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Heat transport in insulators
from ab initio Green-Kubo theory

Stefano Baroni, Riccardo Bertossa, Loris Ercole, Federico Grasselli, and
Aris Marcolongo

Heat conduction in insulators is determined by the dynamics of the atomic nu-
clei, the electrons following adiabatically in their ground state: a regime that
we will refer to as atomic or adiabatic heat transport. When a quasi-particle
picture of the heat carriers (phonons) is adequate, a kinetic approach to heat
conduction based on the Boltzmann transport equation (Peierls 1929) has
been demonstrated (Broido et al 2007) and successfully applied to crystalline
insulators (Zhou et al 2016), leveraging phonon frequencies and lifetimes
from density-functional perturbation theory (Baroni et al 1987; Giannozzi
et al 1991; Debernardi et al 1995; Baroni et al 2001). As the temperature in-
creases, anharmonic effects eventually make the quasi-particle picture break
down well below melting (Turney et al 2009), while the Boltzmann trans-
port equation simply does not apply to glasses and liquids, where phonon
dispersions are not even defined.

The simulation of thermal transport in glasses, liquids, and high-temper-
ature crystalline solids thus requires the full deployment of the statistical
mechanics of hydrodynamic fluctuations (Kadanoff and Martin 1963), started
in the thirties by Lars Onsager (Onsager 1931a,b) and culminated in the fifties
with the Green-Kubo (GK) theory of linear response (Green 1952, 1954; Kubo
1957; Kubo et al 1957). According to this theory, the thermal conductivity,
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κ, can be expressed in terms of time correlations of the heat current, J , as:

κ ∝
∫ ∞

0

〈J(t)J(0)〉 dt, (1)

where the brackets indicate ensemble averages over trajectories, which are
accessible in principle to molecular dynamics (MD) simulations. In spite of the
beauty, rigor, and broad scope of the GK theory, its adoption in the ab initio
simulation of heat transport has stumbled at two seemingly insurmountable
hurdles: first and foremost, the heat current entering Eq. (1) is ill-defined
at the atomic scale, thus allegedly thwarting its implementation from first
principles; second but not less important, experience in classical simulations,
where a definition of the heat current is readily available in terms of suitably
defined atomic energies (Irving and Kirkwood 1950) indicates that taming its
statistical fluctuations requires so long MD simulations, as to be unaffordable
using ab initio (AI) MD (Car and Parrinello 1985; Marx and Hutter 2009).
As a matter of fact, no AIMD simulations of adiabatic heat transport based
on GK theory have appeared until the spurious nature of these hurdles was
recently revealed by Marcolongo et al (2016) and Ercole et al (2016, 2017).

The first difficulty was overcome by revealing a general gauge invariance
principle for thermal transport, stemming from the hydrodynamic nature of
energy fluctuations (see below), which makes transport coefficients indepen-
dent of the microscopic expression of the energy density and current that are
to a large extent ill defined (Marcolongo et al 2016; Ercole et al 2016). Build-
ing on this principle, an expression for the energy current was derived from
density-functional theory (Hohenberg and Kohn 1964; Kohn and Sham 1965),
which allows simulating heat transport within the GK formalism, using equi-
librium AIMD. The second difficulty was addressed using advanced statistical
methods for the spectral analysis of stationary time series, which provide an
asymptotically unbiased and consistent estimate of the power spectrum of
the energy current, meaning that both the bias and the statistical error of
the estimated conductivity can be made arbitrarily and controllably small
in the limit of long simulation time (Ercole et al 2017). The combination of
these theoretical and methodological innovations makes the ab initio simula-
tion of heat transport feasible in principle and affordable in practice. In this
chapter we review the efforts that have led to these achievements, starting
with a brief review of the relevant theoretical concepts, and illustrate them
with relevant benchmarks and an application to a realistic model of liquid
water.
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1 Green-Kubo theory of heat transport

1.1 Hydrodynamic variables

The macroscopic processes occurring in condensed matter are often described
in terms of extensive variables. By definition, the value that such a variable
assumes for a system is the sum of the values it has for each of its subsystems.
This property allows one to express an extensive variable, A, as the integral
of a suitably defined density, a(r), as:

A[Ω] =

∫

Ω

a(r)dr, (2)

where Ω is the system volume. Here and in the following boldfaces indicate
3D vectors and Greek subscripts label Cartesian components: u = {uα} =
{u1, u2, u3}. When an extensive quantity is locally conserved, a current den-
sity, j(r, t), can be associated to its density in such a way that the two of
them satisfy the continuity equation:

∂a(r, t)

∂t
= −∇ · j(r, t), (3)

where ∇·j indicates partial differentiation and the middle dot a scalar prod-
uct (a divergence in this case). In the following the densities and current
densities of conserved quantities will be called conserved densities and con-
served currents for short. The space Fourier transform of Eq. (3) reads:

˙̃a(q, t) = −iq · ̃(q, t), (4)

where the overdot indicates a time derivative and the tilde a Fourier trans-
form, so that the longer the wavelength, the slower is the dynamics of a con-
served density. We conclude that for long enough wavelengths, conserved den-
sities are adiabatically decoupled from all the other (zillions of) fast atomic
degrees of freedom. Note that in this chapter we are using the concept of
adiabatic decoupling in two distinct senses, depending on the context: to in-
dicate the decoupling of electronic from nuclear degrees of freedom, and that
of hydrodynamic variables from fast atomic ones.

The long-wavelength Fourier components of conserved densities are called
hydrodynamic variables. In macroscopically homogeneous systems, different
wavelengths are decoupled from each other, while, as we have seen, the long
wavelengths are adiabatically decoupled from all the other degrees of freedom.
Let us suppose there are Q conserved extensive variables. In the case of a
mono-atomic fluid, for instance, Q = 5, corresponding to mass (or particle
number), energy, and the three components of the momentum. In order to
simplify the notation, we set the value of the conserved quantities equal to
zero, Ai = 0, so that their densities, ai(r), directly refer to the departure
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from equilibrium, and we indicate by ji(r, t) the corresponding currents. At
equilibrium, all the conserved densities and currents vanish. Off equilibrium,
it will be assumed that the wavelength and the time scale of the disturbances
are so long that thermal equilibrium still holds locally. That is to say, a local
temperature, pressure, and chemical potential can be defined, such that, when
combined with the densities of extensive variable, they satisfy a local equation
of state.

For small enough deviations from equilibrium, the time derivatives of con-
served densities are linear combinations of the densities themselves. In the
frequency/wavevector domains this condition can be expressed as

− iωãi(q, ω) =
∑

j

Λ̃ij(q, ω)ãj(q, ω), (5)

where the tilde indicates now a space-time Fourier transform: ã(q, ω) =∫
e−i(q·r−ωt)a(r, t)drdt. By combining Eq. (5) with the time Fourier transform

of Eq. (4), we obtain the so-called constitutive equations for the (longitudinal
components of the) conserved currents:

̃i(q, ω) = i
q

q2

∑

j

Λ̃ij(q, ω)ãj(q, ω). (6)

In isotropic media, the Λ̃’s are spherically symmetric functions of q, whereas
their value at q = 0 vanishes, because a non-vanishing value would imply a
non-physical long-range dependence of the currents on density fluctuations,
in contrast with our assumption of local thermodynamic equilibrium. The
long-wavelength low-frequency limit of the coupling constants can thus be
assumed to be Λ̃ij(q, ω) ∼ q2λij , so that the macroscopic (q = 0) station-
ary (ω = 0) components of the currents, Ji = 1

Ω

∫
ji(r)dr, are related to

the corresponding components of the density gradients, Di = 1
Ω

∫
∇ai(r)dr,

through the equations:

Ji =
∑

j

λijDj . (7)

In the following, the macroscopic component of a current will be indicated
as a flux.

Let xi = ∂S
∂Ai be the intensive variable conjugate to Ai, where S is the sys-

tem’s entropy, and χij = 1
Ω
∂Ai

∂xj the corresponding susceptibility. For instance,
when Ai is the energy of the system, the corresponding conjugate variable is
the inverse temperature, xi = 1/T , while, when Ai represents the number of
particles of a given species, one has xi = −µi/T , µi being the correspond-
ing chemical potential. The hypothesis of local thermodynamic equilibrium
allows defining local values of the intensive variables, and we define thermo-
dynamic forces as their average gradients: Fi = 1

Ω

∫
∇xi(r)dr. The average

density gradients are related to the thermodynamic forces through the sus-
ceptibility defined above, as:
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Di =
∑

j

χijFj . (8)

By inserting this relation into Eq. (7), one gets:

Ji =
∑

j

LijFj , (9)

where Lij =
∑
k λ

ikχkj . Eq. (9) expresses the linear relation between fluxes,
the J’s, and thermodynamic affinities, the F’s, for which Onsager derived
his celebrated reciprocity relations (Lji = Lij) from microscopic reversibility
(Onsager 1931a,b; Casimir 1945). Note that, according to our definition, both
the J’s and the F’s in Eq. (9) do not depend on the size of the system.

1.2 Linear-response theory

In order to evaluate the Lij phenomenological coefficients appearing in
Eq. (9), we consider a classical system of N interacting atoms described
by the Hamiltonian

H◦(Γ) =
∑

n

1

2Mn
(Pn)2 + V (R1,R2, · · ·RN ), (10)

where Mn, Rn, and Pn are the masses, coordinates, and momenta of the n-th
particle, Γ = {Rn,Pn} indicates the phase-space coordinates of the entire
system, and V is a generic many-body potential. Let us now suppose that
the system is subject to an external perturbation that can be described as a
linear combination of the conserved densities, {ai(r; Γ)}, as:

V ′(Γ, t) =
∑

i

∫
vi(r, t)ai(r; Γ)dr, (11)

where a(r; Γ) is a phase-space function whose ensemble average is the con-
served density,

a(r) = 〈a(r; Γ)〉

=

∫
a(r; Γ)P◦(Γ)dΓ,

(12)

P◦(Γ) ∝ e
−H
◦(Γ)
kBT is the equilibrium distribution, kB the Boltzmann constant,

and {vi(r, t)} are time-dependent fields that couple to the conserved densities
and vanish at t = −∞, when the system is assumed to be in thermal equilib-
rium at some temperature T . Of course, conserved currents are also expected
values of some phase-space functions, j(r) = 〈j(r; Γ)〉. The phase-space func-
tions whose expected values are conserved densities/currents will be referred
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to as phase-space samples of the currents/densities. In the following, when
the phase-space dependence of a conserved density/current is explicitly in-
dicated, we will mean a phase-space sample; when it is not a phase-space
average will be implied. When a phase-space sample is evaluated along a
dynamical trajectory, Γt, the sample function will depend on time and on
the initial conditions of the trajectory. Averaging with respect to the initial
conditions will result in a time-dependent expected value for the conserved
densities (or currents):

a(r, t) = 〈a(r; Γ′t)〉0

=

∫
a(r; Γ′t)P◦(Γ0)dΓ0.

(13)

In Eq. (13) the notation Γ′t denotes somewhat pedantically that the time
evolution in phase space is driven by the perturbed Hamiltonian, H◦ + V ′.
If it were driven by H◦, evidently the value of a would be time-independent.
In the following, the notation Γt will indicate an unperturbed time evolu-
tion. As an example, the phase-space sample of the particle density can
be assumed to be n(r; Γ) =

∑
n δ(r − Rn), the corresponding current is

j(r,Γ) =
∑
n δ(r − Rn)Pn/Mn, and a local external potential is described

by: V ′(Γ, t) =
∑
n v(Rn, t) =

∫
v′(r, t)n(r; Γ)dr. Note that sample functions

are not necessarily univocally defined. Different functions whose phase-space
averages coincide in the long-wavelength limit sample the same hydrodynam-
ical variable. More on this in Sec. 2.

According to Green (1954), Kubo (1957), and Kubo et al (1957), the linear
response of the i-th conserved current to the perturbation is:

jiα(r, t) =
1

kBT

∑

j

∫ t

−∞
dt′
∫
dr′
〈
jiα(r,Γt)ȧ

j(r′,Γt′)
〉

0
vj(r′, t′) (14)

=
−1

kBT

∑

j,β

∫ t

−∞
dt′
∫
dr′
〈
jiα(r,Γt)∂

′
βj
j
β(r′,Γt′)

〉
0
vj(r′, t′) (15)

=
1

kBT

∑

j,β

∫ t

−∞
dt′
∫
dr′
〈
jiα(r,Γt)j

j
β(r′,Γt′)

〉
0
∂′βv

j(r′, t′). (16)

The second line follows from the first through the continuity equation, Eq. (3),
while the third line follows after integrating by parts with respect to r′. The
notation ∂′β = ∂

∂r′β
has been used.

By integrating Eq. (16) all over the space, and assuming space-time ho-
mogeneity as well as isotropy, one recovers Eq. (9) with:
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J iα(Γ) =
1

Ω

∫
jiα(r,Γ)dr, (17)

F iα(Γ) =
1

ΩT

∫
∂αv

i(r,Γ)dr, (18)

Lijαβ =
Ω

kB

∫ ∞

0

〈
J iα(Γt)J

j
β(Γ0)

〉
0
dt. (19)

This completes the derivation of the Green-Kubo formula for transport coef-
ficients, Eq. (1), from classical linear-response theory. Onsager’s reciprocity
relations, Lij = Lji (Onsager 1931a,b), follow from Eq. (19) leveraging
time-translational invariance, 〈J iα(Γt)J

j
β(Γ0)〉 = 〈J iα(Γ0)Jjβ(Γ−t)〉, and micro-

reversibility, 〈J iα(Γt)J
j
β(Γ0)〉 = 〈J iα(Γ−t)J

j
β(Γ0)〉.

1.2.1 Einstein-Helfand expression for transport coefficients and
the Wiener-Khintchine theorem

The celebrated Einstein’s relation between the mean-square displacement of
a diffusing particle and its velocity auto-correlation function is easily general-
ized to an arbitrary stochastic process and has in fact been utilized by Helfand
(1960) to provide an “Einstein-like” expression for transport coefficients.

Let Xt be a stationary stochastic process. One has:

1

T

〈∣∣∣∣∣

∫ T

0

Xtdt

∣∣∣∣∣

2〉
= 2

∫ T

0

〈XtX0〉 dt−
2

T

∫ T

0

〈XtX0〉 t dt. (20)

In the large-T limit, the second term on the right-hand side of Eq. (20) can
be neglected.

When the stochastic process is the velocity of a Brownian particle, Eq. (20)
allows one to establish a relation between the diffusion constant of the par-
ticle, temperature, and the auto-correlation time of the velocity. When Xt

is the heat flux of a macroscopic body, Eq. (20) allows one to estimate the
thermal conductivity, as given by Eq. (1), from the asymptotic behavior of
the “energy displacement” D(τ) =

∫ τ
0

J(Γt)dt.
Eq. (20) can be easily generalized to the finite-frequency regime, to get:

ST (ω) =
1

T

〈∣∣∣∣∣

∫ T

0

Xte
iωtdt

∣∣∣∣∣

2〉

= 2Re

∫ T

0

〈XtX0〉 eiωtdt+O(T −1).

(21)

This equation expresses the Wiener-Khintchine theorem (Wiener 1930; Khint-
chine 1934), which states that the expectation of the squared modulus of the
Fourier transform of a stationary process is the Fourier transform of its time
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correlation function, which is usually referred to as the process power spectral
density,

S(ω) =

∫ ∞

−∞
〈XtX0〉 eiωtdt, (22)

aka the power spectrum. In the following the suffix T will be neglected for
simplicity and its value assumed to be sufficiently large as to be considered
infinite. More generally, when several conserved currents interact with each
other, one can define the cross-spectrum of the conserved fluxes as the Fourier
transform of the cross time-correlation functions:

Skl(ω) =

∫ ∞

−∞
〈Xk

t X
l
0〉 eiωtdt

=
1

T
Re

〈∫ T

0

Xk
t e−iωtdt×

∫ T

0

X l
te
iωtdt

〉
+O(T −1).

(23)

Eqs. (20) and (21) indicate that the transport coefficients we are after es-
sentially are the zero-frequency value of the (cross-) power spectrum of the
corresponding current(s), a fact that will be instrumental in our approach to
data analysis, as explained in Sec. 4. Therefore, Eq. (19) can be cast into the
form:

Lkl =
Ω

2kB
Skl(ω = 0), (24)

where the Cartesian indices have been omitted for clarity.

1.3 Heat transport

The above treatment allows one to compute the linear response of a system
at thermal equilibrium to a generic mechanical perturbation. Heat transport
is determined by temperature gradients that cannot be described by any me-
chanical perturbation. The concept of temperature distribution implies that
the system is locally at thermal equilibrium over lengths and times large
with respect to atomic distances and relaxation times. Temperature affects
the physical properties of a system through the Boltzmann distribution func-
tion. When the temperature is not constant, T (r) = T + ∆T (r) (|∆T | � T ),
the effects of this inhomogeneity can be formally described by the distribution
function:

P(Γ) ∝ e
−

∫ e(r;Γ)
kBT (r)dr (25)

= e
−H
◦(Γ)+V ′(Γ)
kBT , (26)

where e(r; Γ) is an energy (Hamiltonian) density, such that
∫
e(r; Γ)dr =

H◦(Γ). Eq. (11) becomes:
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V ′(Γ) = − 1

T

∫
∆T (r)e(r; Γ)dr +O(∆T 2). (27)

Eq. (27) shows that the effects of temperature inhomogeneities can be mim-
icked by a mechanical perturbation coupled to the temperature distribution.
From Eqs. (9) and (17-19) we conclude that in a system where the only non-
trivial conserved quantity is the energy, the heat (energy) flow is coupled to
temperature gradients through the constitutive equation:

JE = −κ∇T, (28)

where the thermal conductivity καβ = LEEαβ/T
2 (see Eq. (9)) can be expressed

by a Green-Kubo relation in terms of the fluctuations of the energy flux as:

καβ =
Ω

kBT 2

∫ ∞

0

〈
JEα (Γt)J

E

β (Γ0)
〉

0
dt, (29)

and

JE(Γ) =
1

Ω

∫
jE(r; Γ)dr. (30)

In order to obtain an explicit expression for the energy flux from a micro-
scopic expression for the energy density, we multiply the continuity equation,
Eq. (3), by r and integrate by parts, to obtain:

JE(Γt) =
1

Ω

∫
ė(r; Γt) r dr (31)

=
1

Ω

∫ [∑

n

(
∂e(r; Γt)

∂Rn
·Vn +

∂e(r; Γt)

∂Pn
· Fn

)]
r dr, (32)

where Fn is the force acting on the n-th atom, and Vn = Pn
Mn

its velocity.
The manipulations leading from the continuity equation, Eq. (3), to

Eq. (32) deserve some further comments, as they imply neglecting a boundary
term, J∂Ω = 1

Ω

∫
∂Ω

(j(r) · n̂) r dr (where ∂Ω is the boundary of the integra-
tion volume and n̂ the normal to it), which in general does not vanish in
the thermodynamic limit and is ill-defined in periodic boundary conditions
(PBC). The correct way of addressing this problem is to work with the Taylor
expansion of the space Fourier transform of the continuity equation, Eq. (4),
and to perform the thermodynamic limit at finite wavelength. The leading
non-vaninishing term in the Taylor expansion yields Eq. (31) without any
boundary term in the way.

1.3.1 Energy flux from classical force fields

When atoms interact through a classical force field, V (R1,R2, · · ·RN ), an
energy density can be defined in terms of local atomic energies as:
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e(r,Γ) =
∑

n

δ(r−Rn)en(Γ), (33)

en(Γ) =
(Pn)2

2Mn
+ vn({R}), (34)

where the vn’s are a set of atomic potential energies whose sum is the total
potential energy of the system,

∑
n vn = V , with a short-range dependence

on the coordinates of the other atoms. In the presence of long-range forces,
this condition is effectively guaranteed by local charge neutrality, which we
will assume throughout. By inserting Eq. (33) into Eq. (32), the energy flux
can be cast into the form:

JE(Γ) =
1

Ω

[∑

n

Vnen +
∑

n

Rn

(
Fn ·Vn +

∑

m

Vm ·
∂vn
∂Rm

)]

=
1

Ω

[∑

n

Vnen +
∑

n,m

(Rn −Rm)Fnm ·Vn

]
, (35)

where Fnm = − ∂vm
∂Rn

is the contribution of the m-th atom to the force acting
on the n-th atom,

∑
m Fnm = Fn, and Fnm = −Fmn. When the interaction

amongst atoms can be expressed in terms of two-body potentials, one has:
vm = 1

2

∑
n v(Rn−Rm) and Fnm = − 1

2∇Rnv(Rn−Rm). Here we implicitly
assumed that the interaction energy is equally partitioned between atoms
m and n. In Sec. 2 we shall see this is not the only possible choice, with
far-reaching consequences on the theory of heat transport.

The first term on the right-hand side of Eq. (35) is often called convective
and the second virial. We feel that the wording “convective” is somewhat mis-
leading in this context, as the convective current, as well as its contribution
to heat conductivity, may not vanish even in the absence of convection.

1.3.2 Multi-component fluids

In a multi-component fluid there is one conserved quantity (the particle num-
ber) per atomic species, plus the total energy and the three Cartesian com-
ponents of the total momentum. The momentum densities are mass currents:
the mass flux is therefore the total momentum, which vanishes in the center
of mass reference frame. The transverse components of the momentum den-
sities are decoupled from the other conserved densities (Foster 1975), while
the longitudinal one can be assumed to coincide with the total momentum
in the long-wavelength limit. Momentum conservation thus constrains the
number of fluxes interacting with the energy flux in Eq. (9) to Q−1, Q being
the number of atomic species, so that the resulting dimension of the matrix
of Onsager coefficients, L, is Q × Q. The heat flux is defined as the non-
convective component of the energy flux, i.e. the value of the latter in the
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absence of mass transport, that is to say when all the particle fluxes vanish.1

By imposing this condition in Eq. (9), with J1 ≡ JE, and Jq (q = 2, . . . Q)
being independent particle fluxes, the thermal conductivity, defined as the
ratio of the heat flux over the temperature gradient, is given by:

κ =
1

T 2 (L−1)11
. (36)

This expression can be proved to be invariant under any non-singular linear
transformation of the independent particle fluxes. For instance, in the case
of a two-component liquid, energy and particle currents are coupled as in:

JE = LEE∇
(

1

T

)
+ LEQ∇

(µ
T

)
,

JQ = LEQ∇
(

1

T

)
+ LQQ∇

(µ
T

)
,

(37)

where JQ is the particle current of one of the two species (say, the second),
and µ the corresponding chemical potential (Sindzingre and Gillan 1990). By
imposing that the particle current vanishes, the resulting thermal conductiv-
ity is:

κ =
1

T 2

(
LEE − (LEQ)2

LQQ

)
. (38)

2 Gauge invariance of heat transport coefficients

It is often implicitly assumed that the well-definiteness of thermal transport
coefficients would stem from the uniqueness of the decomposition of the sys-
tem’s total energy into localized, atomic, contributions. This assumption is
manifestly incorrect, as any decomposition leading to the same value for the
total energy as Eq. (34) should be considered as legitimate. The difficulty of
partitioning a system’s energy into subsystems’ contributions is illustrated
in Fig. 1, which depicts a system made of two interacting subsystems. When
defining the energy of each of the two subsystems, an arbitrary decision has
to be made as to how the interaction energy is partitioned. In the case de-
picted in Fig. 1, for instance, the energy of each of the two subsystems can
be defined as E(Ωi) = E(Ωi) + 1

2 (1± λ)W12, where E(Ωi) are the energies of
the two isolated subsystems, W12 their interaction energy, and λ an arbitrary
constant. In the thermodynamic limit, when all the subsystems’ energies are
much larger than the interaction between any pairs of them, the value of

1 It is unfortunate, but inevitable due to common usage, that this definition of
non-convective flux clashes with a different definition given above while comment-
ing Eq. (35).
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the λ constant is irrelevant. When it comes to defining energy densities (i.e.
energies of infinitesimal portions of a system) or atomic energies, instead, the
magnitude of the interaction between different subsystems is comparable to
their energies, which become therefore intrinsically ill-defined.

Ω₁ Ω₂ E(Ω1 ∪ Ω2) = E(Ω1) + E(Ω2) +W12

?
= E(Ω1) + E(Ω2)

Fig. 1 – The energy of an isolated system is the sum of the energies of its
subsystems (as defined when they are isolated as well) plus the interaction among
them, W12, whose magnitude scales as the area of the interface, depicted in red.
When defining the energies of individual subsystems, E, W12 has to be arbitrarily
partitioned among them.

Let us consider a mono-atomic fluid interacting through pair potentials,
v(|Rn − Rm|), and define the atomic energies as (Marcolongo 2014; Ercole
et al 2016):

eγ,n(Γ) =
1

2Mn
(Pn)2 +

1

2

∑

m 6=n

v(|Rn −Rm|)(1 + γnm), (39)

where γnm = −γmn is any antisymmetric matrix. As the inter-atomic poten-
tial appearing in Eq. (39) is symmetric with respect to the atomic indices, it
is clear that the sum of all the atomic energies does not depend on γ, thus
making any choice of γ equally permissible. This trivial observation has deep
consequences on the theory of thermal fluctuations and transport, because
the value of the macroscopic energy flux, instead, depends explicitly on γ,
thus making one fear that the resulting transport coefficients would depend
on γ as well. Using the same manipulations that lead from Eqs. (33) and (34)
to Eq. (35), for any choice of the γ matrix in Eq. (39), a corresponding ex-
pression for the macroscopic energy flux can be found, reading (Marcolongo
2014; Ercole et al 2016):

JEγ = JE +
1

2Ω

∑

n,m6=n

γnm

(
vnmVn +

(
Vn · ∇Rn

vnm
)
(Rn −Rm)

)
, (40)

where vnm = v(|Rn −Rm|).
As a specific example, Ercole et al (2016) ran MD simulations for a

Lennard-Jones monoatomic fluid described by the inter-atomic potential

v(r) = ε
[(
σ
r

)12 −
(
σ
r

)6]
at temperature T = 1.86 ε

kB
and density ρ =

0.925σ−3. In Fig. 2a we display the resulting macroscopic energy-flux au-
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0
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0.0 0.2 0.4
T

0
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κ
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/
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)

2

1

0

(b)

Fig. 2 – (a) Time correlation functions of the modified macroscopic energy flux
of a Lennard-Jones fluid, at the conditions described in the text, as defined
in Eq. (40), for different definitions of the γ matrix. The “0” line refers to
the standard definition (γ = 0), whereas the labels “1” and “2” correspond to
two other (arbitrary) definitions of γ as described in Ercole et al (2016). (b)
Integral of the time correlation functions displayed in Fig. 2a, multiplied by the
prefactor appearing in the GK relation, Eq. (29), as a function of the upper
limit of integration. The barely visible shaded area surrounding each line is an
indication of the error bars, as estimated by standard block analysis. Units are
Lennard-Jones units (M = σ = ε = 1).

tocorrelation function corresponding to different choices of the γ matrix in
Eqs. (39) and (40). Fig. 2a clearly shows that the 〈JEγ (t) · JEγ (0)〉 correla-
tion functions dramatically depend on the γ matrices in Eqs. (39) and (40).
Notwithstanding, the integrals of all these time correlation functions tend to
the same limit at large integration times, as shown in Fig. 2b.

In order to get insight into this remarkable invariance property, let us in-
spect the difference between the generalized flux in Eq. (40) and the standard
expression of Eq. (35):
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∆JEγ = JEγ − JE =
d

dt

1

4Ω

∑

n,m6=n

γnm v(|Rn −Rm|)(Rn −Rm). (41)

We see that the two different expressions for the macroscopic energy flux
differ by a total time derivative of a bounded phase-space vector function. In
the following, we show that this is a consequence of energy conservation and
extensivity and a sufficient condition for the corresponding thermal conduc-
tivities to coincide.

The very possibility of defining an energy current density, from which the
energy fluxes of Eq. (35) and (40) ultimately depend, stems from energy
extensivity. The considerations illustrated in Fig. 1 indicate that any two
densities, e′(r, t) and e(r, t), whose integrals over a macroscopic volume dif-
fer by a quantity that scales as the volume boundary, should be considered
as equivalent. This equivalence can be expressed by the condition that two
equivalent densities differ by the divergence of a (bounded) vector field:

e′(r, t) = e(r, t)−∇ · p(r, t). (42)

In a sense, two equivalent energy densities can be thought of as different
gauges of the same scalar field. Energy is also conserved: because of this, for
any given gauge of the energy density, e(r, t), an energy current density can be
defined, j(r, t), so as to satisfy the continuity equation, Eq. (3). By combining
Eqs. (42) and (3) we see that energy current densities and macroscopic fluxes
transform under a gauge transformation as:

j′(r, t) = j(r, t) + ṗ(r, t), (43)

J′(t) = J(t) + Ṗ(t), (44)

where P(t) = 1
Ω

∫
p(r, t)dr. We conclude that the macroscopic energy fluxes

in two different energy gauges differ by the total time derivative of a bounded
phase-space vector function.

We now show that the energy fluxes of the same system in two different
energy gauges, e and e′, differing by a bounded total time derivative, as
in Eq. (44), result in the same heat conductivity, as given by the Green-
Kubo formula, Eq. (29). More generally, the Onsager coefficients coupling
two fluxes, J1 and J2, do not depend on the gauge of either one of them. In
fact, let

(
J1
)′

= J1 + Ṗ; one has:

(
L11
)′

=
Ω

2kB

∫ +∞

−∞

〈(
J1(t) + Ṗ(t)

)
·
(
J1(0) + Ṗ(0)

)〉
dt

= L11 +
Ω

2kB

[〈
P(t) · Ṗ(0)

〉∣∣∣
+∞

−∞
+ 2

〈
P(t) · J1(0)

〉∣∣∣
+∞

−∞

]
.

(45)

The expectation of the time-lagged products in Eq. (45) is equal to the
products of two expectations at large time lag. As the equilibrium expecta-
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tions of both a total time derivative and a current vanish, we conclude that(
L11
)′

= L11. A slight generalization of this argument, also using microscopic

reversibility as in Onsager (1931a,b), allows us to conclude that
(
L12
)′

= L12

and that, in general, κ′ = κ.

2.1 Molecular fluids

In a one-component molecular fluid such as liquid water or, say, ethanol, there
are in general Q fluxes interacting with each other through Onsagers’ Eq. (9),
where Q is the number of atomic species in a molecule. The requirement that
atoms are bound in molecules of fixed composition, however, sets a number
of constraints that substantially simplify the treatment of heat transport,
making the molecular case similar to the one-component one.

Let us consider a molecule of chemical formulaANABNB · · · , whereA,B, · · ·
indicate atomic species, and NA, NB , · · · the corresponding atomic stoichio-
metric indices. For each atomic species we define the normalized number flux
as:

JX =
1

NX

∑

n∈X
Vn. (46)

If we indicate by MX the atomic mass of species X, momentum conservation
requires that

∑
XMXNXJX = 0 in the center-of-mass reference frame. The

flux JXY = JX−JY is the total time derivative of a bounded vector, because
its integral is the sum over all the molecules of the difference between the
average atomic positions of either species within a same molecule, which is
obviously bounded if molecules do not dissociate. As any number flux JX can
be expressed as a linear combination of the total momentum and of several
JXY fluxes, each of them is the total time derivative of a bounded vector.
Therefore, the Onsager coefficient coupling any of these atomic fluxes with
any other, or with the energy flux, vanishes. We conclude that energy is
the only conserved quantity relevant for heat transport in a molecular fluid,
and that the energy-flux autocorrelation function directly yields the thermal
conductivity, as in Eq. (1).

3 Density-functional theory of adiabatic heat transport

Quantum simulation methods based on Density-Functional Theory (DFT)
have long been thought to be incompatible with the GK theory of thermal
transport because in first-principles calculations it is impossible to uniquely
decompose the total energy into individual contributions from each atom
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(Stackhouse et al 2010). For this reason, ab initio simulations of heat trans-
port have often been performed using non-equilibrium approaches.

Stackhouse et al (2010), for instance, computed the thermal conductivity
of periclase MgO using a method devised by Mller-Plathe (1997). In this
apporach a net heat flux, rather than a temperature gradient, is imposed to
the simulated system and the thermal conductivity is evaluated as the ratio
between the heat flux and the resulting temperature gradient.

In the so-called approach to equilibrium methodology of Lampin et al
(2013) the system is first prepared in an out-of-equilibrium state characterized
by an inhomogeneous temperature distribution and the thermal conductivity
is evaluated from the time it takes for the system to relax to equilibrium.
This technique has been combined with AIMD to simulate thermal transport
in a GeTe4 glass by Bouzid et al (2017) and further generalized and applied
to crystalline and nano-structured MgO by Puligheddu et al (2017).

Recently, there have been several attempts to combine the GK approach
to heat transport with ab initio techniques based on electronic-structure the-
ory, by adopting some ad hoc definitions for the energy flux. Kang and Wang
(2017), for instance, derived an expression for the energy flux from a (rather
arbitrary) quantum-mechanical definition of the atomic energies and used a
modified MD integration algorithm to cope with the difficulties ensuing from
the implementation of their expression in PBC. Carbogno et al (2017) gave
a different expression for the energy flux, based on a normal-mode decompo-
sition of the atomic coordinates and forces, which, while allowing to reduce
the effects of thermal fluctuations, can only be applied to crystalline solids.

In spite of the undoubted ingenuity of these proposals, the problem still
remains as of how it is possible that a rather arbitrary definition of the heat
flux results in an allegedly well defined value for the thermal conductivity.
The gauge-invariance principle introduced in Sec. 2 not only provides a so-
lution to this conundrum, but it also gives a rigorous way of deriving an
expression for the energy flux directly from DFT, without introducing any
ad hoc ingredients.

In order to derive such an expression for the adiabatic energy flux, we
start with the standard DFT expression of the total energy in terms of the
Kohn-Sham (KS) eigenvalues εv, eigenfunctions φv(r), and density n(r) =∑
v |φv(r)|2 (Martin 2008):

EDFT =
1

2

∑

n

MnV
2
n +

e2

2

∑

n,m 6=n

ZnZm
|Rn −Rm|

+
∑

v

εv −
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ +

∫
(εXC [n](r)− µXC [n](r))n(r)dr, (47)

where e is the electron charge, εXC [n](r) is a local exchange-correlation (XC)
energy per particle defined by the relation

∫
εXC [n](r)n(r)dr = EXC [n], the

latter being the total XC energy of the system, and µXC(r) = δEXC
δn(r) is the
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XC potential. The DFT total energy can be readily written as the integral
of a DFT energy density (Chetty and Martin 1992):

EDFT =

∫
eDFT (r)dr,

eDFT (r) = eel(r) + eZ(r),

(48)

where:

eel(r) = Re
∑

v

φ∗v(r)
(
HKSφn(r)

)

− 1

2
n(r)vH(r) + (εXC(r)− µXC(r))n(r), (49)

eZ(r) =
∑

n

δ(r−Rn)

(
1

2
MnV

2
n + wn

)
, (50)

wn =
e2

2

∑

m 6=n

ZnZm
|Rn −Rm|

, (51)

HKS is the instantaneous self-consistent Kohn-Sham Hamiltonian, and vH =

e2
∫
dr′ n(r′)
|r−r′| is the Hartree potential. An explicit expression for the DFT

energy flux is obtained by computing the first moment of the time derivative
of the energy density, Eqs. (48-51), as indicated in Eq. (31), resulting in a
number of terms, some of which are either infinite or ill-defined in PBC.
Casting the result in a regular, boundary-insensitive, expression requires a
careful breakup and refactoring of the various harmful terms, as explained
by Marcolongo (2014) and in the online version of Marcolongo et al (2016).
The final result reads:

JEDFT = JH + JZ + J0 + JKS + JXC , (52)

JH =
1

4πΩe2

∫
∇vH(r)v̇H(r)dr, (53)

JZ =
1

Ω

∑

n


Vn

(
1

2
MnV

2
n + wn

)
+
∑

m 6=n

(Rn −Rm)

(
Vm ·

∂wn
∂Rm

)
 ,

(54)

J0 =
1

Ω

∑

n

∑

v

〈
φv

∣∣∣∣(r−Rn)

(
Vn ·

∂v̂0

∂Rn

)∣∣∣∣φv
〉
, (55)

JKS =
1

Ω
Re
∑

v

〈φ̄cv|HKS + εv|φ̇cv〉, (56)

JXCα =

{
0 (LDA)

− 1
Ω

∫
n(r)ṅ(r)∂ε

GGA(r)
∂(∂αn) dr (GGA),

(57)
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where v̂0 is the bare, possibly non-local, (pseudo-) potential acting on the
electrons and

|φ̄cv〉 = P̂c r |φv〉, (58)

|φ̇cv〉 =
˙̂
Pv |φv〉, (59)

are the projections over the empty-state manifold of the action of the position
operator over the v-th occupied orbital, Eq. (58), and of its adiabatic time
derivative (Giannozzi et al 2017), Eq. (59), P̂v and P̂c = 1 − P̂v being the
projector operators over the occupied- and empty-states manifolds, respec-
tively. Both these functions are well defined in PBC and can be computed,
explicitly or implicitly, using standard density-functional perturbation theory
(Baroni et al 2001).

4 Data analysis

The MD evaluation of the GK integral, Eq. (1), usually proceeds in two
steps. One first evaluates the integrand as a running average of the time-

lagged current products, 〈J i(τ)Jj(0)〉 ∼ 1
T −τ

∫ T −τ
0

J i(t + τ)Jj(t)dt, where
T is the length of the MD trajectory. The matrix defined in Eq. (19) is
then estimated as a function of the upper limit of integration: Lij(T ) ∝
Ω
kB

∫ T
0
〈J i(τ)Jj(0)〉 dτ . One then recovers, via Eq. (36), an estimate for the

thermal conductivity depending on T : κ(T ) ∝ 1
(L−1(T ))11 . This function is

usually very noisy: in fact, at times greater than the correlation time be-
tween J i and Jj , the correlation function 〈J i(τ)Jj(0)〉 approaches zero, hence
Lij(T ) starts integrating noise and behaves like the distance traveled by a
random walk, whose variance grows linearly with the upper integration limit.
The evaluation of transport coefficients thus requires averaging over multi-
ple trajectories (possibly multiple segments of a same long trajectory) and
estimating the resulting uncertainty as a function of both the length of each
trajectory and the upper limit of integration. This is a cumbersome task that
often leads to a poor estimate of the statistical and systematic errors on the
computed conductivity. All the more so when the signal is inherently oscilla-
tory, due to the existence of high-frequency features in the power spectrum of
the energy flux, possibly due to intramolecular oscillations that meddle with
the noise. Some authors try to overcome these problems by either fitting the
autocorrelation function or the GK integral with a multi-exponential func-
tion (Schelling et al 2002; Zhang et al 2015), or by extrapolating the power
spectrum of the energy flux to the zero-frequency limit (Volz and Chen 2000).
Others have attempted an error analysis of the MD estimate of the GK inte-
gral, based on either heuristic or rigorous arguments (Jones and Mandadapu
2012; Wang et al 2017; Oliveira and Greaney 2017), but they all require an
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estimate of an optimal value for the upper limit of integration, which de-
termines a bias in the estimate, and which is in general difficult to obtain.
Different classes of systems require different approaches to error analysis,
but it is widely believed that all of them always require so long simulation
times as to be unaffordable with accurate but expensive AIMD techniques
(Carbogno et al 2017). In order to solve this problem, Ercole et al (2017)
considered it in the light of the statistical theory of stationary time series.

4.1 Solids and one-component fluids

In practice, MD gives access to a discrete sample of the flux process (a time
series), Jn = J(nε), 0 ≤ n ≤ N − 1, where ε is the sampling period of the
flux and N the length of the time series, that we assume to be even. As was
shown in Sec. 1.2.1, the Wiener-Khintchine theorem allows one to express the
heat conductivity in terms of the zero-frequency value of the power spectrum
of the energy-flux (see Eqs. (21-24)):

κ =
Ω

2kBT 2
S(ω = 0). (60)

Let us define the discrete Fourier transform of the flux time series as:

J̃k =

N−1∑

n=0

e2πi knN Jn, (61)

for 0 ≤ k ≤ N − 1.2 The sample spectrum Ŝk, aka periodogram, is defined as

Ŝk =
ε

N

∣∣∣J̃k
∣∣∣
2

, (62)

and, for large N , it is an unbiased estimator of the power spectrum of the
process, as defined in Eq. (21), evaluated at ωk = 2π k

Nε , namely: 〈Ŝk〉 =

S(ωk). The reality of the Ĵ ’s implies that J̃k = J̃∗N−k and Ŝk = ŜN−k, so

that periodograms are usually reported for 0 ≤ k ≤ N
2 and their Fourier

transforms evaluated as discrete cosine transforms.
The space autocorrelations of conserved currents are usually short-ranged.

Therefore, in the thermodynamic limit the corresponding fluxes can be seen
as sums of (almost) independent identically distributed stochastic variables,
so that, according to the central-limit theorem, their equilibrium distribution
is Gaussian. A slight generalization of this argument allows us to conclude

2 Here, the convention for the sign in the exponential of the time-to-frequency Fourier
transform is opposite to what adopted in (Ercole et al 2017) and in most of the signal
analysis literature, in order to comply with the convention for the space-time Fourier
transforms usually adopted in the Physics literature and in Eqs. (4) and (5).
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that any conserved-flux process is Gaussian as well. The flux time series is
in fact a multivariate stochastic variable that, in the thermodynamic limit,
results from the sum of (almost) independent variables, thus tending to a
multivariate normal deviate. This implies that at equilibrium the real and
imaginary parts of the J̃k’s defined in Eqs. (61) are zero-mean normal devi-
ates that, in the large-N limit, are uncorrelated among themselves and have
variances proportional to the power spectrum evaluated at ωk. For k = 0 or
k = N

2 , J̃k is real and ∼ N
(
0, Nε S(ωk)

)
; for k /∈

{
0, N2

}
, ReJ̃k and ImJ̃k are

independent and both ∼ N
(
0, N2εS(ωk)

)
, where N (µ, σ2) indicates a normal

deviate with mean µ and variance σ2. We conclude that in the large-N limit
the sample spectrum of the heat-flux time series reads:

Ŝk = S (ωk) ξk, (63)

where the ξ’s are independent random variables distributed as a χ2
1 variate

for k = 0 or k = N
2 and as one half a χ2

2 variate, otherwise. Here and in the
following χ2

ν indicates the chi-square distribution with ν degrees of freedom.
For the sake of simplicity, we make as though all the ξ’s were identically dis-
tributed, ξk ∼ 1

2χ
2
2 for all values of k, thus making an error of order O(1/N),

which vanishes in the long-time limit that is being assumed throughout this
section.

In many cases of practical interest, multiple time series are available to
estimate the power spectrum of a same process, {pJn}, p = 1, · · · `. For in-
stance, in equilibrium MD a same trajectory delivers one independent time
series per Cartesian component of the heat flux, all of which are obviously
equivalent in isotropic systems. In these cases it is expedient to define a mean
sample spectrum by averaging over the ` different realizations,

`Ŝk =
ε

`N

∑̀

p=1

∣∣∣pJ̃k
∣∣∣
2

= S (ωk) `ξk,

(64)

where the `ξ’s are χ2
2` variates, divided by the number of degrees of freedom:

`ξk ∼ 1
2`χ

2
2`

(
for k /∈ {0, N2 }

)
.

Eqs. (63)) and (64) show that `Ŝ0 is an unbiased estimator of the zero-
frequency value of the power spectrum, 〈`Ŝ0〉 = S(0), and through Eq. (60), of
the transport coefficients we are after. However, this estimator is not consis-
tent, i.e. its variance does not vanish in the large-N limit. This is so because
a longer time series increases the number of discrete frequencies at which the
power spectrum is sampled, rather than its accuracy at any one of them.

Fig. 3 displays the periodogram of water at ambient conditions, obtained
from a 100 ps classical MD trajectory, showing the extremely noisy behavior
of the periodogram as an estimator of the spectrum. Averaging over the val-
ues of the periodogram within a frequency window of given width (Weisstein
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Fig. 3 – Periodogram of a classical flexible model of water obtained from a 100 ps
MD trajectory. Grey: periodogram obtained directly from Eq. (64), with ` = 3.
Blue: periodogram filtered with a moving average window of width 1 THz, useful
to reveal the main features of the spectrum (see text). The vertical dashed line
delimits the low-frequency region used in the subsequent cepstral analysis.

Moving Average) would consistently reduce the statistical noise, but the mul-
tiplicative nature of the latter in Eq. (63) makes it difficult to disentangle the
noise from the signal and may introduce a bias. In order to cope with this
problem, we had better transform the multiplicative noise into an additive
one by defining the log-periodogram, `L̂k, as:

`L̂k = log
(
`Ŝk

)

= log (S(ωk)) + log
(
`ξk
)

= log (S(ωk)) + `Λ + `λk,

(65)

where `λk = log
(
`ξk
)
− `Λ are zero-mean identically distributed independent

stochastic variables, `Λ =
〈
log
(
`ξ
)〉

= ψ(`) − log(`), and ψ(z) and is the
digamma function (Weisstein PolyGamma). The variance of the `λ variables
is σ2

` = ψ′(`), where ψ′(z) is the tri-gamma function (Weisstein PolyGamma).
Whenever the number of (inverse) Fourier components of the logarithm

of the power spectrum is much smaller than the length of the time series,
applying a low-pass filter to Eq. (65) would result in a reduction of the power
of the noise, without affecting the signal. In order to exploit this idea, we
define the “cepstrum” of the time series as the inverse Fourier transform of
its sample log-spectrum (Childers et al 1977):

`Ĉn =
1

N

N−1∑

k=0

`L̂ke−2πi knN . (66)



22 S. Baroni et al.

A generalized central-limit theorem for Fourier transforms of stationary time
series ensures that, in the large-N limit, these coefficients are a set of indepen-
dent (almost) identically distributed zero-mean normal deviates (Anderson
1994; Peligrad and Wu 2010). It follows that:

`Ĉn = λ`δn0 + Cn + `µn,

Cn =
1

N

N−1∑

k=0

log
(
S(ωk)

)
e−2πi knN ,

(67)

where `µn are independent zero-mean normal deviates with variances
〈
`µ2
n

〉
=

1
N σ` for n /∈

{
0, N2

}
and

〈
`µ2
n

〉
= 2

N σ
2
` otherwise. Fig. 4 displays the cepstral

coefficients of the low-frequency region of the spectrum of water (marked in
Fig. 3), showing that only the first few coefficients are substantially different
from zero.
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Ĉ
n

Fig. 4 – Cepstral coefficients of water computed analyzing the low-frequency
region of the periodogram (see Fig. 3), defined in Eq. (66).

Let us indicate by P ∗ the smallest integer such that Cn ≈ 0 for P ∗ ≤
n ≤ N − P ∗. By limiting the Fourier transform of the sample cepstrum,
Eq. (66), to P ∗ coefficients, we obtain an efficient estimator of the zero-
frequency component of the log-spectrum as:

`L̂∗0 = `Ĉ0 + 2

P∗−1∑

n=1

`Ĉn

= `Λ + log(S0) + `µ0 + 2

P∗−1∑

n=1

`µn.

(68)
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Inspection of Eq. (68) shows that `L̂∗0 is a normal estimator whose expectation
and variance are:

〈`L̂∗0〉 = log(S0) + `Λ, (69)

σ∗` (P ∗, N)2 = σ2
`

4P ∗ − 2

N
. (70)

Using Eq. (60), we see that the logarithm of the conductivity can be estimated
from the cepstral coefficients of the flux time series through Eqs. (68-70), and
that the resulting estimator is always normal with a variance that depends on
the specifc system only through the number of these coefficients, P ∗. Notice
that the absolute error on the logarithm of the conductivity directly and
nicely yields the relative error on the conductivity itself.

The efficacy of this approach obviously depends on our ability to estimate
the number of coefficients necessary to keep the bias introduced by the trun-
cation to a value smaller than the statistical error, while maintaining the
magnitude of the latter at a prescribed acceptable level. Ercole et al (2017)
proposed to estimate P ∗ using the Akaike’s information criterion (Akaike
(1974)), but other more advanced model selection approaches (Claeskens and
Hjort 2008) may be more effective. This method consists in choosing P ∗ as
the one that minimizes the function:

AIC(P ) =
N

σ2
`

N
2∑

n=P

Ĉ2
n + 2P. (71)

In Fig. 5a we report the low-frequency region of the spectrum of water ob-
tained by limiting the number of cepstral coefficients to P ∗:

`Ŝ∗k = exp

[
2

P∗−1∑

n=1

`Ĉne2πi knN + `Ĉ0 − `Λ

]
, (72)

thus showing the filtering effect of this choice. Finally, Fig. 5b shows the value
of thermal conductivity of water obtained through Eqs. (68-70).

4.2 Multi-component fluids

In Sec. 1.3.2 we have seen that in a fluid made of Q atomic species there
are in general Q macroscopic fluxes interacting with each other through On-
sager’s phenomenological equations, Eq. (9), not counting the different Carte-
sian components that do not interact amongst themselves because of space
isotropy. A MD simulation thus samples Q stochastic processes, one for each
interacting flux, that we suppose to be stationary. These processes can be
thought of as different components of a same multivariate process (Bertossa
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Ŝ
∗ k

(W
/

m
K

)

P ∗ = 200

P ∗ = 100

P ∗ = 30

P ∗ = 5

(a)

0 10 20 30 40 50
P ∗

0.5

1.0

1.5

κ
(W

/
m

K
)

(b)

Fig. 5 – (a) Filtered low-frequency region of the power spectrum of water ob-
tained by limiting the number of cepstral coefficients to various values of P∗,
Eq. (72). P∗ = 7 is the cutoff value suggested by the Akaike’s information cri-
terion, Eq. (71). Grey: the unfiltered periodogram obtained from Eq. (62). (b)
Thermal conductivity of water estimated from Eqs. (68-70) as a function of the
cutoff, P∗. The colored bands indicate one standard deviation as estimated from
theory. The vertical dashed line indicates the value suggested by the Akaike’s
information criterion, Eq. (71).

et al 2018). As in Sec. 4.1, for the sake of generality we suppose to have `
independent samples of such a process, described by a multivariate time se-
ries of length N : {pJ in}; p = 1, . . . `; i = 1, . . . Q; n = 0, . . . N −1. Stationarity
implies that 〈J in〉 does not depend on n and that 〈J inJjm〉 only depends on
n−m. We will further assume that 〈J in〉 = 0 and that 〈J inJ

j
0 〉 is an even func-

tion of n, which is the case when J i and Jj have the same signature under
time-reversal. By combining Eq. (36) with Eq. (24), we see that in order to
evaluate the thermal conductivity in the multi-component case we need an
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efficient estimator for
(
S−1

0

)11
, where Skl0 = Skl(ω = 0) is the zero-frequency

cross-spectrum of the relevant fluxes, ordered in such a way that the energy
one is the first.

Similarly to the one-component case, we define a mean sample cross-
spectrum (or cross-periodogram) as

(`Q)Ŝijk =
1

`

∑̀

p=1

ε

N

(
pJ̃ ik

)∗
pJ̃jk . (73)

By discretizing Eq. (23) we see that (`Q)Ŝijk is an unbiased estimator of the

cross-spectrum,
〈

(`Q)Ŝijk

〉
= Sij

(
ωk = 2πk

Nε

)
. As it was the case for univariate

processes, in the large-N limit the real and imaginary parts of J̃ ik are nor-
mal deviates that are uncorrelated for k 6= k′. We conclude that the cross-
periodogram is a random matrix distributed as a complex Wishart deviate
(Goodman 1963b,a):

(`Q)Ŝk ∼ CWQ (S(ωk), `) . (74)

The notation CWQ (S, `) in Eq. (74) indicates the distribution of the Q×Q
Hermitian matrix (`Q)Ŝij = 1

`

∑`
p=1

pXi pXj∗, where {pXi} (p = 1, · · · `, i =
1, · · ·Q) are ` samples of an Q-dimensional zero-mean normal variate whose
covariance is Sij = 〈XiXj∗〉.

Similarly to the real case, a Bartlett decomposition (Kshirsagar 1959) holds
for complex Wishart matrices (Nagar and Gupta 2011), reading:

(`Q)Ŝ =
1

`
SRR>S†, (75)

where “>” and “†” indicate the transpose and the adjoint of a real and com-
plex matrix, respectively; S is the Cholesky factor of the covariance matrix,
S = SS†, and R is a real lower triangular random matrix of the form

R =




c1 0 0 · · · 0
n21 c2 0 · · · 0
n31 n32 c3 · · · 0

...
...

...
. . .

...
nQ1 nQ2 nQ3 · · · cQ



, (76)

where c2i ∼ χ2
2(`−i+1) and nij ∼ N (0, 1). We stress that R is independent

of the specific covariance matrix, and only depends upon ` and Q. In par-
ticular it is independent of the ordering of the fluxes J i. By expressing the
QQ matrix element of the inverse of (`Q)Ŝ in Eq. (75) as the ratio between
the corresponding minor and the full determinant, and using some obvious
properties of the determinants and of triangular matrices, we find that:
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`(
(`Q)Ŝ−1

k

)QQ =
1(

S−1
k

)QQ c2Q, (77)

As the ordering of the fluxes is arbitrary, a similar relation holds for all the
diagonal elements of the inverse of the cross-periodogram. We conclude that
the generalization of Eq. (64) for the multi-component case is:

`Ŝ k ≡
`

2(`−Q+ 1)

1(
(`Q)Ŝ−1

k

)11 =
1(

S−1
k

)11 ξk, (78)

where ξk are independent random (with respect to k) random variables, dis-
tributed as

ξk ∼





1
`−Q+1 χ

2
`−Q+1 for k ∈ {0, N2 },

1
2(`−Q+1) χ

2
2(`−Q+1) otherwise.

(79)

Starting from here we can apply the cepstral analysis as in the one-component
case. The only difference is the number of degrees of freedom of the χ2 dis-
tribution, that becomes 2(` − Q + 1), and a different factor in front of the
result. Fig. 6 shows an example of multi-component power spectrum for a
solution of water and ethanol.
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Fig. 6 – Multi-component power spectrum, as defined in Eq. (78), for a classical
flexible model of a solution of water and ethanol 50 mol%, obtained from a 100 ps
trajectory. Grey: `Ŝ k obtained directly from Eq. (78), with ` = 3 and Q = 2.

Blue: `Ŝ k filtered with a moving average window of width 1 THz in order to
reveal its main features. The vertical dashed line delimits the low-frequency
region used in the subsequent cepstral analysis. Reproduced from Bertossa et al
(2018).
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Fig. 7 – Convergence of the multi-component thermal conductivity estimator κ
using the direct time-integration approach and the cepstral method, for a clas-
sical flexible model of a solution of water and ethanol 50 mol%, obtained from a
100 ps trajectory. (a) Direct time-integration approach in its Green-Kubo (green,

as obtained from the matrix Lij(T ) ∝
∫ T
0

〈
Ji(t)Jj(0)

〉
dt) and Einstein-Helfand

(orange – obtained from the matrix
(
Lij
)′

(T ) ∝
∫ T
0

(
1− t

T

) 〈
Ji(t)Jj(0)

〉
dt)

formulations. The horizontal purple band indicates the value obtained by the
cepstral method. (b) Estimate of κ with the cepstral method as a function of
the number of cepstral coefficients, P∗, see Eqs. (68-70). The dashed vertical
line indicates the value of P∗ selected by the AIC, Eq. (71). Reproduced from
Bertossa et al (2018).
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The method discussed so far shows a fundamental advantage with respect
to a näıve implementation of direct time-integration approach. Fig. 7 shows
the two-component conductivity κ, obtained via Eq. (38), in the case of a
water-ethanol solution, as a function of the upper time-integration limit T
(Bertossa et al 2018). Both the Green-Kubo and the Einstein-Helfand defini-
tions of the finite-time expression of Onsager’s coefficients (see Eq. (20)) are
displayed. Due to thermal fluctuations, the integral of the correlation function
becomes a random walk as soon as the latter vanishes, eventually assuming
any value. Therefore, there will be a set of times (see Fig. 7) where the term
LQQ at the denominator in Eq. (38) vanishes, leading to divergences in the
evaluation of κ; an issue not affecting the one-component case. Hence, in such
a formulation of the multi-component case, the mean value of the thermal
conductivity estimator in the time domain does not exist. On the contrary,
the multi-component frequency-domain approach presented in this section,
and built on sound statistical basis, provides a well defined expression for the
estimator of κ and its statistical error.

4.3 Data analysis work-flow

We summarize the steps leading to the estimation of thermal conductivity
by the cepstral analysis method, in order to highlight the simplicity of its
practical implementation.

1. From a MD simulation compute the heat flux time series J1
n and the in-

dependent particle fluxes Jqn, q = 2, . . . , Q.
2. Compute the discrete Fourier transform of the fluxes, J̃ ik, and the element

1/(Ŝ−1)11. In practice, only a selected low-frequency region shall be used
(see Ercole et al (2017) for a detailed discussion).3

3. Calculate log
[
1/(Ŝ−1)11

]
.

4. Compute the inverse discrete Fourier transform of the result to obtain the
cepstral coefficients Ĉn.

5. Apply the Akaike Information Criterion, Eq. (71), to estimate the number
of cepstral coefficients to retain, P ∗.

6. Finally apply Eq. (68) to obtain L̂∗0, and evaluate the thermal conductivity
as

κ =
Ω

2kBT 2
exp

[
L̂∗0 − ψ(`−Q+ 1) + log(`−Q+ 1)

]
, (80)

and its statistical error as

∆κ

κ
=

√
ψ′(`−Q+ 1)

4P ∗ − 2

N
. (81)

3 To lighten the notation, we drop the left superscripts of the variables in this sub-
section.
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5 A few representative results

Calculations of the thermal conductivity based on the Green-Kubo formalism
combined with first-principles molecular dynamics are quite recent. The first
benchmarks from Marcolongo et al (2016) have been performed on liquid
Argon and heavy water at ambient conditions, as reported below.

5.1 A benchmark on a model mono-atomic fluid

As a first test, liquid Argon was simulated by Marcolongo et al (2016) using
a local LDA functional neglecting dispersion forces. The resulting fictitious
system, dubbed LDA-Argon, is a hard-core weakly interacting fluid whose
dynamics is expected to be easily mimicked by a simple two-body potential,
which can be engineered by standard force-matching techniques. This obser-
vation allows one to effectively test the ideas developed in Sec. 3: even if the
energy density in LDA-Argon and in its fitted classical counterpart will likely
be different, the resulting thermal conductivity is expected to coincide within
the quality of the classical fit.

Simulations were performed in a cubic supercell of 108 atoms with an
edge of 17.5 Å, corresponding to a density of 1.34 g cm−3. Trajectories were
sampled in the NVE ensemble for 100 ps and the classical model was fitted
with a pair potential of the form V (r) = P2(r)e−αr, P2(r) being a second
order polynomial. In Fig. 8 we show the resulting autocorrelation functions
at a representative temperature of 400 K. The DFT autocorrelation function
shows a more structured behavior than that of the classical potential. Nev-
ertheless, when considering the long time limit of the Green-Kubo integral,
the thermal conductivities indeed coincide within statistical uncertainty, as
predicted by theory.

5.2 Heavy water at ambient conditions

Marcolongo et al (2016) also computed the thermal conductivity of heavy
water at ambient conditions. Simulations were performed using the PBE ex-
change correlation energy functional (Perdew et al 1996), which is known
to predict qualitatively the self-diffusion coefficient of water at ambient con-
ditions only for a simulation temperature of about 400 K (Sit and Marzari
2005): the latter condition was imposed accordingly. A system of 64 heavy-
water molecules was sampled for 90 ps in the NVE ensemble using a cubic
cell corresponding to the experimental density of 1.11 g cm−3.

The ab initio treatment of heat transport in molecular fluids requires some
care in order to eliminate non-diffusive components of the energy flux that,
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(a) (b)

Fig. 8 – Benchmark of LDA-Argon, reproduced from Marcolongo et al (2016).
(a) The heat-flux autocorrelation function. (b) The GK integral as a function
of the upper limit of integration. Color coding common to the two panels. Blue:
ab initio molecular dynamics (100 ps). Orange: classical molecular dynamics
(100 ps). Green: classical molecular dynamics (1000 ps)

while not contributing to the conductivity, do increase the noise of the flux
time series to a level that may compromise its analysis. To see where the
problem comes from, let us split the potential energy of the system into
the sum of non-interacting atomic energies plus an interaction energy, as:
V ({Rn}) =

∑
n ε
◦
n + Vint({Rn}), where ε◦n is the energy of the n-th atom

when it is isolated from the rest. In classical simulations the energy of isolated
atoms never enters the description of the system, and the ε◦n’s can be simply
set to zero. In quantum simulations, instead, atomic and interaction energies
enter on a same footing and the former give a large and fluctuating contribu-
tion to the total energy flux, J◦ =

∑
X ε
◦
XJX , where JX is the flux defined in

Eq. (46). In a monoatomic fluid JX is constant because of momentum conser-
vation and it is actually equal to zero in the center-of-mass reference frame.
In molecular fluids the JX do not vanish but, as we have seen in Sec. 2.1, they
are non-diffusive and hence do not contribute to the heat conductivity, while
adding considerable noise to the energy-flux time series. In order to remove
them, instead of estimating J◦ from the non-interacting atomic energies, we
prefer to implement a decorrelation technique, as described below.

Current decorrelation builds on a general inequality whose proof can be
found in Marcolongo et al (2016). Let J1 and J2 be two macroscopic fluxes
and J12 = J1+J2 their sum. The corresponding conductivities κ1, κ2, and κ12

then satisfy |κ12−κ1−κ2| ≤ 2
√
κ1κ2. As a consequence, when κ2 vanishes, κ12

coincides with κ1. Let us now suppose that a set of fluxes {Yu}, u = 1, . . . U
is known to exhibit a non-diffusive behavior. The above argument shows that
the auxiliary flux defined as

J′ ≡ J−
∑

w

λwYw, (82)
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will yield the same thermal conductivity as J. Optimal values of the {λu}
coefficients can then be determined by imposing that the new time series J′

is uncorrelated with respect to the non-diffusive ones, i.e.:

〈JYu〉 −
∑

w

λw〈YwYu〉 = 0, u = 1, . . . U. (83)

This procedure is particularly useful when the Yu fluxes give a slowly con-
verging contribution to the Green-Kubo integral, which is thus difficult to
evaluate numerically.

The decorrelation technique has been applied to heavy water considering
two non-diffusive number fluxes: Y1 = JH+JO, i.e. the sum of hydrogen and
oxygen average velocities,4 and Y2 = Jel, the adiabatic electronic current.
The latter is defined, following the same notation of Sec. 3, as:

Jel =
2

Ω
Re
∑

v

〈φ̄cv|φ̇cv〉, (84)

as can be derived from the continuity equation for the density: ∇· jel(r, t) =
−ṅel(r, t). In insulators Jel is non-diffusive and can thus be used to decor-
relate the heat current. In the original paper the thermal conductivity was
evaluated from the slope of the energy displacement D(τ) =

∫ τ
0

J(t)dt (see
Eq. (20)) and the corresponding error obtained from a standard block anal-
ysis, resulting in a non optimal estimate of both (see Fig. 9a). The same
data have been re-analyzed with the novel cepstral technique presented in
Sec. 4. We denote by

(
J1
)′

and
(
J12
)′

the currents decorrelated with respect
to Y1 alone, and with respect to both Y1 and Y2, respectively. The power
spectra of the two currents are plotted in Fig. 9b. Only the low-frequency
region of the spectra (up to ∼ 9.0 THz) was used for the cepstral analysis (see
Ercole et al (2017) for the technical details). The minimization of Eq. (71)
suggests a cutoff P ∗1 = 17 and P ∗12 = 15, but a value 1.5 times larger was
actually been used to reduce the bias possibly due to the fast variation of the
spectrum at frequency close to zero. The resulting thermal conductivities are
κ1 = 0.80± 0.12 W/mK for the

(
J1
)′

flux, and κ12 = 0.93± 0.14 W/mK for(
J12
)′

, compatible with each other. By comparison, experiments give a value
κ ≈ 0.6 W/mK (Matsunaga and Nagashima 1983; Ramires et al 1995). In
this case, data analysis would not have yielded any meaningful results failing
a proper decorrelation of the heat flux time series.

4 Note that the two time series JH and JO are trivially related, because of momentum
conservation. Therefore JH , JO, or JH + JO would all be equivalent choices.
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Fig. 9 – (a) Value of thermal conductivity of heavy water obtained from a linear
fitting of the energy displacement of (J1)′, D(τ) =

∫ τ
0

(J1)′ (t)dt. The two curves
refer to different window widths used for the linear fit, of length 0.5 and 1.0 ps.
The abscissa corresponds to the origin of the fitting window. (b) Periodogram
of the (J1)′ and (J12)′ currents, filtered with a moving average window in order
to reveal the prominent features. The vertical dashed line delimits the low-
frequency region used for cepstral analysis.
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6 Outlook

We believe that the ideas presented in this chapter will pave the way to new
developments and applications in the field of heat transport, particularly for
strongly anharmonic and/or disordered systems, where approaches based on
the Boltzmann transport equation do not apply or are bound to fail. The gen-
eral concept of gauge invariance of heat conductivity will likely apply to other
transport properties as well, such as ionic conduction, viscosity, and many
others, and/or simulation methodologies, such as those based on a neural-
network representation of interatomic potentials, which hold the promise of
a strong and long-lasting impact on molecular simulations. The applicability
of this concept would not be as broad if not assisted by the powerful data-
analysis methods which have also been described in this chapter. Here again,
we believe that there is ample room for improvement, leveraging more general
(possibly non-Fourier) representations of the log-spectrum of the currents to
be analyzed, and more advanced statistical-inference techniques to estimate
the parameters of the spectral models resulting from these representations.
From the applicative point of view, we expect that these methodological ad-
vances will have a strong impact in all those cases where heat, mass, and
charge transport occurs in conditions that cannot be adequately described
at the atomistic level by simple force fields, such as, e.g., in complex mate-
rials, systems at extreme external conditions, such as those occurring in the
planetary interiors, complex or reactive fluids, and many others.
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