of connected devices and traffic are highlighted with a darker
color.

The required number of BSs for LoRa is 4 and for NB-IoT
is 6. Theoretically, the area coverage requirement (50km?)
is satisfied with only 1 to 3 BSs (depending on the SEF).
However, a larger number of BSs are required to satisty the
capacity demand for the worst-case traffic generated by the
monitoring application of the receivers. For this reason, the
best LoRa network performance is achieved if all devices are
capable of connecting with SF=7 to the nearest BS (in terms of
pathloss). The reason for this is that SF=7 achieves the highest
bit rate and lowest time on air. NB-IoT has a higher capacity
with QPSK modulation scheme, but the maximum coverage
per BS (i.e., ~2 km) is lower than LoRa SF=7 (i.e., ~3.1km).

Notice that the DMT will be deployed using the existing
infrastructure to provide 3G and in a near feature LTE. In our
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FIGURE 9: IoT feedback network coverage map (black circles): selected BS locations (black points) and sensors with red crosses, (a) LoRa

network solution and (b) NB-IoT network solution.

solutions (LoRa and NB-IoT) more than 70% of the possible
BS locations are never chosen. As such, the algorithm is a
heuristic: the obtained solution might not be (nevertheless, it
can be) the optimal solution, but it is a suboptimal one close to
the optimal one. The approach that more than 70% of possible
BSs are never chosen can be used to develop a background
network to face the recovering process after a meteorological
event. Removing the chosen BSs in the previous design and
running the described process in Figure 6, a new optimal
deployment is obtained.

4.3. Recovery Process after a Meteorological Event. The sce-
nario presented in Section 3.2, where it is assumed that
two of the three transmitters are destroyed by the hur-
ricane, is considered. These two transmitters are located
on the same building with a height of 145m retrieving
in a higher probability of the antenna destruction caused
by the wind. The process to recover the original trans-
mitters can take days and during this time, the people in
the area are still uninformed about the situation they are
facing.

In this case, the proposed DMT plays an important role
in helping the authorities during the recovery process after a
disaster event. The first step to keep the DMT running is to
provide the sensing devices with batteries (Figure 1, Block I).
The Raspberry PIis the core of the sensing device and it works
with 5V consuming around 2A. Hence, with a power bank of
10,000 mAh, the sensing devices run around 5 hours.

The second step is to have all the necessary base stations
working to collect the information from the sensing devices.
In Section 4.2, we provided two solutions. The first uses
4 LoRa BSs and the second one uses 6 NB-IoT BSs. All
these locations are used to provide cellular connections

and are equipped with a backup power supply and cooling
system, making them work during and after the hurricane.
To decide the best solution, the following elements need to
be accounted for: (i) access level to those locations after the
hurricane, (ii) BSs’ state, and (iii) in case of partial or total
destruction how much time it takes to restore the service.
The IoT technology will be chosen depending on the elements
previously mentioned.

As mentioned, we obtained two solutions for the IoT
network: 4 BSs for LoRa and 6 BSs for NB-IoT. The locations
of LoRa BSs coincide in position with 4 of the 6 locations of
NB-IoT BSs. However, the antennas of both technologies use
the same tower. Hence, the time to repair one tower is the
same no matter the technology. To have the DMT working
back and save time in the recovery process, it is better to use
LoRa solution.

For the scenario described in Section 3.3 where two
transmitters were destroyed, the one still transmitting does
not have enough power to cover the entire area (Figure 8(a)).
The DMT can detect that in approximately 30% of the area the
received power is under -84 dBm. In this situation and to keep
the people informed, we propose using a small transmitter
located in the same building with a transmission power of
40 W (around $700) instead of repairing the original one
(installation time will be longer and price will be higher,
around $20,000). Figure 10(a) shows the coverage area of
the new transmitter (~46 dBm, 145m of antenna height).
Figure 10(b) shows the two transmitters together and 90% of
the area is covered by the TV signal with a signal strength
higher than -84 dBm. Only 10% (black square) of the area still
remains as an unserved area.

In Section 3.3, we assumed that 60% of the 41 available
base stations we needed to provide a cellular connection
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F1GURE 10: Coverage map (received-power) simulation-based in the selected area, (a) 677 MHz with a transmitted power of 40 W, (b) coverage
map with the 2 transmitters (black square) working in the area without interference between them. The black square is the unserved area,

around 10% of the total surface.

(GSM, 3G, and 4G) were destroyed by the hurricane (25
BSs destroyed). After a hurricane, it is difficult to check
all the BSs in a short time period. In this situation, the
proposed DMT is useful to precisely detect which BS is
working and give the authorities feedback about the real
situation.

4.4. Network Deployment Cost Considerations. For network
deployment, we need to consider the end-devices structure
and the BS infrastructure. A single sensing device is built
with an SDRplay sensor (model RSPIA), a Raspberry PI 3
(model B+), and an IoT transceiver (LoRa and NB-IoT). The
approximate price for all of these devices is $215. The total
price for 72 sensors is approximately $15,480. A single LoRa
BS has deployment cost up to $1,000 and a single NB-IoT of
$15,000, considering the reusage of LTE infrastructure. The
difference in infrastructure is not significant (2 BSs more for
NB-IoT). However, the NB-IoT license cost for the mobile
operator is thus considerably higher. The total LoRa BSs
infrastructure cost is just $4,000 (4 BSs). For NB-IoT, the
total BSs deployment cost is $90,000 (approximately 22 times
higher for 6 BSs).

5. Conclusion

In this paper, we investigated the feasibility of building a
REM deploying 72 SDR sensors using SUMO and SED
tool in a selected area and using LoRa and/or NB-IoT
technologies for networking. The IoT feedback network is
designed and optimized for minimal power consumption and
infrastructure.

This DMT permits the regulatory body to check the
correct use of the assigned spectrum and plays an important

role in the recovery process after a catastrophic event, such as
a hurricane, where radio and TV broadcasting are important
in keeping people informed. Besides, the tool can be used to
deploy new services in the nonserved area (e.g., 4G in the
700 MHz).

Future research will consist of the emulation of the DMT
in a real scenario.
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