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Abstract

This thesis consists of three essays on applied macroeconomics and macroecono-
metrics. In Chapter I, we challenge the claim of a recent authoritative study
that identifies a unique shock as the main driver of business cycle fluctuations.
We argue that the VAR used in that study is informationally insufficient, i.e.,
it is unable to recover the true structural shock driving business cycle fluctua-
tions. Using a large-dimensional Structural Dynamic Factor model, we present
an alternative view of the US business cycles, more in line with classical AD-AS
theory. This underscores the multivariate nature of cycles and challenges the
existence of a Main Business-Cycle shock. In Chapter II, we provide a few new
empirical facts that theoretical models should feature in order to be consistent
with US data. 1) There are two classes of shocks: demand and supply. Supply
shocks have long-run effects on economic activity, demand shocks do not. 2)
Both supply and demand shocks are important sources of business cycles fluc-
tuations. 3) Supply shocks are the primary driver for consumption fluctuations,
demand shocks for investment. 4) The demand shock is closely related to the
credit spread, while the supply shock is essentially a news shock. The results are
obtained using a novel approach which combines frequency domain identification
and Dynamic Factor Model analysis. Chapter III delves into the asymmetric im-
pact of demand shocks on the US economy using a Nonlinear Structural Dynamic
Factor model. Our findings reveal that the effects of aggregate demand shocks
are nonlinear, depending on their sign. Positive shocks are transitory, according
to standard business cycle theory; conversely, negative shocks leave lasting scars
on the economy. Recessions induced by demand-side shocks result in permanent
declines in output, employment, and investment.

JEL subject classification: E32, C32.
Keywords: Business Cycle, Frequency Domain, Dynamic Factors Models, Non-linearity,
Asymmetry.
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Abstract

Questa tesi consiste in tre saggi di macroeconomica applicata e macroeconometria.
Nel Capitolo I, mettiamo in discussione i risultati di un recente studio autorevole che
identifica uno shock unico come il principale motore delle fluttuazioni del ciclo eco-
nomico. Sosteniamo che il VAR utilizzato in tale studio sia carente dal punto di vista
informativo, cioè non è in grado di recuperare il vero shock strutturale che guida le
fluttuazioni del ciclo economico. Utilizzando un large-dimensional Structural Dynamic
Factor model, presentiamo una visione alternativa del business cycle degli Stati Uniti,
più in linea con la teoria AD-AS classica. Ciò sottolinea la natura multivariata dei
cicli e mette in discussione l’esistenza di uno shock principale del ciclo economico.
Nel Capitolo II, forniamo alcuni nuovi fatti empirici che i modelli teorici dovrebbero
includere per essere coerenti con i dati statunitensi. 1) Ci sono due classi di shock:
domanda e offerta. Gli shock di offerta hanno effetti a lungo termine sull’attività eco-
nomica, gli shock di domanda no. 2) Sia gli shock di offerta che quelli di domanda
sono importanti fonti di fluttuazioni dei cicli economici. 3) Gli shock di offerta sono il
principale motore delle fluttuazioni del consumo, gli shock di domanda per gli investi-
menti. 4) Lo shock di domanda è strettamente legato al credit spread, mentre lo shock
di offerta è essenzialmente un news shock. I risultati sono ottenuti utilizzando un ap-
proccio innovativo che combina l’identificazione nel dominio delle frequenze e l’analisi
Dynamic Factor model. Nel Capitolo III, approfondiamo l’impatto asimmetrico degli
shock di domanda sull’economia statunitense utilizzando un Nonlinear Structural Dy-
namic Factor model. I nostri risultati rivelano che gli effetti degli shock di domanda
aggregata sono non lineari, a seconda del loro segno. Gli shock positivi sono transi-
tori, secondo la teoria standard del ciclo economico; al contrario, gli shock negativi
lasciano cicatrici durature sull’economia. Le recessioni indotte dagli shock di domanda
producono declini permanenti nella produzione, nell’occupazione e negli investimenti.

JEL subject classification: E32, C32.
Keywords: Ciclo Economico, Dominio delle Frequenze, Modelli a Fattori Dinamici,
Non linearità, Asimmetrie.
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Chapter 1

Two Main Business Cycle Shocks
are Better than one∗

Abstract
This paper challenge the claim of a recent authoritative study that identifies a single
shock as the main driver of business cycle fluctuations. We argue that the VAR
used in that study is informationally deficient, thereby casting doubt on the causal
interpretation of the identified shock. Using a large-dimensional Structural Dynamic
Factor model, we present an alternative view of the US business cycles, more in line
with classical AD-AS theory. This underscores the multivariate nature of cycles and
challenges the existence of a Main Business-Cycle shock.

∗This work represents my job market paper. I am sincerely grateful to Mario Forni, Luca
Gambetti, Stefano Soccorsi for their continuous support and invaluable guidance throughout
the duration of this project. I thanks Efrem Castelnuovo and Marco Lippi for very useful com-
ments and suggestions. The author acknowledge the financial support of the Italian Ministry
of Research and University, PRIN 2017, grant J44I20000180001.
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CHAPTER 1. TWO MCB SHOCKS ARE BETTER THAN ONE! 2

1.1. Introduction

In their quest for a parsimonious explanation of business cycles, Kydland and Prescott
(1982) put forward an appealing idea: cyclical fluctuations could be explained by a
single shock.1 In their model this shock is the technology shock. A recent authori-
tative paper, Angeletos et al. (2020), ACD henceforth, revives this idea but from a
completely different perspective. The authors provide a comprehensive anatomy of
the U.S. macroeconomy. The core of this anatomy is a set of five shocks, each of
which accounts for the maximal volatility of a given macroeconomic variable (unem-
ployment, output, hours worked, consumption and investment, respectively) over the
business-cycle frequency band (6-32 quarters). These shocks share a common propa-
gation mechanism, that is, they produce the same impulse-response functions (IRFs),
and can be considered as the same shock, named the “Main Business Cycle” shock
(MBC). The MBC shock accounts for the bulk of cyclical fluctuations in economic
activity and has very special and well-defined features that challenge existing theories.
On the one hand, it has no long-run effects; in that, it resembles a demand shock. On
the other hand, it is disconnected from inflation; in that, it differs from a standard
inflationary demand shock, of the New Keynesian variety. This is at odds with both
the idea of news-driven cycles proposed by Beaudry and Portier (2006), and the view
put forward by Christiano et al. (2014) that risk shocks are the dominant factors in
cyclical fluctuations.2 Most importantly, the picture that emerges is in sharp contrast
with the standard AD-AS textbook theory, partly inspired by Blanchard and Quah
(1989), where cyclical fluctuations are driven by two main shocks, a standard supply
shock and a standard demand shock. This new perspective therefore lends support
to theories that aspire to explain the bulk of the observed business cycles with a sin-
gle demand shock, while posing a significant challenge to conventional New-Keynesian
paradigm.

From a methodological point of view, ACD proposes a frequency-based identifica-
tion method in the context of SVAR models. The method allows for the identification
of the shock which maximizes the explained variance of a particular variable in a
given frequency band.3 The approach of identifying dominant shocks in the frequency
domain, starting from a VAR, is drawing increasing interest. This is because it al-
lows isolating cyclical and long-run features without imposing economic conditions

1This perspective is reminiscent of the original idea of Burns and Mitchell (1946), who
argued that a reference cycle, or a one-dimensional latent cause of variation, drives the fluctu-
ations of all macroeconomic variables.

2In general, it is incompatible with all those estimated New-Keynesian DSGE models that
assume nominal rigidities or “sticky prices”. In addition to Christiano et al. (2014), see also
Smets and Wouters (2007) and Justiniano et al. (2010).

3This approach is essentially the frequency domain version of the max-share identification
pionered by Uhlig (2004). See also Barsky and Sims (2011), Francis et al. (2014), among others.
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that could invalidate any conclusions about the sources of fluctuations (DiCecio and
Owyang, 2010; Giannone et al., 2019; Dieppe et al., 2021; Basu et al., 2021). How-
ever, this method is not immune to the well-known problems that affect VAR models.
(1) Due to the so called “curse of dimensionality”, VAR systems could be informa-
tionally deficient. This means that the variables used by the econometrician may not
contain enough information to recover the structural shocks driving the economy and
the related IRFs.This problem, known as “non-fundamentalness” or “non-invertibility”
of Moving Average (MA) representations, is discussed among others in Sargent and
Hansen (1991), Lippi and Reichlin (1993, 1994), Fernández-Villaverde et al. (2007),
Alessi et al. (2011), Soccorsi (2016), Forni et al. (2019). (2) Many of the macroeco-
nomic variables used in SVAR models are affected by measurement errors and/or small
residuals of no economic interest. These can dynamically contaminate the estimated
VAR shocks, potentially leading to misleading results even when information seems
sufficient to correctly recover the IRFs (Lippi, 2019; Giannone et al., 2006; Forni et al.,
2020). Due to the potential bias introduced by the lack of information and the presence
of measurement errors, the results of SVAR analysis can be quite unstable, depending
on the variables included in the vector.

This raises a fundamental question: Is ACD’s VAR informationally sufficient to
recover the MBC shock? It appears not. We test for sufficient information by using
the “orthogonality” test proposed by Forni and Gambetti (2014).4 The test results
suggest that informational sufficiency is rejected, as the estimated MBC shock can
be predicted by the lags of the principal components (PCs) of a large dataset (the
testing procedure is explained in Section 1.2). Since PCs reflect virtually all available
macroeconomic information, it implies that the VAR used by ACD lacks some data
that could be useful in predicting the shock of interest. The lack of information can
lead to a misleading interpretation of what drives economic cycles, making it difficult
to distinguish between “fact and fiction”. This is our key insight.

Building upon this, our paper provides empirical evidence that challenges the ex-
istence of a single shock or a dominant propagation mechanism explaining the bulk
of business cycle fluctuations, as suggested by ACD. We argue that this mechanism
is not a robust feature of the data. Instead, it appears to be a product of the well-
documented instability of VAR results. Working in an environment that is free from
the limitations of VARs enables us to draw an alternative anatomical template for
the transmission mechanisms of the business cycles, that well fits into the traditional
AD-AS narrative, contrary to what claimed by ACD. In this sense, large-dimensional
Structural Dynamic Factor models (SDFM) offer a solution.

4Specifically, we investigate whether the 10-variable VAR considered by ACD contains
enough information to recover the MBC shock obtained by targeting business cycle frequencies
variation in unemployment, which is the baseline shock in ACD’s anatomy.



CHAPTER 1. TWO MCB SHOCKS ARE BETTER THAN ONE! 4

Just like ACD, we use the frequency domain identification method described above
to compile a collection of reduced-form shocks. Each shock maximizes the volatility of
a different macroeconomic variable over either business cycle (6-32 quarters) or long
run frequencies (80-∞). In contrast to ACD, we assume that U.S. macroeconomic
series follow a large-dimensional SDFM, as introduced by Forni et al. (2009) and Stock
and Watson (2005). Our positive argument is that the availability of a large dataset,
when combined with factor model techniques, helps in solving both problems affecting
SVAR analysis. These models can be used for structural economic analysis in the
same way as VAR models. However, unlike VARs, they include a large amount of
information, so that insufficient information is unlikely.5 Moreover, they allow us
to study the effect of structural shocks on the common components, which are the
observed macroeconomic series cleaned of measurement error. To this end, we built a
dataset for high dimensional macroeconomic analysis of 114 quarterly US time series,
covering the period 1961-I to 2019-IV.

As suggested by factor model literature, we do not believe that a single shock is the
sole driver of business cycles.6 Therefore, in our collection, we consider the possibility
that there exist at least two important cyclical shocks. First, for each of the target
variables, we identify the shock that has the largest contribution to the business-cycle
volatility of that variable, which is equivalent to ACD’s MBC. Next, we identify the
shock that is orthogonal to the first one and has the second largest contribution, in
order of importance, referred to as the “secondary” business cycle shock (SBC). This
process generates ten reduced-form shocks (two for each variable, respectively) that
target any of the following real activity quantities over the business cycle frequencies:
output, unemployment, hours worked, consumption, and investment. This forms the
core of our anatomy.7

Armed with this equipment, in the first part of our analysis, we examine the IRFs
and the variance contribution of the five MBC shocks. Our goal is to determine whether
our rich information setup provides evidence of a common propagation mechanism that
supports the idea of a single, dominant business-cycle shock. However, our findings

5Large factor models, as shown in Forni et al. (2009), are generally unaffected by non-
invertibility issues. Typically, the vector of the factors is singular, meaning it is driven by a
number of shocks that is smaller than its dimension. In such cases, achieving fundamentalness
becomes easier as it satisfies a less demandig condition.

6Studies by Sargent and Sims (1977), Giannone et al. (2005) and Watson (2004) show that
two shocks account for a significant portion of US data volatility. Similarly, Onatski (2009)
cannot reject the null hypothesis of two shocks against an alternative of 3 to 7 shocks. The
subsequent factor literature has repeatedly confirmed this insight. More recently, Avarucci
et al. (2021) proposed a new consistent estimator for the number of shocks, suggesting that
the US business cycle is driven by two common shocks.

7Other important elements of our collection include shocks that target output, consumption,
investment, TFP, and labor productivity over long-run frequencies, and the shock that targets
inflation over business cycle frequencies.
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suggest otherwise. Firstly, unlike ACD, a single shock that target any one of GDP,
unemployment, consumption, investment, and hours worked is not sufficient to explain
the bulk of business cycle fluctuations across all these variables. Most importantly, the
shock that targets consumption is neither correlated nor interchangeable in terms of
IRFs with the other identified shocks which, in contrast, appear to share roughly
the same propagation mechanism. The former has significant permanent effects and
accounts for only a quarter of the cyclical fluctuations in the remaining variables.
It also induces a negative covariance between GDP growth and inflation changes.
In terms of both IRFs and variance contributions, this reduced form shock closely
resembles a standard deflationary supply shock. On the other hand, the remaining
shocks are purely cyclical. They are disconnected from the long-run of real activity,
and contribute minimally to consumption volatility. Specifically, the shocks obtained
by targeting GDP, investment, and unemployment are highly correlated with each
other and induce a positive covariance between GDP growth and inflation changes.
In terms of both IRFs and variance contributions, each of these reduced form shocks
closely resembles a standard inflationary demand shock.8 It follows that our results
not only argue against the hypothesis of a single dominant business cycle shock, but
also challenge the distinctive features of ACD’s business cycle anatomy. Specifically,
we question the two disconnects between the short and the long run, and between real
activity and cyclical inflation. The shock that targets consumption is permanent and
deflationary, interpretable as a standard supply shock, while the GDP, unemployment,
and investment shocks are transitory and inflationary, interpretable as a standard
demand shock.9

Building on these findings, we proceed to the second part of our study. Here, we
enhance our anatomical analysis with the five “secondary” business cycle shocks and
present our parsimonious representation of the observed business cycles. We find that,
regardless of the target variable, two cyclical shocks are sufficient to account for most
of the business cycle fluctuations in real activity variables and, to a somewhat lesser ex-
tent, in inflation. Then we look at the long-run. Our two shocks together also account
for most of the long-run variance.10 Specifically, the SBC shock, obtained by targeting

8The hours worked shock is quite similar to the latter in terms of the IRFs it produces.
However, it is quite different in terms of variance contribution: it turns out to be disconnected
from inflation. This rules out the possibility of interpreting this shock as standard inflationary
demand.

9As for inflation, the shock that targets unemployment (GDP) accounts for about 36% (20%)
of the business cycle variation in inflation. Symmetrically, the shock that targets the cyclical
variance of inflation explains 32% (22%) of the business cycle variation in unemployment
(GDP), as against a scant 4% in ACD’s template.

10Symmetrically, the shocks identified by targeting any one of GDP, investment, consump-
tion, TFP or labor productivity at the long-run frequencies (referred to as main long run shock,
MLR), make a non negligible contribution to the business cycle, particularly with respect to
consumption cyclical fluctuations. This result is in sharp contrast to ACD, where the same
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any one of GDP, unemployment, investment, and hours worked, explains more than
half of the long-run volatility in real activity and induces a negative covariance between
GDP growth and inflation changes. This shock behaves as an aggregate supply shock
of the textbook-type. Thus, for each of these variables, while the MBC shock fits the
profile of a demand shock, the SBC shock fits the profile of a supply shock.11 On the
other hand, the SBC shock, obtained by targeting consumption, accounts for a small
fraction of long-run volatility and induces a positive covariance between GDP growth
and inflation changes. For private consumption, while the MBC shock behaves as a
generic supply shock, the SBC shock transmits a demand shock.

In essence, our empirical template of observed business cycles seems to fit the
traditional AD-AS narrative. Two main forces are at play: demand shocks of the
standard New Keynesian variety, which raise output and inflation, and supply shocks,
which raise output but lower inflation and map to long-run movements in TFP. The
business cycle of consumption is largely supply-driven, consistent with the perma-
nent income hypothesis, while that of GDP, investment, and unemployment is mainly
demand-driven, supporting the New Keynesian perspective. Hence, one may advance
the concept of the “Two Main Business-Cycle” shocks as the main drivers of business
cycle movements in real activity.

1.2. Is ACD’s VAR Informationally Sufficient?

We address this question using the “orthogonality” test proposed by Forni and Gam-
betti (2014).12 This test checks for the orthogonality of the estimated shock of interest
with respect to the past of the PCs of a large macroeconomic dataset. The key insight
is that the PCs encapsulate virtually all available information. Therefore, if the shock
of interest is correlated with the past of available information (i.e., if orthogonality is
rejected), it indicates that the VAR is informationally deficient. In this scenario, VAR
results can be misleading: changing the variables may change the information set and
therefore the estimated shock of interest.

The testing procedure unfolds as follows: First, we estimate the 10-variable VAR

shock has a small footprint on the business cycle.
11Compared with the corresponding MBC, each of these SBC shocks significantly contributes

to consumption volatility at business cycle frequencies, accounting for approximately half of
fluctuations. Indeed, they are strongly correlated with the consumption-targeted MBC shock,
reflecting shared supply dynamics.

12For our purposes, the relevant issue is not to establish whether the VAR is globally sufficient
or not, but whether it can correctly recover a single shock of interest. Forni and Gambetti
(2014) show that even if the VAR lacks sufficient information to capture all of the structural
shocks (i.e., the MA representation of the variables in the vector is non-fundamental), it can
still be informationally sufficient for a single shock. For this purpose, we use a less demanding
test than the Granger causality test proposed in the same paper.
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model, as proposed by ACD, with two lags, spanning the period from 1955:Q1 to
2017:Q4, and identify the shock that targets the unemployment rate at business-cycle
frequencies.13 Second, we regress this shock on the past values of a set of variables that
reflect agents’ information, and perform an F-test for the significance of the regression.
We use the first r = 6, 7, . . . , 11, PCs of the variables in our large dataset as regressors,
where r̂ = 11 is the number of factors driving the panel. This number is determined
using the criterion of Bai and Ng (2002) with the penalty modification proposed in
Alessi et al. (2010).14

The top panel of Table 1.1 shows the p-values of the test for different choices of PCs
and number of lags. We find that informational sufficiency is rejected, since the esti-
mated MBC shock is predicted by the lags of the PCs. This implies that by enlarging
the information set, the estimated MBC shock could be different while maintaining the
same identifying assumptions. In other words, the causal interpretation of the MBC
shock is questioned. We perform the test for any of the other shocks that make up
the main business cycle template (GDP, consumption, investment and hours worked)
obtaining the same result.15

Orthogonality

Principal Components 1 lags 2 lags 3 lags 4 lags

r=6 0.00 0.00 0.00 0.03
r=7 0.01 0.00 0.00 0.00
r=8 0.01 0.00 0.00 0.01
r=9 0.01 0.00 0.00 0.01
r=10 0.02 0.01 0.00 0.04
r=11 0.02 0.02 0.01 0.08

Variables 1 lags 2 lags 3 lags 4 lags

Baa-GS10 spread 0.06 0.02 0.01 0.01
S&P500 0.00 0.00 0.00 0.01
JLN Uncertainty 3M 0.06 0.01 0.01 0.01
BC12M 0.01 0.03 0.03 0.02

Table 1.1: p-values of the orthogonality F -test, with 1, 2 3 and 4 lags, for
the MBC shock that targets the unemployment rate, estimated with ACD’s
VAR specification. r = number of principal components used in the test.

We also try to provide some insight into the missing information. To do this, we
13As detailed in Section 2 of ACD, the data consist of quarterly observations on the following

macroeconomic variables: the unemployment rate; the per-capita level of GDP, investment
(inclusive of consumer durables), consumption (of non-durables and services), and total hours
worked; labor productivity in the non-farm business sector; utilization-adjusted TFP; the labor
share; the inflation rate (GDP deflator); and the federal funds rate.

14For the testing procedure, we adjusted the shock size by removing the initial six observa-
tions to align the start date with 1961:Q1 instead of 1955:Q1. This adjustment ensures that
the period matches our sample for this specific exercise, which spans from 1961:Q1 to 2017:Q4,
instead of extending to 2019:Q4 as in the rest of the analysis.

15Available upon request.
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regress the estimated MBC shock on the past values of some forward-looking vari-
ables and on the past values of other variables that are widely used in business cycle
analysis. These include the Shiller’s real S&P stock price index (S&P500), the Univer-
sity of Michigan’s confidence index on expected business conditions for the next year
(BC12M),16 a measure of the risk spread (Baa-GS10 spread) and the Jurado et al.
(2015)’s measure of macroeconomic uncertainty over a three-month horizon. The bot-
tom panel of Table 1.1 shows that orthogonality of the estimated MBC shock with
respect to the past of any of these variables is clearly rejected.

In conclusion, we believe that the potential lack of information in VAR analysis,
can lead to a mis-characterization of the business cycle anatomy. In this sense, large-
dimensional SDFMs offer a solution. These models are free from this drawback by
design; in fact, they use a large amount of data by enlarging the information set
available to the econometrician.

1.3. Model and Method

1.3.1. Structural Dynamic Factor Model

Let xt be a n-dimensional, stationary vector of observable economic variables. The
vector xt is part of an infinite-dimensional panel of time series. Each variable xit,
i = 1, . . . , n, is decomposed into the sum of two mutually orthogonal unobservable
components, the common component, χit, and the idiosyncratic component, ξit:

xit = χit + ξit. (1.1)

The idiosyncratic components are interpreted as sources of variation that are specific to
one or just a small group of variables, like regional or sectoral shocks, plus measurement
error. In particular, for macroeconomic variables like GDP, investment or consumption,
in which all local and sectoral shocks have been averaged out, the idiosyncratic part can
be interpreted essentially as only containing measurement error. The ξ’s are allowed to
be mildly cross-sectionally correlated, thus they have a covariance matrix which is not
necessarily diagonal (see Forni et al., 2009, Assumption 5).The χ’s, on the contrary,
account for the bulk of the co-movements among macroeconomic variables. This is
because they are different linear combinations of the same r < n common factors, not
depending on i, i.e. they span a r-dimensional vector space (see Stock and Watson,

16BC12M summarize responses to the following forward-looking question:“Turning to eco-
nomic conditions in the country as a whole, do you expect that over the next year we will have
mostly good times, or periods of widespread unemployment and depression, or what?”. The
anticipation properties of this variable on future movements in economic activity are widely
discussed in Barsky and Sims (2012) and Beaudry and Portier (2006).
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2002a,b; Bai and Ng, 2002). Then there exist an r-dimensional weakly stationary
vector process Ft = (F1t . . . Frt)′, orthogonal to ξt = (ξ1t . . . ξnt)′, and loadings λij ,
j = 1, . . . , r, such that

χit = λi1F1t + . . . + λirFrt or χt = ΛFt. (1.2)

The unobservable coordinates of Ft are called the static factor and Λ, the factor loading
matrix, is of size n×r. We require the factors to be pervasive i.e. to have non-negligible
effects on most of the variables xit (see Forni et al., 2009, Assumption 4). Combining
(1.1) and (1.2), we get a static equation linking the n observable variables xit to the r

factors and the idiosyncratic components

xit = λi1F1t + . . . + λirFrt + ξit or xt = ΛFt + ξt. (1.3)

Equation (1.3) is the static factor representation, where the factors have only contem-
poraneous effect on the common components. The dynamic nature of the model comes
from the fact that the static factors Ft follow a VAR(p) driven by a q-dimensional vec-
tor of orthonormal structural white noise, or common shocks ut = (u1t, . . . , uqt)′, with
q ≤ r. Precisely:

xt = ΛFt + ξt (1.4a)

C(L)Ft = ϵt (1.4b)

ϵt = Rut (1.4c)

where ϵt is the residual of the VAR on Ft, E(ϵtϵ
′
t) = Σϵ, C(L) is an r × r, stable

polynomial matrix and R is r × q and has maximum rank q. As a consequence, R has
a left inverse and the vector ut belongs to the space spanned by Ft−s, s ≥ 0, that is, ut is
fundamental for Ft. By inverting the matrix C(L) we get Ft = C(L)−1ϵt = C(L)−1Rut,
so that the dynamic relationship between ut and the common components is

χt =
[
ΛC(L)−1R

]
ut = B(L)ut. (1.5)

Then, by merging (1.1) and (1.5), we have the structural dynamic representation

xit = bi(L)ut + ξit or xt = B(L)ut + ξt, (1.6)

where the macroeconomic variables are represented as driven by a few pervasive struc-
tural shocks, loaded with the IRFs in B(L), plus measurement error. We are interested
in the effect of structural shocks on the common components χt of some key series, i.e.
on the variables obtained by removing idiosyncratic errors. Notice that representation
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(1.6) is not unique, since the IRFs are not identified. Forni et al. (2009) (Proposi-
tion 2), show that identification is achieved up to orthogonal rotations, just like in
structural VAR models.

Let us consider the linear mapping in (1.4c), ϵt = Rut. We define R = SH, where
S is the Cholesky factor of Σϵ, such that SS′ = Σϵ, and H is an orthonormal matrix,
namely a matrix such that H−1 = H ′. We can then rewrite (1.5) as

χt =
[
ΛC(L)−1S

]
Hut = D(L)Hut = B(L)ut (1.7)

where D(L) = ΛC(L)−1S encapsulates the Cholesky IRFs and B(L) = D(L)H collects
the structural IRFs. To identify the shocks, we must impose additional restrictions on
the rotation matrix H. This is usually done as in standard SVAR analysis, which
mainly employs an appropriate number of exclusion or sign restrictions motivated by
specific economic theories. Here we implement an alternative approach: identification
of dominant shocks in the frequency domain.

1.3.2. Identification of dominant shocks in the Frequency Domain

Our identification strategy follows ACD’s spectral method. In this approach, a shock is
identified as the one that explains the dominant fraction of the variance of a particular
variable within a specific frequency band, such as the business cycle (6-32 quarters)
or long-run (80-∞ quarters) frequencies. In this section, we show how to use spectral
decomposition to target the variance of a specific variable within a defined frequency
domain. We also illustrate how to isolate the shocks that dominate this objective
variance.

Consider representation (1.7). The effect of the j-th structural shock on the k-
th common-component is given by the (k, j) element of the matrix B(L), that is
D[k](L)h, where D[k](L) is the k-th row of D(L) and h is the j-th column of H. On
the other hand, the structural shocks are related to the VAR residuals by the relation
ut = R−1ϵt = H ′S−1ϵt = H ′ηt, ηt being the vector of the Cholesky shocks. Hence the
j-th structural shock is given by the product of the j-th row of H ′ and ηt, that is h′ηt.
Now, let

[
θ, θ
]

be a band of frequencies, such that 0 ≤ θ ≤ θ ≤ π. In the frequency
domain, the contribution of the j-th structural shock h′ηt to the spectral density of
the k-th variable over the frequency band

[
θ, θ
]

is given by

Ψ
(
h; k, θ, θ

)
=
∫ θ

θ

(
D[k]

(
eiθ
)′

h′D[k]
(
e−iθ

)
h

)
dθ

= h′
[∫ θ

θ

(
D[k]

(
eiθ
)′

D[k]
(
e−iθ

))
dθ

]
h

(1.8)
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where the matrix

V
(
k, θ, θ

)
=
∫ θ

θ

(
D[k]

(
eiθ
)′

D[k]
(
e−iθ

))
dθ

captures the entire frequency band variace of the k-th variable in terms of the contri-
butions of all Cholesky shocks. The contribution of the j-th structural shock can then
be re-written as

Ψ
(
h; k, θ, θ

)
= h′V

(
k, θ, θ

)
h. (1.9)

Our approach is to identify the largest contributors to the variance of a particular
variable k over a specific frequency band

[
θ, θ
]
, ordered in decreasing order of impor-

tance: First, the shock with the largest contribution to the target variance, then the
shock orthogonal to the first with the second largest contribution, and so on. Suppose,
without loss of generality, that the shocks u1t, u2t, . . . , uqt have to be identified. The
solution is given by the first q eigenvectors h = [h1, h2, ..., hq] corresponding to the q

largest eigenvalues of the matrix V
(
k, θ, θ

)
and provides the shocks h′

1ηt, h′
2ηt . . . , h′

qηt

ordered in terms of their contribution to the target. This strategy allows for the iden-
tification of a collection of shocks by systematically varying the target variable and/or
frequency band.

We show below that two shocks are enough to explain the bulk of cyclical variance
in the main macroeconomic aggregates, while the long run is explained by only one
shock.

1.4. Empirical Analysis

1.4.1. Data

Coming to the empirical application, we collect a quarterly dataset for high dimensional
macroeconomic analysis.

Our N × T dataset consists of 114 US quarterly series, spanning from 1961-I to
2019-IV. The majority of these series are sourced from FRED-QD.17 TFP data series
are obtained from John Fernald’s website (Fernald, 2012), while the Confidence data
are accessible on the Michigan Survey of Consumer website.18 Lastly, the macroeco-
nomic uncertainty series (Jurado et al., 2015) are retrieved from Sydney C. Ludvig-
son’s website. Some series have been constructed by ourselves as transformation of
the original ones. Following standard practice in macroeconomic analysis, consump-

17FRED-QD is a large quarterly macroeconomic database with 248 series, developed by
McCracken and Ng (2020).

18http://www.sca.isr.umich.edu/

http://www.sca.isr.umich.edu/
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tion includes non-durables and services, while investment has been broadly defined to
include consumer durables. Both measures are taken in real terms. Monthly data, like
the macroeconomic uncertainty series, have been aggregated to get quarterly figures.
Finally, it is worth noting that most series are expressed in per capita terms, dividing
by population aged 16 years or more (civilian non-institutional population series) and
stock market data have been deflated by the GDP deflator. We transform each series
to reach stationarity. As for the transformations, we deviate from those suggested by
McCracken and Ng (2020) for the interest rates, which are taken in levels rather than in
differences; furthermore, we take prices and other nominal variables in log-differences,
rather than in double differences of the logs. This avoids potential over-differentiation,
which could enhance high frequencies of little interest for business cycle analysis. The
complete list of variables and transformations is provided in Appendix (1.B).

To conclude this section, let us look at the common-idiosyncratic variance decom-
position of the key variables above with r̂ = 11 static factors, shown in table 1.8.
The common variance of the main macroeconomic aggregates like GDP, consumption,
investment and unemployment rate are 94, 82, 90 and 94 percent of total variance, re-
spectively. These numbers seem compatible with the measurement error interpretation
of the idiosyncratic components.

1.4.2. Identification Strategy

We use the techniques discussed in Section (1.3.2) to compile a collection of shocks,
in a way that is similar to, but somewhat distinct from, ACD. Just as in that pa-
per, the core of our collection consists of shocks targeting any one of unemployment,
output, consumption, investment, and hours worked over business cycle frequencies.
The difference is that, as we show below, a single shock is not sufficient to provide an
accurate description of business cycles in real activity variables. Therefore, we place
a second business cycle shock at the center of our analysis, while ACD relegates it to
the appendix.

Thus, for each of these five variables, we identify the q = 2 dominant shocks that
explain the majority of business cycle fluctuations. They are selected in decreasing
order of importance. First, we identify the shock with the largest contribution to
the business cycle volatility, equivalent to ACD’s shock. Then, we identify the shock
orthogonal to the first one with the second-largest contribution, referred to as SBC
shock. To do this, for j = 1, . . . , q, we solve the maximization problem (1.3.2) in the fre-
quency interval [θ, θ] = [2π/32, 2π/6], corresponding to cycles with periodicity between
18 months and 8 years. Repeating this process for each of the aforementioned variables
produces a collection of ten reduced-form shocks. Mimicking ACD’s approach, in the
first part of the analysis our focus is exclusively on the five MBC shocks. The aim is to
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determine whether our rich information setup provides evidence of a single, dominant
business cycle shock. In the second part, we enhance our anatomical analysis with the
five “secondary” business cycle shocks and present our parsimonious (two shocks) rep-
resentation of the observed business cycles. A second, important but auxiliary subset
comprises the shocks identified by targeting any one of GDP, investment, consump-
tion, TFP, or labor productivity at long-run frequencies. For each of these variables,
we find the shock that accounts for the bulk of long run fluctuations, referred to as
MLR shock. In this case, we solve the maximization problem (1.3.2) by setting q = 1
and in the frequency interval [θ, θ] = [0, 2π/80], corresponding to periodicities greater
than 20 years. These auxiliary shocks, along with other elements comprising our data
anatomy, help us to characterize the properties of the business cycle picture we aim
to provide. In doing so, we delve deeper into potential connections or disconnections
with the nominal side, technology, and the long run.

1.5. Results

1.5.1. Questioning the Existence of a “Main Business-Cycle Shock”

The first part of the results aims to establish the existence of a single, dominant
business-cycle shock. Following ACD’s approach, we focus on the MBC shocks that
target any one of GDP, unemployment, consumption, investment and hours worked.
A key finding in ACD is that these shocks turn out to be interchangeable, in the sense
that they produce essentially the same IRFs, or the same propagation mechanism.
Moreover, any one of them not only explains approximately three-quarters of the
business-cycle volatility in the targeted variable but also accounts for more than one
half of the business-cycle volatility in the remaining variables. These findings serve
as the foundation, outlining necessary requirements for establishing the existence of a
singular driver of the business-cycle. Is there comparable evidence in our data?

Consider the first requirement: the interchangeability of these shocks in terms
of IRFs. Figure 1.1, Panel A, compares the responses of selected variables to the
shocks targeting output, unemployment, investment and hours worked. Meanwhile,
Panel B reports the responses to the shock targeting consumption.19 It is clear from
this figure that targeting consumption produces a shock with a different propagation
mechanism from the others. The former (Panel B) has a large permanent effect on
real economic activity variables and generates a temporary hump-shaped response of
unemployment and hours worked (see Figure 1.3). GDP increases immediately by
around 0.2%, peaks around the 10th quarter, and converges to 1.2% in the long run.

19For a comprehensive view of the responses of all the variables to these shocks, please refer
to Figure 1.3.
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Unemployment behaves countercyclically, reaching a minimum of about -0.2% around
the 8th quarter. This shock generates a negative comovement between the inflation
rate and output growth. The former immediately falls by around 0.15%, after which
the effect relatively quickly vanishes. Monetary policy, as proxied by the federal funds
rate, reacts very weakly. The response of TFP follows an S shape, featuring a relatively
small impact effect and a much larger long-run effect (about 1.1). In terms of IRFs,
this shock is essentially an aggregate supply shock of the textbook-type.

(a) GDP, Unemployment, Investment and Hours worked shocks

(b) Consumption shock

Figure 1.1: Impulse response functions of the MBC shock obtained by target-
ing different variables. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively, for the shock that targets GDP (panel A)
and consumption (Panel B).

Conversely, the other shocks are purely cyclical. Moreover, they seem to share
roughly the same propagation mechanism. This is the first piece of evidence suggesting
that at least two shocks with distinct propagation mechanisms are needed to explain
business-cycle movements in real activity. Consider the shock that targets GDP (Panel
A, black line). The responses of output and investment are temporary and hump-
shaped, peaking in the 2nd quarter. The effects are no longer statistically significant
after about one year. GDP exhibits a positive impact effect of 0.6% and a peak of
about 0.8%. For consumption the effect is positive but very short-lived, being barely
significant only on impact (0.3%, see Figure 1.3). Unemployment reaches a minimum
of around -0.15% after a few quarters. Then show a very short-lived rebound effect,
with a peak of about 0.1%. This shock generates a positive comovement between the
inflation rate and output growth. Inflation and the interest rate move in tandem. The
former increases on impact, peaks just above 0.1%, and converges to zero afterward.
TFP does not react, with the effect not being statistically significant. In terms of
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IRFs, this shock is essentially an aggregate demand shock of the textbook-type. As
is evident from the figure, GDP, investment and unemployment shocks are highly
interchangeable, suggesting that they represent multiple facets of the same inflationary
demand shock.20 The hours worked shock is very similar to the latter in terms of IRFs
it produces. However, it differs in that the inflation response is nearly zero and lacks
statistical significance.

Now, turning to the second necessary requirement: our goal is to assess whether
each of these shocks can effectively explain the bulk of business-cycle fluctuations in
real activity variables. Table 1.2 reports, for each variable, the percentage of variance
explained by the MBC shocks at business-cycle frequencies (top panel) and in the
long run (bottom panel). From the top panel of Table 1.2, it is evident that a single
shock targeting any one of the aforementioned variables is not sufficient to explain the
majority of business-cycle fluctuations in all of these variables. For example, the shock
that targets GDP explains about 61% of the business-cycle volatility in GDP and only
36% of that in unemployment, compared to 80% and 56% in ACD. Similarly, the shock
that targets unemployment explains 58% of the cyclical volatility in unemployment and
only 39% of that in GDP, as opposed to 73% and 59% in ACD. Consistent with previous
findings, the shock that targets consumption explains 66% of the cyclical volatility in
consumption and only a quarter of that in the remaining variables. Symmetrically,
the other shocks account for only 11% to 21% of the business-cycle fluctuations in
consumption. This constitutes the second piece of evidence suggesting that a single
shock is not sufficient to explain the bulk of fluctuations in real activity over the
business cycle, contrary to what is claimed by ACD.

Finally, Table 1.3 corroborates the findings presented so far, showing the correla-
tion coefficients between the identified shocks. The shock that targets consumption
shows very weak or almost no correlations with the other shocks, ranging from 0.04 to
0.22. Conversely, the shock obtained by targeting any one of GDP, investment, and
unemployment are highly correlated with each other, with coefficients ranging from
0.78 to 0.92.

20The observed responses of both GDP and its components to the unemployment shock
show a rebound effect followed by a long-run decline. Nevertheless, this effect is consistently
not statistically significant. The transitory nature of this shock is confirmed in terms of its
contribution to the long-run variance (see the next section). The IRFs of this shock with the
corresponding confidence bands are available upon request.
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Main Business Cycle Shock

Percentage of Explained Cyclical Variance

GDP Unemp Cons Invest Hours
GDP 60.6 39.3 26.9 52.3 29.5
Unemployment 36.0 57.7 26.9 45.6 42.1
Consumption 19.0 17.5 66.0 21.0 11.8
Investment 52.8 48.1 24.8 61.6 35.6
Hours Worked 26.7 40.1 29.9 33.5 57.5
TFP 9.8 15.4 10.9 12.5 12.2
Inflation 19.5 36.0 22.1 19.2 5.8
FFR 36.5 53.6 14.8 40.3 35.7
S&P500 14.5 14.3 23.3 23.9 21.5
Labor 45.9 31.3 18.6 37.4 22.5

Percentage of Explained Long Run Variance

GDP Unemp Cons Invest Hours
GDP 0.5 11.8 65.7 0.6 0.5
Unemployment 5.3 9.6 58.1 4.2 5.5
Consumption 1.1 10.5 68.9 2.3 0.2
Investment 1.0 16.9 55.6 0.8 0.3
Hours Worked 2.0 1.1 58.1 2.8 28.0
TFP 2.2 10.3 55.7 3.5 0.2
Inflation 10.3 14.8 2.2 7.3 1.0
FFR 22.1 23.6 0.6 17.0 7.4
S&P500 1.3 3.2 22.6 0.3 3.4
Labor 0.5 7.3 49.2 1.0 4.9

Table 1.2: Percentage of variance explained by the main business cycle shock
for a few selected variables, by frequency bands. The columns correspond to
different targets in the construction of the shock.

Main Business Cycle Shock

GDP Unemp Cons Invest Hours
GDP 1 0.78 0.17 0.92 0.67
Unemployment 0.78 1 0.04 0.87 0.80
Consumption 0.17 0.04 1 0.20 0.22
Investment 0.92 0.87 0.20 1 0.75
Hours Worked 0.67 0.80 0.22 0.75 1

Table 1.3: Correlation between the shocks obtained by targeting GDP, Un-
employment, Consumption, Investment, and Hours worked

1.5.2. Nature and (Dis)connections of our MBC Shocks

The results discussed so far exclude the existence of such thing as a “Main Busi-
ness Cycle” shock. First of all, a single shock is not enough to explain most of the
business-cycle fluctuations in real activity. More importantly, the shock that targets
consumption is neither correlated nor interchangeable in terms of IRFs with the other
identified shocks which, in contrast, appear to share roughly the same dynamic co-
movements. Therefore, our results do not support the hypothesis of a main, unifying
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propagation mechanism, as at least two distinct mechanisms are at play. Before mov-
ing on to the second part of the analysis, where we enhance our collection with the five
“secondary” business-cycle drivers, we now examine more in detail the properties of
our MBC shocks. Although the timing and magnitude of the responses in Figure 1.3
provide valuable insights into the nature of the shocks identified, they alone may not
be exhaustive to offer a comprehensive interpretation. From this perspective, Table 1.2
provides additional information in terms of variance contributions, which help us to
better understand potential connections or disconnections with the nominal side and
the long run. This understanding is crucial to determine whether the nature of these
shocks aligns with what the observed co-movements (IRFs) have previously suggested.

Let us turn our attention to the long run. From the lower panel of Table 1.2, we
see that previous insights are confirmed. While the shocks that dominate the business
cycle of GDP, unemployment, investment, and hours are largely disconnected from
the long run of real economic activity, the shock that dominates the business cycle of
consumption is far from being disconnected. Indeed, it explains over half of the long-
run fluctuations in real activity variables, accounting for approximately 66% and 56%
of the long-run variance in GDP and TFP, respectively. This is an early indication
that what drives the long run of output and TFP has a non-negligible footprint on the
business cycles. This point is further corroborated later. Conversely, the remaining
shocks explain almost nothing, or very little (unemployment-shock), of the long-run
variance in real activity, that is, they have a transient nature.

We now turn attention to the relation between inflation and real activity over the
business cycle. First, as shown in Table 1.4 (which repeats a portion of the top panel
of Table 1.2), all identified MBC shocks, except for the one that targets hours worked,
have significant effects on the nominal side of the economy. In particular, differently
from ACDs findings, the unemployment shock that we identify account for 36% of the
business-cycle variation in inflation, as against a scant 7% in ACD. This is consistent
with what has been observed in terms of co-movements, that is, the inflation rate
seems to behave as suggested by the New-Keynesian framework: it increases when the
unemployment rate is low (during expansion), and then converges to zero when the
economy stabilizes. This result is largely in line with the figures reported in Bianchi
et al. (2023).21 Shocks targeting GDP, investment and consumption also explain about
19% to 22%. These are relatively high shares, when considering that the identified
shocks explain “only” about 60% of the business cycle fluctuations in the targeted
variables. On the other hand, the hours worked shock turns out to be disconnected
from inflation, in that it explains close to nothing of the business-cycle variation in

21In that paper, a Trend-Cycle VAR is used to identify the shock that explains most of
the cyclical component of unemployment. This shock accounts for approximately 30% of the
inflation cycle.
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inflation (6%).

Inflation and the business cycle

Percentage of Explained Cyclical Variance

GDP Unemp Cons Invest Hours Inflation
GDP 60.6 39.3 26.9 52.3 29.5 21.8
Unemployment 36.0 57.7 26.9 45.6 42.1 32.1
Consumption 19.0 17.5 66.0 21.0 11.8 21.2
Investment 52.8 48.1 24.8 61.6 35.6 23.7
Hours Worked 26.7 40.1 29.9 33.5 57.5 12.3
Inflation 19.5 36.0 22.1 19.2 5.8 86.6
FFR 36.5 53.6 14.8 40.3 35.7 40.1

Table 1.4: Percentage of business cycle variance explained by the MBC shocks
for a few selected variables. The columns correspond to different targets in
the construction of the shock.

Second, the shock that targets the business cycle variance of inflation explains
approximately 21% to 32% of the business cycle variation in unemployment, GDP,
investment, and consumption. This result is in sharp contrast to ACD, where the same
shock has a very small footprint on the business cycle of real economic activity (4 to
8%). Thus, business cycle fluctuations in inflation seem to co-move with real activity,
at least to some extent. It follows that our results not only argue against the hypothesis
of a single dominant business cycle shock, but also challenge the distinctive features
of ACD’s business cycle anatomy. To make a long story short, the interpretation
of shocks obtained by targeting any one of GDP, unemployment and investment is
in line with a demand shock in a textbook version of the New Keynesian model.22

Conversely, in terms of both IRFs and variance contributions, the interpretation of
the shock that target consumption is in line with an aggregate supply shock, which
raises output but lowers inflation, and maps to long run movements in productivity.
However, neither categories of shock/mechanism alone is able to explain the bulk of
the observed business cycles. In what follows, we enrich our collection with the five
“secondary” business cycle shocks.

1.5.3. The two Main Business-Cycle Shocks

Are two shocks sufficient to explain the majority of business cycle fluctuations in real
activity variables? And if yes, what are they and what are their effects? For each of the
five macroeconomic quantities, we now identify two shocks. The first, already reported
in the Part I, is the MBC shock of that specific variable. The second, referred to as
the SBC shock, is identified by maximizing its contribution to the residual business

22As for the hours worked shock, despite its transitory nature, the disconnect with inflation
rules out the possibility of interpreting this shock as a standard inflationary demand shock.
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cycle volatility of that variable, after the effect of the MBC shock has been filtered
out. Table 1.5 reports the percentage of variance jointly explained by the two shocks at
business cycle frequencies and in the long run. Our hypothesis is broadly confirmed:
two shocks are enough to provide an accurate description of the observed business
cycle in real activity. Depending on the target variable, the percentage of cyclical
volatility explained by the two shocks varies between 65 and 91 for GDP, 62 and 95
for unemployment, 66 and 95 for consumption, 68 and 96 for investment, 50 and 76
for hours worked. As for the relation between inflation and real activity at business
cycle frequencies, while it is tenuous for the hours worked, it is still evident for the
other variables, as the corresponding shocks explain between 44% and 62% of the
variation in inflation. Then we look at the long-run. In principle, both shocks could
be disconnected from long term real activity, since they are selected as those shocks
maximizing cyclical variance. But this is not the case: our two shocks together account
for most of the long-run variance in both output and productivity.

The Two Main Business Cycle Shocks

Percentage of Business Cycle Variance Percentage of Long Run Variance

GDP Unemp Cons Inv Hours GDP Unemp Cons Inv Hours
GDP 91.5 69.7 65.2 83.0 58.3 60.8 63.7 76.6 47.8 52.6
Unemployment 73.0 95.0 62.1 82.4 76.0 76.8 77.5 74.2 72.8 63.1
Consumption 74.7 66.9 95.2 68.3 65.4 56.4 54.9 81.0 46.1 54.1
Investment 86.1 82.7 67.5 95.8 66.5 70.9 77.8 67.8 65.1 66.2
Hours 61.1 75.6 50.4 66.2 92.5 66.0 68.5 62.7 55.8 70.4
TFP 22.2 27.2 19.8 25.0 27.9 56.2 56.0 74.8 52.1 51.9
Inflation 51.5 61.9 43.7 51.9 33.1 18.9 22.2 7.5 18.1 6.2
FFR 56.0 67.7 50.0 62.2 59.7 22.7 23.8 7.7 19.4 8.0
S&P500 56.4 65.3 32.5 69.7 54.3 43.9 47.8 27.3 48.5 39.9
Labor 63.7 47.7 42.7 53.5 41.9 55.2 57.2 61.6 50.4 49.0

Table 1.5: Percentage of variance explained by the two main shocks for a few
selected variables, by frequency band. The columns correspond to different
targets in the construction of the shock.
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The Two Main Business Cycle Shocks

Percentage of Explained Cyclical Variance

GDP Unemp Cons Invest Hours
MBC SBC MBC SBC MBC SBC MBC SBC MBC SBC

GDP 60.6 30.9 39.3 30.4 26.9 38.3 52.3 30.6 29.5 28.8
Unemployment 36.0 37.0 57.7 37.2 26.9 35.2 45.6 36.9 42.1 33.9
Consumption 19.0 55.7 17.5 49.4 66.0 29.3 21.0 47.2 11.8 53.6
Investment 52.8 33.4 48.1 34.6 24.8 42.7 61.6 34.2 35.6 30.9
Hours 26.7 34.4 40.1 35.5 29.9 20.5 33.5 32.7 57.5 35.0
TFP 9.8 12.4 15.4 11.8 10.9 8.9 12.5 12.5 12.2 15.7
Inflation 19.5 32.0 36.0 25.9 22.1 21.7 19.2 32.7 5.8 27.3
FFR 36.5 19.4 53.6 14.1 14.8 35.2 40.3 21.9 35.7 24.0
S&P500 14.5 41.9 14.3 50.9 23.3 9.2 23.9 45.8 21.5 32.8
Labor 45.9 17.8 31.3 16.4 18.6 24.1 37.4 16.2 22.5 19.4

Percentage of Explained Long-Run Variance

GDP Unemp Cons Invest Hours
MBC SBC MBC SBC MBC SBC MBC SBC MBC SBC

GDP 0.5 60.3 11.8 51.9 65.7 11.0 0.6 47.2 0.5 52.2
Unemployment 5.3 71.5 9.6 67.9 58.1 16.1 4.2 68.6 5.5 57.6
Consumption 1.1 55.4 10.5 44.4 68.9 12.1 2.3 43.8 0.2 53.9
Investment 1.0 69.9 16.9 60.9 55.6 12.2 0.8 64.3 0.3 65.9
Hours 2.0 63.9 1.1 67.4 58.1 4.7 2.8 53.0 28.0 42.4
TFP 2.2 54.0 10.3 45.7 55.7 19.1 3.5 48.6 0.2 51.7
Inflation 10.3 8.6 14.8 7.4 2.2 5.3 7.3 10.8 1.0 5.2
FFR 22.1 0.6 23.6 0.2 0.6 7.1 17.0 2.4 7.4 0.7
S&P500 1.3 42.7 3.2 44.6 22.6 4.7 0.3 48.2 3.4 36.5
Labor 0.5 54.6 7.3 49.9 49.2 12.4 1.0 49.4 4.9 44.1

Table 1.6: Percentage of variance explained by the MBC shock and the SBC
shock for a few selected variables, by frequency band. The columns corre-
spond to different targets in the construction of the shock.

The key to understanding this representation lies in the SBC shock. Table 1.6
reports the percentage of variance explained by the MBC shock and the SBC shock at
business cycle frequencies (top panel) and in the long run (bottom panel). From the
bottom panel of the table, it can be observed that the SBC shock, obtained by targeting
any one of GDP, unemployment, investment, or hours worked, accounts for 42 to 60%
of the long-run fluctuations in GDP, and 46 to 54% in TFP, that is, it has long-lasting
effects on economic activity.23 When we turn our attention to the explained variance at
business cycle frequencies (top panel), we find that the secondary shock, which targets
any of these variables, is not only important in explaining long-run fluctuations, but
also plays a crucial role in the business cycle. Its importance is almost comparable
to that of the corresponding MBC shock. In particular, it is found to be dominant
for consumption, in that it explains about one-half of its cyclical variance, while the
corresponding MBC shock explains between 12 and 21%.24 This finding reinforces the

23It also accounts for 58 to 72% of the fluctuations in unemployment, 44 to 55% in consump-
tion, 61 to 70% in investment, and 42 to 67% in hours worked.

24Note that the contribution of these shocks to the cyclical variance of consumption is left
unrestricted.
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previous insight: shocks that account for the long-run of output and productivity also
make a significant contribution to the business cycle. Finally, depending on the target
variable, this shock also accounts for about 26-33% of the fluctuations in inflation.
Figure 1.2, Panel A, compares the IRFs of selected variables to the SBC shocks of
output, unemployment, investment and hours worked.25 As is evident from the figure,
these shocks are nearly indistinguishable and share the typical features of a supply
shock. The degree of matching is very high, with correlation coefficients ranging from
0.90 to 0.98 (Table 1.9). Therefore, for each of these variables (GDP, unemployment,
investment and, to a somewhat lesser extent, hours worked), while the corresponding
MBC shock fits the profile of an aggregate demand shock, the SBC shock fits the profile
of an aggregate supply shock.

Building on the previous discussion, it’s worth noting that each of these secondary
shocks not only produces the same comovements/IRFs as the MBC shock of consump-
tion, as detailed in section 1.5.1, but also exhibits a high correlation with it. This
correlation is quantified by coefficients ranging from 0.80 to 0.90. Based on this, we
can conclude that they represent interchangeable facets of the same aggregate supply
shock.

(a) GDP, Unemployment, Investment and Hours worked shocks

(b) Consumption shock

Figure 1.2: Impulse response functions of the SBC shock obtained by target-
ing different variables. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively, for the shock that targets GDP (panel A)
and consumption (Panel B).

What about the SBC shock obtained by targeting consumption? Unsurprisingly,
while the corresponding MBC shock turns out to be a permanent supply shock, the

25For a comprehensive view of the responses of all the variables to these shocks and the
shock that targets consumption, please refer to Figure 1.4.
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SBC shock turns out to be a transitory shock, as the percentage of long-run fluctuations
in GDP, consumption, and investment accounted for by this shock is negligible (Table
1.6, bottom panel).26 Going back to the top panel of the table, it can be seen that
this shock accounts for about 38, 35, and 43% of the business cycle fluctuations in
GDP, unemployment, and investment, respectively, whereas the corresponding slow-
moving MBC shock accounts for about 27% and 25%. This is consistent with previous
results: transitory shocks are the most important factors in explaining the business
cycle of output, unemployment and investment. Regarding cyclical inflation, this shock
appears to be fairly connected with it, accounting for approximately 22%. Given
these observations, it is very tempting to interpret this shock as a standard demand
shock, in line with the interpretation given to the MBC shock that targets any one
of GDP, unemployment, and investment. This interpretation finds some support in
Panel B of Figure 1.2, which reports the IRFs of selected variables to this shock. The
observed response of output growth shows a positive impact and a peak of about 0.4%
at horizon 2, followed by a rebound and a substantial decline in the long run. However,
this long-lasting effect is not statistically significant.27 The inflation rate increases on
impact, peaks at 0.12% in the second quarter, and converges to zero afterward. This is
consistent with what we would expect from a demand shock. The interest rate follows
a similar dynamic, increasing in a hump-shaped pattern and reaching a maximum
of about 0.13%. Therefore, for private consumption, while the corresponding MBC
shock fits the profile of an aggregate supply shock, the SBC shock fits the profile of an
aggregate demand shock.

Once again, it’s important to note that this shock is closely related to each of the
MCB shocks that target GDP, unemployment, and investment, displaying correlation
coefficients near 0.8.28 This suggests that they share roughly the same propagation
mechanism and represent different facets of the same aggregate demand shock.

Summing up, considering a sample from 1962 to 2019, the observed business cycles
of GDP, investment, consumption, unemployment and, to a lesser extend hours worked,
appears to be well described by two common factors/mechanisms of a different nature:
a demand shock having only transitory effects (or vey small long-term impacts) and
a generic supply shock having long-lasting effects on output and productivity. Hence,
one may advance the concept of the “Two Main Business-Cycle shocks” as the main
drivers of business cycle movements in real activity.

26However, note that this shock explains a non-negligible fraction of long-run fluctuations in
TFP (about 19%).

27The same applies to the response of TFP in the long run, which is never statistically
significant. Note that these objects are still reduced-form shocks, the interpretation of which
is inherently delicate, as also pointed out by ACD. This is the price of following an agnostic
approach.

28The correlation coefficient between the SBC shock of consumption and the MBC shock of
hours worked is 0.51, indicating a slightly weaker connection.
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1.5.4. The Main Long-Run Shock and the Business Cycle

One of the main findings emerging from our analysis is that, although the long-run
is left unrestricted, our two main business cycle shocks togheter account for more
than half of the long-run fluctuations in both output and productivity. This suggests
that what drives the long run also leaves a nontrivial footprint on the business cycle.
In what follows, we further corroborate this finding. A second, important subset of
our anatomy indeed comprises the shocks identified by targeting any one of GDP,
investment, consumption, TFP, or labor productivity at long-run frequencies. This
subset allows us to answer two questions. First, is a single shock sufficient to account
for the bulk of long-run fluctuations in real activity? If yes, how much of the business
cycle variance in real activity is accounted for by this shock?

Table 1.7 and Figure 1.5 show that these shocks produce essentially the same results
in terms of both IRFs and variance contributions, as well as being highly correlated
with each other (Table 1.10). Furthermore, any one of them accounts for almost all
of the long-run variance in the targeted variables and for more than one half of the
long run variance in the remaining variables. For example, the shock that targets
GDP explains about 97% of the long run volatility in GDP and 70% of that in TFP.
Similarly, the shock that targets TFP explains 91% of the long run volatility in TFP
and 74% of that in GDP. Therefore, we can assume the existence of a single main
long-run shock. From the figure, it is evident that this shock has the typical features
of a supply shock that reflects long-run movements in productivity: it has a large
permanent effect on real activity variables, and induces a negative covariance between
GDP growth and inflation changes. In response to this shock, unemployment and
hours worked exhibit a temporary hump-shaped pattern. Note that TFP and labor
productivity, after a relatively modest impact effect, slowly increase toward their new
long run level, suggesting that the various facets of this shock include an important
technological component related to news about future productivity.

Now, let us turn our attention to the explained variances at business cycle frequen-
cies (Table 1.7, top panel). Despite the fact that the short-run is left unrestricted, we
find that the main long-run shock has considerable effects on the business cycle. This
shock, represented by the shock that targets TFP, explains 21% of the business cycle
volatility for GDP and investment, 25% for unemployment, and 24% for hours worked.
Moreover, consistent with previous findings, it accounts for approximately 46% of the
business cycle volatility in consumption. These results support the thesis that private
consumption fluctuations are mostly explained by supply shocks and therefore, to best
describe the observed business cycles in real activity, both demand and supply shocks
should be taken into account. Overall, our main long-run shock does not seem to be
disconnected from short-term economic activity, just as our empirical template of the
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business cycle does not seem to be disconnected from the long run. The emerging
picture stands in stark contrast to ACD, where the same shock presents a profound
disconnect with the short run. At the same time, is clearly incompatible with both
the standard RBC model and the view proposed by Beaudry and Portier (2006) that
TFP news is the main driver of cyclical fluctuations in real activity.

To conclude, there is a nontrivial connection between the short run and the long
run of real economic activity, which theoretical models should take into account.

Main Long Run Shock

Percentage of Explained Cyclical Variance

GDP Cons Invest Labor TFP
GDP 21.8 19.8 23.1 19.2 20.5
Unemployment Rate 27.1 23.7 33.0 24.3 25.1
Consumption 48.2 51.5 41.3 38.5 46.2
Investment 18.2 17.7 23.5 19.1 20.6
Hours Worked 20.3 21.2 24.0 20.0 20.8
Labor 24.6 14.7 24.5 24.3 26.0
TFP 16.2 8.4 14.9 21.2 29.2
Inflation 33.0 17.4 47.8 46.8 28.8
FFR 17.1 19.5 24.4 15.1 23.8
S&P500 9.0 5.9 15.3 11.9 7.3

Percentage of Explained Long Run Variance

Target GDP Cons Invest Labor TFP
GDP 96.7 80.1 71.3 72.2 74.1
Unemployment Rate 57.7 50.0 59.9 74.9 61.4
Consumption 78.9 95.3 47.7 52.3 72.8
Investment 70.8 47.2 96.4 66.7 51.9
Hours Worked 64.1 59.0 45.4 66.9 53.1
Labor 69.4 50.7 64.4 93.0 73.4
TFP 69.9 69.5 49.8 72.2 90.8
Inflation 5.5 1.0 23.2 23.1 2.8
FFR 0.2 5.9 8.7 5.8 0.4
S&P500 18.7 12.7 28.6 22.0 14.6

Table 1.7: Percentage of variance explained by the main long run shock for
a few selected variables, by frequency bands. The columns correspond to
different targets in the construction of the shock.

1.5.5. Robustness

In this section we conduct a robustness check for the shocks that make up our business
cycle anatomy. Specifically, we explore the robustness of our findings for the main and
secondary shocks identified by targeting GDP or consumption. Firstly, we estimate
the model with four lags instead of three. Secondly, we test the robustness to different
numbers of static factors. Specifically, we compare the results of our baseline specifi-
cation (r = 11) with two alternatives: r = 8, 12. The third robustness exercise serves
a complementary objective. We take into account that economic expansions have be-
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come progressively longer, as suggested by Beaudry et al. (2020).29 As a result, we
adjust our approach to the business cycle by using a different frequency band. Instead
of the conventional range of 18 months to 8 years, [θ, θ] = [2π/32, 2π/6], we now con-
sider cycles with periodicity between 18 month and 12 years, [θ, θ] = [2π/48, 2π/6].
Finally, we constrain the sample to 1961-2007, excluding the Great Recession and the
Zero Lower Bound.

For each robustness exercise, Table 1.11 reports the contributions of both the
MBC and SBC shocks, identified by targeting GDP growth, to the cyclical (top panel)
and long-run (lower panel) variance. The first two columns correspond to our baseline
specification, while the remaining are for the alternative specifications. Similarly, Table
1.12 provides the same information but for the main and secondary business cycle
shocks identified by targeting consumption. As we move across specifications, we
observe that the contribution of the identified shocks to the cyclical and long-run
variances of the main macroeconomic aggregates remains almost unchanged. The main
conclusions are all confirmed. Interestingly, in the third exercise, when considering
cycles with a periodicity slightly longer than what is traditionally associated with
business cycles, the relative importance of shocks with long-lasting effects/supply in
explaining cyclical fluctuations in real activity appears to increase, although it remains
true that the cyclical fluctuations in GDP are mostly explained by a transitory/demand
shock.

Finally, the same robustness is found when considering the IRFs. Figures 1.6 and
1.7 plot the IRFs for the MBC and the SBC shocks that target GDP, respectively, for
both the baseline and alternative specifications. The solid black lines and confidence
bands are those obtained in the baseline. Likewise, Figures 1.8 and 1.9 display the
IRFs for shocks targeting consumption. Although there are some differences when we
set a lower number of static factors compared to the benchmark, or when we narrow
the sample, the dynamic responses overall are reasonably similar to those obtained in
the baseline exercise.

1.6. Discussion and Concluding Remarks

In this paper we challenge the ACD’s hypothesis that most of the business cycle fluctu-
ations in real economic activity can be explained by just one shock. We argue that the
VAR used in their work is informationally deficient, rendering the causal interpretation
of the “Main Business Cycle” shock untenable. By using a large-dimensional Struc-

29The authors show that many macroeconomic aggregates appear to have a peak in their
spectral densities at periodicities between 32 and 50 quarters and that the implied movements
coincide with NBER cycle dating. For this reason, they argue that the traditional definition
of business cycle may have become slightly too narrow and should be modified accordingly.
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tural Dynamic Factor model along with ACD’s frequency-domain method, we propose
an alternative anatomical template for the transmission mechanisms of business cycles.
The picture emerging from our empirical analysis is as follows. It is possible to account
for the majority of the business-cycle fluctuations in GDP, investment, consumption,
unemployment, and, to a somewhat lesser extent, hours worked, using a parsimonious
two-shock model. These reduced-form shocks, which we refer to as the “Two Main
Business Cycle” shocks, align with the traditional AD-AS narrative in terms of their
characteristics. Both mechanisms are important factors of business cycle fluctations.
Private consumption fluctuations are almost entirely explained by supply dynamics,
whereas GDP growth fluctuations are mainly explained by demand dynamics. The last
result is consistent with the standard New Keynesian narrative that the bulk of the
business cycle in output is due to shifts in aggregate demand. The result on consump-
tion can be explained in light of the Permanent Income Hypothesis: at the aggregate
level, private consumption largely follows expectations about future income, and thus
would be more responsive to permanent shocks than transitory ones (Quah, 1990).

Our conclusions are in line with those of Francis and Kindberg-Hanlon (2022),
even though the model and the method used here are different. In that paper, a VAR
is used, and the variance-maximizing method is coupled with additional theoretical
constraints, to identify the dominant driver of US GDP at business cycle frequencies.
In contrast, we use a SDFM and follow ACD’s spectral method to identify a collection
of reduced-form shocks, without imposing additional constraints. As noted above, our
findings regarding the joint dynamics of inflation and real activity over the business
cycle align with the evidence presented in Bianchi et al. (2023), which instead employs
a Trend-Cycle VAR model. To conclude, the reduced-form shocks contained in our
collection, the interpretation of which is inherently delicate, suggest that a simplified
yet fairly complete representation of the US macroeconomy can be provided by only
two shocks. In that, our paper can be regarded as complementary to Forni et al. (2023).
In that paper, our evidence serves as a starting point to provide a comprehensive and
stylized structural description of the US macroeconomy, focusing on both the business
cycle and the long run.
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Tables

χ ξ

GDP 94.33 5.67
Unemployment Rate 94.17 5.83
Consumption 81.62 18.38
Investment 89.54 10.46
Hours Worked 83.53 16.47
TFP 80.91 19.09
Inflation 90.47 9.53
FFR 97.92 2.08
S&P500 94.47 5.53
Labor Productivity 89.31 10.69

Table 1.8: Percentage of the variance explained by the estimated common and
idiosyncratic components. Baseline specification: r = 11 static factors.

Secondary Business Cycle Shock

GDP Unemp Cons Invest Hours
GDP 1 0.98 -0.26 0.98 0.95
Unemployment 0.98 1 -0.22 0.96 0.90
Consumption -0.26 -0.22 1 -0.38 -0.30
Investment 0.98 0.96 -0.38 1 0.95
Hours Worked 0.95 0.90 -0.30 0.95 1

Table 1.9: Correlation between the SBC shocks obtained by targeting GDP,
Unemployment, Consumption, Investment, and Hours worked

Main Long Run Shock

GDP Unemp Cons Invest Hours
GDP 1 0.91 0.86 0.86 0.88
Consumption 0.91 1 0.70 0.74 0.87
Investment 0.86 0.70 1 0.83 0.73
Labor 0.86 0.74 0.83 1 0.89
TFP 0.88 0.87 0.73 0.89 1

Table 1.10: Correlation between the MLR shocks obtained by targeting GDP,
Consumption, Investment, Labor productivity and TFP
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Robustness: The Two Main Business Cycle Shocks (GDP)

Percentage of Explained Cyclical Variance

Baseline [1] p=4 [2] r=8 [3] r=12 [5] 6-48 [6] 1961-2007
mbc sbc mbc sbc mbc sbc mbc sbc mbc sbc mbc sbc

GDP 60.6 30.9 63.5 28.9 59.5 35.0 61.2 29.9 55.4 34.4 51.4 35.7
Unemployment 36.0 37.0 39.1 35.2 35.6 42.3 37.1 36.2 33.9 39.1 39.5 34.9
Consumption 19.0 55.7 22.4 56.7 18.6 71.6 18.4 58.9 17.7 61.2 22.7 51.9
Investment 52.8 33.4 56.5 31.2 47.9 42.5 52.5 32.9 50.3 34.8 47.0 38.5
Hours 26.7 34.4 27.5 33.3 31.9 36.9 25.0 34.7 23.0 41.7 38.3 29.9
TFP 9.8 12.4 8.3 15.7 14.2 15.5 6.8 12.9 9.7 13.9 3.3 9.8
Inflation 19.5 32.0 25.8 27.8 18.7 32.6 21.0 29.8 24.2 30.0 20.7 40.6
FFR 36.5 19.4 43.1 17.3 41.6 23.6 36.8 20.0 36.4 17.7 46.1 16.9
S&P500 14.5 41.9 19.2 34.1 17.0 39.1 16.5 37.2 14.1 36.4 18.0 37.2
Labor 45.9 17.8 46.0 19.7 42.9 18.9 45.7 19.6 42.7 20.8 34.8 26.8

Percentage of Explained Long-Run Variance

Baseline [1] p=4 [2] r=8 [3] r=12 [5] 6-48 [6] 1961-2007
mbc sbc mbc sbc mbc sbc mbc sbc mbc sbc mbc sbc

GDP 0.5 60.3 0.5 76.4 1.7 68.2 0.5 66.3 0.2 74.6 2.5 66.4
Unemployment 5.3 71.5 8.8 70.4 6.1 75.1 5.8 71.8 6.3 72.5 3.0 49.9
Consumption 1.1 55.4 1.2 68.4 1.4 71.5 1.2 62.4 1.6 65.3 0.3 70.7
Investment 1.0 69.9 1.8 78.7 2.4 78.3 1.9 69.8 1.5 76.2 0.4 69.4
Hours 2.0 63.9 1.7 65.6 5.1 71.4 0.8 60.2 1.5 65.1 0.4 17.1
TFP 2.2 54.0 2.7 66.0 2.5 59.1 2.2 62.4 2.9 63.3 1.8 44.3
Inflation 10.3 8.6 13.6 7.1 21.1 5.5 14.5 6.2 11.5 7.6 2.0 16.0
FFR 22.1 0.6 30.2 0.2 36.8 0.3 24.9 0.2 23.2 0.4 20.2 21.3
S&P500 1.3 42.7 2.6 34.9 1.2 38.0 2.1 43.4 1.5 37.3 0.7 36.2
Labor 0.5 54.6 0.8 63.8 1.4 42.2 0.8 57.9 1.0 61.1 0.9 33.3

Table 1.11: Percentage of variance explained by the MBC shock and the SBC
shock, obtained by targeting GDP, by frequency band. The columns correspond
to different robustness exercises. Business cycle frequency band [5]: [2π/48 ≤
ω ≤ 2π/6] corresponding to cycles with periodicity between 18 months and 12
years.
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Robustness: The Two Main Business Cycle Shocks (Consumption)

Percentage of Explained Cyclical Variance

Baseline [1] p=4 [2] r=8 [3] r=12 [5] 6-48 [6] 1961-2007
mbc sbc mbc sbc mbc sbc mbc sbc mbc sbc mbc sbc

GDP 26.9 38.3 26.1 42.9 33.2 52.0 27.4 38.0 30.9 37.5 32.4 34.9
Unemployment 26.9 35.2 28.3 36.9 37.8 44.5 30.3 33.9 35.2 31.9 31.0 41.7
Consumption 66.0 29.3 62.6 33.8 75.7 21.4 64.5 29.6 68.4 26.5 57.4 34.7
Investment 24.8 42.7 24.6 47.8 37.7 53.0 27.2 42.6 28.1 42.9 33.0 38.0
Hours 29.9 20.5 30.9 22.2 33.0 34.9 30.5 18.3 36.8 19.3 27.5 37.5
TFP 10.9 8.9 13.9 5.3 14.4 17.9 9.3 7.9 11.0 8.8 13.7 4.7
Inflation 22.1 21.7 24.0 23.9 31.1 31.0 23.7 19.2 28.5 18.3 42.0 28.2
FFR 14.8 35.2 15.9 39.0 21.5 52.1 17.1 32.4 18.9 31.2 12.3 49.2
S&P500 23.3 9.2 21.2 14.5 26.0 23.4 23.1 9.9 20.6 13.9 23.3 14.9
Labor 18.6 24.1 19.3 26.7 20.5 32.8 17.5 25.2 18.2 25.5 24.9 24.7

Percentage of Explained Long-Run Variance

Baseline [1] p=4 [2] r=8 [3] r=12 [5] 6-48 [6] 1961-2007
mbc sbc mbc sbc mbc sbc mbc sbc mbc sbc mbc sbc

GDP 65.7 11.0 69.0 6.7 81.3 0.6 74.7 4.3 76.1 2.8 76.4 0.9
Unemployment 58.1 16.1 61.1 17.0 80.2 8.9 64.5 10.4 67.2 5.9 57.8 4.9
Consumption 68.9 12.1 71.5 7.2 86.5 2.3 77.1 5.3 80.2 3.0 88.8 0.6
Investment 55.6 12.2 55.6 12.4 78.1 4.2 63.1 8.0 64.5 3.7 65.1 0.7
Hours Worked 58.1 4.7 57.0 1.7 79.8 5.4 61.6 2.2 59.0 0.5 21.5 0.2
TFP 55.7 19.1 62.7 12.2 68.6 3.3 62.6 12.2 67.7 7.0 53.7 1.1
Inflation 2.2 5.3 3.9 7.2 4.7 39.6 2.2 8.2 4.4 4.9 20.8 2.3
FFR 0.6 7.1 0.1 13.6 0.4 56.7 0.9 10.0 0.2 9.6 23.8 18.5
S&P500 22.6 4.7 22.2 6.3 25.7 1.3 27.3 3.4 24.1 0.9 27.5 1.4
Labor 49.2 12.4 53.3 7.1 57.4 9.0 54.9 6.2 58.2 4.0 37.8 0.1

Table 1.12: Percentage of variance explained by the MBC shock and the SBC
shock, obtained by targeting Consumption, by frequency band. The columns
correspond to different robustness exercises. Business cycle frequency band
[5]: [2π/48 ≤ ω ≤ 2π/6] corresponding to cycles with periodicity between 18
months and 12 years.
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Figures

Figure 1.3: Impulse response functions of the MBC shock obtained by target-
ing different variables. The dark red (dark blue) and light red (light blue)
areas are the 68% and 90% confidence bands, respectively, for the shock that
targets GDP (consumption)
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Figure 1.4: Impulse response functions of the SBC shock obtained by target-
ing different variables. The dark red (dark blue) and light red (light blue)
areas are the 68% and 90% confidence bands, respectively, for the shock that
targets GDP (consumption)
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Figure 1.5: Impulse response functions of the MLR shock obtained by target-
ing different variables. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively, for the shock that targets GDP.
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Figure 1.6: Impulse Response Functions of the MBC shock obtained by target-
ing GDP. The solid lines represent the point estimates for different robustness
exercises. The dark gray and light gray areas are the 68% and 90% confidence
bands, respectively. Black line and confidence bands: baseline specification.
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Figure 1.7: Impulse Response Functions of the SBC shock obtained by target-
ing GDP. The solid lines represent the point estimates for different robustness
exercises. The dark gray and light gray areas are the 68% and 90% confidence
bands, respectively. Black line and confidence bands: baseline specification.
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Figure 1.8: Impulse Response Functions of the MBC shock obtained target-
ing consumption. The solid lines represent the point estimates for different
robustness exercises. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively. Black line and confidence bands: baseline
specification.
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Figure 1.9: Impulse Response Functions of the SBC shock obtained by target-
ing consumption. The solid lines represent the point estimates for different
robustness exercises. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively. Black line and confidence bands: baseline
specification.
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Appendix

1.A. Estimation Procedure

In order to compute the spectra and the objective function we proceed as follows. We
estimate the first two equations (1.4a)-(1.4b) using the two step estimation technique
discussed in Forni et al. (2009), which we briefly review here. First Step. We
set a value for the number r of the static factors, using the criterion by Bai and
Ng (2002) with the penalty modification proposed in Alessi et al. (2010), finding a
number of static factors r̂ = 11. In the robustness section, we take into account the
uncertainty in estimating the number of static factors, and repeat the analysis with
different specifications of r̂. The static factors Ft = (F1t . . . Frt)′ are estimated by the
first r̂ principal components of the variables in our dataset, and the factor loadings,
λij , j = 1 . . . r, by the associated eigenvectors. Thus, the estimated loading matrix, Λ̂,
is the n × r̂ matrix having on the columns the normalized eigenvectors corresponding
to the r̂-largest eigenvalues of the sample covariance matrix of the data, Σ̂x. The
estimated common component vector is given by χ̂t = Λ̂F̂t. Second Step. We run a
VAR(p) for the estimated factors F̂t to get estimates Ĉ(L) and ϵ̂t of C(L) and the VAR
innovations ϵt. The estimated MA representation is F̂t = Ĉ(L)−1ϵ̂t. The number of
lags p is determined according to the AIC criterion (p̂AIC = 3). The Cholesky IRFs of
the common components are obtained according to (1.7) as D̂(L) = Λ̂[Ĉ(L)−1Ŝ]. From
this matrix we estimate the spectral density of the common components at the Fourier
frequencies θ = 2πs/T , s = 1, . . . , T . Finally, we compute V

(
k, θ, θ

)
by replacing the

integral with the simple average of the spectral density matrix, across the frequencies
belonging to the relevant interval. We do not apply the rank reduction step as this
will be part of the identification strategy discussed below.
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1.B. Data Description and Data Treatment

For the description of each variable see McCracken and Ng (2020). For variables not
in the FRED-QD dataset, refer to the Mnemonic and note. Treatment codes: 1 =
no treatment; 2 = first difference, ∆xt; 4 = log(xt); 5 = log of the first difference,
∆ log(xt).

The analysis presented in the main text focuses on a subset of 10 macroeconomic
series of interest: (1) the log difference of the real per capita GDP [ID 1]; (2) the
log difference of real per capita consumption [ID-21]; (3) the log difference of real per
capita investment [ID-22]; (4) the unemployment rate [ID-37]; (5) the log of real per
capita hours worked [ID-44]; (6) the inflation rate, defined as the log difference of the
GDP deflator [ID-50]; (7) labour productivity [ID-62]; (8) the cumulated sum of the
utility-adjusted total factor productivity [ID-68]; (9) the Federal Funds rate [ID-73]
and the (10) Shiller’s real S&P500 stock price index [ID-107].

ID
FRED-QD

Mnemonic
Treatment

Note
ID code

1 1 GDPC1/CNP16OV 5
2 2 PCECC96/CNP16OV 5
3 3 PCDGx/CNP16OV 5
4 4 PCESVx/CNP16OV 5
5 5 PCNDx/CNP16OV 5
6 6 GPDIC1/CNP16OV 5
7 7 FPIx/CNP16OV 5
8 8 Y033RC1Q027SBEAx/CNP16OV 5
9 9 PNFIx/CNP16OV 5

10 10 PRFIx/CNP16OV 5
11 11 A014RE1Q156NBEA 1
12 12 GCEC1/CNP16OV 5
13 13 A823RL1Q225SBEA 1
14 14 FGRECPTx/CNP16OV 5
15 15 SLCEx/CNP16OV 5
16 16 EXPGSC1/CNP16OV 5
17 17 IMPGSC1/CNP16OV 5
18 18 DPIC96/CNP16OV 5
19 19 OUTNFB/CNP16OV 5
20 20 OUTBS/CNP16OV 5
21 (PCESVx+PCNDx)/CNP16OV 5
22 (PCDGx+FPIx)/CNP16OV 5
23 22 INDPRO/CNP16OV 5
24 23 IPFINAL/CNP16OV 5
25 24 IPCONGD/CNP16OV 5
26 25 IPMAT/CNP16OV 5
27 28 IPDCONGD/CNP16OV 5
28 30 IPNCONGD/CNP16OV 5
29 31 IPBUSEQ/CNP16OV 5
30 35 PAYEMS/CNP16OV 2
31 36 USPRIV/CNP16OV 2
32 38 SRVPRD/CNP16OV 2
33 39 USGOOD/CNP16OV 2
34 51 USGOVT/CNP16OV 2
35 57 CE16OV/CNP16OV (EMRATIO) 2
36 58 CIVPART 2
37 59 UNRATE 1
38 60 UNRATESTx 1
39 61 UNRATELTx 1
40 62 LNS14000012 1
41 63 LNS14000025 1
42 64 LNS14000026 1
43 74 HOABS/CNP16OV 4

Continued on next page
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ID
FRED-QD

Mnemonic
Treatment

Note
ID code

44 76 HOANBS/CNP16OV 4
45 77 AWHMAN 1
46 79 AWOTMAN 1
47 81 HOUST/CNP160V 5
48 95 PCECTPI 5
49 96 PCEPILFE 5
50 GDPDEF 5 GDP: Implicit Price Deflator
51 97 GDPCTPI 5
52 98 GPDICTPI 5
53 120 CPIAUCSL 5
54 121 CPILFESL 5
55 122 WPSFD49207 5
56 123 PPIACO 5
57 124 WPSFD49502 5
58 126 PPIIDC 5
59 129 WPU0561 5
60 130 OILPRICEx 5
61 135 COMPRNFB 5
62 138 OPHNFB 5
63 139 OPHPBS 5
64 140 ULCBS 5
65 142 ULCNFB 5
66 143 UNLPNBS 5
67 dtfp 1 Fernald’s TFP growth
68 dtfp util 1 Fernald’s TFP growth CU adjusted
69 dtfp I 1 Fernald’s TFP growth - Inv
70 dtfp C 1 Fernald’s TFP growth - Con
71 dtfp I util 1 Fernald’s TFP growth CU - Inv
72 dtfp C util 1 Fernald’s TFP growth CU - Con
73 144 FEDFUNDS 1
74 145 TB3MS 1
75 146 TB6MS 1
76 147 GS1 1
77 148 GS10 1
78 150 AAA 1
79 151 BAA 1
80 152 BAA10YM 1
81 156 GS10TB3Mx 1
82 BAA-AAA 1
83 GS10-FEDFUNDS 1
84 GS1-FEDFUNDS 1
85 BAA-FEDFUNDS 1
86 158 BOGMBASEREALx/CNP16OV 5
87 160 M1REAL/CNP16OV 5
88 161 M2REAL/CNP16OV 5
89 163 BUSLOANSx/CNP16OV 5
90 164 CONSUMERx/CNP16OV 5
91 166 REALLNx/CNP16OV 5
92 168 TOTALSLx/CNP16OV 5
93 188 UMCSENTx 1
94 Business Condition 12 Months 1 Michigan Consumer Survey
95 Business Condition 5 Years 1 Michigan Consumer Survey
96 Current Index 1 Michigan Consumer Survey
97 Expected Index 1 Michigan Consumer Survey
98 News Index: Relative 1 Michigan Consumer Survey
99 197 UEMPMEAN 1

100 201 GS5 1
101 210 CUSR0000SAC 5
102 211 CUSR0000SAD 5
103 212 CUSR0000SAS 5
104 213 CPIULFSL 5
105 245 S&P 500 5
106 246 S&P: indust 5
107 S&P 500/GDPDEF 5
108 S&P: indust/GDPDEF 5
109 JLN Macro Unc 1-month 1 Jurado, Ludvigson and Ng Uncertainty
110 JLN Macro Unc 3-month 1 Jurado, Ludvigson and Ng Uncertainty
111 JLN Macro Unc 12-month 1 Jurado, Ludvigson and Ng Uncertainty
112 DPCCRC1Q027SBEAx/CNP16OV 5 Real PCE Excluding food and energy

Continued on next page
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ID
FRED-QD

Mnemonic
Treatment

Note
ID code

113 DFXARC1M027SBEAx/CNP16OV 5 Real PCE: Food
114 DNRGRC1Q027SBEAx/CNP16OV 5 Real PCE: Energy goods and services
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Abstract
We provide a few new empirical facts that theoretical models should feature in order
to be consistent with US data. 1) There are two classes of shocks: demand and supply.
Supply shocks have long-run effects on economic activity, demand shocks do not. 2)
Both supply and demand shocks are important sources of business cycles fluctuations.
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2.1. Introduction

Figuring out what is the correct or most reliable theory underlying the data has al-
ways been the cornerstone of macroeconomic research. The empirical business cycle
literature has tried to inform and support the theory by providing various stilized facts
and representations of the macroeconomy.

At the origins of the modern empirical macroeconomic debate, Blanchard and Quah
(1989) (BQ henceforth) draw a sketch of the macroeconomy as driven by two shocks, a
permanent shock and a transitory one, interpreted as supply and demand, respectively.
Both shocks are depicted as important sources of business cycle fluctuations.

In the following 30 years, empirical research moved away from the idea of a compre-
hensive representation of the macroeconomy, focusing mainly on partial identification
and the study of single, more specific sources of fluctuation, such as technology shocks
(Galì, 1999), news shocks (Beaudry and Portier, 2006), noise shocks (Blanchard et al.,
2013), uncertainty shocks (Bloom, 2009), credit shocks (Gilchrist and Zakrajšek, 2012),
to name just a few of the most important.

A couple of recent papers, however, departing from the widespread partial identi-
fication approach, go back to seeking a general and parsimonious representation of the
macroeconomy. Angeletos et al. (2020) (ACD henceforth) look for the shock that most
explains the business cycle —the so called “main business cycle shock” (MBC). The
authors, using a frequency-domain identification method in the context of structural
VARs, argue that the bulk of cyclical fluctuations in real economic activity can be
explained by a single shock. This shock is not the technology shock of the RBC model
(Kydland and Prescott, 1982), since it has no long run effects on output. However,
it cannot be considered a standard demand shock either, because it has no effect on
prices.

The second paper is Avarucci et al. (2021) (ACFZ henceforth). Within a large
factor model framework, ACFZ find that just two statistically identified shocks are
enough to describe all macroeconomic variables, thus confirming, albeit with a different
method, a previous important result by Onatski (2009). Such reduced form shocks are
found to be economically interpretable and could be a temporary demand shock and
a permanent supply shock.

The present paper is close in spirit to BQ, ACD and ACFZ. What we do is to
provide a general picture of the main forces driving the US macroeconomy, at both
cyclical and long run frequencies, with the goal of identifying empirical regularities
which theoretical models should feature in order to be consistent with the data.

Our working hypothesis is that there are two main shocks, as suggested by the
above factor model literature, and that these can be identified as textbook-type demand
and supply shocks. The former should move prices and quantities in the same direction
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and have only transitory effects on real activity variables, while the latter should move
prices and quantities in the opposite directions and have permanent effects. What
we have in mind is a simple AD-AS model, or a New Keynesian model where the
macroeconomy is described in terms of an aggegate demand curve (AD) and a Phillips
curve (NKPC) which we refer to as the “traditional view”. In a nutshell, our main
result is that this hypothesis is confirmed by the data.

We use a dataset of 114 quarterly US time series, covering the period 1961-I to
2019-IV and assume that the data follow a large-dimensional Structural Dynamic Fac-
tor model, as introduced by Stock and Watson (2005) and Forni et al. (2009), which
is naturally designed to describe a large number of time series with a relatively small
number of common shocks. Having a large dataset, we can study the impulse re-
sponse functions of all relevant macroeconomic variables within a unified framework;
moreover, the rich information environment enables us to avoid the well-known non-
invertibility problem affecting SVAR analysis (Hansen and Sargent, 1991; Lippi and
Reichlin, 1993, 1994). Last but not least, using High Dimensional Factor techniques,
we estimate the common components and correct the observed macroeconomic vari-
ables for measurement error.

From a methodological point of view, we contribute to frequency domain analysis
by providing a fairly comprehensive treatment of structural identification in the fre-
quency domain. We extend the approach used in ACD1 (see also Sarno et al., 2007;
DiCecio and Owyang, 2010; Giannone et al., 2019) in several directions. In particu-
lar, in order to implement our identification scheme, we show how to jointly target
variances of different variables and target covariances on a given frequency band.

Our identification strategy unfolds in two steps. In the first step, we select the two
shocks maximizing the explained variance of the main macroeconomic variables, at all
frequencies of macroeconomic interest, that is, excluding fluctuations with period of
less than 18 months, of little interest for macroeconomic analysis. In so doing, we do
not target a single variable at a time, as in ACD, but target jointly several variables.
More specifically, we include in the target the variances of the main trending real
activity variables (GDP, consumption, investment, TFP and labour productivity) as
well as the variances of other important real and nominal variables (the unemployment
rate, hours worked, the inflation rate, the federal funds rate and the S&P500 stock
price index).

We find that these two shocks are successful in explaining the bulk of the variance
of the main macroeconomic aggregates at both business cycle and long run frequencies,

1ACD show how to identify the shock which maximizes the explained variance of a given
variable on a specific frequency band. This method is the frequency domain version of Uhlig
(2004), who identifies two shocks that maximize the majority of the k-step ahead prediction
error variances in real GNP for horizons between 0 and 5 years.
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providing a fairly complete picture of the US macroeconomy. Adding a third shock
increases only marginally the explained variance of the main real and nominal variables.

In the second step, we rotate the two main shocks in order to give them an eco-
nomic interpretation. We implement two different identification schemes. In the first
one (Identification I) we define a demand shock and a supply shock with a completely
novel criterion. The demand shock is obtained by maximizing the covariance of GDP
and inflation at business-cycle frequencies. The supply shock is automatically identi-
fied, by the orthogonality condition, as the shock minimizing the above covariance. In
the second scheme (Identification II) we define a permanent and a transitory shock.
Precisely, we define the permanent shock as the one that explains most of the long
run variance of trending real activity variables (i.e. GDP, TFP, consumption, invest-
ment and labor productivity). The transitory shock is automatically identified by the
orthogonality condition as the one minimizing the explained long run variance of the
above variables.

In a sense, this procedure is close in spirit to BQ. Just like BQ, we provide a general
picture of the forces driving the macroeconomy. By reducing the number of shocks of
interest in the first stage, and identifying all of these shocks in the second stage, our
method can be regarded as a global identification exercise, as opposed to the prevailing
partial identification approach.

Our main results are the following. First, the two identification schemes provide the
same outcomes. The inflationary demand and the deflationary supply shocks of Identi-
fication I are almost identical to the transitory and permanent shocks of Identification
II, respectively. Hence, we show empirically that demand shocks have transitory effect
on real economic activity. Second, both shocks, demand and supply, explain sizable
fractions of business cycle fluctuations. Third, the demand shock is the most important
cyclical shock for output, investment and unemployment, while private consumption
fluctuations are mostly explained by supply shocks. Finally, our demand shock is to
a large extent a credit shock, since it explains almost all cyclical variance of the risk
spread and is the main driver of interest rates at all frequencies; moreover, the supply
shock has the features of a news technology shock. It accounts for almost all the long
run and the long cycles (between 8 and 20 years) of real activity and is the main driver
of the consumer confidence index.

The above findings are broadly consistent with BQ’s ones, but complete BQ’s
scketch with a large body of new evidence about prices, interest rates, consumption,
investment and other macroeconomic variables. Differently from BQ, where long run
neutrality of demand shocks is assumed, here it shows up as a result. Several papers
have shown that special demand side shocks, such as monetary policy shocks or fi-
nancial shocks, have transitory effects on output. But no one, to our knowledge, have
shown that shocks identified as standard demand shocks have no long run effects on
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real activity.
By focusing on just two shocks, demand and supply, we do not want to deny that

there is a plurality of sources of fluctuations, nor deny the importance of specific shocks
analyzed in the literature. Rather, we think that such shocks can be grouped into the
broader supply and demand categories: for instance, the technology shock is of course
a supply shock, whereas uncertainty and credit shocks are best seen as transitory
demand shocks. Our idea is that shocks having different nature but belonging to the
same group, demand or supply, do have similar effects on the main macroeconomic
aggregates, so that grouping them can produce meaningful results, in terms of impulse
response functions and variance decomposition.

Our paper can be regarded as complimentary to ACFZ. In that paper, the focus
is the criterion to estimate the number of shocks and the main empirical results is
that there are two main shocks hitting US macroeconomy; in our paper we take this
evidence as the starting point and go on by identifying the shocks on economic grounds
and estimating the impulse-response functions.

Our results are partially at odds with the picture emerging from ACD. We agree
that the demand shock is the most important cyclical shock and is disconnected with
long run real activity. On the other hand, our demand shock is inflationary and our
supply shock explains a sizable fraction of the cyclical variance of output. We explore
all possible combinations of our two shocks, putting the ACD’s MBC shock under the
microscope (Subsection 2.4.6). The result is that in our rich information set up, there
is no way to get a shock that is disconnected from both inflation and long-run real
economic activity, as the ACD’s MBC shock. Our explanation is that, as argued in
Granese (2023), ACD’s VAR is informationally deficient.

Our paper is also related to Furlanetto et al. (2021), since our identification scheme,
albeit based on frequency domain techniques, is similar to theirs from a substantive
economic point of view. In contrast with their findings, where the demand shock is
found to have long run effects, our demand shock does not affect real per-capita GDP
and labour market in the long run.

Finally, our results are largely in line with those of Francis and Kindberg-Hanlon
(2022), even though the model and the method used here are different. In that paper
a SVAR is used and variance maximization is coupled with additional identification
constraints, whereas here we rely on a structural factor model and do not impose
further constraints.

The paper is structured as follows. In Section 2 we present the factor model
setup and a comprehensive treatment of frequency domain identification. In Section
3 we present the design of our empirical analysis, with special focus on our two-stage
identification procedure. In Section 4 we present the results. Section 5 concludes.
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2.2. Identification in the frequency domain

2.2.1. The Structural Dynamic Factor model

Let xt be a n-dimensional, stationary vector of observable economic variables. The
vector xt is part of an infinite dimensional panel of time series. Each variable xit,
i = 1, . . . , n, is decomposed into the sum of two mutually orthogonal unobservable
components, the common component, χit, and the idiosyncratic component, ξit:

xit = χit + ξit. (2.1)

The idiosyncratic components are interpreted as sources of variation that are specific
to one or just a small group of variables, like regional or sectoral shocks, plus mea-
surement error. In particular, for macroeconomic variables like GDP, investment or
consumption, in which all local and sectoral shocks have been averaged out, the id-
iosyncratic part can be interpreted essentially as only containing measurement error.
The idiosyncratic components are allowed to be mildly cross-sectionally correlated,
thus they have a covariance matrix which is not necessarily diagonal (see Forni et al.,
2009, Assumption 5).2 The common components, on the contrary, account for the
bulk of the co-movements among macroeconomic variables. This is because they are
different linear combinations of the same r < n common factors, not depending on
i, i.e. they span a r-dimensional vector space (see Stock and Watson, 2002a,b; Bai
and Ng, 2002). Then there exist an r-dimensional weakly stationary vector process
Ft = (F1t . . . Frt)′, orthogonal to ξt = (ξ1t . . . ξnt)′, and loadings λij , j = 1, . . . , r, such
that

χit = λi1F1t + . . . + λirFrt or χt = ΛFt. (2.2)

The unobservable coordinates of Ft are called the static factor and Λ, the factor loading
matrix, is of size n×r. We require the factors to be pervasive i.e. to have non-negligible
effects on most of the variables xit (see Forni et al., 2009, Assumption 4). Combining
(2.1) and (2.2), we get a static equation linking the n observable variables xit to the r

factors and the idiosyncratic components

xit = λi1F1t + . . . + λirFrt + ξit or xt = ΛFt + ξt. (2.3)
2A factor structure with mildly correlated idiosyncratic components is more realistic than

a structure with orthogonal ones. However, in this case common and idiosyncratic component
can be disentangled only as n → ∞. This is what characterizes the large approximate dynamic
factor model and motivates the assumption of an infinite number of variables. In the tradi-
tional dynamic factor model (Sargent and Sims, 1977; Geweke, 1977), on the other hand, the
idiosyncratic components are orthogonal to each other; ξt = (ξ1t . . . ξnt)′ has no cross-sectional
dependence, a more restrictive assumption but estimation is possible even if the cross-sectional
dimension is finite.
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Equation (2.3) is the static factor representation, where the factors have only con-
temporaneous effect on the common components. The dynamic nature of the model
comes from the fact that the static factors Ft follow a VAR(p) driven by a q-dimensional
vector of orthonormal structural white noise, or common shocks ut = (u1t, . . . , uqt)′,
with q ≤ r. Precisely:

xt = ΛFt + ξt (2.4a)

C(L)Ft = ϵt (2.4b)

ϵt = Rut (2.4c)

where ϵt is the residual of the VAR on Ft, E(ϵtϵ
′
t) = Σϵ, C(L) is an r × r, stable

polynomial matrix and R is r × q and has maximum rank q. As a consequence, R has
a left inverse and the vector ut belongs to the space spanned by Ft−s, s ≥ 0, that is, ut is
fundamental for Ft. By inverting the matrix C(L) we get Ft = C(L)−1ϵt = C(L)−1Rut,
so that the dynamic relationship between ut and the common components is

χt =
[
ΛC(L)−1R

]
ut = B(L)ut. (2.5)

Then, by merging (2.1) and (2.5), we have the structural dynamic representation

xit = bi(L)ut + ξit or xt = B(L)ut + ξt, (2.6)

where the macroeconomic variables are represented as driven by a few pervasive struc-
tural shocks, loaded with the impulse response functions in B(L), plus measurement
error. We are interested in the effect of structural shocks on the common components
χt of some key series, i.e. on the variables obtained by removing measurement errors,
so we are neglecting the idiosyncratic components. Notice that representation (2.6) is
not unique, since the impulse response functions are not identified. Forni et al. (2009)
(Proposition 2), show that identification is achieved up to orthogonal rotations, just
like in structural VAR models.

Let us consider the linear mapping in (2.4c), ϵt = Rut. We define R = SH, where
S is the Cholesky factor of Σϵ , such that SS′ = Σϵ, and H is an orthonormal matrix,
namely a matrix such that H−1 = H ′. We can then rewrite (2.5) as

χt =
[
ΛC(L)−1S

]
Hut = D(L)Hut = B(L)ut (2.7)

where D(L) = ΛC(L)−1S encapsulates the Cholesky impulse response functions and
B(L) = D(L)H collects the structural IRFs. Then, the effect of the j-th structural
shock on the k-th variable is given by the (k, j) element of the matrix B(L) = D(L)H,
that is, the product of the k-th row of D(L) and the j-th column of H. On the
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other hand, the structural shocks are related to the VAR residuals by the relation
ut = R−1ϵt = H ′S−1ϵt = H ′ηt, ηt being the vector of the Cholesky shocks. Hence the
j-th structural shock is given by the product of the j-th row of H ′ and ηt. Since we
are interested in identifying the shocks, we deal with the choice of H. This is usually
done as in standard SVAR analysis, which mainly employs an appropriate number
of exclusion or sign restrictions motivated on economic grounds. Here we discuss an
alternative approach: shock identification in the frequency domain.3

2.2.2. Frequency band targets

The identification approach is based on the maximization/minimization of the contri-
bution of the structural shock to the variance or the comovements of a set of variables of
interest in a given frequency band, which we refer to as targeted frequency band covari-
ances. In this subsection we define the objects to be restricted to reach identification.
In the two following subsections we show how to implement the identification.

Let us go back to representation (2.7). Letting
[
θ, θ
]

be a band of frequencies such
that 0 ≤ θ ≤ θ ≤ π, the comovements between the components of χt with period
between 2π/θ and 2π/θ are measured by the frequency band covariance matrix

V
(
θ, θ
)

=
∫ θ

θ
ℜ
(

D
(
e−iθ

)
D
(
eiθ
)′
)

dθ

where ℜ (z) denotes the real part of z.4 The matrix V (θ, θ) captures the entire fre-
quency band volatility of the variables. The variance (or covariance) contribution of
any generic shock h′ηt, where h is such that h′h = 1, to V

(
θ, θ
)

is:

Ψ
(
θ, θ
)

=
∫ θ

θ
ℜ
(

D
(
e−iθ

)
hh′D

(
eiθ
)′
)

dθ. (2.8)

Our identification approach consists of imposing restrictions on the contribution of
the shock to the elements of the frequency band covariance matrix. The l, k element
of Ψ

(
θ, θ
)
, is simply Ψlk

(
θ, θ
)

= ElΨ
(
θ, θ
)

E ′
k where El is the l-th row of the n-

3This is not the first paper using frequency domain techniques to identify structural shocks
—in addition to ACD, let us mention Christiano et al. (2006), Sarno et al. (2007), DiCecio and
Owyang (2010), Giannone et al. (2019), Dieppe et al. (2021). It is however, to our knowledge,
the first paper providing a comprehensive theory of identification in frequency domain.

4The diagonal elements of the spectral density matrix are real while the off-diagonal ele-
ments, the cross-spectra, are typically complex, with a real part, called co-spectrum, and an
imaginary part. The integral of the co-spectrum of two variables over a given frequency band
is the covariance of the two variables over that band, while the integral of the cross-spectrum
is the cross covariance.
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dimensional identity matrix. Using equation (2.8), we have5

Ψlk

(
θ, θ
)

= h′
[∫ θ

θ
ℜ
(

D
(
e−iθ

)′
E ′

lEkD
(
eiθ
))

dθ

]
h.

This is the objective function to be restricted to reach identification, in the case of a
single target. The specification of the objective function can be properly defined for
different targets (l, k) and/or frequency band, according to the identification scheme.
For instance, if the interval [θ, θ] is the cyclical band, the diagonal element Ψ11

(
θ, θ
)

is
the cyclical variance of x1t attributable to the combination h′ηt. This is the objective
function used in ACD to identify the business cycle shock. The off-diagonal term
Ψ12

(
θ, θ
)

is the cyclical covariance between variable x1t and x2t attributable to the
same shock. In the empirical section below, one of our identification schemes targets
the covariance between GDP growth and inflation.

It is also possible to target more than one element of Ψ
(
θ, θ
)
. This multiple-target

approach is a key point to implement the identification strategy used in the empirical
section below. Letting (M1, N1), (M2, N2), . . . , (Mm, Nm) be the m entries of interest,
we can target a weighted sum of such entries. For instance, we can take the simple
sum of the variances of different variables, or a weighted sum, with weights equal to
the reciprocals of the standard deviations (which is equivalent to taking the sum of
the variances of the standardized variables). The contribution of the shock h′ηt to a
weighted sum is given by

h′
[∫ θ

θ
ℜ
(

D
(
e−iθ

)′ m∑
k=1

ωkE ′
Mk

ENk
D
(
e−iθ

))
dθ

]
h

where ωk are the weights, to be chosen by the researcher.
Finally, notice that

∑m
k=1 ωkE ′

Mk
ENk

= P ′
M ΩPN , where PM =

(
E ′

M1
, E ′

M2
, . . . , E ′

Mm

)′

and PN =
(
E ′

N1
, E ′

N2
, . . . , E ′

Nm

)′
are m × n matrices, and Ω = diag (ω1, ω2, . . . ωm) is a

m × m matrix. Hence the above equation can be re-written as

m∑
k=1

ωkΨMkNk

(
θ, θ
)

= h′OMN

(
θ, θ
)

h (2.9)

where

OMN

(
θ, θ
)

=
∫ θ

θ
ℜ
(

D
(
eiθ
)′

P ′
M ΩPN D

(
e−iθ

))
dθ.

This is the objective function of our identification problem, in the case of multiple
targets. Of course, this objective function reduces to the single target objective function

5To see this, notice that ElD
(
e−iθ

)
h is a scalar so that it is equal to h′D

(
e−iθ

)′ E ′
l . The

same reasoning applies to h′D
(
eiθ
)′ E ′

k
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in the case m = 1.
An example of multiple-target identification is the cyclical variance of a set of real

economic activity variables: one could jointly maximize the cyclical variance of GDP
growth and unemployment. Assuming that GDP growth and unemployment are the
first two variables in xt, we have m = 2, M1 = N1 = 1 and M2 = N2 = 2,

P ′
M = P ′

N =



1 0
0 1
0 0
...

...
0 0


, Ω =

ω1 0
0 ω2

 .

In this case, a reasonable choice for the weights is to take the reciprocals of the cyclical
variances of the variables, i.e. ω1 = 1

V11(θ,θ) and ω2 = 1
V22(θ,θ) .

2.2.3. Identification constraints

The identification strategy pursued in this paper is based on quantitative restrictions.
Qualitative constraints could also be considered and their implementation is similar to
that in the time domain.6

Let us assume that the shock of interest is the first one, u1t, and that such shock is
the one maximizing Ψlk

(
θ, θ
)
, in the case of a single target, or

∑m
k=1 ωkΨMkNk

(
θ, θ
)
,

in the case of multiple target. In this case h1, the first column of the matrix H, is
formally given by

h1 = arg max
h∈Rn

h′ OMN

(
θ, θ
)

h s.t. h′h = 1. (2.10)

It is easily seen that h1 is equal to the eigenvector associated to the largest eigenvalue
of the matrix OMN (θ, θ) (Uhlig, 2004), and delivers the shock u1t = h′

1ηt. This is
a generalization of the approach used in ACD to identify the business cycle shock.
In that paper, a single target is used, with k = l, so that the objective function is
Ψll

(
θ, θ
)
. We can then retrieve the corresponding structural IRFs as

B(L) = D(L)h1 =
[
ΛC(L)−1S

]
h1. (2.11)

If the researcher is interested in identifying more than one shock, the procedure can
be extended to identify multiple shocks sequentially: first, obtain the shock with the
largest contribution to the frequency band covariance, then obtain the shock orthogonal

6That is, we could draw rotation matrices, or rotation vectors h, and then retain the draws
satisfying the desired restrictions on the elements of interest of the frequency band covariance.
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to the first, solving another maximization problem, and so on. Suppose, without loss
of generality, that the shocks u1t, u2t, ..., uqt, have to be identified. The vector h1 is
found according to equation (2.10). The vectors hj with 1 < j ≤ q are found solving
the following maximization problem:

hj = argmax
h∈Rn

h′ OMN

(
θ, θ
)

h s.t.

h′h = 1,

h′hℓ = 0, ℓ < j.
(2.12)

Notice that the objective function can in principle be appropriately redefined for each
shock by changing the targets (M, N) and/or the frequency band

[
θ, θ
]
, according

to the identification scheme (even if for notational simplicity we avoid to explicit the
possible dependence on j of M, N, θ and θ).

Here are some examples.
For instance, we could identify the aggregate supply shock as the one maximizing

the long run variance of GDP growth and then identify the aggregate demand shock
as the shock orthogonal to the supply shock, which maximizes the cyclical variance
of GDP growth. In this case, we change the frequency band of interest in the two
maximization problems. Another example is the identification of a real and a nominal
shock. We could first maximize the variance of GDP growth and then maximize the
variance of inflation. In this case, the target would change in the two maximization
problems. Moreover, we might be interested in identifying the two main business cycle
shocks: first, the shock with the largest contribution to the frequency band covariance,
then the shock orthogonal to the first with the second largest contribution. In this
case, the target and the frequency band are assumed to be the same for all shocks.

It is also possible to use the sequential procedure just explained to nest two sets
of quantitative constraints, i.e. two step procedure, by maximizing the appropriate
target functions on the corresponding frequency band. For instance, in the first step,
two main shocks are obtained by maximizing the appropriate target function on the
band [0 2π/6], which excludes fluctuations of less than 18 months, of little interest
for macroeconomic analysis. In the second step two structural shocks are found by
combining the two shocks obtained in the first step. This is the route we follow in this
paper and the specific approach will be discussed below.

Of course, in the above problems, the argmax can be replaced by the argmin. For
instance if we want to identify a shock that has only transitory effects on a given
variable, the long run variance of such a variable has to be minimized.
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2.3. Empirical Approach

2.3.1. Data and estimation procedure

Coming to the empirical application, we use the quarterly dataset for high dimensional
macroeconomic analysis recently developed by Granese (2023).

The N × T dataset is made up of 114 US quarterly series, covering the period
1961-I to 2019-IV. Most series are from the FRED-QD database.7 TFP data series are
from John Fernald’s website (Fernald, 2012) while the Confidence data are available
on the Michigan survey of consumer website.8 Following standard practice, consump-
tion includes non-durables and services, while investment has been broadly defined
to include consumer durables. Both measures are deflated. Monthly data, like the
macroeconomic uncertainty measure estimated by Jurado et al. (2015), have been
aggregated to get quarterly figures. Finally, it is worth noting that most series are
expressed in per capita terms, dividing by population aged 16 years or more (civilian
non-institutional population series) and stock market data have been deflated by the
GDP deflator. We transform each series to reach stationarity. The complete list of
variables and transformations is provided in Appendix (2.B).

The analysis focuses on a subset of 13 macroeconomic series of interest: (1) the
log difference of the real per capita GDP; (2) the log difference of real per capita
consumption, defined as the sum of non-durable consumption and services; (3) the
log difference of real per capita investment, computed as the sum of fixed investment
and durable consumption; (4) the unemployment rate, (5) the log of real per capita
hours worked; (6) the inflation rate, defined as the log difference of the GDP deflator;
(7) labour productivity; (8) the cumulated sum of the utility-adjusted total factor
productivity; (9) the Federal Funds rate; (10) the risk spread between Moody’s Baa
Corporate Bond Yeald and the 10-Year Treasury Constant Maturity Rate; (11) Shiller’s
real S&P500 stock price index; (12) the measure of macroeconomic uncertainty by
Jurado et al. (2015) at the three-month horizon and (13) the Michigan University
confidence index component concerning expected business conditions for the next five
years (BC5Y).9

In order to compute the spectra and the objective function for our maximization
7The FRED-QD is a large (248 series) quarterly macroeconomic database developed by

McCracken and Ng (2020).
8http://www.sca.isr.umich.edu/
9BC5Y summarizes responses to the following forward-looking question: “Turning to eco-

nomic conditions in the country as a whole, do you expect that over the next five years we will
have mostly good times, or periods of widespread unemployment and depression, or what?”.
The anticipation properties of this variable on future movements in economic activity in gen-
eral and TFP in particular are widely discussed in Barsky and Sims (2012) and Beaudry and
Portier (2006).

http://www.sca.isr.umich.edu/
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problems we proceed as follows. We estimate the first two equations (2.4a)-(2.4b)
using the two step estimation technique discussed in Forni et al. (2009), which we
briefly review here.

First Step. We set a value for the number r of the static factors, using the
criterion by Bai and Ng (2002) with the penalty modification proposed in Alessi et al.
(2010), finding a number of static factors r̂ = 11.10 The static factors Ft = (F1t . . . Frt)′

are estimated by the first r̂ principal components of the variables in our dataset,
and the factor loadings, λij , j = 1 . . . r, by the associated eigenvectors. Thus, the
estimated loading matrix, Λ̂, is the n× r̂ matrix having on the columns the normalized
eigenvectors corresponding to the r̂-largest eigenvalues of the sample covariance matrix
of the data, Σ̂x. The estimated common component vector is given by χ̂t = Λ̂F̂t.

Second Step. We run a VAR(p) for the estimated factors F̂t to get estimates
Ĉ(L) and ϵ̂t of C(L) and the VAR innovations ϵt. The estimated Moving Average
representation is F̂t = Ĉ(L)−1ϵ̂t. The number of lags p is determined according to
the BIC criterion (p̂BIC = 1). In the robustness section we repeat the analysis with
different lags order. To orthogonalize the shocks we use the Cholesky factor Ŝ of Σ̂ϵ.
Therefore, the Cholesky IRFs of the common components are obtained according to
(2.7) as

D̂(L) = Λ̂[Ĉ(L)−1Ŝ].

From this matrix we estimate the spectral density of the common components at the
Fourier frequencies θ = 2πs/T , s = 1, . . . , T , and take the real part, so that the
resulting off-diagonal terms are co-spectra rather than cross-spectra. This is useful
when we take an off-diagonal term as a target, since the integral of the co-spectrum
of two variables over a given frequency band is the covariance of the two variables
over that band. Finally, we compute V

(
θ, θ
)

by replacing the integral with the simple
average of the real part of the spectral density matrix, across the frequencies belonging
to the relevant interval. Ψ(θ, θ) and OMN

(
θ, θ
)

are estimated in a similar way.
We do not apply the rank reduction step (see the on-line Appendix 2.A) as this

will be part of the identification strategy discussed below.
To conclude this section, let us look at the common-idiosyncratic variance decom-

position of the key variables above with r̂ = 11 static factors, shown in Table 2.1.
The common variance of the main macroeconomic aggregates like GDP, consumption,
investment and unemployment rate are 94, 82, 90 and 94 percent of total variance, re-
spectively. These numbers seem compatible with the measurement error interpretation
of the idiosyncratic components.

10In the robustness section, we take into account the uncertainty in estimating the number
of static factors, and repeat the analysis with different specifications of r̂.
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2.3.2. Identification: A two-step procedure

Aim of this work is to provide a global and parsimonious description of the main forces
driving the macroeconomy overall, at both cyclical and long run frequencies. There
are two main questions we want to address. First, how many shocks are needed to
explain the bulk of fluctuations in the main macroeconomic aggregates? Second, what
are they and what are their effects? To address these two questions we develop a
two-step strategy based on the econometric theory presented in the previous section.

First Step. First of all, we find the q shocks which explain the bulk of cyclical
and long run variance of the main macroeconomic aggregates, both real and nominal.
To do this, we solve maximization problems (2.10) and (2.12) with a multiple target
and in the frequency interval [θ θ] = [0 2π/6] (the trend-cycle band henceforth), which
corresponds to periodicities greater than 18 months, thus excluding high frequency
fluctuations of less than 18 months, of little interest for macroeconomic analysis.11

More specifically we include in the target the variances of the growth rates for trended
real activity variables (i.e. GDP, consumption, investment, TFP, labour productivity)
as well as the variances of other real and nominal variables (i.e. unemployment rate,
hours worked, inflation rate, Federal Funds Rate and S&P500 stock price index). The
weights are given by the reciprocals of the (frequency band) variances of the variables,
computed as the average of the spectral densities in the relevant frequency interval.
Let us set M1 and N1 equal to the position of GDP in the data set, M2 and N2 equal
to the position of consuption, etc., and call gj , for j = 1, ..., q, the q vectors solving the
maximization problem gj = arg max g′OMN

(
θ, θ
)

g subject to g′g = 1 and g′gl = 0 for
l < j; we obtain a matrix G = [g1 g2 . . . gq] of dimension r × q. We show below that
two shocks are enough to explain the bulk of cyclical and long run fluctuations in the
main macroeconomic aggregates.

Second Step. The shocks g′
1ηt, ..., g′

qηt lack of any economic interpretation: they
are simply the largest contributors to the frequency band variances ordered in decreas-
ing order of importance. We therefore move on to the second step and identify two
structural shocks. We use two identification schemes.

Identification I. We identify a demand shock and a supply shock using a novel
approach. The demand shock is obtained by maximizing the covariance of GDP
growth and the inflation rate at business cycle frequencies. The supply shock is
automatically identified by the orthogonality condition as the shock minimizing
such covariance. This identification scheme is related to the one recently used

11The band [0 2π/6] includes: business-cycle frequencies, [2π/32 2π/6], corresponding to
cycles between 18 months and 8 years, long cycles, [2π/80 2π/32), which includes waves ranging
from 8 and 20 years, and the long run, [0 2π/80), corresponding to cycles of 20 years or more,
with quarterly data.
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by Furlanetto et al. (2021), in that the demand shock is defined on the basis of
the comovements of output and inflation and can in principle affect output in
the long run.12

Identification II. We identify a permanent and a transitory shock. The permanent
shock is identified as the one that explains most of the long run variance13

of trending real activity variables, i.e. GDP growth, TFP, consumption growth,
investment growth and labor productivity. The transitory shock is automatically
identified by the orthogonality condition as the one minimizing the explained
long run variance of the above variables. The effects on cyclical variance are left
unrestricted, so that the two shocks can explain whatever fraction of business
cycle fluctuation in the real activity variables, as well as the cyclical volatility of
inflation and interest rate.

To impose the identifying restrictions in the second step we solve a problem very
similar to the one of equation (2.10). The only difference is that now we rotate just
the q = 2 main shocks obtained from the first step rather than the r̂ Cholesky shocks.
Formally, let G = [g1 g2] and consider the n × q matrix D∗(L) = D(L)G. We combine
the columns of D∗(L) and the shocks G′ηt by solving the following maximization
problem:

h∗
1 = argmax

h∗∈Rq
h∗′ O∗

MN

(
θ, θ
)

h∗ s.t. h∗′h∗ = 1

O∗
MN

(
θ, θ
)

=
∫ θ

θ
ℜ
(

D∗
(
e−iθ

)′
P ′

M ΩPN D∗
(
e−iθ

))
dθ

(2.13)

where now h∗ and h∗
1 are 2-dimensional orthonormal vectors. In a context with two

structural shocks, the solution to (2.13) is enough to identify simultaneously both
h1 = Gh∗

1 and, similarly, h2 = Gh∗
2 since the vector h∗

2 is pinned down by the or-
thogonality restrictions. The structural impulse-response function are the entries of
B(L) = D(L)H, where H = [h1 h2] and the structural shocks are ut = H ′ηt. For the
two identifications, the specification of the objective function is the following:

Identification I: the frequency interval is [θ θ] = [2π/32 2π/6]. M is the position
of GDP and N the position of inflation in vector xt.

Identification II: the frequency interval is [θ θ] = [0 2π/80], and M = N is the
vector whose elements are the positions of the real variables in the vector xt.

12Note that unlike our identification scheme, the one used by Furlanetto et al. (2021) is
implemented in the time domain.

13The long run is defined as frequencies in the interval [0 2π/80), corresponding to cycles of
20 years or more.
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2.4. Results

2.4.1. Two shocks

As explained above, in the first step of our procedure we select the two shocks maxi-
mizing the explained variance of the main macroeconomic variables on the trend-cycle
band, that is, on a frequency band that includes all the frequencies of main interest
for macroeconomic analysis. Table 2.2 reports, for each variable, the percentage of
variance jointly explained by the two shocks on the whole trend-cycle band, on the
business-cycle frequencies and on the long run, along with the variance explained by
the shock with the third largest contribution. The aim is to see how large is the ex-
plained variance when only two shocks are selected and how large is the variance we
lose with respect to the specification with three shocks.

The percentage of cyclical variance jointly explained by the two shocks is about
76 for real per capita GDP growth, 70 for consumption, about 79 for investment and
unemployment rate. We also see that two shocks are enough to capture about 86% of
cyclical inflation fluctuations, about 76% of the federal funds rate and more than 82%
of the risk spread, the JLN uncertainty measure and BC5Y. We conclude that two
shocks are enough to provide an accurate description of the business cycle fluctuations
in both real and nominal variables.

Turning to the long run, we see that the percentage of variance jointly explained
by the two shocks is 81 for real per capita GDP growth, 82 for unemployment rate,
about 76 for consumption and about 66 for TFP. Two shocks account for about 85% of
inflation fluctuations, 86% of the FFR and risk spread, and about 91% of uncertainty.
Thus, two shocks not only account for the bulk of business cycles fluctuations, but also
explain the long run.

The variance that we lose by selecting two shock instead of three is negligible for
almost all variables, so the third shock is not large or pervasive enough to be considered
as a main driver of the US economy. The third shock capturs essentially the cyclical
fluctuations of TFP, which are of little interest for our analysis, because we are mainly
interested in the long-run fluctuations of TFP.

All in all, our findings depict a picture of the US macroeconomy where two shocks
provide a complete and parsimonious characterization at both cyclical and long run
frequencies. This is in line with existing factor model evidence. As pointed out in the
introduction, Onatski (2009), using his test for the number of shocks in a large dynamic
factor model, cannot reject the null that there are 2 shocks against the alternative
that there are from 3 to 7. ACFZ propose a new consistent estimator for the number
of shocks, the “Dynamic eigenvalue Difference Ratio estimator” (DDR), that can be
applied to single frequencies as well as to frequency bands, and finds that the US
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macroeconomy is well described by two major shocks. These results are in line with
the evidence provided in papers such as Sargent and Sims (1977) and Giannone et al.
(2005). To further corroborate our results, we apply the DDR estimator to our dataset
on the whole interval [0 π] and on the trend-cycle band. The criterion selects two shocks
on both bands.14

2.4.2. Identification I: explained cyclical and long run variances

Table 2.3 presents the results for Identification I, where we identify a supply and a
demand shock based on the cyclical covariance between the inflation rate and per
capita GDP growth. The table reports the cyclical and long run variances explained
by the identified shocks. Notice that under this identification scheme both the long run
and cyclical variance contributions are left unrestricted. Thus, we can verify whether
the supply shock is permanent or not and whether the demand shock is transitory or
not.

A first key result is that the demand shock explains a negligible fraction of the
long run variance of trending real activity variables. It account for about 3% of GDP
growth, less than 9% of consumption and hours worked, about 5% of investment, 11%
of unemployment and less than 1% of TFP. Hence, unlike Furlanetto et al. (2021), we
do not find evidence of hysteresis effects on output and labor market. On the other
hand, our demand shock explains most of the long run variance in the inflation rate
(about 65%) and the federal funds rate (about 84%).

The supply shock explains the bulk of the long run variance of real activity vari-
ables. It explains 78% of output growth, about 70% of consumption, investment and
unemployment, and 55% of hours worked. Note that the percentage of TFP long run
variance explained by the supply shock is about 65%, in line with the view that supply
shocks include an important technological component.

Turning to the explained variances at business cycle frequencies, we see that the
demand shock is the main source of cyclical fluctuations in output growth. It accounts
for about 49% of GDP fluctuations. Still, the supply shock explains a sizable fraction
of GDP cyclical variance, about 27%. As for inflation fluctuations, both demand and
supply shocks explain an important part of cyclical variance. The former captures
about 44% while the latter explains 42%.

An interesting result emerges when comparing the importance of the two shocks for
GDP, consumption, investment, unemployment and hours worked. The supply shock
is dominant for consumption. It accounts for about 41% of business cycle fluctuations,
whereas the demand shock explains less than 30%. This result can easily be explained

14To compute the DDR estimator, we set the bandwidth parameter MT = ⌊a
√

T ⌋ with
a = 0.5.
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in the light of permanent income theory: consumption is largely driven by permanent
income, and permanent shocks have larger effects on permanent income than transitory
shocks (Quah, 1990).15

The demand shock is also dominant for unemployment and investment. The cycli-
cal variance of unemployment explained by our demand shock is about 50%, whereas
the variance due to the supply shock is 29%. This result is in line with the evidence in
Blanchard and Quah (1989), where the aggregate demand shock, the transitory one,
plays a major role for unemployment fluctuations. As for investment, the demand
shock accounts for about 55% of the cyclical variance, whereas the permanent shock
accounts for only 24%. A possible explanation is that private investment is closely re-
lated to credit market conditions, which in turn are largely driven by demand. Indeed
the demand shock explains almost all cyclical variance of the risk spread – about 77%,
as against a scanty 11% explained by the supply shock. These numbers suggest that
our demand shock is to a large extent a credit shock.

A few additional observations are in order. First, the forward-looking measure of
consumer confidence (BC5Y) is mostly explained by the supply shock, both at business
cycle frequencies and in the long run. This finding seems consistent with Barsky and
Sims (2012) and with the “news” interpretation of confidence indicators: consumer
confidence is likely to reflect information about future productivity rather than animal
spirits.

Second, the federal funds rate is explained almost exclusively by the demand shock,
both at cyclical frequencies and in the long run. This is consistent with the idea
that monetary policy follows a systematic rule according to which the nominal rate
reacts positively to current inflation and real activity changes, in order to stabilize
cyclical fluctuations. Supply shocks induce negative comovements of inflation and
GDP growth, so that monetary policy react weakly to them.

Finally, both demand and supply have a sizable role in explaining JLN uncertainty
at cyclical frequencies. Demand shocks explain 46% while supply shocks explain about
37%. If we interpret exogenous uncertainty shocks as demand shocks, we are left with
a lower bound of approximately 40% of endogenous uncertainty fluctuations, induced
by non-uncertainty shocks (that is, supply shocks and other demand-side shocks, such
as credit or monetary policy shocks). Therefore, JLN macroeconomic uncertainty can
be considered endogenous to a considerable extent. This finding is broadly consistent
with Ludvigson et al. (2021).

Figure A.1 summarizes the above findings by reporting the variance decomposition
15Micro evidence suggests that individual choices of consumption and saving may differ from

the predictions of the permanent income theory. In particular, theories of liquidity-constrained
households are supported by empirical evidence. However, this does not preclude that at the
aggregate level consumption largely follows expectations about future income that are mainly
driven by permanent shocks.
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for the variables of interest. The figure reports the percentage of explained variance of
each shock, frequency by frequency. The pink area is the long run frequency band, the
lilac area is the business cycle frequency band. The blue line refers to the permanent
shock and the red line to the transitory shock. The yellow line is the sum of the two.

The figure also provides additional information about the “long cycles” frequency
band, i.e. fluctuations of periodicity between eight and twenty years that fall in the
white area between the long run and the business cycle frequency bands. The upper-
left panel refers to GDP growth: long cycles are explained almost exclusively by the
supply shock. The same result applies to all real activity variables but unemployment.
It follows that if the business cycle were defined by including longer cycles, e.g. cycles
with periodicity between 6 and 50 quarters as suggested by Beaudry et al. (2020), the
importance of the supply shock in explaining real activity fluctuations would increase.16

2.4.3. Identification I: impulse response functions

Turning to the impulse response functions, Figure A.2 overlaps the responses to the
supply shock of Identification I and the permanent shock of Identification II, whereas
Figure A.3 overlaps the responses to the demand shock of Identification I and the
transitory shock of Identification II. The solid black lines are the point estimates for
Identification I, the cyan dashed lines are the point estimates for Identification II and
the dark and light gray areas are the 68% and 90% confidence band, respectively,
relative to Identification I.17

Let us now focus on responses to the supply shock, Identification I (black lines,
Figure A.2). The shock has a large positive permanent effect on GDP and its compo-
nents and generates a temporary hump-shaped response of unemployment and hours
worked. GDP increases immediately by around 0.2%, peaks around the 10th quar-
ter and converges to 1.2% in the long run. The effect on consumption appears to be
slightly larger and persistent, reaching a maximum of about 2%. Unemployment be-
haves counter-cyclically and reaches a minimum of about -0.2% around the 8th quarter.
The supply shock generates a negative comovement between inflation rate and output
growth. The former immediately falls by around -0.2% and the effect is relatively short
lived. The response of stock prices is positive and persistent, peaking at 0.9 percent,
while the risk premium, after a nearly zero impact effect, decreases with a temporary
hump-shape, reaching a minimum of about -0.14%.

A few additional observations are in order. First, we see that systematic monetary
16Beaudry et al. (2020) show that many macroeconomic aggregates appear to have a peak

in their spectral densities at periodicities between 32 and 50 quarters and that the implied
movements coincide with NBER cycle dating. For this reason, they argue that the definition
of the business cycle should be modified accordingly.

17The IRFs of Identification II with their confidence bands are reported in Appendix 2.C.
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policy, as proxied by the federal funds rate, reacts negatively to the supply shock on
impact, with an insignificant response after about one year. This suggests that sys-
tematic policy reacts more to inflation than real activity. However, the effect of the
unit variance supply shock is really small, the maximum being about 10 basis points,
as against the 21 basis points of the demand shock (black line, Figure A.3). Second,
the response of TFP to the supply shock has an S shape which resembles the one
typically found for the news technology shock, with a relatively small impact effect
(about 0.4) and a much larger long run effect (about 1.2). This suggests that the
supply shock includes an important news shock component as in Beaudry and Portier
(2006). The significant positive impact effect of the supply shock on the consumer
confidence component BC5Y, documented above, is in line with this interpretation,
given the anticipation properties of this variable about future technology. Finally, JLN
uncertainty decreases immediately in response to positive supply shocks, with a max-
imum effect at horizon one of about -0.25%. These movements in macro uncertainty
persist for about two years after the shock.

Figure A.3 reports the impulse response functions to the demand shock, Identi-
fication I (solid black lines). The responses of real economic activity variables are
temporary and hump-shaped, peaking at horizon 3 or 4 (one year after the shock).
The effects are no longer statistically significant after about 2-3 years. GDP has a
positive impact effect of 0.4% and a peak of about 0.8%. Unemployment falls at a
minimum of around -0.2%, then shows a significant and short lived rebound effect
between the 12th and the 20th quarter, with a peak of about 0.1%. Investment shows
a similar, albeit less pronounced and not significant rebound effect.

The response of inflation and the interest rate are very similar, in terms of both
shape and magnitude. The former increases on impact by about 0.15%, peaks at 0.2%
and converges to zero afterward. The effect appears to be more persistent than that of
the permanent shock. The interest rate increases in a hump-shaped pattern, reaching
a maximum of about 0.23%. As noted above, this suggests a very active behavior of
monetary policy, consistent with standard Taylor rules, implying a systematic policy
reaction to inflation and output. As expected, TFP essentially does not react to the
unit variance demand shock, the effect being not significant at all horizon. For stock
prices the effect is positive but very short lived, being significant only on impact (about
0.5%). Thus, the stock market reacts more to supply shocks than demand shocks. The
effects on the risk premium are much larger and short lived for demand shocks than
for supply shocks. The shape of the impulse response function of the risk premium,
with a maximum effect on impact and at lag 1 (about -0.35%), closely resembles the
one of the excess bond premium obtained in Gilchrist and Zakrajšek (2012). This
again suggests that shocks related to credit and financial conditions are an important
component of the demand shock.
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2.4.4. Identification II

Let us now turn to Identification II, where we identify a permanent and a transitory
shock on real variables. Here the co-spectrum of inflation and GDP growth is left
unrestricted, so that, looking at the impulse-response functions, we can verify whether
the permanent shock is a supply shock and the transitory shock is a demand shock.

More importantly, the two identification schemes provide very similar outcomes.
The matching is really striking: the correlation of the demand (supply) shock of iden-
tification I and the transitory (permanent) shock of Identification II is higher than
0.99.

Table 2.4 presents results for the variance decomposition. Notice first that Identi-
fication II is successful in isolating a transitory shock. Indeed, the percentage of GDP
growth, consumption and TFP long run fluctuations accounted for by the transitory
shock is negligible (1.7, 5.9 and 1.6% respectively). The variance decompositions in
the table are very similar to the ones of Identification I. Once again, both shocks are
important sources of business cycle fluctuations in real economic activity. The per-
manent shock is more important for consumption, while the transitory shock is more
important for output growth, unemployment and investment. Concerning inflation,
both transitory and permanent shocks explain a large percentage of cyclical fluctua-
tions. In particular, the transitory shock is not disconnected from inflation, in that
it accounts for about 49% of cyclical variance, contrary to what found in ACD. This
result is not at all implied by our identification.

Turning to the impulse response functions, Figure A.2 and Figure A.3 compare
results of Identification II (cyan dashed lines) with those of Identification I (solid black
lines). The correspondence between the two identification schemes is striking. The
key message is that our expansionary transitory shock raises inflation, whereas our
expansionary permanent shock reduces inflation, in line with New Keynesian textbook
models and thus supporting the traditional view.

2.4.5. Discussion

The general picture emerging from our empirical analysis is the following. US data
are consistent with a view of the macroeconomy as driven by two main shocks: a
deflationary supply shock having long-lasting effects on real economic activity and an
inflationary demand shock having only transitory effects. Both shocks explain a sizable
part of business-cycle fluctuations.

This picture is clearly incompatible with the standard RBC model and largely in
line with BQ, where transitory shocks are found important in explaining the business-
cycle fluctuations of economic activity. Our findings are also incompatible with the
view put forward by Beaudry and Portier (2006) that news shocks capture the bulk of
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cyclical fluctuations in real activity. Rather, they are consistent with Barsky and Sims
(2011) and Forni et al. (2014), where the news technology shock explains a minority,
albeit sizable, part of business cycle fluctuations.

Our evidence, far from being at odds with the partial identification literature, pro-
vides evidence in favor of some of the studies cited in the Introduction. In particular,
the response of TFP to the supply shock has an S shape which resembles the one
typically found for the news technology shock (Beaudry and Portier, 2006), suggesting
that news shocks are the dominant component of supply shocks. Moreover, the ex-
plained variance and the shape of the impulse response function of the risk premium
to the demand shock are very much similar to the ones found in the credit shock liter-
ature (Gilchrist and Zakrajšek, 2012) consistently with the idea that credit shocks are
the dominant component of demand shocks (even if they could include an exogenous
uncertainty component).

As already observed, our results are partially at odds with the picture emerging
from ACD. The finding that the bulk of cyclical fluctuations are not driven by a
permanent shock is in line with ACD: the demand shock is the most important business
cycle shock for output growth and is largely disconnected from the long run of real
economic activity. On the other hand, the ACD’s hypothesis that most of the business
cycle fluctuations of real activity can be explained by just one shock, a non-inflationary
demand shock affecting all real activity variables with the same dynamics, is rejected
here: our supply shock explains a sizable part of cyclical fluctuations and is the main
business-cycle driver for consumption, suggesting that at least two shocks are needed
to explain the bulk of cyclical fluctuations in real economic activity variables. This
important point is studied in detail in Granese (2023). Moreover, the demand shock is
not disconnected from inflation at both cyclical and long run frequencies. These last
two results are broadly in line with ACFZ.

2.4.6. ACD under the microscope: inflation and the long-run

While the results discussed thus far exclude the existence of such thing as a main
business cycle shock explaining most of the business cycle fluctuations of the real
activity, it is still unclear whether our data supports a representation in which a shock
presents the distinctive feature of ACD’s MBC: the contemporaneous disconnection
from both inflation and long-run real economic activity. Is there an orthogonalization
of our two shocks such that both disconnections hold?

Let us start from the results of Identification II. Clearly, the temporary shock is,
by construction, disconnected from the long-run real economic activity. Yet it is far
from being disconnected from the inflation (see Table 2.4). So, imposing the long-
run disconnection yields a shock with no inflation disconnection. What about the
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other way around? We now search for a linear combination of our two shocks with
minimum contribution to the cyclical fluctuations of the inflation. The result of this
exercise is also at odds with ACD: the shock we found is not disconnected from the
long-run economic activity as it explains 57% of the long-run GDP growth variance
(see Table 2.5, Panel A). Hence, imposing the inflation disconnection yields a shock
with no long-run disconnection.

Finally, let us see what happens if we apply to our two shocks the same identifica-
tion imposed in ACD, that is, maximizing the cyclical variance of a single real economic
activity variable (here we use GDP growth). This identification yields a shock which is
partially disconnected from the inflation but again not disconnected from the long-run
— it explains 13.6% of the cyclical variance of inflation and 34.4% of GDP growth’s
long-run variance (see Table 2.5, Panel B).

More details are found in Appendix C (Figure C.6) where we explore all possi-
ble linear combinations of our two shocks: given all rotation angles, we show that a
shock explaining less than 20% of both cyclical inflation and long-run GDP cannot be
obtained.

Why our result are different from ACD? A possible explanation is the following.
It is well-known that, while large dimensional factor models are generally unaffected
by non-invertibility issues, VAR systems could be informationally deficient. Granese
(2023) investigates whether the 10-variable VAR considered by ACD contains enough
information to recover the MBC shock obtained by targeting the unemployment rate.
To do so, the author uses the invertibility test of Forni and Gambetti (2014), which
tests for the orthogonality of the estimated shock with respect to the past of the
principal components of a large macroeconomic dataset (the author uses the same
data set used here). He finds that informational sufficiency is rejected, since the MBC
shock is predicted by the lags of the principal components (the p-values are reported
in Table C.2, online Appendix 2.C). In other words, the causal interpretation of ACD’s
MBC shock is untenable.

2.4.7. Robustness

In this subsection we conduct a few robustness exercises for Identification I. Robustness
results for Identification II are similar and are reported in Appendix 2.C.

First, we test robustness to the inclusion of additional lags with respect to the one
lag baseline specification. We estimate the model with two, three (as suggested by
the AIC) and four lags, respectively. Table 2.6 reports the cyclical (top panel) and
long run (bottom panel) variances accounted for by the identified supply and demand
shocks. The first two columns correspond to our baseline specification, p = 1, while
the remaining are for the alternative specifications, p = 2, 3, 4. In addition, Panel (a)
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of Table 2.8 summarizes the above findings by reporting, for each variable and shock,
the maximum and minimum shares of explained variance, as the lag order changes.

As for the business cycle, baseline results appear to be quite robust with respect
to changes in specification. The GDP growth variance explained by the supply shock
ranges from a minimum of 27% (baseline) to a maximum of 30% (4 lags specification),
while for the demand ranges from 47% (3 lags) to 51% (4 lags). The investment
variance explained by the supply shock ranges from a minimum of 24% (baseline) to a
maximum of 34% (4 lags specification), while for the demand ranges from 49% (4 lags)
to 55% (baseline). The finding that consumption fluctuations are mostly explained by
supply shocks is a fully robust result. In the 3 lags specification, it explains 51% of
the consumption cyclical variance, while only 20% is explained by the demand shock,
a difference of 31 percentage points. All in all, the demand shock is still the most
important cyclical shock for real activity, but the increase in the number of lags seems
to enhance the cyclical footprint of the supply shock, reinforcing our view that the
business cycle is driven by two main shocks.

The only sensitivity analysis worth noting is the following. As lags increase, the
demand shock appears less tightly connected, in terms of variance contributions, to
inflation fluctuations. The cyclical variance explained by the demand shock ranges
between a minimum of 17% (4 lags specification) to a maximum of 44% (baseline)
while for the supply shock it ranges from 42% (baseline) to 63% (4 lags). The demand
shock is partially disconnected from inflation only in the 4 lags specification in which,
however, it accounts for 17% of inflation, as against the 7% found in ACD. For the
transitory shock of Identification II, the percentage of explained variance of inflation
is somewhat more robust across lag specifications, ranging between 29 and 49% (see
Appendix 2.C).18

Turning to the long run, the variance decomposition displays figures fairly close
to the baseline for most of the variables. For example, the output growth long run
variance explained by the supply shock varies from 67% (4 lags) to 78% (baseline),
while for the demand shock ranges from about 3% (3 lags and baseline cases) to 11%
(4 lags). The main conclusions about the long run contribution of the two shocks are
confirmed, except one: the finding that demand shock explains most of the long run
fluctuations in inflation (64% vs. 20% of the supply shock) is not robust: for the 2, 3
and 4 lags specifications, demand explains 36, 21 and 13% percent, respectively, while
supply explains 34, 26 and 36%.

Figures A.4 and A.5 display the impulse response functions to the supply and
the demand shocks, respectively, for different lag specifications. The solid black lines
(point estimates) and confidence bands are those obtained in the baseline exercise. All

18As suggested by a referee, in light of recent literature (Barnichon and Mesters, 2020) the
divorce of demand shocks and inflation could be more pronounced in recent subsamples.
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in all, the dynamic responses to supply shocks are similar to those obtained in the
baseline exercise, most of them lying within the baseline confidence bands. As for the
demand shock, the magnitude of responses is slightly smaller only for inflation and
interest rate, with similar shapes.

Finally, we check the robustness of the results as the number of static factors in-
creases. In particular, we compare the results of our baseline specification (r = 11)
with four alternatives: r = 13, 15, 17, 20. Table 2.7 reports the cyclical (top panel)
and long run (bottom panel) variances accounted for by the identified supply and de-
mand shocks. As the number of static factors changes, the contribution of the identified
shocks to the cyclical and long run variances of the main macroeconomic variables does
not change much. As in the previous exercise, panel (b) of Table 2.8 summarizes the
above findings by reporting, for each variable and shock, the maximum and minimum
shares of explained variance obtained as the factor specification changes. For example,
the percentage of cyclical variance explained by the demand shock varies between 49
and 52 for GDP, depending on the specification of r, 25 and 29 for consumption, 53
and 55 for investment, and so on. The results become slightly sensitive only when the
number of static factors becomes very large with respect to the benchmark. For exam-
ple, the consumption cyclical variance explained by the supply shock ranges between
a minimum of about 26% (r = 17 and r = 20) to a maximum of 41% (baseline case):
when r = 17 and r = 20, supply is no longer dominant for consumption, although
demand alone still cannot explain most of the cyclical fluctuations.

The same robustness is found when considering the IRFs to the supply and the
demand shocks obtained in this exercise and reported in Appendix 2.C. The responses
are very much similar to the baseline. All in all the results are fairly robust to different
specifications.

2.5. Summary and conclusions

In this paper we provide a comprehensive and stylized description of the U.S. macroeon-
omy and investigate whether the traditional view has support in the data. The evidence
shows that this is the case.

The result is obtained assuming that data follow a Structural Dynamic Factor
Model and using a novel identification technique in the frequency domain. Our iden-
tification strategy unfolds in two steps. In the first step, we select the two shocks
with the largest contribution to the cyclical and long run variance of the main real
and nominal macroeconomic variables. We show that adding a third shock would only
marginally increase the explained variance. In the second step, we rotate the two main
shocks in order to give them an economic interpretation. We implement two different
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identification schemes: in the first one we define a demand and a supply with a com-
pletely novel criterion based on the covariance between inflation and output, while in
the second scheme we define a permanent shock on real activity and a transitory one
in a way that is very close to BQ.

The two identification schemes provide strikingly similar outcomes in terms of
both variance decomposition and impulse response functions. The US macroeconomy
is driven by two main forces: a supply shock, which is permanent and generates a
negative comovement between prices and quantities, and a demand shock, which is
transitory and generates a positive comovement between prices and quantities. We
show empirically that demand shocks have only transitory effect on real economic
activity. Both demand and supply are important sources of business cycle fluctua-
tions. The demand shock is closely related to credit market conditions and is the main
business-cycle shock for output, investment and unemployment, while the supply shock
is to a large extent a news technology shock and is the main business cycle shock for
private consumption. Finally, supply shocks not only account for almost all the long
run fluctuations of real activity, but also for long cycles (between 8 and 20 years).

All in all, the evidence strongly support the very standard view of the macroecon-
omy where fluctuations in real economic activity and prices arise from shifts in the
aggregate demand and aggregate supply curves. From our perspective, theory should
look at the U.S. macroeconomy through the lens of a two-shock, New Keynesian text-
book framework, in order to be consistent with the data.
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Tables

Variables χ ξ

GDP 94.33 5.67
Consumption 81.62 18.38
Investment 89.54 10.46
Unemployment Rate 94.17 5.83
Hours Worked 83.53 16.47
Inflation 90.47 9.53
Labor Productivity 89.31 10.69
TFP 80.91 19.09
FFR 97.92 2.08
Baa-GS10 Spread 78.05 21.95
S&P500 94.47 5.53
JLN Uncertainty 3M 83.81 16.19
BC5Y 75.87 24.13

Table 2.1: Percentage of the variance explained by the estimated common and
idiosyncratic components of selected variables. Baseline specification: r = 11
static factors. We run the test proposed by Alessi et al. (2010).

Variables Trend-Cycle band Cyclical band Long Run band

First two Third First two Third First two Third

GDP 77.9 1.9 76.2 2.0 81.0 0.7
Consumption 70.8 1.0 69.7 0.6 75.6 1.6
Investment 79.9 0.5 78.9 0.6 72.3 0.2
Unemployment Rate 83.7 3.9 78.5 1.6 82.0 7.3
Hours Worked 65.3 14.6 58.1 12.6 63.5 16.6
Inflation 85.5 6.3 86.1 7.2 85.4 5.8
Labor Productivity 47.3 30.8 46.9 31.0 63.4 10.8
TFP 31.6 54.0 27.4 58.0 66.1 20.0
FFR 83.8 1.1 75.5 3.6 85.9 0.3
Baa-GS10 spread 85.0 0.8 87.8 0.3 86.1 1.0
S&P 500 real 55.0 2.0 57.1 1.3 30.9 6.0
JLM uncertainty 85.4 1.2 82.9 1.3 91.8 2.0
BC5Y 85.5 6.8 89.1 2.4 83.4 9.2

Table 2.2: Percentage of variance explained by the first two main shocks and
by the third for a few selected variables, by frequency band. Business cycle
frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with periodicity
between 18 months and 8 years. Long run frequency band: [0 ≤ ω ≤ 2π/80],
corresponding to periodicity greater than 20 years, with quarterly data.
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Variables Cyclical variance Long Run variance

Supply Demand Sum Supply Demand Sum

GDP 27.1 49.1 76.2 77.7 3.3 81.0
Consumption 40.6 29.2 69.7 66.9 8.7 75.6
Investment 23.6 55.3 78.9 67.8 4.5 72.3
Unemployment Rate 29.0 49.5 78.5 70.9 11.0 82.0
Hours Worked 26.3 31.9 58.1 54.7 8.8 63.5
Inflation 41.8 44.3 86.1 20.0 65.4 85.4
Labor Productivity 22.5 24.4 46.9 60.1 3.3 63.4
TFP 21.0 6.4 27.4 65.2 0.9 66.1
FFR 13.3 62.2 75.5 2.3 83.6 85.9
Baa-GS10 10.8 77.0 87.8 44.0 42.1 86.1
S&P500 33.3 23.8 57.1 30.4 0.5 30.9
JLN Uncertainty 3M 37.4 45.5 82.9 54.5 37.3 91.8
BC5Y 69.1 20.1 89.1 74.8 8.6 83.4

Table 2.3: Identification I. Percentage of variance explained by the supply
(deflationary) shock and the demand (inflationary) shock for a few selected
variables, by frequency band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6]
corresponding to cycles with periodicity between 18 months and 8 years. Long
run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than
20 years, with quarterly data.

Variables Cyclical variance Long Run variance

Perm Trans Sum Perm Trans Sum

GDP 29.6 46.6 76.2 79.3 1.7 81.0
Consumption 43.9 25.9 69.7 69.7 5.9 75.6
Investment 25.5 53.4 78.9 67.2 5.1 72.3
Unemployment Rate 30.1 48.4 78.5 68.7 13.2 82.0
Hours Worked 29.2 29.0 58.1 57.3 6.3 63.5
Inflation 37.2 48.8 86.1 15.5 69.9 85.4
Labor Productivity 23.0 23.9 46.9 58.3 5.1 63.4
TFP 20.7 6.7 27.4 64.5 1.6 66.1
FFR 10.9 64.5 75.5 0.9 85.0 85.9
Baa-GS10 12.9 74.8 87.8 49.2 36.9 86.1
S&P500 36.2 20.9 57.1 30.2 0.7 30.9
JLN Uncertainty 3M 39.8 43.1 82.9 49.2 42.5 91.8
BC5Y 71.2 17.9 89.1 71.5 11.9 83.4

Table 2.4: Identification II. Percentage of variance explained by the per-
manent shock and the transitory shock for a few selected variables, by fre-
quency band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding
to cycles with periodicity between 18 months and 8 years. Long run frequency
band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with
quarterly data.
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Variables A: no-infl shock B: GDP targeting shock

Cyclical v. Long-Run v. Cyclical v. Long-Run v.

GDP 56.1 57.0 59.5 34.4
Consumption 60.9 62.4 54.1 43.0
Investment 52.2 34.3 59.1 17.3
Unemployment Rate 46.4 27.0 51.0 12.7
Hours Worked 51.2 54.0 49.6 38.4
Inflation 8.0 6.0 13.6 23.6
Labor Productivity 26.9 20.8 27.0 6.9
TFP 11.6 31.2 7.9 13.9
FFR 17.0 28.0 33.3 52.3
Baa-GS10 56.8 83.2 73.0 77.0
S&P500 51.7 15.1 45.9 7.0
JLN uncertainty 3M 59.5 6.3 59.2 7.3
BC5Y 63.7 19.4 47.6 4.5

Table 2.5: Identification exercises of Section 2.4.6. Percentage of cycli-
cal and long-run variance explained by the shock disconnected from inflation
(Panel A), and by the GDP targeting shock (Panel B) for a few selected vari-
ables, by frequency band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6]
corresponding to cycles with periodicity between 18 months and 8 years. Long
run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than
20 years, with quarterly data.
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Variables
P=1 P=2 P=3 P=4

Percentage of Explained Cyclical Variance
Supply Dem Supply Dem Supply Dem Supply Dem

GDP 27.1 49.1 26.5 49.7 29.0 47.4 30.4 51.2
Consumption 40.6 29.2 45.6 21.2 50.7 20.1 46.5 25.9
Investment 23.6 55.3 25.2 53.3 30.4 49.9 34.2 49.2
Unemployment 29.0 49.5 31.8 51.4 37.3 44.2 41.8 40.1
Hours Worked 26.3 31.9 23.2 40.1 28.0 32.5 27.3 34.1
Inflation 41.8 44.3 54.2 33.2 57.9 23.1 62.8 16.5
Labor Productivity 22.5 24.4 25.1 30.6 21.9 38.5 15.9 40.7
TFP 21.0 6.4 20.5 8.7 16.6 14.0 12.7 10.9
FFR 13.3 62.2 21.6 55.6 27.0 41.0 32.2 36.8
Baa-GS10 10.8 77.0 14.0 72.9 22.1 60.1 23.4 55.9
S&P500 33.3 23.8 32.3 21.1 26.0 33.6 25.1 35.2
JLN Uncertainty 37.4 45.5 41.5 42.4 44.0 41.3 47.6 38.3
BC5Y 69.1 20.1 68.4 20.9 68.8 19.9 69.4 21.1

Percentage of Explained Long Run Variance
Supply Dem Supply Dem Supply Dem Supply Dem

GDP 77.7 3.3 69.6 5.2 71.4 2.3 66.5 11.3
Consumption 66.9 8.7 52.8 10.9 57.9 2.8 52.0 9.8
Investment 67.8 4.5 74.5 1.1 77.3 1.1 76.7 4.2
Unemployment 70.9 11.0 81.2 6.0 84.6 4.6 85.7 4.9
Hours Worked 54.7 8.8 50.5 21.2 63.3 13.1 53.9 24.1
Inflation 20.0 65.4 33.6 36.3 26.3 20.8 36.3 13.2
Labor Productivity 60.1 3.3 65.1 0.5 76.4 0.2 74.0 5.0
TFP 65.2 0.9 60.3 0.7 67.1 1.3 63.8 5.5
FFR 2.3 83.6 12.4 66.5 9.2 42.6 18.8 39.0
Baa-GS10 44.0 42.1 23.6 35.3 27.9 14.7 21.2 18.0
S&P500 30.4 0.5 37.5 0.1 43.1 0.8 46.2 1.5
JLN Uncertainty 54.5 37.3 70.8 21.5 68.8 17.6 80.5 9.5
BC5Y 74.8 8.6 85.5 1.0 88.2 1.3 91.8 0.4

Table 2.6: Identification I: Percentage of variance explained by the supply
shock and the demand shock for a few selected variables, by frequency band,
according to different lags order: p = [1 2 3 4]. Baseline specification: p = 1.
Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with
periodicity between 18 months and 8 years. Long run frequency band: [0 ≤
ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with quarterly
data.
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Variables
R=11 R=13 R=15 R=17 R=20

Percentage of Explained Cyclical Variance
Supp Dem Supp Dem Supp Dem Supp Dem Supp Dem

GDP 27.1 49.1 22.2 51.8 23.8 49.0 18.2 50.9 18.0 50.8
Consumption 40.6 29.2 30.4 28.4 31.0 25.4 26.1 28.6 26.6 27.5
Investment 23.6 55.3 24.3 54.1 25.6 52.8 22.1 55.2 21.6 53.7
Unemployment 29.0 49.5 30.6 46.7 30.9 44.6 27.4 51.8 28.2 49.9
Hours Worked 26.3 31.9 19.8 32.3 23.5 28.4 18.2 29.7 19.2 31.5
Inflation 41.8 44.3 45.0 30.6 40.8 29.1 43.5 30.7 44.5 28.9
Labor Productivity 22.5 24.4 18.1 29.0 20.3 27.2 16.6 32.5 17.8 33.8
TFP 21.0 6.4 14.5 5.7 16.4 5.8 20.4 3.9 17.9 3.8
FFR 13.3 62.2 24.9 52.3 23.8 52.9 15.7 47.6 17.0 45.7
Baa-GS10 10.8 77.0 13.0 72.1 13.1 67.4 12.7 49.1 12.6 49.3
S&P500 33.3 23.8 25.6 32.3 26.9 31.7 19.7 38.0 16.7 36.9
JLN Uncertainty 3M 37.4 45.5 43.8 36.7 43.5 36.9 43.2 33.7 42.9 33.7
BC5Y 69.1 20.1 54.1 20.2 47.8 15.5 45.3 14.4 43.7 13.3

Percentage of Explained Long Run Variance
Supp Dem Supp Dem Supp Dem Supp Dem Supp Dem

GDP 77.7 3.3 74.7 6.1 75.4 5.6 67.9 4.8 69.1 6.5
Consumption 66.9 8.7 60.9 9.5 61.0 8.3 56.7 8.8 57.0 10.2
Investment 67.8 4.5 68.4 2.5 68.1 2.9 64.9 1.4 64.4 1.7
Unemployment 70.9 11.0 78.0 7.8 73.0 8.6 74.0 10.0 74.8 9.3
Hours Worked 54.7 8.8 52.8 12.6 50.9 11.0 55.8 10.3 53.8 10.9
Inflation 20.0 65.4 22.6 47.7 20.4 48.6 19.1 47.4 20.7 46.0
Labor Productivity 60.1 3.3 62.0 1.4 62.2 1.8 69.8 0.6 70.3 0.2
TFP 65.2 0.9 65.5 0.1 65.3 0.1 70.4 0.3 68.7 0.7
FFR 2.3 83.6 6.0 70.5 5.0 71.6 3.8 69.8 4.9 67.9
Baa-GS10 44.0 42.1 38.5 33.4 37.2 34.1 28.8 23.6 27.6 25.6
S&P500 30.4 0.5 29.7 1.9 29.0 1.8 22.6 1.2 22.4 1.0
JLN Uncertainty 3M 54.5 37.3 67.0 23.7 61.5 25.3 54.3 29.3 57.7 26.5
BC5Y 74.8 8.6 82.7 4.2 79.9 4.8 80.8 4.5 79.8 3.5

Table 2.7: Identification I: Percentage of variance explained by the Demand
shock and the Supply shock for a few selected variables, by frequency band,
according to the number of static factors: r = [11 13 15 17 20]. Baseline specifi-
cation: r = 11 static factors. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6]
corresponding to cycles with periodicity between 18 months and 8 years. Long
run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than
20 years, with quarterly data.



TABLES 79

(a) Robustness Identification I: Maximum and Minimum percentage value
of explained variance according to different lags order: p = [ 1 2 3 4 ].
Baseline specification: p = 1 lag.

Variables
Cyclical Variance Long Run Variance

Supply Demand Supply Demand
Min Max Min Max Min Max Min Max

GDP 26.5 30.4 47.4 51.2 66.5 77.7 2.3 11.3
Consumption 40.6 50.7 20.1 29.2 52.0 66.9 2.8 10.9
Investment 23.6 34.2 49.2 55.3 67.8 77.3 1.1 4.5
Unemployment 29.0 41.8 40.1 51.4 70.9 85.7 4.6 11.0
Hours Worked 23.2 28.0 31.9 40.1 50.5 63.3 8.8 24.1
Inflation 41.8 62.8 16.5 44.3 20.0 36.3 13.2 65.4
Labor Productivity 15.9 25.1 24.4 40.7 60.1 76.4 0.2 5.0
TFP 12.7 21.0 6.4 14.0 60.3 67.1 0.7 5.5
FFR 13.3 32.2 36.8 62.2 2.3 18.8 39.0 83.6
Baa-GS10 10.8 23.4 55.9 77.0 21.2 44.0 14.7 42.1
S&P500 25.1 33.3 21.1 35.2 30.4 46.2 0.1 1.5
JLN Uncertainty 3M 37.4 47.6 38.3 45.5 54.5 80.5 9.5 37.3
BC5Y 68.4 69.4 19.9 21.1 74.8 91.8 0.4 8.6

(b) Robustness Identification I: Maximum and minimum value of explained
variance according to the number of static factors: r = [ 11 13 15 17 20 ].
Baseline specification: r = 11 static factors.

Variables
Cyclical Variance Long Run Variance

Supply Demand Supply Demand
Min Max Min Max Min Max Min Max

GDP 18.0 27.1 49.0 51.8 67.9 77.7 3.3 6.5
Consumption 26.1 40.6 25.4 29.2 56.7 66.9 8.3 10.2
Investment 21.6 25.6 52.8 55.3 64.4 68.4 1.4 4.5
Unemployment 27.4 30.9 44.6 51.8 70.9 78.0 7.8 11.0
Hours Worked 18.2 26.3 28.4 32.3 50.9 55.8 8.8 12.6
Inflation 40.8 45.0 28.9 44.3 19.1 22.6 46.0 65.4
Labor Productivity 16.6 22.5 24.4 33.8 60.1 70.3 0.2 3.3
TFP 14.5 21.0 3.8 6.4 65.2 70.4 0.1 0.9
FFR 13.3 24.9 45.7 62.2 2.3 6.0 67.9 83.6
Baa-GS10 10.8 13.1 49.1 77.0 27.6 44.0 23.6 42.1
S&P500 16.7 33.3 23.8 38.0 22.4 30.4 0.5 1.9
JLN Uncertainty 3M 37.4 43.8 33.7 45.5 54.3 67.0 23.7 37.3
BC5Y 43.7 69.1 13.3 20.2 74.8 82.7 3.5 8.6

Table 2.8: Percentage of variance explained by the supply shock and the
demand shock (Identification I) for a few selected variables, by frequency
band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles
with periodicity between 18 months and 8 years. Long run frequency band: [0 ≤
ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with quarterly
data.
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Figures

Figure A.1: Identification I: Spectral Decomposition for a few selected vari-
ables, frequency by frequency. The figure reports the percentage of explained
variance. Blue line: Contribution of the supply shock; Red line: Contribution
of the demand shock; Yellow line: sum. Pink shadowed area: Long run fre-
quencies (>80 quarters); Lilac shadowed area: Business Cycle frequencies (6-32
quarters).
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Figure A.2: Impulse response functions of the Supply shock (Identifi-
cation I, black line) and the Permanent shock (Identification II, cyan
dashed line). The dark gray and light gray areas are the 68% and 90%
confidence bands, respectively, for Identification I.
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Figure A.3: Impulse response functions of the Demand shock (Identification
I, black line) and the Transitory shock (Identification II, cyan dashed line).
The dark gray and light gray areas are the 68% and 90% confidence bands,
respectively, for Identification I.
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Figure A.4: Identification I: Impulse response functions of the Supply shock,
according to different lags order: p = [1 2 3 4]. Baseline specification: p = 1.
The dark gray and light gray areas are the 68% and 90% confidence bands,
respectively. Black line and confidence bands: baseline specification.
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Figure A.5: Identification I: Impulse response functions of the Demand shock,
according to different lags order: p = [1 2 3 4]. Baseline specification: p = 1.
The dark gray and light gray areas are the 68% and 90% confidence bands,
respectively. Black line and confidence bands: baseline specification.
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Appendices for Online Publication

2.A. Rank Reduction Step

In the standard estimation procedure the identification techniques are applied to the
residuals of the VAR estimated for Ft after estimating q, the number of common
shocks, and the rank reduction. The estimated factors F̂t are not exactly singular,
as they contain a residual of the idiosyncratic components that disappears completely
only asymptotically. As a consequence, the vector ϵ̂t has rank r > q, although the last
r −q eigenvalues of Σ̂ϵ are close to zero (Forni et al., 2020). In the standard procedure,
singularity is forced on ϵ̂t by means of rank-reduction techniques. In Forni et al. (2009),
the rank reduction is obtained by using the spectral decomposition of Σ̂ϵ, so that the
vector ϵ̂t is replaced by the q̂-dimensional vector V −1ϵ̂t, where V −1 is the matrix whose
rows are the normalised eigenvectors corresponding to the q-largest eigenvalues of the
variance-covariance matrix of ϵ̂t. This is equivalent to assume that the static rank of the
common components is r, which is the rank of its covariance matrix, while the dynamic
rank is q, which is the rank of its spectral density. In empirical situation, the number
q of dynamic factors or common shocks is unknown and has to be determined by
existing information criteria. For instance, the criterion proposed by Hallin and Liška
(2007) is based on the properties of dynamic eigenvalues of the data and looks for the
value q that minimizes the contribution of the idiosyncratic component. Alternative
methods are proposed by Onatski (2009), Amengual and Watson (2007) and Bai and
Ng (2007). Recently, Avarucci et al. (2021) introduce a novel consistent criterion to
estimate the number of common shocks that can be applied to single frequencies as
well as to frequency bands. Such criteria, albeit consistent, often give different results
each other.

Forni et al. (2020) shown that the rank reduction step can be ignored with no
consequences on the (IRFs) estimation accuracy. Since different information criteria
often give different results, the estimation of q and the rank reduction can be a potential
source of error, in particular whether q̂ underestimates the true q, leading to large
estimation errors implied by a possible mis-specification of q. Therefore, we apply the
identification techniques to the not exactly singular Cholesky-transformed residuals of
the estimated VAR without reducing the rank.

Moreover, by reducing the number of shocks of interest in the first stage of our
identification strategy, where we select the two shocks maximizing the explained vari-
ance of targeted variables on the band [0 2π/6], rather than across all frequencies, we
do not need to implement the rank reduction step in our estimation procedure.
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2.B. Data Description and Data Treatment

For the description of each variable see McCracken and Ng (2020). For variables not
in the FRED-QD dataset, refer to the Mnemonic and note. Treatment codes: 1 =
no treatment; 2 = first difference, ∆xt; 4 = log(xt); 5 = log of the first difference,
∆ log(xt).

ID FRED-QD Mnemonic Treatment NoteID code

1 1 GDPC1/CNP16OV 5
2 2 PCECC96/CNP16OV 5
3 3 PCDGx/CNP16OV 5
4 4 PCESVx/CNP16OV 5
5 5 PCNDx/CNP16OV 5
6 6 GPDIC1/CNP16OV 5
7 7 FPIx/CNP16OV 5
8 8 Y033RC1Q027SBEAx/CNP16OV 5
9 9 PNFIx/CNP16OV 5

10 10 PRFIx/CNP16OV 5
11 11 A014RE1Q156NBEA 1
12 12 GCEC1/CNP16OV 5
13 13 A823RL1Q225SBEA 1
14 14 FGRECPTx/CNP16OV 5
15 15 SLCEx/CNP16OV 5
16 16 EXPGSC1/CNP16OV 5
17 17 IMPGSC1/CNP16OV 5
18 18 DPIC96/CNP16OV 5
19 19 OUTNFB/CNP16OV 5
20 20 OUTBS/CNP16OV 5
21 (PCESVx+PCNDx)/CNP16OV 5
22 (PCDGx+FPIx)/CNP16OV 5
23 22 INDPRO/CNP16OV 5
24 23 IPFINAL/CNP16OV 5
25 24 IPCONGD/CNP16OV 5
26 25 IPMAT/CNP16OV 5
27 28 IPDCONGD/CNP16OV 5
28 30 IPNCONGD/CNP16OV 5
29 31 IPBUSEQ/CNP16OV 5
30 35 PAYEMS/CNP16OV 2
31 36 USPRIV/CNP16OV 2
32 38 SRVPRD/CNP16OV 2
33 39 USGOOD/CNP16OV 2
34 51 USGOVT/CNP16OV 2
35 57 CE16OV/CNP16OV (EMRATIO) 2
36 58 CIVPART 2
37 59 UNRATE 1
38 60 UNRATESTx 1
39 61 UNRATELTx 1
40 62 LNS14000012 1
41 63 LNS14000025 1
42 64 LNS14000026 1
43 74 HOABS/CNP16OV 4
44 76 HOANBS/CNP16OV 4
45 77 AWHMAN 1
46 79 AWOTMAN 1
47 81 HOUST/CNP160V 5
48 95 PCECTPI 5
49 96 PCEPILFE 5
50 GDPDEF 5 GDP: Implicit Price Deflator
51 97 GDPCTPI 5
52 98 GPDICTPI 5
53 120 CPIAUCSL 5
54 121 CPILFESL 5
55 122 WPSFD49207 5
56 123 PPIACO 5
57 124 WPSFD49502 5
58 126 PPIIDC 5
59 129 WPU0561 5
60 130 OILPRICEx 5
61 135 COMPRNFB 5
62 138 OPHNFB 5
63 139 OPHPBS 5
64 140 ULCBS 5
65 142 ULCNFB 5
66 143 UNLPNBS 5
67 dtfp 1 Fernald’s TFP growth

Continued on next page
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Continued from previous page

ID FRED-QD Mnemonic Treatment NoteID code

68 dtfp util 1 Fernald’s TFP growth CU adjusted
69 dtfp I 1 Fernald’s TFP growth - Inv
70 dtfp C 1 Fernald’s TFP growth - Con
71 dtfp I util 1 Fernald’s TFP growth CU - Inv
72 dtfp C util 1 Fernald’s TFP growth CU - Con
73 144 FEDFUNDS 1
74 145 TB3MS 1
75 146 TB6MS 1
76 147 GS1 1
77 148 GS10 1
78 150 AAA 1
79 151 BAA 1
80 152 BAA10YM 1
81 156 GS10TB3Mx 1
82 BAA-AAA 1
83 GS10-FEDFUNDS 1
84 GS1-FEDFUNDS 1
85 BAA-FEDFUNDS 1
86 158 BOGMBASEREALx/CNP16OV 5
87 160 M1REAL/CNP16OV 5
88 161 M2REAL/CNP16OV 5
89 163 BUSLOANSx/CNP16OV 5
90 164 CONSUMERx/CNP16OV 5
91 166 REALLNx/CNP16OV 5
92 168 TOTALSLx/CNP16OV 5
93 188 UMCSENTx 1
94 Business Condition 12 Months 1 Michigan Consumer Survey
95 Business Condition 5 Years 1 Michigan Consumer Survey
96 Current Index 1 Michigan Consumer Survey
97 Expected Index 1 Michigan Consumer Survey
98 News Index: Relative 1 Michigan Consumer Survey
99 197 UEMPMEAN 1

100 201 GS5 1
101 210 CUSR0000SAC 5
102 211 CUSR0000SAD 5
103 212 CUSR0000SAS 5
104 213 CPIULFSL 5
105 245 S&P 500 5
106 246 S&P: indust 5
107 S&P 500/GDPDEF 5
108 S&P: indust/GDPDEF 5
109 JLN Macro Unc 1-month 1 Jurado Ludvigson and Ng Uncertainty
110 JLN Macro Unc 3-month 1 JLN Uncertainty
111 JLN Macro Unc 12-month 1 JLN Uncertainty
112 DPCCRC1Q027SBEAx/CNP16OV 5 Real PCE Excluding food and energy
113 DFXARC1M027SBEAx/CNP16OV 5 Real PCE: Food
114 DNRGRC1Q027SBEAx/CNP16OV 5 Real PCE: Energy goods
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2.C. Additional Results and Robustness

Tables

Frequencies DDR DGR DER

0 ≤ ω ≤ 2π/6 2 2 1
0 ≤ ω ≤ 2π/8 2 2 1
0 ≤ ω ≤ π 2 1 1

Table C.1: Number of estimated dynamic factors by DDR, DGR and
DER evaluated at selected frequencies or frequency bands. The size of
the spectral window - bandwidth parameter - is MT = ⌊a

√
T ⌋ with a = 0.5.

DDR: Dynamic Difference Ratio Estimator; DGR: Dynamic Growth Ratio
Estimator; DER: Dynamic Eigenvalue Ratio Estimator.

Orthogonality
Principal Components 1 lags 2 lags 3 lags 4 lags

r=6 0.00 0.00 0.00 0.03
r=7 0.01 0.00 0.00 0.00
r=8 0.01 0.00 0.00 0.01
r=9 0.01 0.00 0.00 0.01
r=10 0.02 0.01 0.00 0.04
r=11 0.02 0.02 0.01 0.08

Table C.2: p-values of the orthogonality F -test (Forni and Gambetti,
2014), one to four lags, for the MBC shock, estimated with ACD’s VAR
specification. r is the number of principal components used in the test.
Source: Granese (2023).
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Variables
P=1 P=2 P=3 P=4

Percentage of Explained Cyclical Variance
Perm Trans Perm Trans Perm Trans Perm Trans

GDP 29.6 46.6 29.6 46.6 28.8 47.7 27.1 54.5
Consumption 43.9 25.9 50.4 16.5 52.7 18.1 51.3 21.0
Investment 25.5 53.4 27.1 51.4 30.0 50.3 30.2 53.2
Unemployment 30.1 48.4 31.8 51.4 36.4 45.1 36.4 45.5
Hours Worked 29.2 29.0 27.7 35.6 29.6 31.0 31.7 29.6
Inflation 37.2 48.8 44.0 43.4 52.1 28.9 43.6 35.7
Labor Productivity 23.0 23.9 26.1 29.5 22.0 38.5 17.4 39.2
TFP 20.7 6.7 19.1 10.0 17.3 13.3 16.3 7.3
FFR 10.9 64.5 15.0 62.2 23.1 44.9 17.9 51.2
Baa-GS10 12.9 74.8 16.2 70.7 21.6 60.6 20.0 59.3
S&P500 36.2 20.9 37.2 16.2 29.5 30.1 35.4 24.9
JLN Uncertainty 3M 39.8 43.1 43.7 40.2 44.0 41.2 45.0 40.9
BC5Y 71.2 17.9 72.5 16.8 70.6 18.1 71.0 19.5

Percentage of Explained Long Run Variance
Perm Trans Perm Trans Perm Trans Perm Trans

GDP 79.3 1.7 72.9 2.0 73.0 0.7 76.5 1.4
Consumption 69.7 5.9 57.6 6.1 59.2 1.5 59.4 2.4
Investment 67.2 5.1 73.3 2.2 76.9 1.5 79.6 1.3
Unemployment 68.7 13.2 80.1 7.1 83.9 5.3 83.9 6.7
Hours Worked 57.3 6.3 58.8 12.9 68.0 8.4 71.3 6.7
Inflation 15.5 69.9 24.2 45.8 22.0 25.0 22.3 27.2
Labor Productivity 58.3 5.1 64.1 1.5 76.4 0.2 78.9 0.1
TFP 64.5 1.6 60.2 0.7 67.4 0.9 68.3 1.1
FFR 0.9 85.0 5.6 73.3 5.9 45.8 5.6 52.2
Baa-GS10 49.2 36.9 31.6 27.3 31.2 11.3 31.5 7.7
S&P500 30.2 0.7 36.9 0.8 43.6 0.2 46.2 1.6
JLN Uncertainty 3M 49.2 42.5 59.8 32.4 62.5 23.8 61.0 29.0
BC5Y 71.5 11.9 81.6 4.9 85.7 3.8 86.8 5.4

Table C.3: Identification II: Percentage of variance explained by the
permanent shock and the transitory shock for a few selected variables,
by frequency band, according to different lags order: p = [1 2 3 4].
Baseline specification: p = 1. Business cycle frequency band: [2π/32 ≤
ω ≤ 2π/6] corresponding to cycles with periodicity between 18 months
and 8 years. Long run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to
periodicity greater than 20 years, with quarterly data.
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Variables
R=11 R=13 R=15 R=17 R=20

Percentage of Explained Cyclical Variance
Perm Trans Perm Trans Perm Trans Perm Trans Perm Trans

GDP 29.6 46.6 24.0 50.1 25.7 47.1 18.7 50.4 19.0 49.9
Consumption 43.9 25.9 33.3 25.4 33.3 23.1 27.1 27.6 28.3 25.8
Investment 25.5 53.4 25.5 53.0 26.8 51.6 22.4 54.9 21.9 53.4
Unemployment 30.1 48.4 30.7 46.5 31.3 44.1 26.9 52.3 27.3 50.8
Hours Worked 29.2 29.0 23.3 28.8 26.2 25.6 20.5 27.5 21.9 28.8
Inflation 37.2 48.8 36.9 38.6 34.4 35.5 36.7 37.5 34.5 38.8
Labor 23.0 23.9 18.3 28.8 20.4 27.1 17.3 31.9 18.8 32.8
TFP 20.7 6.7 13.6 6.6 15.4 6.8 19.9 4.5 17.3 4.4
FFR 10.9 64.5 18.3 58.9 18.1 58.6 11.6 51.8 10.7 52.0
Baa-GS10 12.9 74.8 14.4 70.7 14.2 66.3 13.7 48.2 13.7 48.2
S&P500 36.2 20.9 31.1 26.8 31.9 26.7 23.3 34.3 21.8 31.9
JLN Uncertainty 39.8 43.1 46.7 33.8 45.8 34.6 44.3 32.5 44.2 32.4
BC5Y 71.2 17.9 56.1 18.1 50.1 13.1 47.7 12.1 46.8 10.2

Percentage of Explained Long Run Variance
Perm Trans Perm Trans Perm Trans Perm Trans Perm Trans

GDP 79.3 1.7 78.7 2.1 78.8 2.1 70.3 2.5 73.2 2.4
Consumption 69.7 5.9 65.6 4.8 64.9 4.4 59.9 5.6 62.0 5.2
Investment 67.2 5.1 68.3 2.5 68.0 3.0 64.6 1.7 64.8 1.4
Unemployment 68.7 13.2 74.8 11.0 70.2 11.4 71.4 12.6 70.9 13.2
Hours Worked 57.3 6.3 58.4 7.0 55.5 6.4 60.1 6.0 59.9 4.8
Inflation 15.5 69.9 15.1 55.3 14.0 54.9 13.4 53.1 12.3 54.4
Labor 58.3 5.1 59.4 4.0 59.8 4.2 68.1 2.3 68.0 2.5
TFP 64.5 1.6 64.4 1.2 64.3 1.2 70.1 0.6 68.7 0.8
FFR 0.9 85.0 2.1 74.5 1.8 74.8 1.3 72.3 1.0 71.8
Baa-GS10 49.2 36.9 46.5 25.4 44.4 26.9 33.9 18.5 35.3 17.9
S&P500 30.2 0.7 31.0 0.6 30.2 0.7 23.4 0.4 23.1 0.3
JLN Uncertainty 49.2 42.5 57.9 32.8 53.8 33.1 47.1 36.5 47.1 37.2
BC5Y 71.5 11.9 77.5 9.4 75.4 9.2 76.8 8.5 74.2 9.1

Table C.4: Identification II: Percentage of variance explained by the
Transitory shock and the Permannent shock for a few selected vari-
ables, by frequency band, according to the number of static factors:
r = [11 13 15 17 20]. Baseline specification: r = 11 static factors. Business
cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with
periodicity between 18 months and 8 years. Long run frequency band:
[0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with
quarterly data.
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(a) Identification II: Maximum and Minimum percentage value of ex-
plained variance according to different lags order: p = [ 1 2 3 4 ].
Baseline specification: p = 1 lag.

Variables
Cyclical Variance Long Run Variance

Perm Trans Perm Trans
Min Max Min Max Min Max Min Max

GDP 27.1 29.6 46.6 54.4 72.9 79.3 0.7 2.0
Consumption 43.9 52.7 16.5 25.9 57.6 69.7 1.5 6.1
Investment 25.5 30.2 50.3 53.4 67.2 79.6 1.3 5.1
Unemployment 30.1 36.4 45.1 51.4 68.7 83.9 5.3 13.2
Hours Worked 27.7 31.7 29.0 35.6 57.3 71.3 6.3 12.9
Inflation 37.2 52.1 28.9 48.8 15.5 24.2 25.0 69.9
Labor Productivity 17.4 26.1 23.9 39.2 58.3 78.9 0.1 5.1
TFP 16.3 20.7 6.7 13.3 60.2 68.3 0.7 1.6
FFR 10.9 23.1 44.9 64.5 0.9 5.9 45.8 85.0
Baa-GS10 12.9 21.6 59.3 74.8 31.2 49.2 7.7 36.9
S&P500 29.5 37.2 16.2 30.1 30.2 46.2 0.2 1.6
JLN Uncertainty 3M 39.8 45.0 40.2 43.1 49.2 62.5 23.8 42.5
BC5Y 70.6 72.5 16.8 19.5 71.5 86.8 3.8 11.9

(b) Identification II: Maximum and minimum value of explained variance
according to the number of static factors: r = [ 11 13 15 17 20 ]. Baseline
specification: r = 11 static factors.

Variables
Cyclical Variance Long Run Variance

Perm Trans Perm Trans
Min Max Min Max Min Max Min Max

GDP 18.7 29.6 46.6 50.4 70.3 79.3 1.7 2.5
Consumption 27.1 43.9 23.1 27.6 59.9 69.7 4.4 5.9
Investment 21.9 26.8 51.6 54.9 64.6 68.3 1.4 5.1
Unemployment 26.9 31.3 44.1 52.3 68.7 74.8 11.0 13.2
Hours Worked 20.5 29.2 25.6 29.0 55.5 60.1 4.8 7.0
Inflation 34.4 36.9 35.5 48.8 12.3 15.5 53.1 69.9
Labor Productivity 17.3 23.0 23.9 32.8 58.3 68.1 2.3 5.1
TFP 13.6 20.7 4.4 6.8 64.3 70.1 0.6 1.6
FFR 10.7 18.3 51.8 64.5 0.9 2.1 71.8 85.0
Baa-GS10 12.9 14.4 48.2 74.8 33.9 49.2 17.9 36.9
S&P500 21.8 36.2 20.9 34.3 23.1 31.0 0.3 0.7
JLN Uncertainty 3M 39.8 46.7 32.4 43.1 47.1 57.9 42.5 32.8
BC5Y 46.8 71.2 10.2 18.1 71.5 77.5 8.5 11.9

Table C.5: Percentage of variance explained by the permanet shock and
the transitory shock (Identification II) for a few selected variables,
by frequency band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6]
corresponding to cycles with periodicity between 18 months and 8 years.
Long run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity
greater than 20 years, with quarterly data.
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Figures

Figure C.1: Identification I: Point estimates of the Impulse Response
Functions of the Supply Shock. The dark gray and light gray areas are
the 68% and 90% confidence bands, respectively.
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Figure C.2: Identification I: Point estimates of the Impulse Response
Functions of the Demand Shock. The dark gray and light gray areas
are the 68% and 90% confidence bands, respectively.
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Figure C.3: Identification II: Spectral Decomposition for a few se-
lected variables, frequency by frequency. The figure reports the per-
centage of explained variance. Blue line: Contribution of the perma-
nent shock; Red line: Contribution of the transitory shock; Yellow
line: sum. Pink shadowed area: Long run frequencies (>80 quarters);
Lilac shadowed area: Business Cycle frequencies (6-32 quarters).
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Figure C.4: Identification II: Point estimates of the Impulse Response
Functions of the Permanent Shock. The dark gray and light gray areas
are the 68% and 90% confidence bands, respectively.
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Figure C.5: Identification II: Point estimates of the Impulse Response
Functions of the Transitory Shock. The dark gray and light gray areas
are the 68% and 90% confidence bands, respectively.
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Figure C.6: Percentage of variances explained by all linear combination
of the two shocks.
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Figure C.7: Identification I: Impulse response functions of the Supply
shock, according to different number of static factors: r = [11 6 9 13 15].
Baseline specification: r = 11. The dark gray and light gray areas are
the 68% and 90% confidence bands, respectively. Black line and confi-
dence bands: baseline specification.
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Figure C.8: Identification I: Impulse response functions of the Demand
shock, according to different number of static factors: r = [11 6 9 13 15].
Baseline specification: r = 11. The dark gray and light gray areas are
the 68% and 90% confidence bands, respectively. Black line and confi-
dence bands: baseline specification.
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Figure C.9: Identification II: Impulse response functions of the Perma-
nent shock, according to different lags order: p = [1 2 3 4]. Baseline
specification: p = 1. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively. Black line and confidence bands:
baseline specification.
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Figure C.10: Identification II: Impulse response functions of the Tran-
sitory shock, according to different lags order: p = [1 2 3 4]. Baseline
specification: p = 1. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively. Black line and confidence bands:
baseline specification.



APPENDIX 102

Figure C.11: Identification II: Impulse response functions of the Per-
manent shock, according to different number of static factors: r =
[11 6 9 13 15]. Baseline specification: r = 11. The dark gray and light
gray areas are the 68% and 90% confidence bands, respectively. Black
line and confidence bands: baseline specification.
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Figure C.12: Identification II: Impulse response functions of the Tran-
sitory shock, according to different number of static factors: r =
[11 6 9 13 15]. Baseline specification: r = 11. The dark gray and light
gray areas are the 68% and 90% confidence bands, respectively. Black
line and confidence bands: baseline specification.
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Abstract
This study explores the asymmetric impact of demand shocks on the economy using
a nonlinear Structural Dynamic Factor Model. Our findings reveal that the effects of
aggregate demand shocks are nonlinear, depending on their sign. Positive shocks are
transitory, in line with standard business cycle theory; negative shocks, on the other
hand, leave lasting scars on the economy. Recessions driven by demand-side shocks
lead to permanent declines in output, employment and investment.
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3.1. Introduction

Conventional macroeconomic analysis typically suggests that demand shocks cause
only temporary fluctuations (business cycles) around a stable, upward trend, with
long-run changes being driven by supply-side factors. Blanchard and Quah (1989)
first applied this assumption within the Structural Vector Autoregression (SVAR)
framework aiming to distinguish between shocks that have a permanent effect on real
economic activity, interpreted as supply disturbances, and those that do not, seen as
demand disturbances. This method has since become a standard in macroeconomic
analysis. Some empirical studies corroborate this perspective, showing that demand-
side shocks, such as monetary or financial disturbances, are cyclical in nature. In a
recent paper, Forni et al. (2023) (FGGSS) lends strong support to the traditional view
for the post-1960s US economy by showing that shocks identified as standard demand
have no long-run effects on real activity. In their large factor model framework, the
demand shock—defined on the basis of the short-run comovement between output and
inflation—could theoretically impact GDP in the long run; however, empirical evidence
suggests otherwise.

Yet, the long-lasting economic consequences of the 2008 financial crisis and the
fears of a slow recovery from the the recession caused by the COVID-19 pandemic
have challenged this perspective, sparking renewed interest in the potential persistent
(or even permanent) effects of demand shocks. This has led economists to re-examine
the concept of demand-driven hysteresis1 (Cerra et al., 2023, for a recent survey). In
this renewed debate, the early insights of Blanchard and Summers (1986) on how fluc-
tuations in demand, especially those leading to significant recessions, may have long-
lasting impacts on potential output through hysteresis effects, gains new relevance.2

Recent empirical works lend further support to this view. For example, Blanchard
et al. (2015)’s study on demand-driven recessions in advanced economies, shows that a
large share of such downturns are associated with a permanently lower level of output.
Maffei-Faccioli (2021) through a Bayesian SVAR model with common trends and sign
restrictions based on price and quantity co-movements, finds that while supply-side
factors predominantly drove GDP growth before 2000, demand-side factors account
for approximately half of the slowdown post-2000. This suggests a substantial role for
demand forces in influencing long-term growth (super-hysteresis, see Ball, 2014). Re-
garding specific types of demand shocks, evidence supporting the long-term effects of
monetary and fiscal shocks is presented in Jordà et al. (2020) and Fatás and Summers
(2018).

Recently, Furlanetto et al. (2024) find convincing evidence of demand shock hys-
teresis for the post-1980s US data. They show that certain demand shocks not only
lead to a permanent decrease in output but also play a quantitatively significant role
in explaining GDP fluctuations across all horizons. Using a structural VAR framework

1In this work, we refer to the concept of hysteresis as the presence of aggregate demand
shocks with permanent effects on output.

2This view was supported by developments in Europe during the 1980s, where unemploy-
ment stabilized at higher levels after recessions.



CHAPTER 3. ASYMMETRIC TRANSMISSION 106

that combines long-run zero and short-run sign restrictions, they identify two shocks
with potentially permanent effects on economic activity: a traditional supply shock and
a more novel demand shock. Their findings suggest that recessions driven by demand-
side shocks lead to permanent (effects) declines in output, employment and investment,
while labor productivity responds only to the permanent supply shock.3 Interestingly,
the analysis reveals that these “negative permanent demand shocks” appear as signifi-
cant drivers of output fluctuations in the baseline sample (1983:Q1-2019:Q4), but their
relevance decreases when data from the 1970s are included. Results over this period
are much more in line with the standard view of economic fluctuations.4

All in all, the potential presence of cyclical (demand) shocks with permanent ef-
fects, or demand-side hysteresis, appears to be related to an asymmetric or nonlinear
transmission of demand shocks in the data. It is important to point out that the
literature primarily focuses on this phenomenon in relation to shocks that lead to
recessions, rather than economic booms, thus highlighting the importance of the direc-
tion of the shocks. Despite this, potential hysteresis effects are usually studied using
linear models.

In this study, we aim to reconcile the conventional view, as supported by FGGSS,
with the evidence of demand-driven hysteresis provided by Furlanetto et al. (2024), by
exploring whether shocks identified as standard demand shocks have different effects on
the US economy, depending on the sign of the shocks. Our hypothesis is that negative
demand shocks may have more persistent and difficult-to-reverse effects than positive
ones. If this hypothesis holds true, it would imply that a nonlinear model could detect
demand-driven hysteresis where a linear model fails to do so.

To investigate the potential sign asymmetry, we employ the method developed by
Forni et al. (2023), which allows us to extend the identification in FGGSS to a non-
linear setting where the economy is described by a structural Vector Moving Average,
augmented with a nonlinear function of the shock of interest; here we use the absolute
value of the demand shocks. In this model economy, macroeconomic variables react
linearly to both the shock and its nonlinear function. Under suitable conditions, the
model admits a VARX representation, in which the demand shock and its absolute
value are exogenous variables. Thus, by combining the coefficient associated with the
shock and its nonlinear function we can estimate the effects of positive and negative
demand shocks on economic variables.

The identification and estimation procedure consists of two steps within a single
nonlinear model. In the first step, we estimate the demand shock. In the second step,
we use the shock and its nonlinear function as exogenous regressors in a VARX to
estimate the nonlinear transmission mechanism (IRFs). It should be noted that this

3They also show that hysteresis mainly transmits through employment, with an increase in
long-term unemployment and a decrease in labor force participation, with particular impact
on the least productive workers.

4The authors conclude that to capture hysteresis effects when considering a longer sample,
a nonlinear setting seems necessary. Benati and Lubik (2021), using an approach similar to
but somewhat distinct from Furlanetto et al. (2024), find limited evidence of hysteresis in the
post-WWII US data. Moreover, their findings suggest that aggregate demand shocks with a
permanent effect are virtually absent for samples excluding the 2008 financial crisis.
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procedure requires the invertibility of the shock estimated in the first step, that is,
the data should be informationally sufficient for the demand shock. This implies that
the shock of interest can be obtained as a simple linear combination of current and
past data, as in a standard linear VAR where the nonlinear term is omitted, although
the true model is a VARX. In other words, the nonlinear term in the model is not
needed to estimate the demand shock. However, in a nonlinear context such as this,
invertibility is a demanding property.

The novelty is that we implement this nonlinear setting in a large-dimensional
Structural Dynamic Factor model, as introduced by Forni et al. (2009) and Stock and
Watson (2005). Our positive argument is that large factor models, as shown in Forni
et al. (2009), are generally unaffected by non-invertibility issues. Typically, the vector
of the factors is singular, meaning it is driven by a number of common shocks that is
much smaller than its dimension. This holds true even if one or more nonlinear func-
tions are included among the sources of variation. In such cases, achieving invertibility
becomes easier as it satisfies a less demandig condition. In the empirical application, we
use a dataset of 114 quarterly US time series, covering the period 1961:Q1 to 2019:Q4.

In a nutshell, our results confirm the initial hypothesis of asymmetric—or nonlinear—
transmission of demand shocks. The sign of the shock, whether positive or negative,
is a determinant of the dynamics and persistence of the effects. Specifically, nega-
tive shocks appear to be more persistent than positive ones: a contractionary demand
shock leads to a permanent decline in output, investment and employment, proving to
be an important driver of labor market fluctuations, at all horizons. Conversely, in line
with conventional wisdom, positive demand shocks, display temporary effects on all
real variables: over the long run, the economy revert to its equilibrium path once the
shock loses its intensity. In line with Furlanetto et al. (2024) we find that hysteresis
transmits through an increase in long-term unemployment. Contrary to their findings,
we attribute a minor, yet not negligible, role to demand shocks in explaining long-term
economic fluctuations.

The remainder of the paper is organized as follows. Section 2 outlines discusses
the econometric approach, including the identification of the shock and the estimation
of nonlinear effects. Section 3 presents the results. Section 4 concludes.

3.2. Econometric Approach

In this section, we present our empirical model and show how to estimate the nonlinear
effects of demand shocks on the common components of macroeconomic variables.

3.2.1. Nonlinear Structural Dynamic Factor Model

Let xt be a n-dimensional vector of stationary macroeconomic variables. The vector xt

is part of an infinite-dimensional panel of time series. Each variable xit, i = 1, . . . , n,
is decomposed into the sum of two mutually orthogonal unobservable components, the
common component, χit, and the idiosyncratic component, ξit. The ξ’s are interpreted
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as sources of variation that are specific to one or just a small group of variables, like
sectoral shocks or measurement error. In particular, for macroeconomic variables like
GDP, investment or consumption, in which all local and sectoral shocks have been
averaged out, the idiosyncratic part can be interpreted essentially as only contain-
ing measurement error. They are poorly correlated in the cross-sectional dimension
(see Forni et al., 2009, Assumption 5). The common components, on the contrary,
account for the bulk of the co-movements between macroeconomic variables. This is
because they are different linear combinations of the same r < n common factors,
Ft = (F1t . . . Frt)′, not depending on i (see Stock and Watson, 2002a,b; Bai and Ng,
2002):

χit = λi1F1t + . . . + λirFrt or χt = ΛFt. (3.1)

The entries of Ft are called static factors and Λ is a n × r matrix of factor loadings.
We require the factors to be pervasive i.e. to have non-negligible effects on most of the
variables xit (see Forni et al., 2009, Assumption 4). Equation (3.1) is the static factor
representation, where the factors have only contemporaneous effect on the common
components.

The dynamic nature of the model comes from the fact that static factors have the
following Moving Average representation, augmented with a nonlinear function of the
demand shock.
Structural representation. The r-dimensional vector Ft follow the singular MA
process

Ft = Ψ(L)ut (3.2a)
Ft = Γ(L)vt + γ(L)ud

t + β(L)g(ud
t ) (3.2b)

where ut = [vt
′ ud

t g(ud
t )]′ is a q-dimensional vector of common shocks, with q < r,

so that the vector Ft is singular, and Ψ(L) = [Γ(L) γ(L) β(L)] is an r × q matrix of
rational IRFs with maximum rank q < r ≪ n.

In equation (3.2b), we derive an equivalent representation by splitting the linear
terms from the nonlinear one; below we further develop this representation to obtain
the VARX to be estimated.

The vector ud
t is the demand shock, g(ud

t ) is a nonlinear function of the demand
shock, and vt is a m-dimensional vector of structural shocks other than the demand
shock, with m < q. We further assume that the vector [vt

′ ud
t ]′ is i.i.d. zero mean, with

identity covariance matrix. The serial and mutual independence assumption implies
that all structural shocks, including ud

t , are uncorrelated with the lags of g(ud
t ) and Ft.

The vector γ(L) = γ0 + γ1L + γ2L2 + . . . is the column of Ψ(L) including the IRFs to
the demand shock; the vector β(L) = β0 + β1L + β2L2 + . . . includes the IRFs to the
nonlinear function of the demand shock. Finally, Γ(L) = Γ0 + Γ1L + Γ2L2 + . . . is a
r × m matrix of IRFs to the remaining structural shocks, with maximum rank m < q.

Equations (3.2a) and (3.2b) are different way to write the same singular MA rep-
resentation, augmented with a non linear function of the demand shock, which in our
application takes the functional form g(ud

t ) = |ud
t |.
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Combining the equations (3.1) and (3.2b) it can be seen that the common compo-
nents themselves have the following structural dynamic representation

χt = Λ[Γ(L)vt + γ(L)ud
t + β(L)g(ud

t )]

or equivalently
χt = Γ∗(L)vt + γ∗(L)ud

t + β∗(L)g(ud
t ) (3.3)

The total effects of the demand shock ud
t = ūd is nonlinear and can be found by

combining the two terms γ∗(L) and β∗(L) as

IRF (ud
t = ūd) = γ∗(L)ud

t + β∗(L)g(ud
t ). (3.4)

We now further develop the model and derive the VARX representation, which is
the one we will estimate.

In this sense, the singularity has very important consequences. Indeed, in singular
systems, Anderson and Deistler (2008) show that, under mild assumptions,5 a finite
VAR representation for the factors always exists.

Let us first consider equation (3.2a). Inverting the matrix Ψ(L) we obtain the
following VAR representation.

VAR Representation. The r-dimensional vector Ft admits the finite-order VAR
representation

A(L)Ft = et

et = Rut

(3.5)

where A(L) is an r × r, stable polynomial matrix and R is r × q and has maximum
rank q. As a consequence, R has a left inverse and the vector ut belongs to space
spanned by current and past values of the vector Ft, that is, ut is fundamental for Ft.
Therefore, if an estimate of Ft is available, the shocks in the vector ut can be estimated
by means of a singular VAR for Ft.

Let us now consider equation (3.2b). Inverting only the linear term Γ(L) we obtain
the following VARX representation.

VARX Representation. The r-dimensional vector Ft admits the finite-order VARX
representation

C(L)Ft = ϵt + C(L)γ(L)ud
t + C(L)β(L)g(ud

t )
ϵt = Svt

(3.6)

or equivalently
Ft = C̃(L)Ft−1 + γ̃(L)ud

t + β̃(L)g(ud
t ) + ϵt (3.7)

5The basic assumption is that the entries of Ψ(z), or Γ(z), are rational functions in the
complex variable z and Ψ(z), or Γ(z), is zeroless, i.e. it has maximum rank q, orm, everywhere
in the complex plane.
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Model (3.7) is a VARX where the demand shock and its nonlinear function are the
exogenous variables.

Note that if β̃(L) = 0, the structural representation (3.2b) reduces to a linear
model. We can test for linearity by testing either for the null of β̃(L) = 0 in equation
(3.7) or for the null of β∗(L) = 0 in the IRFs (3.4).

3.2.2. Identification and estimation

The estimation of the demand shock’s total effects follows a two-step procedure. In
the first step, an estimate of the demand shock is obtained. In the second step, the
nonlinear effects of the shock are obtained using the estimated shock and its nonlinear
function as regressors in equation (3.7).

Step I. The demand shock is estimated using the FGGSS’s frequency domain strategy.
Let us briefly recall their approach. First, they obtain the two reduced form shocks
that maximize the explained variance of key macroeconomic aggregates at frequencies
larger than 18 months, thus excluding fluctuations of little interest for macroeconomic
analysis. The authors show that q = 2 shocks are sufficient to explain most of the busi-
ness cycle and long-run fluctuations in real activity. Once these two shocks have been
obtained, they perform a rotation to provide structural identification to the shocks:
a demand and a supply shock. The demand shock is obtained by maximizing the
covariance between inflation and GDP growth at business cycle frequencies, with the
supply shock then being “automatically” identified as the shock that minimizes such
covariance.

As in that paper, here the identification is implemented in a large-dimensional
SDFM. Therefore, in order to estimate the shock and move to the second stage, we
first set a value for the number r of the static factors, using the criterion by Bai and Ng
(2002) with the penalty modification proposed in Alessi et al. (2010), finding a number
of static factors r̂ = 11. The static factors Ft = (F1t . . . Frt)′ are estimated by the first
r̂ principal components of the variables in our dataset, and the factor loadings, λij ,
j = 1 . . . r, by the associated eigenvectors.6 The estimated common component vector
is given by χ̂t = Λ̂F̂t.

Step II. We use the estimates of the shock and its nonlinear functions, ûd
t and g(ûd

t ) =
|ûd

t |, as regressors in model (3.7), obtaining Ĉ(L), ̂̃γ(L) and ̂̃β(L). Finally, one can
estimate the IRFs of the linear and nonlinear terms as γ̂∗(L) = Λ̂̂̃γ(L) and γ̂∗(L) =
Λ̂̂̃γ(L), respectively. The total effects are obtained from equation (3.4).

Note also that, having a narrative measure of the shock of interest, one could adapt
the nonlinear external Proxy-SVAR approach presented in Debortoli et al. (2023), to a
large SDFM framework. In that paper, the authors show that if the VAR’s variables are
informationally sufficient for the shock of interest, the shock itself can be consistently

6Thus, the estimated loading matrix, Λ̂, is the n × r̂ matrix having on the columns the
normalized eigenvectors corresponding to the r̂-largest eigenvalues of the sample covariance
matrix of the data, Σ̂x.
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estimated as the fitted value of the regression of the instrument onto the residuals of
a standard linear VAR. Once an estimate of the shock is available, the VARX and
the implied nonlinear IRFs can be estimated. Again, the condition of informational
sufficiency is more easily satisfied in a large SDFM. This, however, is left for future
research.

3.3. Empirical Analysis

In this section we present our main empirical results about the nonlinear transmission
of demand shocks. In the empirical application, we use a dataset of 114 quarterly US
time series, covering the period 1961:Q1 to 2019:Q4. A description of the data with
the complete list of variables and transformations is provided in Appendix 3.A. Having
a large dataset at our disposal, another advantage of the SDFM is that we can study
the IRFs of all relevant macroeconomic variables within a unified framework.7 We set
g(ud

t ) = |ud
t | to accommodate sign asymmetries and use four lags.

3.3.1. Are nonlinearities important?

Figure A.1 displays the Impulse Response Functions for both the linear and nonlinear
models, obtained using the absolute value of the demand shock as the relevant nonlinear
function. The first column compares the linear responses to the demand shock ud

t ,
γ∗(L), from the nonlinear model with those obtained from a standard linear model,
while the second column reports the responses to the nonlinear term |ud

t |, β∗(L). The
black solid lines and gray areas are the point estimates and the 90% confidence bands
for the nonlinear model, respectively. The cyan dotted lines are the point estimates
for the linear model, which do not take into account any nonlinear terms.

First of all, the responses to the linear term in the nonlinear setting closely mirror
those obtained from the linear model itself. This confirms that the identification in
the nonlinear model is the same as in the linear one and that the estimated demand
shock is indeed a linear combination of the present and past variables, although the
true model is nonlinear. In other words, in the first step, the nonlinear term of the
model is not needed to estimate the demand shock.

The responses to the linear term (first column) are in line with previous findings
(see FGGSS). Although there appear to be some positive long-term effects, especially in

7The analysis focuses on a subset of 12 macroeconomic series of interest: (1) the log differ-
ence of the real per capita GDP; (2) the log difference of real per capita consumption, defined
as the sum of non-durable consumption and services; (3) the log difference of real per capita
investment, computed as the sum of fixed investment and durable consumption; (4) the un-
employment rate, (5) the log of real per capita hours worked; (6) the inflation rate, defined
as the log difference of the GDP deflator; (7) labour productivity; (8) the first difference of
employment-to-population ratio; (9) the long-term unemployment rate (for more than 27 weeks
of unemployment); (10) the cumulated sum of the utility-adjusted total factor productivity;
(11) the Federal Funds rate and the (12) the risk spread between Moody’s Baa Corporate Bond
Yeald and the 10-Year Treasury Constant Maturity Rate.
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the employment-to-population ratio, these are never statistically significant, or barely
so. The responses of output and investment are temporary and hump-shaped, peaking
one year after the shock. The effects are no longer statistically significant after about
two years. GDP has a positive impact effect of 0.5% and a peak of about 0.9%.
Unemployment rates behave countercyclically, reaching a minimum of about -0.2%.
The effect on long-term unemployment appears to be slightly more persistent. The
shock generates a positive comovements between the inflation rate and output growth.

Figure A.1: Linear and nonlinear impulse responses to a demand shock ud
t and

to its absolute value g(ud
t ) = |ud

t | using a nonlinear model. Solid lines represent
point estimates, the gray areas are the 90% confidence bands. The cyan dotted
lines are the impulse responses to a demand shock estimated in the linear model.

Let us now focus on the responses to the nonlinear function of the demand shock
(second column). Although the impact effects are almost zero, we can see that the
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absolute value has significant and lasting effects on all variables except labor produc-
tivity and, to a lesser extent, the inflation rate. This observation leads us to reject the
null hypothesis of linearity, suggesting that the effects of demand shocks in the data
are asymmetric, depending on their sign. We observe a persistent decline in output,
investment, and employment, along with an increase in the unemployment rates. The
negative effects are particularly strong on the employment-to-population ratio. This
result suggests that the nonlinear term slightly dampens the short run expansionary
effects of large demand shocks, while it amplifies the contractionary effects, in terms
of both magnitude and, more importantly, duration. As we will see better in the
next subsection, when the nonlinear part is taken into account, the effects of negative
demand shocks on these variables are more persistent than the conventional view sug-
gest. Conversely, in the case of prices, the nonlinear component modestly enhances the
inflationary effects of expansionary shocks while softening the deflationary impacts of
contractionary ones. Figure A.3 plots the demand shock (top panel) estimated in the
first step and its absolute value (bottom panel).

Overall, the results point towards significant nonlinear effects of demand shocks:
the sign of the shock - whether positive or negative - it is a crucial determinant of the
dynamics and duration of the effects.

3.3.2. Asymmetric transmission of demand shocks

Let us now turn our attention to the cumulative effects of demand shocks by summing
the linear and nonlinear terms, γ(L)ud

t and β(L)|ud
t |, respectively, the individual effects

of which have been previously discussed. Figure A.2 plots the IRFs of positive (second
column) and negative (first column) demand shocks. The black solid lines and gray
areas are the point estimates and the 90% confidence bands, respectively.

Our hypothesis is confirmed: negative demand shocks may indeed have more per-
sistent and difficult-to-reverse effects compared to positive ones. While it can be seen
that expansionary shocks are transitory, in line with conventional business cycle theory,
we find that contractionary shocks produce persistent effects. A negative shock leads to
a permanent decline in output and employment. GDP growth decreases immediately
by around -0.4% and converges to -1.2% in the long run. Employment-to-population
follows a similar patter, reaching a minimum of about 1.3% and converging to -0.8%
at horizon 40. A negative shock has effects on employment that are not only more
persistent but also larger than those of a positive shock. Hysteresis thus appears to be
transmitted largely through employment.
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Figure A.2: Nonlinear impulse responses to a negative (first column) and a
positive (second column) demand shock. Solid lines represent point estimates,
the dark gray areas are the 90% confidence bands.

A few interesting results stand out. Negative demand shocks have a more last-
ing impact on long-term unemployment than positive shocks do. Furthermore, it is
observed that after the economy experiencing a negative shock, although the overall
unemployment rate begins to recover after approximately two years, the response of
long-term unemployment remains pronounced for a significantly longer period, and is
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also marginally more severe. This aligns with Furlanetto et al. (2024)’s findings, where
hysteresis in employment manifests through an increase in long-term unemployment
and a decline in labor market participation (see also Blanchard, 2018).

We also found that investment declines permanently in response to contractionary
shocks, converging to -0.5% (the entire 90 percent confidence band is below the zero
line after the 25th quarter). The above result pairs well with the theoretical chan-
nel proposed by Benigno and Fornaro (2018). While Furlanetto et al. (2024) states
that labor productivity, measured as output per worker, is barely affected by demand
shocks, our results suggest that there may be a negative response of labor productivity
in the long run. A persistent decline in investment, especially if in R&D, can slow
labor productivity in the long run, potentially leading to a permanent impact on GDP
(Anzoategui et al., 2019). However, this long-run effect on productivity is not statisti-
cally significant (the entire 90 percent confidence band is below the zero line after the
4th quarter), so it is to be taken with caution.

Finally, contractionary shocks lead to a modest and very short lived effect on
inflation, while positive shocks lead to a much larger response. A possible explanation
is that prices tend to be “stickier” downwards in response to negative demand shocks
because of factors like “menu costs”, wage rigidity and the unwillingness of firms to
enter into price wars.

We can conclude that demand shocks can induce hysteresis effects, provided that
asymmetries in the transmission of shocks are taken into account. Figures A.4 and A.5
present the outcomes of our analysis for other significant macroeconomic and financial
indicators. It is evident that negative demand shocks exert permanent impacts on
consumption and a strongly persistent effect on per capita hours worked, whereas
long-term Total Factor Productivity (TFP) remains largely unaffected.

At this point, a natural question is how relevant demand shocks and their nonlin-
earities are in explaining long-term fluctuations in macoeconomic variables.

Table 3.1 reports, for each variable, the percentage of variance explained by both
the linear and nonlinear terms, at business cycle (upper panel) and long-run (lower
panel) frequencies. At long-run frequencies, the demand shock, including both the
linear and nonlinear terms, accounts for approximately 19%, 23%, and 21% of the
variance in GDP, investment, and the unemployment rate, respectively. More impor-
tantly, it accounts for approximately 26% of the long-run variance in the employment-
to-population ratio and a significant 36% in that of hours worked per capita and the
long-term unemployment rate. These numbers highlight a more significant role of the
demand shock for real activity and labor market long-run dynamics, than is typically
observed over the sample period from 1961:Q1 to 2019:Q4, in linear analyses.

However, these results are quantitatively far from those reported in Furlanetto
et al. (2024). The differences can be probably attributed to the different sample used
in the analysis. In their baseline exercise, the sample used is shorter than ours. With
a longer sample, their results are become more in line with ours. Finally, it should be
noted that the nonlinear term also explains a non-negligible fraction of the inflation
business cycle variance (about 11 percent).
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Variance Decomposition

Percentage of Explained Business-Cycle Variance

Linear Nonlinear Sum
GDP 58.1 7.9 65.9
Consumption 31.8 13.0 44.8
Investment 54.3 8.7 63.0
UNRATE 47.7 10.4 58.1
EMRATIO 50.8 7.7 58.5
Inflation 17.6 10.8 28.4
Labor 42.5 2.8 45.3
Federal Funds Rate 45.2 9.1 54.2
Hours Worked Per Capita 39.4 6.6 46.0
Baa-GS10 Spread 54.6 3.4 57.9
Long-term UNRATE 49.3 8.2 57.5
TFP 6.5 1.5 8.0

Percentage of Explained Long-Run Variance

Linear Nonlinear Sum
GDP 11.7 6.9 18.5
Consumption 6.3 9.5 15.8
Investment 14.4 8.7 23.1
UNRATE 14.3 7.0 21.3
EMRATIO 17.5 8.5 26.0
Inflation 6.6 1.9 8.5
Labor 12.1 2.7 14.9
Federal Funds Rate 30.0 1.0 31.0
Hours Worked Per Capita 30.3 5.2 35.5
Baa-GS10 Spread 19.5 5.3 24.8
Long-term UNRATE 31.0 5.5 36.4
TFP 4.5 5.3 9.8

Table 3.1: Percentage of variance explained by the demand shock in the non-
linear model, by frequency bands.

In conclusion, the variance decomposition confirms the critical role of the nonlinear
term and underscores the importance of nonlinearities in the transmission of demand
shocks.

3.4. Concluding remarks

We have shown that when sign dependence is taken into account, a nonlinear model
detects demand-driven hysteresis where a linear model fails to do so. This finding sug-
gests hysteresis is deeply connected to the asymmetric effects of positive and negative
demand shocks on the economy: the former leading to temporary fluctuations, while
the latter can cause lasting structural changes. In this way, we reconcile the conven-
tional wisdom with the perspective on hysteresis, revealing the long-run non-neutrality
of negative demand shocks. This nonlinearity is obtained through the application of
the econometric procedure developed by Forni et al. (2023). This procedure relies
on estimating a Moving Average (MA) representation that incorporates a nonlinear
function—the absolute value—of the demand shock. The demand shock is identified
following the FGGSS approach. A second significant contribution of our work is the
use of this nonlinear framework within a large-dimensional Dynamic Factor Model
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(SDFM). What about the transmission mechanism of hysteresis? Following a negative
demand shock, hysteresis appears to propagate in real activity through its effect on
employment. Among the various transmission channels of hysteresis, long-term un-
employment stands out as a prominent candidate. Contractionary shocks lead to job
losses that are not recovered even when economic conditions improve. Once workers
lose their jobs during recessions, it becomes more difficult for them to re-enter the job
market. This may be due to skill erosion, the stigmatization of long-term unemploy-
ment, or structural changes in the labor market that make some jobs obsolete. All
of these generate potential scarring effects, making a cyclical shock persistent or even
permanent. Therefore, despite employing different assumptions and methodologies,
our model yields results qualitatively consistent with those in Furlanetto et al. (2024).
According to that paper, hysteresis primarily propagates through employment, while
labor productivity is minimally affected. Although, our results reveal a negative and
apparently persistent response of labor productivity to negative demand shocks, this
is hardly statistically different from zero in the long run.

To conclude, negative demand shocks may indeed have more persistent and difficult-
to-reverse effects compared to positive ones. The findings highlight the critical need for
macroeconomic policies to account for the directionality and lasting impact of demand
shocks to mitigate long-term economic downturns.
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Figures

Figure A.3: Demand shock and its absolute value obtained from the first
step.
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Figure A.4: Linear and nonlinear impulse responses to a demand shock ud
t

and to its absolute value g(ud
t ) = |ud

t |. Solid lines represent point estimates,
the gray areas are the 90% confidence bands. The cyan dotted lines are the
impulse responses to a demand shock estimated in the linear model.
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Figure A.5: Nonlinear impulse responses to a negative (first column) and a
positive (second column) demand shock. Solid lines represent point estimates,
the dark gray areas are the 90% confidence bands.
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Appendix

3.A. Data Description and Data Treatment

The N × T dataset is made up of 114 US quarterly series, covering the period 1961-
I to 2019-IV. Most series are from the FRED-QD database.8 TFP data series are
from John Fernald’s website (Fernald, 2012) while the Confidence data are available
on the Michigan survey of consumer website.9 Following standard practice, consump-
tion includes non-durables and services, while investment has been broadly defined
to include consumer durables. Both measures are deflated. Monthly data, like the
macroeconomic uncertainty measure estimated by Jurado et al. (2015), have been
aggregated to get quarterly figures. Finally, it is worth noting that most series are
expressed in per capita terms, dividing by population aged 16 years or more (civilian
non-institutional population series) and stock market data have been deflated by the
GDP deflator. We transform each series to reach stationarity. The complete list of
variables and transformations is given in the table below.

For the description of each variable see McCracken and Ng (2020). For variables not
in the FRED-QD dataset, refer to the Mnemonic and note. Treatment codes: 1 =
no treatment; 2 = first difference, ∆xt; 4 = log(xt); 5 = log of the first difference,
∆ log(xt).

ID FRED-QD Mnemonic Treatment NoteID code

1 1 GDPC1/CNP16OV 5
2 2 PCECC96/CNP16OV 5
3 3 PCDGx/CNP16OV 5
4 4 PCESVx/CNP16OV 5
5 5 PCNDx/CNP16OV 5
6 6 GPDIC1/CNP16OV 5
7 7 FPIx/CNP16OV 5
8 8 Y033RC1Q027SBEAx/CNP16OV 5
9 9 PNFIx/CNP16OV 5

10 10 PRFIx/CNP16OV 5
11 11 A014RE1Q156NBEA 1
12 12 GCEC1/CNP16OV 5
13 13 A823RL1Q225SBEA 1
14 14 FGRECPTx/CNP16OV 5
15 15 SLCEx/CNP16OV 5
16 16 EXPGSC1/CNP16OV 5
17 17 IMPGSC1/CNP16OV 5
18 18 DPIC96/CNP16OV 5
19 19 OUTNFB/CNP16OV 5
20 20 OUTBS/CNP16OV 5
21 (PCESVx+PCNDx)/CNP16OV 5
22 (PCDGx+FPIx)/CNP16OV 5
23 22 INDPRO/CNP16OV 5
24 23 IPFINAL/CNP16OV 5
25 24 IPCONGD/CNP16OV 5
26 25 IPMAT/CNP16OV 5
27 28 IPDCONGD/CNP16OV 5
28 30 IPNCONGD/CNP16OV 5
29 31 IPBUSEQ/CNP16OV 5
30 35 PAYEMS/CNP16OV 2
31 36 USPRIV/CNP16OV 2
32 38 SRVPRD/CNP16OV 2

Continued on next page

8The FRED-QD is a large (248 series) quarterly macroeconomic database developed by
McCracken and Ng (2020).

9http://www.sca.isr.umich.edu/

http://www.sca.isr.umich.edu/
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Continued from previous page

ID FRED-QD Mnemonic Treatment NoteID code

33 39 USGOOD/CNP16OV 2
34 51 USGOVT/CNP16OV 2
35 57 CE16OV/CNP16OV (EMRATIO) 2
36 58 CIVPART 2
37 59 UNRATE 1
38 60 UNRATESTx 1
39 61 UNRATELTx 1
40 62 LNS14000012 1
41 63 LNS14000025 1
42 64 LNS14000026 1
43 74 HOABS/CNP16OV 4
44 76 HOANBS/CNP16OV 4
45 77 AWHMAN 1
46 79 AWOTMAN 1
47 81 HOUST/CNP160V 5
48 95 PCECTPI 5
49 96 PCEPILFE 5
50 GDPDEF 5 GDP: Implicit Price Deflator
51 97 GDPCTPI 5
52 98 GPDICTPI 5
53 120 CPIAUCSL 5
54 121 CPILFESL 5
55 122 WPSFD49207 5
56 123 PPIACO 5
57 124 WPSFD49502 5
58 126 PPIIDC 5
59 129 WPU0561 5
60 130 OILPRICEx 5
61 135 COMPRNFB 5
62 138 OPHNFB 5
63 139 OPHPBS 5
64 140 ULCBS 5
65 142 ULCNFB 5
66 143 UNLPNBS 5
67 dtfp 1 Fernald’s TFP growth
68 dtfp util 1 Fernald’s TFP growth CU adjusted
69 dtfp I 1 Fernald’s TFP growth - Inv
70 dtfp C 1 Fernald’s TFP growth - Con
71 dtfp I util 1 Fernald’s TFP growth CU - Inv
72 dtfp C util 1 Fernald’s TFP growth CU - Con
73 144 FEDFUNDS 1
74 145 TB3MS 1
75 146 TB6MS 1
76 147 GS1 1
77 148 GS10 1
78 150 AAA 1
79 151 BAA 1
80 152 BAA10YM 1
81 156 GS10TB3Mx 1
82 BAA-AAA 1
83 GS10-FEDFUNDS 1
84 GS1-FEDFUNDS 1
85 BAA-FEDFUNDS 1
86 158 BOGMBASEREALx/CNP16OV 5
87 160 M1REAL/CNP16OV 5
88 161 M2REAL/CNP16OV 5
89 163 BUSLOANSx/CNP16OV 5
90 164 CONSUMERx/CNP16OV 5
91 166 REALLNx/CNP16OV 5
92 168 TOTALSLx/CNP16OV 5
93 188 UMCSENTx 1
94 Business Condition 12 Months 1 Michigan Consumer Survey
95 Business Condition 5 Years 1 Michigan Consumer Survey
96 Current Index 1 Michigan Consumer Survey
97 Expected Index 1 Michigan Consumer Survey
98 News Index: Relative 1 Michigan Consumer Survey
99 197 UEMPMEAN 1

100 201 GS5 1
101 210 CUSR0000SAC 5
102 211 CUSR0000SAD 5
103 212 CUSR0000SAS 5
104 213 CPIULFSL 5
105 245 S&P 500 5
106 246 S&P: indust 5
107 S&P 500/GDPDEF 5
108 S&P: indust/GDPDEF 5
109 JLN Macro Unc 1-month 1 Jurado, Ludvigson and Ng Uncertainty
110 JLN Macro Unc 3-month 1 Jurado, Ludvigson and Ng Uncertainty
111 JLN Macro Unc 12-month 1 Jurado, Ludvigson and Ng Uncertainty

Continued on next page
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ID FRED-QD Mnemonic Treatment NoteID code

112 DPCCRC1Q027SBEAx/CNP16OV 5 Real PCE Excluding food and energy
113 DFXARC1M027SBEAx/CNP16OV 5 Real PCE: Food
114 DNRGRC1Q027SBEAx/CNP16OV 5 Real PCE: Energy goods and services
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