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A B S T R A C T   

The usage of multi-physics simulation tools is steadily increasing in the field of electrochemistry. While this is a 
great opportunity for closing the gap between analytical electrochemists used to simple 1D models and exper
imentalists, there are possible pitfalls that must be avoided. In this work, we raise awareness on numerical ar
tifacts that can mislead the interpretation of cyclic voltammetry experiments through simulations of geometries 
with different number of spatial dimensions. In particular, we show that one-dimensional simulations can suffer 
from substantial errors when models go beyond charge neutrality assumption. We exemplify such situations 
using simple electrolyte/electrode structures with 1D, 2D and 3D geometries. We then show the occurrence of 
artifacts related to the geometry of the simulation domain on the simulation of cyclic voltammetric curves as 
those typically performed to characterize conjugated polymer/electrolyte blends. All the models are imple
mented using COMSOL Multiphysics and are accompanied by a detailed description of their implementation. 
However, geometrical artifacts identified in this work also apply to other simulation approaches.   

1. Introduction 

In the field of electrochemistry, several methodologies employing 
analytical calculus have been successfully employed to predict electric 
currents at chemically active electrodes, surface reactions kinetics, 
electrostatic potentials, diffusion mechanisms, etc. [1,2]. These ap
proaches employ idealized geometrical structures that admit analytical 
closed-form solutions and often cannot represent real systems. The 
consequence is that one generally resorts to numerical solutions for 
accurately reproducing complex geometries [3,4]. Among these solu
tions, finite element simulation (FEM) platforms are gaining popularity, 
thanks to the increasing computational performance of modern com
puters, friendly user interfaces, the possibility to handle different 
physics coupled together (i.e., multiphysics frameworks) and embed 
them in multidimensional and arbitrary geometries. The applications 
are manifold. For example, numerical simulations might be useful to 
validate analytical models that are derived based on approximations 
whose correctness is not trivial to assess [4–6] or to reproduce experi
mental data while extracting model parameters that are not easy to find 
directly neither from the experiments nor from analytical models [7]. 
On the contrary, the main drawback of FEMs is that simulations can be 

time demanding and may require high computational resources when 
one has to fit experimental results over a large number of unknown 
parameters. This is particularly relevant when dealing with electro
chemical systems in more than one physical dimension and with simu
lations that consider multiple physics at once (e.g., chemical reactions, 
ion transport, fluid flow, heat dissipation, etc.) leading to highly non- 
linear models. As a result, time-dependent multiphysics simulations of 
micrometer-sized structures can easily take up to hours. 

One way to greatly shorten the simulation time and model 
complexity is to reduce the number of spatial dimensions from 3 to 2, or 
even to 1 by exploiting planar/axial symmetries and neglecting edge 
effects. Unless symmetries can be exploited mathematically to restore 
the three-dimensional nature of the problem (e.g., modeling the real 
geometry as hemispherical or axis-symmetric structure) [8,9], these 
simplifications may lead to numerical artifacts when diffusion and 
migration problems are considered. The reason is that reduced geome
tries do not properly describe electric current dispersion lines, this 
phenomenon being intrinsically three-dimensional. In electrochemistry, 
one way to overcome this problem is using the electroneutrality 
assumption when dealing with concentrated supporting electrolytes 
[10] where the drift transport of ions is suppressed [11–14]. Refined 
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models, however, do require that drift and diffusion effects are consid
ered under varying applied voltages, such as in the Poisson-Nernst- 
Planck modeling framework. In these cases, the use of geometries that 
oversimplify the real geometry, such as 2D [15–18] or even 1D 
[16,19,20], have a considerable risk to be affected by geometrical 
artifacts. 

In this article, we show that the use of simplified geometries in 
electrochemical systems where diffusion and migration of charges take 
place under varying applied voltage can lead to wrong results, unless 
some precautions are considered. To show this, we consider two com
mon situations as case studies. We first analyze an electrolyte contacted 
by a reference electrode and an ideally polarizable electrode, and show 
that the same physical model can predict very different results if applied 
to 3D, 2D or 1D geometries. Simulation results are then explained by 
means of simplified equivalent circuit analysis. In the second example, 
we scout geometry-related artifacts in a complex published model [20] 
to simulate cyclic voltammetry curves of conjugated polymers and 
polyelectrolyte blends. 

The main result of our analysis is that one-dimensional simulations 
can be critical as the current paths through the bulk of the electrolyte are 
not correctly taken into account. According to our predictions, these 
errors are much less critical in 2D geometrical domains thus being a 
trade-off option to avoid significant errors (such as those in 1D) when (i) 
it is impossible to identify symmetries and, (ii) when the 3D simulation 
comes at the expenses of significantly increased simulation time with 
little additional insights [17,18]. 

The article is structured as follows. In Section 2 we introduce the 
models and the simulation platform while in Section 3 we show that the 
geometrical issues can be studied by means of equivalent circuits, in the 
case of simple contact/electrolytes systems. Simulation results and dis
cussions are reported in Section 4 which includes a few concluding 
remarks. 

2. Material and methods 

2.1. Poisson-Nernst-Planck model 

The Poisson-Nernst-Planck (PNP) model is used to simulate ion 
transport in diluted electrolytes. The electrostatics is governed by the 
Poisson equation [1]. For monovalent ions only, it reads: 

∇⋅[εel∇ψ( r→, t) ] = − F[c+( r→, t) − c− ( r→, t) ], (1)  

where εel is the dielectric constant of the electrolyte, ψ is the electrostatic 
potential, F is Faraday’s constant and the space charge density is written 
in terms of sum of the (monovalent) cation and anion concentrations, c+
and c− respectively, expressed in molar (M) units. 

Time enters the continuity equations that provide single ion mass 
conservation in the space–time domain. Considering ionic fluxes, f, the 
continuity equation reads: 

∂c±( r→, t)
∂t

= − ∇⋅f±( r→, t). (2)  

In turn, the flux is expressed using the Nernst-Planck formalism where, 
neglecting convective effects for simplicity, one has: 

f±( r→, t) = − D±( r→)

(

∇c±( r→, t) ±
F

RT
c±( r→, t)∇ψ( r→, t)

)

, (3)  

where D± is the space-dependent diffusion coefficient of the ionic spe
cies, R is the gas constant and T is the temperature of the system, 
assumed constant. 

In order to account for steric effects and avoid unrealistic ionic 
concentration at the charged boundaries of blocking electrodes, we use a 
Stern layer, namely, an ideal dielectric layer between the electrolyte and 
the WE with a capacitance CSL = 0.20 F/m2 [21]. This translate into an 

additional boundary equation that imposes 

σSL = CSL(ψ − VApp), (4)  

where σSL is the surface charge at the electrode and VApp is the applied 
potential. 

Eqs. (1)–(4) model an electrolyte in the absence of surface or 
distributed chemical reactions. The boundary conditions of the Poisson 
equation allow to fix the potentials at the reference electrode (RE) and at 
the working electrode (WE). Further details on the implementation in 
COMSOL Multiphysics [22] are provided in the Supplementary Infor
mation S1. 

2.2. Model of conductive polymers for cyclic voltammetric simulations 

In cyclic voltammetry (CV), cyclic potential ramps are commonly 
used to characterize electrochemical cells [1]. In the case of conductive 
polymers (CPs), subject of many research studies in the last decades 
[16,23–26], CVs reflect the ion-exchange between the conductive 
polymer/polyelectrolyte blends and the surrounding electrolyte bath 
during the injection or the subtraction of electronic carriers from the WE 
[16,20,27]. Experimental evidence reveal that blends of conjugated 
polymers and polyelectrolytes show an intertwining of polymer strings 
permeated by water and ions at the microscopic level. However, despite 
this complicated three-dimensional entangled structure, the coupling 
between the ionic and electronic phase at the macroscopic level is purely 
capacitive [16,27] and has been successfully reproduced by PNP- 
inspired models introducing the concept of volumetric capacitance, as 
proposed in [20] for PEDOT:PSS blends (see Section 2.2). 

According to the model in [20], hereafter denoted PNP-CP model, 
ions in the electrolyte and holes in the CP are governed by two modified 
sets of PNP equations, where the Poisson equations for the different 
phases are coupled. For the ionic carriers (i.e., ions), the Poisson equa
tion takes into account the electronic charge (e.g., holes, p, in PEDOT: 
PSS) distributed in the conductive phase: 

∇⋅[εPSS∇ψc( r→, t) ] = −
[
c+( r→, t) − c− ( r→, t) − cfix( r→) + p( r→, t)

]
, (5)  

where cfix is fixed charge distribution, given by the negatively charged 
PSS− groups. Differently, the electrostatic potential of electronic carriers 
is affected by the presence of ions and fixed charges in the form of 
capacitive coupling with the electrostatic potential of ions: 

∇⋅
[
εPEDOT∇ψp( r→, t)

]
= −

[
p( r→, t) +

(
ψp( r→, t) − ψc( r→, t)

)
CV

]
. (6)  

In Eq. 6, the coupling factor is the phenomenological volumetric 
capacitance parameter, CV, that quantifies the 3D electrical double layer 
between the two immiscible phases in a straightforward manner. 

In the PNP-CP model, continuity equations remain the same as those 
seen in the conventional PNP (see Section 2.1), with the only difference 
being that the diffusion coefficient of holes depends on their local con
centration instead of assuming a fixed value as for ions in each phase 
[20]. The current at the WE was computed from FEM simulation results 
in COMSOL by time-differentiation of the volume-integrated hole con
centration in the CP: 

I = F
d
dt

(∫

CP
p( r→, t)d r→

)

. (7)  

Further details on the boundary conditions and the model imple
mentation in COMSOL Multiphysics can be found in the Supplementary 
Information S3 and in [20]. 

3. Theory/Calculation 

3.1. A simple equivalent circuit model 

To interpret PNP FEM simulations carried out with different spatial 
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dimensions, we employ a simple equivalent electrical circuit (Fig. 1) that 
describes an electrolyte solution contacted by two electrodes. A more 
thorough description of this system and related equations can be found 
in [28]. In the Laplace domain, the voltage at the node VD in Fig. 1, i.e., 
the potential taken right outside the diffuse layer, at the edge of the 
quasi-neutral region where charge screening effects are negligible, reads 

VD(s) =
sCDLRB

1 + sτ VApp(s), (8)  

where CDL is the electrical double layer (EDL) capacitance (i.e., the se
ries of the Stern Layer, CSL, and the diffuse layer capacitance, Cdl, 
calculated as C− 1

DL = C− 1
SL +C− 1

dl [1]), RB is the bulk resistance of the 
electrolyte, VApp is the electrical stimulus applied at the WE and τ =

RBCDL is the time constant. CSL is assumed constant in the analytical 
model used to interpret the FEM simulation, while Cdl is calculated 
numerically by simply integrating the charge in the diffuse layer (as 
obtained from the PNP simulation) and dividing by the voltage drop 
between the Stern Layer and the node VD. In this way, we extend the 
validity of the equivalent circuit to an applied potential much larger 
than the thermal voltage [28]. Assuming a 1D geometry for the sake of a 
simpler notation, the diffuse layer capacitance per unit area reads: 

Cdl =
1

VSL − VD
F
∫ TD

TSL

(c+(x) − c− (x))dx, (9)  

where TSL is the Stern Layer thickness and TD the screening length. 
By considering a ramp stimulus in Eq. 8, VApp(s) = v/s2 (where v is 

the scan rate in V/s), and using the final value theorem for t→∞, one 
obtains2: 

VD(t→∞) = lim
s→0

s⋅
sCDLRB

1 + sτ ⋅
v
s2 = vCDLRB. (10)  

We observe a direct proportionality between the steady-state potential 
VD and the bulk electrolyte resistance, which is known to change ac
cording to the physical dimensions and its geometry. Table 1 reports the 
analytical values of RB calculated for idealized structures, such as a line 
(1D), a circular (2D), and a spherical (3D) crown representative of three 
different scenarios of approximating more complex geometries. In the 
first two cases, the value of RB diverges to infinity for increased elec
trolyte volumes whereas only in the spherical crown it converges to a 
finite value regardless of the size of the simulated domain. Since RB 

enters the expression of VD (see Eq. 10), the equivalent circuit analysis 
suggests that an increased electrolyte volume has different effects in 1D, 
2D and 3D geometries, which clearly underlines the possible presence of 
numerical artifacts when approximating complex structures with 
simplified 1D or 2D geometries. For example, if one simplifies the 
structure under study with a 1D geometry, the results would change 
with Tel. In this respect, a 3D domain, even solved in spherical co
ordinates (that has the same complexity of a 1D simulation) does not 
suffer from this limitation. These aspects will be analyzed in detail 
employing both the analytical model and numerical simulations in 
Section 4. 

4. Results and discussion 

4.1. The impact of geometry on PNP simulations 

The analytical theory outlined in the previous section is now 

Fig. 1. Equivalent circuit model of an electrolyte contacted by two electrodes. 
The one on the left is the WE and is assumed ideally polarizable whereas the 
grounded one at the right is the faradaic RE. The potential nodes VSL and VD 

indicate the electrostatic potential at the Stern Layer thickness, TSL and the 
distance right beyond the double layer, TD, respectively. Tel is the total elec
trolyte thickness. Note that the horizontal axis in the bottom is not to scale. 

Table 1 
Sketch of different electrolyte structures in three different spatial dimensions that permit analytical calculus of the liquid resistance. The electrolyte thickness is defined 
as Tel = b − a,A is the cross-section area of the 1D template structure and the resistivity is ρ = RT/(F2(Dc+ + Dc− )c0). Note that the three geometries are representations 
of different template structures.  

Spatial dimensions Sketch RB RB(b→ + ∞)

1D (line) RB =
ρ
A

Tel 
RB→ + ∞ 

2D (circular crown) 
RB =

ρ
2πa

ln
(

b
a

) RB→ + ∞ 

3D (spherical) 
RB =

ρ
4π

(
1
a
−

1
b

)
RB→

ρ
4πa  

2 Notice that when a voltage step is applied instead of a ramp, VD tends to 
zero following an exponential decay. 
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compared to full PNP numerical simulations taking into account the 
geometry dependence of RB. The PNP model applied to a simple elec
trolyte/contact domain is sufficient to highlight the expected geomet
rical artifacts on the simulation results. For ease of understanding and 
for better reference with the analytical solutions proposed in Section 3.1, 
we simulate the structures illustrated in Table 1, where a indicates the 
size of the WE while b − a is the electrolyte thickness, Tel. Unless 
otherwise specified, the whole external surface acts as RE. In the 
following numerical simulations (parameters values reported in 
Table S2), we apply a potential ramp at the WE, using the RE as the 
ground node. We then record the electrostatic potential 50 nm away 
from the WE and at t = 1 s, that is much larger than τ. This corresponds 
to VD in Fig. 1 at the steady-state. The calculated VD are reported in 
Fig. 2.a vs the thickness of the electrolyte for the different structures 
shown in Fig. 2.b. Symbols indicate the PNP numerical solution obtained 
with COMSOL whereas the dashed lines are the calculations using Eq. 
10. Despite its simplicity, the equivalent circuit can accurately repro
duce the simulation results over a large range of Tel values. 

We observe that VD features a noticeable dependence on the Tel in 1D 
and 2D geometries with respect to the almost flat 3D case. In fact, these 
variations raise up to almost four orders of magnitude between 1D and 
3D for Tel ≈ 5 mm, with trends that follow the scaling predictions of RB 

reported in Table 1. The concerns on geometrical artifacts are therefore 
worthy of the attention in one-dimensional structures where the elec
trolyte resistance and so VD (see Eq. 10) increase linearly with the 
electrolyte volume. Differently, the voltage drop in the electrolyte in
creases logaritmically in 2D with a dumped increase of the electrolyte 
resistance with Tel. At this point, one could argue that a RE covering the 

whole external surface is not realistic. To address this concern we 
simulated the 3D structure with the RE localized at the top of the outer 
sphere (with 1 μm radius) and restricted the Dirichlet ionic boundary 
conditions to the same region and so the current from the WE. Results 
(green triangles in Fig. 2.a) show that the profile is still quite flat as in 
the case where the RE covers the whole external surface but with 
increased voltage drop due to higher electrolyte resistance. Interest
ingly, as shown in Fig. S2 in the Supplementary Information, this voltage 
drop remains relatively high in the bulk and only goes to zero in close 
proximity of the RE. 

Finally, we highlight that units of millivolts are used in the y-axis of 
Fig. 2.a. Despite this is tightly related to the choice of the scan rate (see 
Eq. 10), with typical values of v = 1 V/s, after 1 s the errors due to 
voltage drop in the bulk of the electrolyte reach up to few millivolts in 
1D simulations with a Tel of few millimeters. As we show in the following 
section, these apparently negligible errors are in fact sufficient to cause 
large variations in the electrochemical cell responses of, e.g., cyclic 
voltammetric experiments. 

4.2. Cyclic voltammetry and the “geometrical pitfall” 

In this section, we show that CV curves of conductive polymers are 
remarkably affected by geometrical artifacts in the same way as 
explained in Section 4.1 for simple electrode/electrolyte systems. We 
consider CP/electrolyte structures as a vehicle to show that distortions 
stemming from oversimplified geometries under time-variant applied 
potential profiles arise in one-dimensional simulations. However, 
similar considerations also apply to more complex cases. 

As an example, we consider the CV measurements of a PEDOT:PSS- 
electrolyte blend proposed in [20]. In that reference, the authors used 
a 1 cm2 gold WE coated with a 600 nm thin CP. Reasonably, given the 
extremely high aspect ratio of the electrode geometry, the authors 
adopted a one-dimensional geometry in their simulations, that is 
equivalent to assuming that the polymer disk and the reference electrode 
above are the bases of a cylinder filled with the electrolyte. In this work, 
we implement the same model equations as in [20] and we extend them 
to different spatial dimensions, namely, we adopt the 1D, 2D, and 3D 
geometries3 depicted in Fig. 3.d as case studies, while varying the 
electrolyte thickness of orders of magnitude higher and lower than the 
7.9 mm used in the reference study. The result for the 1D case is shown 
Fig. 3.a, where the lines with symbols represent our simulations and 
where Tel spans over three orders of magnitude. For the sake of com
parison, circles and the dashed line in black report the experimental and 
simulation results from [20]. We observe that, despite in all cases the 
same steady-state capacitive current is achieved, the rise time of the 
I − VApp curve increases for larger electrolyte domains. Figure S4 in the 
Supplementary Information clearly shows that when approximating the 
CP-Electrolyte structure as an RC series equivalent circuit, a direct 
proportionality exists between the time constant and the size of the 
electrolyte. Such an increase in the rise time does not converge for 
higher values of Tel (Fig. 3.a). In reality, one would rather expect that 
larger bulk electrolyte volumes do not affect the WE nor the interface 
with the conductive polymer. As shown in Fig. 3.b such expectations are 
satisfied if the simulation domain is extended to a 2D geometry (which 
can be seen as a planar electrolyte sheet sandwiched between two 
insulating layers) where the third physical dimension is not taken into 
account. Nevertheless, the results are not different from the more ac
curate 3D case in Fig. 3.c. This is in accordance with Fig. 2.a where the 
potential drop in the electrolyte for a two-dimensional structure is about 
three orders of magnitude lower than in 1D and, does not change 

Fig. 2. (a) Comparison between PNP numerical simulations of the structures in 
(b) and analytical calculations from the circuit representation in Fig. 1 of the 
potential drop in the bulk of the electrolyte elicited by a ramp voltage profile at 
the WE. We used a = 1 μm and parameter values reported in Table S2. In Eq. 
10, ρ ≈ 8 Ωm. 

3 Note that, in this paper, 1D/2D/3D refer to the number of physical di
mensions of the electrochemical cell, which may not correspond to the number 
of dimensions used in the model equations. For example, an axisymmetric 
model represents a 3D cell but its Laplacian has only two dimensions (see 2.b). 
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appreciably for larger electrolyte domains. In fact, in the three simulated 
structures (Fig. 3.d), the calculated bulk electrolyte resistance RB (that 
depends on the chosen Tel value) lies in the range of 0.05 − 100 Ω for the 
1D case, 4 − 14 mΩ for the 2D and ≈ 2 mΩ for the 3D one. We remind 
the reader that, except for the 3D case in Fig. 3.d, the 1D and 2D 
geometrical are oversimplifications of the actual 3D system. However, 
these examples recall choices of approximated geometries found in the 
literature [15–20]. 

In [20] the authors found the best match with the experiments using 
the thickness of the electrolyte among the fitting parameters (black 
dashed line in Fig. 3, where Tel = 7.9 mm). In the following, we provide 
another perspective where this parameter is not so critical. The voltage 
drop in the electrolyte layer, that in [20] contributed to the best-fit, can 
instead derive from a (more realistic) voltage drop due to the non- 
idealities at the contact electrodes, (e.g., charge transfer resistance at 
the RE or contact resistance at the small WE). This is equivalent to 
adding a resistance in series to the simulated system as explained in 
Section S5. Fig. 3.e, compares, i) the results of the best-fit proposed by 
the 1D model in [20], ii) our results using the same 1D model but setting 
Tel = 10 μm and adding a series resistance of RS = 42 Ω that is consistent 
with the RB values for millimeters size electrolytes considered previ
ously (blue line with circles) and, iii) the two-dimensional model version 

of (ii) (red line with diamonds). The perfect match between i) and ii) 
reveals that 1D structures with a series resistance can reproduce the 
same fit as in [20] without the need of including a very large electrolyte 
layer. Then, the good match between ii) and iii) shows that using small 
electrolyte thickness does not introduce significant voltage drops be
tween 1D and 2D simulations. In fact, using small electrolyte domains 
mitigates the build up of unrealistic resistance in the bulk of the elec
trolyte, thus yielding results in 1D which are similar with respect to the 
(less affected) 2D structure, ultimately almost identical to a three- 
dimensional domain. 

When dealing with geometrical artifacts, the example proposed in 
this section conveys the message that with both awareness of the elec
trolyte resistance dependence on space and the support of numerical 
simulations, scientists can determine the extent of the error induced by 
these artifacts and even choose to adopt 1D or 2D structures over 
complicated 3D ones when errors are negligible. Knowledgeable de
cisions such as this one allow one to save computational time and reduce 
complexity as can be seen in Section S6 of the Supplementary Material, 
where a benchmark of the simulations run for this work is reported. 

Fig. 3. Cyclic voltammetric simulations of CP/ 
electrolyte structures using the parameters reported 
in Table S4. (a) 1D, (b), 2D and, (c), 3D model re
sults (relative to the geometries in d) are compared 
with the 1D results in [20] for different choices of 
the electrolyte length. (d) Simulated structures, that 
make use of cylindrical coordinates for consistency 
with the experimental setup used in [20]. In COM
SOL, the 2D and 3D models are solved using two- 
dimensional differential operators for simplicity, 
since in the 3D structure the axial symmetry cancels 
out the partial derivatives with respect to the 
azimuthal angle ϕ̂ (see Fig. 2.b). (e) The best fits are 
replicated in 1D and 2D using a relatively limited 
electrolyte thickness but adding a series resistance 
at the RE electrode. Note that in (e), the blue line 
with circles and the black dashed line are almost 
perfectly overlapped.   
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4.3. Conclusions 

In this paper, we have shown that the use of an approximated ge
ometry can result in numerical artifacts when electrolyte models include 
the Poisson-Nernst-Planck formalism without the assumption of charge 
neutrality at the bulk of the electrolyte. For the case of 1D simulations, 
an appreciable potential drop can arise in large domains since the ge
ometry imposes constraints on the current density lines. The conse
quence is that a non-zero electric field can develop also in regions of the 
device that are supposed to be equipotential. Despite these voltage drops 
appear relatively small (even when considering one-dimensional sys
tems), their impact on ionic concentration profiles is remarkable as it is 
shown for cyclic voltammetric simulations of conductive polymers. 

In the authors’ opinion, despite the greatly simplified simulation 
experience that multiphysics simulation platforms such as COMSOL 
provide to users, these tools should be handled with care, as other works 
also suggest [5,6]. Obviously, the best modeling recommendation to 
avoid geometrical artifacts is to replicate actual 3D system geometries. 
When symmetries can be identified, the computational burden can 
otherwise be reduced by using lower dimensional structures and bearing 
that equations should reflect the existence of a rotational axis. When this 
is not possible, an approximated 2D version can also be satisfactorily 
used as the distortions may still be minimal. Finally, when 1D is the only 
option, we recommend modelers using electrolyte domains that do not 
go far beyond the charge screening length, as layers larger than tens of 
micrometers result in incorrect and non-negligible series resistances. 
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