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Abstract

We derive the optimal forecasts for multivariate autoregressive time series pro-

cesses subject to Markov switching in regime. Optimality means that the trace

of the mean square forecast error matrix is minimized by using suitable

weighting observations. Then we provide neat analytic expressions for the opti-

mal weights in terms of the matrices involved in a state space representation

of the considered process. Our matrix expressions in closed form improve com-

putational performance since they are readily programmable. Numerical simu-

lations and an empirical application illustrate the feasibility of the proposed

approach. We provide evidence that the forecasts using optimal weights

increase forecast precision and are more accurate than the traditional Markov

switching alternatives.
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1 | INTRODUCTION

Since the influential work of Hamilton (1989, 1990),
Markov switching (MS) models have attracted consider-
able interest among econometricians to model various
nonlinear observed time series in applied macroeconom-
ics, which are subjected to change in regime. Flexibility is
one of the main advantages of such models which
become an appealing tool to capture the business cycle
asymmetries, to investigate the cyclical behavior of many
economic and financial variables arising from the real
stock markets, and to detect “segmented trends” in
macrovariables.

Stationarity, existence of moments, geometric ergodic-
ity, statistical inference and asymptotic theory for MS vec-
tor autoregressive moving-average (MS VARMA) models,

and their generalizations such as MS bilinear time series
models, have been studied by several authors (see,
e.g., Alvarez et al., 2017; Bibi & Ghezal, 2015; Cavicchioli,
2014a, 2014b, 2016; Douc et al., 2004; Francq &
Zakoïan, 2001; Krolzig, 1997; and Stelzer, 2009).

In addition, spectral analysis of processes with time-
varying coefficients is a relevant method for investigating
both non-Gaussianity and nonlinearity, which continues
to gain a growing interest. A formula in closed form for
the spectral density matrix of MS VARMA models is
given in Cavicchioli (2013). Matrix expressions for higher
order moments and asymptotic Fisher information
matrix of MS VARMA models are provided in Cavicchioli
(2017a, 2017b), respectively. A recent spectral analysis
approach for estimating the parameters involved in MS
VAR models and for testing the fit of such models to the
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observed nonlinear data set has been proposed by Cavic-
chioli (2022). For a comprehensive survey on the litera-
ture on regime changes together with empirical
applications in a number of areas of macroeconomics,
see, for example, Hamilton (2016).

As remarked in Boot and Pick (2018), MS models
have long been recognized to suffer from a discrepancy
between in-sample and out-of-sample performances.
More precisely, although MS models give a better in-
sample fit with respect to linear models, they are usually
outperformed by linear models in-out-sample forecasting;
that is, in-sample, there are appealing results, while out-
of-sample performances are frequently inferior to stan-
dard models. Examples in the literature are given to
study the effect of uncertainty around states on forecasts.
See, for example, Ang and Bekaert (2002), Clements and
Krolzig (1998), Dacco and Satchell (1999), Krolzig (2000),
Bessec and Bouabdallah (2005), Otranto (2005), and
Nyberg (2018).

So, it is interesting to investigate the following ques-
tion: How forecast accuracy can be increased in MS VAR
models? In the univariate context, forecasts are typically
evaluated by using mean square forecast error (MSFE)
loss, which implies a bias-variance trade-off. Comparison
of the forecast performances of MS and Threshold uni-
variate AR models for US GNP can be found in Clements
and Krolzig (1998). Methods for improving forecast accu-
racy in univariate MS models and a test to determine
whether modeling a structural break improves forecast-
ing have been provided by Boot and Pick, Boot and Pick
(2018), (2020). Random subspace methods to forecast in
high-dimensional regression settings can be found
in Boot and Nibbering (2019). A new approach to fore-
casting time series that are subject to discrete structural
breaks has been provided by Pesaran et al. (2006). These
authors propose a Bayesian estimation and prediction
procedure that allows for the possibility of new breaks
occurring over the forecast horizon, taking account of the
size and duration of past breaks (if any) by means of a
hierarchiral hidden Markov chain model.

Given the focus on out-of-sample forecast, we include
some relevant references, which are related to our research
topic. Clements et al. (2004) discuss the current state-of-
the-art in estimating, evaluating, and selecting among
nonlinear forecasting models for economic and financial
time series. Elliott and Timmermann (2005) propose a
new forecast combination method that lets the combina-
tion weights be driven by regime switching in a latent state
variable and show that such a method performs better
than a range of alternative combination schemes for a vari-
ety of macroeconomic variables. A flexible approach to
combine forecasts of future spot rates with forecasts from
time series models or macroeconomic variables has been

developed by Guidolin and Timmermann (2009). These
authors find empirical evidence that, accounting for both
regimes in interest rate dynamics and combining forecasts
from different models, helps improve the out-of-sample
forecasting performance for US short-term rates. Hou
(2017) investigates the forecast performances of infinite
hidden MS VARs for some financial and macroeconomic
applications. Kundu and Paul (2022) examine the effect of
economic policy uncertainty (EPU) on stock market return
and volatility under heterogeneous market characteristics.
Their estimation results suggest that the impact of EPU is
significant in the bear market, and it is negligible in the
bull market.

Empirical applications include forecasting interest
rates and US business cycle via MS VAR
(Kontolemis, 2001; Nyberg, 2018), volatility forecasting
with double MS GARCH (Chen et al., 2009),
forecasting exchange rates via MS models (Parikakis &
Merika, 2009; Nikolsko-Rzhevskyy & Prodan, 2012), pre-
diction of GDP growth and business cycle turning points
in the Euro area via MS mixed-frequency VAR (Foroni
et al., 2015), forecasting risk with MS GARCH
(Alemohammad et al., 2020; Ardia et al., 2018), and fore-
casting US inflation using Markov dimension switching
(Prüser, 2021).

The purpose of our paper is to give a contribution to
the existing literature on forecasting for MS models. More
precisely, the aim is to circumvent the above-mentioned
problems about forecast accuracy presenting a nice
matrix machinery which produces optimal forecasts for
the class of MS VARðpÞ processes. So, we contribute to
the existing literature in threefolds. First, we derive opti-
mal forecasts for MS VARðpÞ models by minimizing the
quadratic function given by the trace of the expected
MSFE matrix by using sample weighting observations.
Then we provide explicit neat matrix expressions in
closed form for the forecasting optimal weights in terms
of the matrices involved in a state space representation of
the model specification. These formulas improve compu-
tational performance since they are readily programma-
ble. Our results generalize to the most general setting the
work of Boot and Pick (2018) regarding univariate MS
ARð0Þ models. Second, our matrix analysis, which is dif-
ferent to that employed up to now in the literature, is
based on an indirect construction via a Markovian repre-
sentation of the considered MS VAR model. This sim-
plifies the computation, produces simple and easily
tractable matrix expressions, and provides a unified
framework for forecasting different types of MS vector
autoregressive processes. The main advantage of the pro-
posed approach is related to the simplicity of the derived
mathematical expressions that eases the computational
effort also in the general case of multivariate
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autoregressive models with regime-dependent parame-
ters. Third, theoretical results and methods are useful
tools for practitioners, providing evidence with numerical
and empirical applications that forecasts with optimal
weights improves the forecast accuracy. Performances of
the optimal weights through simulations and an empiri-
cal application confirm the issues of Boot and Pick (2018)
also in the multivariate case with regime-dependent auto-
regressive coefficients. That is, the forecasts using optimal
weights increase forecast precision and are more accurate
than linear alternatives.

The paper is structured as follows. Section 2 lays out
the basic model, assumptions and notation. A state space
representation of a VARð0Þ process with Markovian
regime shifts in the intercept term and in the variance is
derived. The algorithm for the extraction of optimal
weights is applied, and the issues on forecasting are dis-
cussed. Section 3 illustrates the results for the general
case of a MS VARðpÞ model with regime dependent
parameters. Numerical simulations and an empirical
application to interest rate and term spread in US area
are discussed in Section 4. Section 5 concludes the study.
See Hamilton ((1994), §4 and §22) and Krolzig (1997) as
basic references on MS autoregressive processes.

2 | FORECASTING TIME SERIES
PROCESSES WITH MS

In this section, we first consider dynamic vector models
where the intercept term and the variance-covariance
matrix of the innovation are subject to occasional discrete
shifts, and postpone the general case with time-varying
autoregressive part.

2.1 | The basic model

Let yt be a K-dimensional random vector with values in
ℝK . Suppose that yt is driven by the following MS
VAR(0) model with a M-state MS intercept and variance,
in short MS(M) VAR(0):

yt ¼ νst þΣstut ð1Þ

where the intercept νst is K�1, Σst is a K�K nonsingular
matrix, and ut � i.i.d. ð0,IKÞ. Here IK denotes the K�K
identity matrix. The variance–covariance matrix Ωst ¼
ΣstΣ0

st �ℝK�K is positive definite. As usual, ℝm�n denotes
the class of real m�n matrices and ℝn the class of
n-dimensional real vectors, that is, ℝn ¼ℝn�1. Such MS
models serve well to depict the business cycle of various

industrialized economies as shown, for example, in
Knuppel (2009).

Assumption 1. The process ðstÞ in (1) is an
irreducible and aperiodic (hence ergodic)
Markov chain with values in the set
Ξ¼f1,…,Mg, stationary transition probabili-
ties denoted by pij ¼Prðst ¼ jjst�1 ¼ iÞ, for
i, j¼ 1,…,M, and unconditional (or steady
state) probabilities πi ¼Prðst ¼ iÞ, for
i¼ 1,…,M.

Collect pij and πi into a M�M matrix P¼
ðpijÞ and a M�1 vector π¼ðπ1…πMÞ0, called
the transition probability matrix and the sta-
tionary vector of the chain, respectively. Ergo-
dicity implies the existence of π satisfying
π¼P0π and i0Mπ¼ 1, where iM denotes the
M�1 vector of ones. Irreducibility implies
that πi >0, for i¼ 1,…,M, meaning that all
unobservable states are possible. It is also
assumed that π1 ≥ π2 ≥…≥ πM for identifiabil-
ity of regimes, and νi ≠ νj for i, j¼ 1,…,M,
i≠ j. In order to clarify the definition of aperi-
odic Markov chain, we need some preliminar-
ies. The period di of a state i�Ξ is given by
di :¼ gcdfm≥ 1 : pðmÞ

ii >0g, where gcd denotes
the greatest common divisor and
pðmÞ
ii ¼Prðstþm ¼ ijst ¼ iÞ. Set di ¼∞ if pðmÞ

ii ¼ 0
for all m≥ 1. If di ¼ 1, then the state i�Ξ is
called aperiodic. A Markov chain is said to be
aperiodic if all its states are aperiodic.

Assumption 2. The pair ðst,utÞ is a strictly
stationary process defined in some probability
space, and the shock ðutÞ is independent of
the Markov chain ðstÞ.

In addition, we assume that the process ðytÞ is
second-order stationary; that is, it satisfies the matrix
condition in Theorem 2 from Francq and Zakoïan (2001).

2.2 | State space representation

Following Hamilton ((1994), §22) and Krolzig ((1997),
§2), a useful representation for the Markov chain ðstÞ is
obtained by letting ξt denote the M�1 vector whose ith
element is equal to unity if st ¼ i and zero otherwise.
Then the Markov chain follows a VAR(1) process

ξt ¼P0ξt�1 þ vt ð2Þ

CAVICCHIOLI 3
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where vt ¼ ξt�Eðξtjξt�1Þ is a zero mean martingale dif-
ference sequence.

Set D¼ diagðπ1…πMÞ�ℝM�M . Then we have EðξtÞ¼
π and Eðξt ξ0tþhÞ¼DPh for every h≥ 0. In particular,
Eðξt ξ0tÞ¼D. It follows that varðξtÞ¼D�ππ0 is singular
due to the adding-up restriction i0Mπ¼ 1. Furthermore,
vt � i.i.d. ð0,ΣvÞ, where Σv ¼D�P0DP.

Let νi and Σi be obtained from νst and Σst , respec-
tively, by setting st ¼ i, for i¼ 1,…,M. Define

Λ¼ðν1…νMÞ�ℝK�M Σ¼ðΣ1…ΣMÞ�ℝK�ðKMÞ:

Then we get the state space representation of (1):

yt ¼ Λξt þΣðξt�IKÞut

ξt ¼P0ξt�1 þ vt:
ð3Þ

The ML (or OLS) estimates of the population parame-
ters νi and Ωi ¼ΣiΣ0

i in model (1), or (3), are given by

ν̂i ¼
XT
t¼1

ξ̂itjT

" #�1 XT
t¼1

ξ̂itjT yt

" #
ð4Þ

and

Ω̂i ¼
XT
t¼1

ξ̂itjT

" #�1 XT
t¼1

ξ̂itjT ðyt � ν̂iÞðyt � ν̂iÞ
0

" #
ð5Þ

for i¼ 1,…,M. See, for example, Cavicchioli (2014b,
2021). A fast algorithm for determining the smoothed
regime probabilities ξ̂tjT ¼E½ξtjYT �, for t¼ 1,…,T, can be
found in Hamilton ((1994), §22) and Krolzig ((1997), §5).
Here YT denotes the information set that is available up
to time T, that is, YT ¼fyT ,yT�1,…g, and ξit (resp. ξ̂itjT)
is the ith component of the M�1 vector ξt (resp. ξ̂tjT), for
i¼ 1,…,M.

2.3 | MS forecast

The MS forecast for model (1) is given by the conditional
expectation

ŷTþ1jT ¼ E½yTþ1jYT � ð6Þ

from the state space representation (3), that is,

ŷTþ1jT ¼ Λ̂ ξ̂Tþ1jT ¼
XM
i¼1

ξ̂i,Tþ1jT ν̂i ð7Þ

where ξ̂Tþ1jT ¼ E½ξTþ1jYT � ¼ P0 ξ̂TjT is the vector of the
predicted regime probabilities in the forecast period. The
i-th component of ξTþ1jT is ξi,Tþ1jT ¼

PT
j¼1pjiξjTjT .

Substituting (4) into (7) yields

ŷTþ1jT ¼
XT
t¼1

wMS,tyt ð8Þ

where the standard MS weights are given by

wMS,t ¼
XM
i¼1

XT
t¼1

ξ̂itjT

" #�1

ξ̂i,Tþ1jT ξ̂itjT : ð9Þ

Collect the MS weights in a T�1 vector
wMS ¼ðwMS,1,…,wMS,TÞ0. It is easily verified that
i0TwMS ¼ 1; that is, the MS weights sum to one. Here iT
denotes the T�1 vector of ones.

Set eTþ1 ¼ yTþ1 � ŷTþ1jT . The forecast error eTþ1 can
be decomposed according to three causes of uncertainty
as follows. The first relates with the term ΛP0 ðξT � ξ̂TjTÞ,
and it is caused by the regime classification errors (also
called filter uncertainty). The summands ΛvTþ1 and
ΣðξTþ1

N
IKÞuTþ1 reflect the uncertainty due to future

system shocks vTþ1 and uTþ1.
Then the expected MSFE matrix is given by

E eTþ1e
0
Tþ1jYT

� �¼ Λ̂E ξTþ1 � ξ̂Tþ1jT
� �h

ξTþ1 � ξ̂Tþ1jT
� �0

jYT

i
Λ̂0

þΣ̂ E ξTþ1ξ
0
Tþ1jYT

� ��IK
� �

Σ̂0

ð10Þ
where

E ξTþ1ξ
0
Tþ1jYT

� �¼ diagðξ̂Tþ1jTÞ¼ diagðP0 ξ̂TjTÞ

and

E ξTþ1 � ξ̂Tþ1jT
� �h

ξTþ1 � ξ̂Tþ1jT
� �0

jYT

i
¼ diagðξ̂Tþ1jTÞ � ξ̂Tþ1jT ξ̂

0
Tþ1jT

¼ diagðP0 ξ̂TjTÞ � P0 ξ̂TjT ξ̂
0
TjTP:

4 CAVICCHIOLI

 1099131x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.3180 by C

ochraneItalia, W
iley O

nline L
ibrary on [15/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.4 | Optimal forecast

Following the nice work of Boot and Pick (2018) in the
univariate setting, we derive the optimal forecast by using
a weighted average of the observations with weights that
minimize the quadratic function defined by the trace of
the MSFE matrix. More precisely, the forecast from
weighted observations is defined as

ŷw,Tþ1 ¼
XT
t¼1

wtyt ¼ ðw0�IKÞy ð11Þ

where w¼ðw1,…,wTÞ0 and y¼ y01,…,y0T
� �0

.
We discuss two minimization problems. First, we do

not restrict the weights to be positive and to sum to one
as satisfied for MS weights wMS above. Call them
unrestricted optimal (UO) weights, which are denoted by
wUO. Second, we impose that the weights (not necessarily
positive) satisfy the restriction i0Tw¼ 1 (as in the quoted
paper) since an identifying condition could be required.
Call them restricted optimal (RO) weights, which are
denoted by wRO. In all cases for the considered MS
models, we compare the square root of the trace (that is,
the module) of the obtained expected MSFE matrices.

So, we choose the optimal forecast ŷw,Tþ1 for the con-
sidered MS models so as to minimize the quadratic func-
tion defined by the trace (tr) of the MSFE matrix
E ew,Tþ1e0w,Tþ1

� �
, where ew,Tþ1 ¼ yTþ1 � ŷw,Tþ1 and

ŷw,Tþ1 is as in (11).
Ignoring the parameter estimation problem, the

MSFE matrix for the MS model (1) is given in vectorial
form by

MSFEðwÞ ¼ E ew,Tþ1e
0
w,Tþ1

� �¼ ΛDΛ0

�ΛE½ξTþ1s
0�ðΛ0�ITÞðw�IKÞ

�ðw0�IKÞðΛ�ITÞE½sξ0Tþ1�Λ0

þðw0�IKÞðΛ�ITÞE½ss0�ðΛ0�ITÞ
ðw�IKÞ þΣðD�IKÞΣ0

þðw0�IKÞðΣ�ITÞðD�ITKÞ
ðΣ0�ITÞðw�IKÞ

ð12Þ

where s¼ ðξ01,…,ξ0TÞ0 �ℝTM .
The first derivatives of the trace of MSFEðwÞ with

respect to w
N

IK are the ðTKÞ�K matrix given by

∂ trMSFEðwÞ
∂w�IK

¼ 2M ðw�IKÞ � 2N ð13Þ

where

M ¼ ðΣ�ITÞðD�ITKÞðΣ0�ITÞ
þðΛ�ITÞE½ss0�ðΛ0�ITÞ

ð14Þ

and

N ¼ ðΛ�ITÞE½sξ0Tþ1�Λ0: ð15Þ

Vanishing the first derivatives in (13) yields the fol-
lowing result:

Theorem 1. With the above notation, the
unrestricted optimal weights for the MSðMÞ
VARð0Þ in (1) with Markovian representa-
tion (3) are given by

wUO�IK ¼M�1N ð16Þ

where M and N are as in (14) and (15),
respectively.

The ðTKÞ�ðTKÞ matrix M is invertible. To see this,
we factorize M¼M1 þM2. Now the first matrix sum-
mand M1 ¼ ΣðDN

IKÞΣ0½ �N IT is positive definite as Σ
has full rank K and D is a diagonal matrix with positive
entries πi >0, for i¼ 1,…,M. The second matrix sum-
mand M2 ¼ðΛN

ITÞE½ss0�ðΛ0N ITÞ is positive semidefi-
nite. Thus, M is positive definite; hence, it is invertible.

The unrestricted optimal weights in (16) really mini-
mize the quadratic function trMSFEðwÞ as the second
derivatives

∂2 trMSFEðwÞ
∂w

N
IK ∂w0 N IK

¼ 2M ð17Þ

is positive definite.
Substituting (16) into (11) and (12) gives the (unrest-

ricted) optimal forecast and the minimum (in the sense
of matrix norm) MSFE, respectively. Furthermore, to
make our matrix expressions suitable for computation,
we calculate the expectations in (12) and (16) conditional
on YT under the assumption that the states are uncertain
and use the ML estimates of the population parameters.

Minimizing the function trE½ew,Tþ1e0w,Tþ1�, subject to
ðw0N IKÞy¼ 1, gives the following result.

Theorem 2. Let us consider the MSðMÞ
VARð0Þ model in (1) with a Markovian repre-
sentation (3). Then the restricted optimal
weights ðROÞ are given by

CAVICCHIOLI 5

 1099131x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.3180 by C

ochraneItalia, W
iley O

nline L
ibrary on [15/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



wRO�IK ¼M�1N þ K � b
a

M�1ðiT�IKÞ ð18Þ

where

a ¼ tr ði0T�IKÞM�1ðiT�IKÞ
� �

b ¼ tr ði0T�IKÞM�1N
� �

and M and N are as in (14) and (15),
respectively.

Substituting (18) into (11) and (12) gives
the (restricted) optimal forecast and the mini-
mum (in the sense of matrix norm) MSFE,
respectively.

For practical inference purposes, we adopt
a plug-in approach where the involved matri-
ces are replaced by their maximum likelihood
(ML) estimates.

3 | FORECASTING GENERAL
AUTOREGRESSIVE VECTOR
PROCESSES WITH MS

Let us consider a M-state Markov switching VARðpÞ
model, in short MSðMÞ VARðpÞ, of the following type

yt ¼ νst þ
Xp
i¼1

Φi,st yt�i þΣstut ð19Þ

where yt is a K-dimensional random vector with values
in ℝK , the autoregressive coefficients are regime depen-
dent ðK�KÞ matrices, and the assumptions in
Section 2 hold.

Following Krolzig ((1997), §2), model (19) can be
written as

yt ¼ ðx0t�IKÞβst þΣstut ð20Þ

where

xt ¼ ð1 y0t�1 … y0t�pÞ0 �ℝR

and

βst ¼ ν0st ½vecΦ1,st �0 … ½vecΦp,st �0
� �0

�ℝRK

with R¼ pKþ1. As before, let βi and Ωi be obtained from
βst and Ωst ¼ΣstΣ0

st , respectively, by setting st ¼ i, for
i¼ 1,…,M.

The ML (or OLS) estimates of the population parame-
ters βi and Ωi for the MSðMÞ VARðpÞ model in (20) are
given by

β̂i ¼ X�1
iT �IK

� � XT
t¼1

ξ̂itjT ðxt�IKÞyt
" #

ð21Þ

and

Ω̂i ¼
XT
t¼1

ξ̂itjT

" #�1 XT
t¼1

ξ̂itjT ϵ̂t,i ϵ̂
0
t,i

" #
ð22Þ

where

ϵ̂t,i ¼ yt � ðx0t�IKÞβ̂i

for i¼ 1,…,M. See, for example, Cavicchioli (2014b,
2021). Here the assumption is that the ðR�RÞ matrix

X iT ¼
XT
t¼1

ξ̂itjT xtx
0
t

is invertible for every i¼ 1,…,M. This extends the analo-
gous one (case M¼ 1) for linear VARðpÞ models. See
Hamilton ((1994), §11).

Model (20) has the following state space
representation

yt ¼ ðx0t�IKÞBξt þΣðξt�IKÞut

ξt ¼ P0ξt�1 þ vt
ð23Þ

where B¼ðβ1 … βMÞ�ℝðRKÞ�M and Σ¼ðΣ1 …ΣMÞ�
ℝK�ðKMÞ.

Since x0t�IK is deterministic given YT , the expectation
of yTþ1 conditional YT is given by

ŷTþ1jT ¼ ðx0Tþ1�IKÞB̂ ξ̂Tþ1jT ¼
XM
i¼1

ðx0Tþ1�IKÞβ̂i ξ̂i,Tþ1jT :

ð24Þ

Substituting (21) into (24) and doing standard matrix
computation yield formula (8) where the MS weights
now are

6 CAVICCHIOLI
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wMS,t ¼
XM
i¼1

ξ̂i,Tþ1jT ξ̂i,tjT x
0
Tþ1X

�1
iT xt

� �
: ð25Þ

In this case, the MS weights do not sum to one, but it

can be shown that plimitT!∞
PT

t¼1wMS,t ¼R, where
R¼ pKþ1.

Now the expected MSFE matrix from (10) takes the
following vectorial form

MSFEðwÞ ¼ E½ew,Tþ1e
0
w,Tþ1� ¼ E ðx0Tþ1�IKÞB

�
ξTþ1ξ

0
Tþ1B

0 ðxTþ1�IKÞ
�

�ðw0�IKÞE ~sξ0Tþ1B
0 ðxTþ1�IKÞ

� �
�E ðx0Tþ1�IKÞBξTþ1~s

0� �ðw�IKÞ
þΣðD�IKÞΣ0

þðw0�IKÞðΣ�ITÞðD�ITKÞ
ðΣ0�ITÞðw�IKÞ
þðw0�IKÞE½~s~s0�ðw�IKÞ

ð26Þ

where

~s¼ ð½ðx01�IKÞBξ1�0 … ½ðx0T�IKÞBξT �0Þ
0
�ℝTK :

Then we obtain the following result:

Theorem 3. The unrestricted optimal
weights for the MSðMÞ VARðpÞ model in (19)
with Markovian representation (20) are given
by

wUO�IK ¼ ~M
�1 ~N ð27Þ

where ~M and ~N take the following matrix
expressions

~M ¼ ΣðD�IKÞΣ0½ ��IT þ E½~s~s0��ℝðTKÞ�ðTKÞ ð28Þ

and

~N ¼ E ~sξ0Tþ1B
0 ðxTþ1�IKÞ

� �
�ℝðTKÞ�K : ð29Þ

Notice that ~M above is positive definite; hence, it is
invertible.

Theorem 4. Let us consider the MSðMÞ
VARðpÞ model in (19) with a Markovian rep-
resentation (20). Then the restricted optimal
weights ðROÞ are given by

wRO�IK ¼ ~M
�1 ~N þ K � ~b

~a
~M

�1ðiT�IKÞ ð30Þ

where

~a ¼ tr ði0T�IKÞ ~M
�1ðiT�IKÞ

h i
~b ¼ tr ði0T�IKÞ ~M

�1 ~N
h i

and ~M and ~N are as in (28) and (29),
respectively.

As before, to make the obtained formulas computa-
tionally tractable, we calculate the expectations
in (26), (28), and (29) conditional YT . Thus, one has only
to apply the following relations:

E½ξt ξ0Tþ1jYT � ¼ ½diagðξ̂tjTÞ � ξ̂tjT ξ̂
0
tjT �PTþ1�t

for all t¼ 1,…,T, and

E½ξt ξ0τjYT � ¼ ½diagðξ̂tjTÞ � ξ̂tjT ξ̂
0
tjT �Pτ�t

for all t,τ¼ 1,…,T with t≤ τ (here we set Pτ�t ¼ IM for
t¼ τ). For t> τ, one has to take the transpose matrix. See
Appendix A for more details.

For practical inference purposes, we adopt a plug-in
approach where the matrices involved in the statements
of the above theorems are replaced by their ML
estimates.

4 | NUMERICAL SIMULATIONS
AND AN EMPIRICAL APPLICATION

4.1 | Numerical examples

We evaluate the forecast performance of the proposed
weights in a series of simulated experiments. Data are
generated according to MS VAR processes with
M¼K ¼ 2, that is, a two-state bivariate ARðpÞ model,
with p¼ 0 in the first example and p¼ 1 in the second

CAVICCHIOLI 7
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one. The states are generated by a Markov chain whose
unconditional probabilities are π1 ¼ π2 ¼ 0:5. The bivari-
ate two-state MS models

yt�Φst yt�1 ¼ νst þ ut

are generated with sample sizes T¼ 200,1000, ut being
Gaussian with zero mean and positive definite variance
Ωst ¼ΣstΣ0

st with st � f1,2g.
In order to analyze the finite sample performances in

various scenarios, we set combinations of different
parameters. With regard to the intercepts, we employ the
following cases:

i) ν1 ¼
:2

:2

� 	
ν2 ¼

:4

:3

� 	
jjν1�ν2jj ¼ 0:2

ii) ν1 ¼
:6

:5

� 	
ν2 ¼

1

1:5

� 	
jjν1�ν2jj ¼ 1

iii) ν1 ¼
:3

:2

� 	
ν2 ¼

1:4

1:8

� 	
jjν1�ν2jj ¼ 2

where the Euclidean norm of the intercept difference
increases among regimes.

With regard to the autoregressive matrices, the
parameters are defined as follows:

i) Φ1 ¼
:2 :4

:3 :2

� 	
Φ2 ¼

:8 :4

:1 :7

� 	
ρðΦ1Þ=ρðΦ2Þ¼ :5

ii) Φ1 ¼
:2 :4

:4 :2

� 	
Φ2 ¼

:4 :2

:1 :4

� 	
ρðΦ1Þ=ρðΦ2Þ¼ 1

iii) Φ1 ¼
:8 :1

:5 :8

� 	
Φ2 ¼

:3 :2

:1 :4

� 	
ρðΦ1Þ=ρðΦ2Þ¼ 2

in which we consider equally persistent regimes in case
(ii) and a much persistent regime in state 2 (case i) or in
state 1 (case iii). Here ρð�Þ denotes the spectral radius of
the considered square matrix. With regard to the variance
matrices, we set the following:

i) Σ1 ¼
:8 :2

:2 :8

� 	
Σ2 ¼

1 :8

:8 1

� 	
ρðΣ1Þ=ρðΣ2Þ¼ :5

ii) Σ1 ¼
:8 :2

:2 :8

� 	
Σ2 ¼

:5 :5

:5 :5

� 	
ρðΣ1Þ=ρðΣ2Þ¼ 1

iii) Σ1 ¼
1:9 :9

:9 2:3

� 	
Σ2 ¼

1:3 :2

:2 1:3

� 	

ρðΣ1Þ=ρðΣ2Þ¼ 2

where the volatility increases in the regimes.
The bivariate two-state processes are obtained from

the above model specification by using different
combinations of the true parameters. Then we determine
the ratios of the MSFEs computed by using optimal
unrestricted forecast weights and standard MS forecast
weights, that is, Ratio1 ¼MSFEðwUOÞ=MSFEðwMSÞ or
the restricted version, that is, Ratio2 ¼MSFE

ðwROÞ=MSFEðwMSÞ. Two facts are preliminary observed
in typical realizations. First, when the modulus of the
intercept difference increases, the gain using optimal
weights tends to be larger (see a typical case in Figure 1).
This means that, as the two regimes become more sepa-
rated, the forecast is more accurate. Second, the forecast
error tends to be smaller when one of the regimes is more
persistent compared with the other (see a typical case in
Figure 2). With such different scenarios, we run 5000 rep-

FIGURE 1 Evolution of the Ratio1 ¼MSFEðwUOÞ=MSFE

ðwMSÞ for increasing intercept differences in a typical realization

with T¼ 200. MSFE, mean square forecast error.

FIGURE 2 Ratio1 ¼MSFEðwUOÞ=MSFEðwMSÞ for increasing
spectral ratios of the AR matrix coefficients in a typical realization

with T¼ 200. MSFE, mean square forecast error.
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lications. The results are reported in Table 1 for the
mean-variance switching case and in Table 2 for the
mean-autoregressive-variance switching case. The

general result from simulations shows that optimal
weight forecasts outperform traditional forecasts in terms
of accuracy. Moreover, forecasts in mean-switching case
(reported in Table 1) are more precise if one of the
following conditions occurs: (1) the regimes are much
different in levels; (2) the variability is limited; or (3) the
sample size increases. With regard to the mean-
autoregressive-switching case, (reported in Table 2) fore-
casts are actually much more accurate. Furthermore, we
observe better forecasts if one of the following cases
occurs: (1) one regime is more persistent with respect to
the other (for example, ρðΦ1Þ=ρðΦ2Þ¼ :5 or
ρðΦ1Þ=ρðΦ2Þ¼ 2); (2) the variability is limited; or (3) the
sample size increases.

4.2 | An empirical application

We analyze the relationship between the short-term
interest rate and the term spread using monthly US data
taken from Fred database in the period from January
1970 to October 2023. In the evaluation of the linkages
between the short-term interest rate (defined as 3 month
Treasury Bill rate) and the term spread (defined as
10-year government bond minus 3-month Treasury Bill
rate), we take into account fluctuations of the business
cycle by using a MS VAR model. The series in levels
together with the first differences of the short-tem inter-
est rate are depicted in Figure 3. Particularly, we would
like firstly to evaluate whether the term spread predicts
changes in the short-term interest rate when regimes are
taken into account and secondly to investigate the out-
of-sample forecast performance using optimal weights.
We estimate a MS(2) VAR (1) model via the modified EM
algorithm described in Cavicchioli (2014b) by using the
obtained matrix expressions of the ML estimates of model
parameters. Model selection has been performed by
applying the method proposed in Cavicchioli (2014a),
which is based on stable VARMA representations of a
finite set of model candidates. This analysis reveals that
the specification fitting well the data is in fact a MSð2Þ
VARð1Þ. ML estimates of the model parameters are
reported in Table 3. Standard errors in parenthesis have
been computed by using the asymptotic variance-
covariance matrix given in Theorem 3 from Cavicchioli
(2021), which is proved to be asymptotically consistent
and efficient even when the disturbances of the model
are heteroskedastic and autocorrelated. Equivalently, one
can use the asymptotic information matrix of the parame-
ter estimates described in Corollary 2 from Cavicchioli
(2014b). Such standard errors are robust in the sense of
White (1980). This is essential for the construction
of asymptotic confidence intervals and hypothesis tests.

TABLE 1 The table reports the ratio of the MSFE of the

optimal weights to that of the Markov switching weights in the

mean-variance switching case.

jjν1�ν2jj
ρðΣ1Þ=ρðΣ2Þ 0.2 1 2

T¼ 200 0.5 0:9886

0:9715

0:9401

0:9978

0:9056

0:9986

1 1:0242

0:9965

0:9691

1:1646

0:9576

1:0981

2 0:9923

0:9939

1:0371

1:0591

1:0105

1:0043

T¼ 1000 0.5 0:9873

0:9599

0:8724

0:9560

0:8344

0:8855

1 0:9869

0:9880

0:8644

0:9712

0:8595

0:9375

2 0:9927

0:9946

0:9925

0:9966

0:9452

0:9712

Note: The first number in each cell is the unrestricted version
Ratio1 ¼MSFEðwUOÞ=MSFEðwMSÞ, and the second number is the restricted
version Ratio2 ¼MSFEðwROÞ=MSFEðwMSÞ. The sample size is T¼ 200,1000,
and the number of replications is 5000.
Abbreviation: MSFE, mean square forecast error.

TABLE 2 The table reports the ratio of the MSFE of the

optimal weights to that of the Markov switching weights in the

mean-autoregressive-variance switching case.

ρðΦ1Þ=ρðΦ2Þ
ρðΣ1Þ=ρðΣ2Þ 0.5 1 2

T¼ 200 0.5 0:1735

0:2008

0:3825

0:4059

0:1097

0:1025

1 0:3438

0:3869

0:8443

0:8795

0:2564

0:2219

2 0:3960

0:3980

0:9130

0:9120

0:4004

0:3902

T¼ 1000 0.5 0:0721

0:0791

0:1562

0:1619

0:0462

0:0421

1 0:1428

0:1463

0:3440

0:3441

0:1070

0:0850

2 0:1781

0:1777

0:3801

0:3823

0:1797

0:1782

Note: The first number in each cell is the unrestricted version
Ratio1 ¼MSFEðwUOÞ=MSFEðwMSÞ, and the second number is the restricted
version Ratio2 ¼MSFEðwROÞ=MSFEðwMSÞ. The sample size is T¼ 200,1000,

and the number of replications is 5000.
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Alternatively, one can employ the asymptotic heteroske-
dasticity and autocorrelation consistent covariance matri-
ces derived in Theorem 1 from White (1980) and
Theorem 2 from Newey and West (1987), respectively.
The estimated smoothed probabilities of regime 2 are
depicted in Figure 4, where shaded areas identify periods
dated as recessions by the National Bureau of Economic
Research (NBER). We identify a second regime where
there exist a higher spread and a more negative interest
rate compared to regime 1 together with a higher volatil-
ity. On the contrary, regime 1 exhibits higher persistence
in the dynamics of the time series and a higher probabil-
ity of remaining in such a regime. For this reason, we

recognize regime 1 being normal or expansionary times
and regime 2 being turbulent or recessionary periods.
This is also confirmed by the estimated smoothed proba-
bilities that coincide with the major US crisis. The out-of
sample forecasts are reported in Table 4 along with the
Diebold and Mariano (1995) test for equal accuracy in
prediction. The test is employed by accounting for hetero-
skedasticity and autocorrelation usually affecting multi-
period forecast errors. We conclude that optimal forecasts
improve the MS ones in both full sample and the selected
subsamples. Moreover, the performance is superior in the
unrestricted version, and the test indicates significantly
higher accuracy in forecasts.

FIGURE 3 Monthly US term spread (left plot), short-term interest rate in level (central plot), and in first differences (right plot) from

January 1970 to October 2023. Data are taken from FRED database.

FIGURE 4 Estimated smoothed probability of regime 2 for the

MSð2Þ VARð1Þ model of monthly US term spread and short-term

interest rate from January 1970 to October 2023. Shaded areas

identify periods dated as recessions by the NBER. Data are taken

from FRED database.

TABLE 3 ML estimates for the MSð2Þ VARð1Þ model of

monthly US term spread and short-term interest rate from January

1970 to October 2023.

Regime 1 (E) Regime 2 (R)

ν :062

ð001:Þ
�:039

ð:001Þ

:169

ð:046Þ
�:135

ð:055Þ
Φ :919 �:327

ð:099Þ ð:021Þ
:063 :446

ð:012Þ ð:024Þ

:834 �:106

ð:035Þ ð:015Þ
:113 :068

ð:043Þ ð:018Þ
Σ :070 �:054

ð:006Þ ð:005Þ
�:054 :097

ð:005Þ ð:004Þ

:129 �:115

ð:073Þ ð:059Þ
�:115 :195

ð:059Þ ð:048Þ
p11 ¼ :69 p22 ¼ :31

Note: Data are taken from FRED database. Standard errors in parenthesis.
Abbreviation: ML, maximum likelihood.
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5 | CONCLUDING REMARKS

In this paper, we derive optimal forecasts for multivariate
MS autoregressive models obtained by minimizing the
trace of the expected MSFE matrix. Then we analyze the
effect of uncertainty around states comparing forecasts
based on MS and unrestricted (resp. restricted) optimal
weights conditional on available observables. The key to
the solution is to use suitable state space representations
of the considered MS models. Starting from such repre-
sentations, we derive explicit neat matrix expressions in
closed form for the forecasting optimal weights in terms
of the matrices involved in the state space representation
of the specified model. So we use quantities already avail-
able by standard estimation of the model parameters.
The obtained formulas are easily tractable and program-
mable. The results show that optimal forecasts can differ
substantially from standard MS forecasts. This also con-
firms in the multivariate setting the issues derived in
Boot and Pick (2018) for univariate MS ARð0Þ models
with exogeneous regressors. Simulations and an empiri-
cal application illustrate the feasibility of the proposed
approach and show that forecasts with optimal weights
outperform the traditional MS weights. This approach is
quite easy to work with and can be used to forecast for
more sophisticated MS VAR (co-integrated) processes, as
listed in Krolzig ((1997), §13, 306–310). It is also worth
mentioning that a possible line of further research could
be to study optimal forecasts for MS Bilinear processes,
introduced and considered in Bibi and Ghezal (2015).

As stated in Section 1, MS models are usually outper-
formed by linear models. In this sense, the referee sug-
gests that the Model Confidence Set (MCS), introduced
and studied in Hansen et al. (2011), might be useful in
evaluating the out-of-sample performance obtained using

optimal forecast weights relative to both traditional MS
weights and linear models. The MCS procedure yields a
model confidence set that is a collection of models built
to contain the best model(s) with a given level of confi-
dence. A bootstrap method to implement the MCS for
comparisons of forecasting models evaluated out-
of-sample has been proposed in Section 3 of the cited
paper. We leave to future research the use of this interest-
ing issue for investigating the performance of our
approach.
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TABLE 4 Out-of-sample forecast

performances.
MSFEðwUOÞ=MSFEðwMSÞ MSFEðwROÞ=MSFEðwMSÞ

Full sample

January 2003 to October
2023

0.163** 0.589**

Subperiods

January 2003 to January
2008

0.266** 0.624*

February 2008 to January
2013

0.198** 0.511**

February 2013 to January
2018

0.345* 0.643*

February 2018 to October
2023

0.175** 0.561**

Abbreviation: MSFE, mean square forecast error.

*Denotes significance of the test at 5%.
**Denotes significance of the test at 1%.
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APPENDIX A

I) Derivation of (12) and further computations. We have

ew,Tþ1 ¼ yTþ1 � ŷw,Tþ1 ¼ ΛξTþ1

þΣ ξTþ1�IK
� �

uTþ1 �
XT
t¼1

wtyt

¼ ΛξTþ1 þΣ ξTþ1�IK
� �

uTþ1

�
XT
t¼1

wt Λξt þΣ ξt�IKð Þut½ �

¼Λ ξTþ1 �
XT
t¼1

wt ξt

" #
þΣ ξTþ1�uTþ1

� �

�Σ
XT
t¼1

wt ξt�utð Þ

Λ ξTþ1 � w
0�IM

� �
s

h i
þΣ ξTþ1�uTþ1

� �
�Σ

XT
t¼1

wt ξt�utð Þ

as w0�IMð Þs¼PT
t¼1wt ξt. Then the MSFE matrix is given by

E ew,Tþ1e
0
w,Tþ1

� �¼ ΛE ξTþ1 � ðw0�IMÞs
� ��

ξ0Tþ1 � s0 ðw�IMÞ
� ��

Λ0

þΣE ðξTþ1ξ
0
Tþ1Þ�ðuTþ1u

0
Tþ1Þ

� �
Σ0

þΣ
XT
t¼1

w2
t E½ξt ξ0t��E½utu

0
t�Σ0

¼ ΛE½ξTþ1ξ
0
Tþ1�Λ0 �ΛE½ξTþ1s

0�ðΛ0�ITÞðw�IKÞ
�ðw0�IKÞðΛ�ITÞE½sξ0Tþ1�Λ0

þðw0�IKÞðΛ�ITÞE½ss0�ðΛ0�ITÞðw�IKÞ
þΣfE½ξTþ1ξ

0
Tþ1��E½uTþ1u

0
Tþ1�gΣ0

þðw0�IKÞðΣ�ITÞ
E ξtξ

0
t

� ��E½utu
0
t��IT


 �ðΣ0�ITÞðw�IKÞ

which implies (12). Here we have used E½ξtu0
τ� ¼ 0, for all t and τ, E½utu0

τ� ¼ 0 for all t≠ τ, E ξtξ
0
t

� �¼D and E½utu0
t� ¼ IK ,

for all t.
Furthermore, we get the following block matrix

E½ξTþ1s
0� ¼ E½ξTþ1ξ

0
1� E½ξTþ1ξ

0
2�… E½ξTþ1ξ

0
T �

� �
¼ ðP0ÞTD ðP0ÞT�1D…P0D
h i

�ℝM�ðTMÞ

as E½ξtξ0tþh� ¼DPh, for all h>0, hence E½ξtþhξ
0
t� ¼ ðP0ÞhD. Then the transpose block matrix is
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E½sξ0Tþ1� ¼

DPT

DPT�1

..

.

DP

0
BBBB@

1
CCCCA�ℝðTMÞ�M :

Finally, we obtain

E½ss0� ¼

E½ξ1ξ01� E½ξ1ξ02� � � � E½ξ1ξ0T �
E½ξ2ξ01� E½ξ2ξ02� � � � E½ξ2ξ0T �

..

. ..
. ..

.

E½ξTξ01� E½ξTξ02� � � � E½ξTξ0T �

0
BBBBBB@

1
CCCCCCA

¼

D DP � � � DPT�1

P0D D � � � DPT�2

..

. ..
. ..

.

ðP0ÞT�1D ðP0ÞT�2D � � � D

0
BBBBB@

1
CCCCCA:

Substituting the above matrix formulas into (12) yields a neat and easily programmable expression for the MSFE.
II) Derivation of (13)–(16). The first derivatives of the trace of MSFEðwÞ with respect to w�IK are given by the

ðTKÞ�ðTKÞ matrix

∂ trMSFEðwÞ
∂w�IK

¼�2ðΛ�ITÞE sξ0Tþ1

� �
Λ0

þ2 ðΛ�ITÞE½ss0�ðΛ0�ITÞþðΣ�ITÞ½
ðD�ITKÞðΣ0�ITÞ�ðw�IKÞ:

Equating to the null matrix yields

M ðwUO�IKÞ ¼N

where M and N are as in (14) and (15). This proves (13), and implies (16) as M is positive definite, hence invertible.
For computational purposes, we use the following neat expressions for the matrices M¼M1þM2 and N :

M1 ¼ diag ΣðD�IKÞΣ0 � � �ΣðD�IKÞΣ0½ ��ℝðTKÞ�ðTKÞ

M2 ¼ðΛ�ITÞE½ss0�ðΛ0�ITÞ

¼

ΛDΛ0 ΛDPΛ0 � � � ΛDPT�1Λ0

ΛP0DΛ0 ΛDΛ0 � � � ΛDPT�2Λ0

..

. ..
. ..

.

ΛðP0ÞT�1DΛ0 ΛðP0ÞT�2DΛ0 � � � ΛDΛ0

0
BBBBB@

1
CCCCCA�ℝðTKÞ�ðTKÞ

and
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N ¼ðΛ�ITÞE sξ0Tþ1

� �
Λ0 ¼

ΛDPTΛ0

ΛDPT�1Λ0

..

.

ΛDPΛ0

0
BBBB@

1
CCCCA�ℝðTKÞ�K

III) Derivation of (18). To minimize the trace of E ew,Tþ1e0w,Tþ1

� �
subject to

PT
t¼1wt ¼ 1, that is, i0Tw¼ 1, we first con-

sider the matrix Lagrangian

LðwÞ¼ E ew,Tþ1e
0
w,Tþ1

� �þ λð1�w0 iTÞIK �ℝK�K

whose first derivatives with respect to w is the ðTKÞ�K matrix

∂LðwÞ
∂w

¼M ðw�IKÞ �N � λðiT�IKÞ

Equating to the null matrix gives

λðiT�IKÞ ¼M ðw�IKÞ �N ðA1Þ

or, equivalently,

λM�1ðiT�IKÞ ¼ ðw�IKÞ �M�1N

hence,

λ i0T�IK
� �

M�1ðiT�IKÞ ¼ i0T�IK
� �ðw�IKÞ� i0T�IK

� �
M�1N

¼ ði0TwÞ�IK � i0T�IK
� �

M�1N

¼ IK � i0T�IK
� �

M�1N:

Taking the trace operator gives λa¼K � b; hence, λ¼ðK � bÞ=a�ℝ, where a and b are as in §2 (after formula 18).
Substituting λ into (A1) yields

M ðwRO�IKÞ �N � K � b
a

ðiT�IKÞ¼ 0

which implies (18).
IV) Derivation of (25). Substituting (21) into (24) yields
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ŷTþ1jT ¼
XM
i¼1

ξ̂i,Tþ1jT x
0
Tþ1�IK

� �
X�1

iT �IK
� � XT

t¼1

ðxt�IKÞyt ξ̂itjT
" #

¼
XM
i¼1

ξ̂i,Tþ1jT x
0
Tþ1X

�1
iT

� �
�IK

h i XT
t¼1

ðxt�IKÞyt ξ̂itjT
" #

¼
XT
t¼1

XM
i¼1

ξ̂i,Tþ1jT ξ̂itjT x
0
Tþ1X

�1
iT xt

� �
�IK

h i
yt

¼
XT
t¼1

XM
i¼1

ξ̂i,Tþ1jT ξ̂itjT x
0
Tþ1X

�1
iT xt

� �" #
yt

¼
XT
t¼1

wMS,tyt

which implies (25).
V) On the effective computations of (27)–(30). It suffices to derive the ðt,τÞ block matrix of E½~s~s0��ℝðTKÞ�ðTKÞ, for all

t,τ¼ 1,…,T, t≤ τ (by symmetry), and the ðt,1Þ block matrix of E ~sξ0Tþ1B
0 xTþ1�IKð Þ� �

�ℝðTKÞ�K , for all t¼ 1,…,T. By the
law of iterated expectations, we can use the following approximations for T sufficiently large:

E½~s~s0�tτ ¼E E½~s~s0jYT �½ �tτ
¼E x0t�IK

� �
BE ξt ξ

0
τjYT

� �
B0 ðxτ�IKÞ

� �
tτ

� 1
T2

XT
t¼1

XT
τ¼t

x0t�IK
� �

B̂

diagðξ̂tjTÞ � ξ̂tjT ξ̂
0
tjT

h i
Pτ�t B̂

0 ðxτ�IKÞ�ℝK�K

E½~sξ0Tþ1B
0 ðxTþ1�IKÞ�t1

¼E x0t�IK
� �

BE½ξt ξ0Tþ1jYT �B0 ðxTþ1�IKÞ
� �

t1

� 1
T

XT
t¼1

x0t�IK
� �

B̂ diagðξ̂tjTÞ � ξ̂tjT ξ̂
0
tjT

h i
PTþ1�t B̂

0 ðxTþ1�IKÞ�ℝK�K :
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