
REVIEW
published: 29 January 2020

doi: 10.3389/fneur.2019.01357

Frontiers in Neurology | www.frontiersin.org 1 January 2020 | Volume 10 | Article 1357

Edited by:

Elham Rostami,

Academic Hospital, Sweden

Reviewed by:

Maurizio Iacoangeli,

Marche Polytechnic University, Italy

Domenico D’Avella,

University of Padova, Italy

*Correspondence:

Corrado Iaccarino

iaccarino.corrado@gmail.com

Specialty section:

This article was submitted to

Neurotrauma,

a section of the journal

Frontiers in Neurology

Received: 04 July 2019

Accepted: 09 December 2019

Published: 29 January 2020

Citation:

Iaccarino C, Kolias AG, Roumy L-G,

Fountas K and Adeleye AO (2020)

Cranioplasty Following

Decompressive Craniectomy.

Front. Neurol. 10:1357.

doi: 10.3389/fneur.2019.01357

Cranioplasty Following
Decompressive Craniectomy
Corrado Iaccarino 1,2*, Angelos G. Kolias 3,4, Louis-Georges Roumy 5, Kostas Fountas 6 and

Amos Olufemi Adeleye 4,7

1Neurosurgery Unit, University Hospital of Parma, Parma, Italy, 2 Emergency Neurosurgery Unit, Azienda USL-IRCCS di

Reggio Emilia, Reggio Emilia, Italy, 3Division of Neurosurgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge,

United Kingdom, 4NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge,

United Kingdom, 5Department of Neurosurgery, Humanitas University and Research Hospital, Milan, Italy, 6Department of

Neurosurgery, University Hospital of Larissa, University of Thessaly, Larissa, Greece, 7Division of Neurological Surgery,

Department of Surgery, College of Medicine, University College Hospital, University of Ibadan, Ibadan, Nigeria

Cranioplasty (CP) after decompressive craniectomy (DC) for trauma is a neurosurgical

procedure that aims to restore esthesis, improve cerebrospinal fluid (CSF)

dynamics, and provide cerebral protection. In turn, this can facilitate neurological

rehabilitation and potentially enhance neurological recovery. However, CP can be

associated with significant morbidity. Multiple aspects of CP must be considered

to optimize its outcomes. Those aspects range from the intricacies of the surgical

dissection/reconstruction during the procedure of CP, the types of materials used for

the reconstruction, as well as the timing of the CP in relation to the DC. This article

is a narrative mini-review that discusses the current evidence base and suggests

that no consensus has been reached about several issues, such as an agreement

on the best material for use in CP, the appropriate timing of CP after DC, and the

optimal management of hydrocephalus in patients who need cranial reconstruction.

Moreover, the protocol-driven standards of care for traumatic brain injury (TBI) patients

in high-resource settings are virtually out of reach for low-income countries, including

those pertaining to CP. Thus, there is a need to design appropriate prospective studies

to provide context-specific solid recommendations regarding this topic.

Keywords: cranioplasty, decompressive craniectomy, traumatic brain injury, cranial reconstruction, bone flap,

posttraumatic hydrocephalus

INTRODUCTION

The operative surgery of therapeutic decompressive craniectomy (DC) for traumatic brain injury
(TBI) involves the elevation of a free cranial convexital bone flap that is stored either in vivo
(e.g., abdominal or thigh subcutaneous pouches) or in ex vivo mediums (deep freezing and tissue
banking) (1, 2). Skull defects can result from direct trauma or postsurgical craniectomy. Varying
shapes, sizes, and complexities of the defect can be observed.

Cranioplasty (CP) after DC aims to restore esthesis (3), improve cerebrospinal fluid (CSF)
dynamics, and provide cerebral protection. In turn, this can facilitate neurological rehabilitation
and potentially enhance neurological recovery (3). Although regarded as a routine neurosurgical
procedure, CP can be associated with significant morbidity (4, 5).

This paper is a narrative mini-review rather than a systematic review. Therefore, a full search
strategy is not provided; rather, we mainly focused on articles in the English language published in
PubMed during the last 15 years.

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.01357
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.01357&domain=pdf&date_stamp=2020-01-29
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:iaccarino.corrado@gmail.com
https://doi.org/10.3389/fneur.2019.01357
https://www.frontiersin.org/articles/10.3389/fneur.2019.01357/full
http://loop.frontiersin.org/people/510635/overview
http://loop.frontiersin.org/people/502554/overview
http://loop.frontiersin.org/people/841939/overview
http://loop.frontiersin.org/people/691684/overview
http://loop.frontiersin.org/people/46796/overview


Iaccarino et al. Cranioplasty Following Decompressive Craniectomy

SURGICAL TECHNIQUES

Although surgically straightforward, CP can lead to
intraoperative complications at every operative step (elevation of
the scalp flap, dissection of soft tissue from the underlying dura,
and filling of the defect with a congruent rigid structure) (6, 7).

Required for flap elevation, the vascular territory of the
flap must be kept in mind while performing the incision.
Following an inner ellipse of the previous DC-surgery scar
could contribute in most cases to the preservation of the
vascular perfusion even if an incision outside of the ellipse
might be needed in certain settings such as sinking skin flap
syndrome (SSFS).

In patients where the skin may not be enough to cover the CP,
due to an SSFS or skin lesions or scars, a single- or staged skin
expansion procedure should be indicated.

However, most commonly, the operative dissections for CP
after DC is performed by just opening the skin incision for the
previous DC to develop the scalp flap for the CP.

The primary cranial damage control surgery is executed
mainly by means of a unilateral frontotemporoparietal DC. This
calls for a thoughtful consideration of the temporalis muscle (8),
which is often found shrunken or inferiorly retracted toward
its origins and adherent to the overlying scalp flaps and/or the
underlying dura. This entails a delicate separation that can result
in significant bleeding with a resulting increase in operative
time. Other complications are intraoperative dural tears, cortical
vascular, and parenchymal injuries, postoperative CSF wound
leakage, as well as surgical site infections (SSI).

A number of techniques during the DC can potentially
reduce the risks associated with the step of dissection. Some
are preemptive techniques, such as the interposition of non-
absorbable materials between the dura and the scalp flap
during the primary DC and tagging the temporalis muscle
with brightly colored, non-absorbable sutures for improved
identification (9, 10).

COMPLICATIONS

Routine CP is known to have a higher rate of postoperative
complications than other elective cranial procedures (11), which
may appear at any point during the clinical course due to various
factors both directly and indirectly related to the CP itself.

Walcott et al. reported that previous reoperation, comorbid
disease type, presence of a ventriculoperitoneal (VP) shunt,
and general cardiovascular risk factors are predictors of
complications of CP post-DC after stroke and trauma (12).
Additionally, skin flap complications such as dehiscence, ulcers,
and necrosis are reported (13) and may be related to the
exposure of subjacent tissues, always occur after CP in unilateral
craniectomy, and preferentially affect the temporoparietal region.
However, no correlation has been found between the biomaterials
used and skin complications. Dehiscences occur essentially due
to poor preoperative conditions, such as in chronically sunken
flaps. Ulcers were always associated with an underlying infection
and were rarely observed in craniectomized patients before
undergoing CP. Necrosis was ascribed to inadvertent sacrifice

of the residual arterial supply after flap reopening or to a
venous congestion.

Infection
De Bonis et al. showed a 2.5-fold increased infection risk with
a bifrontal CP compared with hemispheric/bihemispheric CP
(14), regardless of the bone flap substitution material used. This
is due to a longer incision and operative time, less temporalis
muscle soft tissue coverage, and possible breaching of frontal
sinuses during DC. Polymethylmethacrylate (PMMA) as the CP
biomaterial shows significant infection rates when in contact
with the nasal sinus mucosa or contaminated material (15).
Hydroxyapatite (HA) implants (16) showed the highest incidence
of infection (3.8%) in bifrontal defects. Also, a study of patients
with titanium CP concluded that bifrontal insertion was one of
the most relevant risk factors, with a complication rate of 40%
including infections (17).

Following CP infection, the decision to remove a biomaterial
is a complex issue and should be addressed in concert with plastic
surgeons, especially when poor preoperative conditions of skin
flap are observed. Even patients in good clinical conditions are
at risk of sudden and/or further deterioration. Although, CP
infection is rarely associated with sepsis, it is usually addressed
by bone or implant removal until complete healing of the surgical
field is achieved.

One possible way to address these issues of infection following
CP is the development of new prosthetic biomaterials capable of
resisting microbial colonization.

Hydrocephalus (HC)
After DC, the occurrence of ventriculomegaly (VM) or HC
is reported with varying incidences (10–45%) mainly due to
differences in diagnostic criteria (18–21). Themanagement of HC
in patients in need of cranial reconstruction can be challenging
and thus is not precisely defined. The debate mainly revolves
around the timing of CSF diversion with respect to the CP.

Nasi et al. (22) reported 28.4% occurrence of HC in a series
of 130 DC at 6.43 postoperative months. In 91.9% of patients, a
ventriculoperitoneal shunt (VPS) was required, 76.4% of which
was implanted after CP, 14.7% synchronous with, and only in
8.8% before the cranial reconstruction.

The disappearance of VM after CP is well-documented
(23–25), and the postoperative management strategy of an
unnecessary VPS placement (26–28) is yet unclear. In patients
with a bulging scalp flap and VM, external CSF drainage achieved
via ventriculostomy or lumbar drainage could allow an accurate
repositioning of CP without brain damage.

The use of programmable shunts for patients dependent on
CSF shunt has been effectively proven in various case series (29–
31). Nevertheless, in socioeconomic environments with limited
resources, a fixed pressure valve remains often the only option.

MATERIAL TYPES

Autologous Bone
With few exceptions, autologous bone remains the most
commonly used material to fill cranial defects following DC
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(7, 32–34). It is biocompatible and quite cost-free. Whenever
available, autologous bone thus remains the favored option for
filling small- to medium-size defects, as well as even the large
cranial defects following DC. It is however more likely to be
associated with bone flap resorption (BFR) in the latter. The BFR
is a non-linear process, which can result in structural breakdown
of the CP requiring reoperation and even bone flap replacement
with heterologous materials.

Korhonen et al. reported BFR as a complication occurring at
various degrees in up to 90% of patients undergoing autologous
CP after DC, in particular in patients younger than 30 years. In
any case, it has been observed that postoperative monitoring for
BFR required regular clinical follow-up, assessing for mechanical
stability rather than routine CT.

Independent risk factors for reoperation were shown to be
younger age, shunt dependency, and bone flap fragmentation due
to a fracture. Hence, an initial artificial bone substitute implant
rather than an autograft could be recommended in all patients
with a fragmented flap (35).

Compared with synthetic biomaterials, the use of autologous
bone for CP is associated with significantly increased odds of
reoperation (36). However, autologous bone does not seem to
increase infection rates compared with synthetic material. BFR
is the main cause for reoperation overall (35).

Some authors raised the possibility that higher rates of
complication in autologous bone graft would be partly explained
by bone flap conservation methods. However, a systematic
review performed by Corliss et al. found no such statistical
evidence (37).

PMMA
PMMA is a very common material for CP, and it can be found
used as PMMA liquid or as solid PMMA customized implants.
Intraoperatively, liquid PMMA takes from 10 to 20min to be
turned into a moldable viscous paste, which is then applied to the
cranial defect (38). This process is an exothermic reaction from
which the brain and the meninges need to be shielded. Liquid
PMMA is non-absorbable, radiolucent, and inert. Additionally,
it can be soaked with antibiotics, making it a good option for
patients having failed multiple previous attempts at CP (38)
because of SSI. It is both an effective and affordable choice for
CP. The abovementioned exothermic reaction, intraoperative
preparation, the relative contraindication in pregnancy, toxicity
of fumes, as well as the need for artistic skills from the operators
are all disadvantages.

On the other hand, solid custom-made PMMA, despite its
cost, has a long-standing record, does not require to be prepared
intraoperatively, does not cause any exothermic reactions, is easy
to contour, is delivered sterile, as well as has a textured surface.
To reduce the costs, the use of three-dimensional (3-D) patient-
specific customized silicon molds is reported to be filled with less
expensive liquid PMMA (39–41).

Polyetheretherketone (PEEK)
PEEK has the advantage of being inert, pliable, and mechanically
sound. It requires in-house sterilization and may increase
seroma formation.

Punchak et al. (42) showed a trend toward decreased
postoperative complication rates of PEEK CPs compared to
autologous grafts and showed a stronger trend toward lower
failure rates of PEEK grafts compared to titanium grafts. The
overall complication rate was shown to be lower with PEEK than
with titanium group (43).

Titanium
Titanium can be manufactured as a plate, mesh, or 3-D porous
implant and is available with varying stiffness and degrees of
openness. Titanium is robust to resist secondary trauma while
providing maximal stability of the cranial vault (44).

Titanium CP after DC is associated with better cosmetic
and functional outcomes than primary autologous CP without
increasing overall healthcare costs (20). Free flap coverage and
soft tissue atrophy result in greater risk of titanium mesh
exposure (45). The titanium mesh should be well-anchored onto
the basi-temporal skull to avoid spontaneous fracture (46).

Most recently, 3-D porous titanium was implemented as a
viable alternative. Despite its high cost and limited literature
available, 3-D porous titanium shows promising results after a
1-year follow-up (47).

Porous Hydroxyapatite (HA)
Porous HA shows biocompatibility due to its biomimetism
and the absence of host immune interactions (48–50) or
systemic/local toxicity (51). Composite biomaterials such
as scaffolds surface-enriched HA nanoparticle using a
poly(trimethylene carbonate) (PTMC) scaffold are shown
to have a positive impact on bone generation and repair (45).
Bony regeneration rates were reported in two patients having
undergone CP at 6 months and 2.5 years, respectively (52). It
is an appropriate material for use in large and complex cranial
defect reconstruction (53).

A posttraumatic fracture rate of HA prosthesis is reported
but, at the same time, HA has the ability to undergo self-repair
(16, 53).

A study has tried to address the retention management of
infection associated with hydroxyapatite CP (52). The suggestion
is that a lower biofilm formation, lower rate of colonization
compared to titanium (53), targeted antimicrobial therapy, and
a satisfactory area of revascularization allow optimal antibiotic
delivery on-site and were all decisive in the possibility of avoiding
prosthesis removal.

3-D Prosthesis
Shape is another important factor for a successful CP as an
increased congruence between the patient and the implant
will lead to a better outcome overall as well as improved
aesthetic benefit.

In neurosurgery, 3-D printing can be used to create prosthesis
and molds used to reconstruct cranial defects using CT data to
obtain the dimension and shape of the repair (54, 55). The cost of
equipment, lack of knowledge and training, and introduction of
commercial, FDA-approved media for printing are thought to be
obstacles to a widespread adoption of neurosurgical 3-D printing
usage (55).
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FIGURE 1 | A young man suffered severe traumatic brain injury (TBI), GCS7/15, from road trauma. (A) Cranial CT showed right-sided brain contusions, acute

subdural hematoma, subarachnoid hemorrhage, intracerebral hematoma, and bilateral brain swelling that was worse to the right—CT Rotterdam of 6.

(B) Intraoperative image of the hinge craniotomy, cruciate durotomy, and evacuation of the extra-axial bleed (to the left); the bone flap returned, floating in situ (middle);

and skin closure (to the right). (C) Plain skull X-ray on the first postoperative day showing the elevated/floating bone flap (to the left), bone also revealed comminuted

skull fracture; Plain skull X-ray (middle) and clinical picture of the patient (right) 5 weeks postop showing the bone flap spontaneously returned to the rest of the

cranium following resolution of the traumatic brain swelling.

CP FOLLOWING DC IN SETTINGS WITH
LIMITED RESOURCES

Until recently, the low-cost nature of the practice of neurosurgery
in resource-limited regions meant that the costly protocol-
driven standards of care for TBI in high-resource settings
were virtually out of reach for most lower- to middle-income
countries (LMICs).

However, it is now being increasingly recognized that when
both clinical and radiological signs of a patient are in keeping
with raised intracranial pressure (ICP) in TBI, the surgical
procedure of DC should no longer be considered a last-tier
treatment option. It can, and perhaps should, be performed
sooner than later and most pragmatically so in these same
low-resource LMICs where the other high-cost means of the
non-surgical management of posttraumatic raised ICP are not
available (56–59). There is therefore an increasing body of work
on the use of DC in damage control surgery TBI from the
developing countries.

Additionally, the surgical technique of in situ hinge DC (60–
63) instead of the traditional DC has greatly influenced the
literature of DC from the LMICs. Hinge DCs, also known as
hinge craniotomies, by their nature do not as a rule require
salvage CP. This would naturally be expected to be an attractive
option as the surgical decompression of choice for raised ICP
in the LMICs. There is thus a growing literature on the use of
the hinge DC, including modifications of the originally described
techniques (64–66) from these regions (Figure 1).

CP following DC as yet does not appear to be a major need
in the LMICs. But whenever there is need to resort to the
traditional DC (e.g., a forbidding massive brain swelling), then
the autologous bone flap remains the overwhelming choice, and
due to costs, PMMA is the second alternative.

TIMING OF CP

The appropriate timing of CP after DC in relation to
complication rate and outcome has yet to be established. The
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TABLE 1 | Studies evaluating timing of cranioplasty after craniectomy.

References Study design No. of

Pts

Age (mean) Definition

of early

cranioplasty

Complication

rate (%)

Notes

Chun and Yi (67) Restrospective cohort 45 49 <1 month 46.7 Early cranioplasty with significantly lower rate of

complications (6.67% early, 53.3% late).

Chang et al. (68) Restrospective cohort 212 44 <3 months 12.7 Early cranioplasty with significantly lower rate of

complications (OR= 0.28, 95% CI 0.11–0.68).

Matsuno et al. (69) Case-control 206 Range

−6months−79

NR 12.1 The mean time intervals after removal of bone flap of

the infected group were longer than that of the

non-infected group.

Waziri et al. (70) Case-control 17 48 NR 47 Trend toward higher rates of post-cranioplasty

hydrocephalus and longer time to cranioplasty.

Archavlis et al. (71) Restrospective cohort 200 53 <7 weeks 9.5 Early cranioplasty may have better outcome (when

no edema nor infection) but appear to increase risk

of deep wound infections and osteomyelitis.

Schoekler et al. (72) Restrospective cohort 58 46 NR 26.4 Tendency of resorption if cranioplasty performed

more than 2 months after. No differences in the

outcome.

Tasiou et al. (73) Pubmed research NR Early cranioplasty may improve the outcome in

selected cases.

Qasmi et al. (74) Prospective cohort 30 32 <12 weeks 30 Early autologous cranioplasty offer acceptable

neurological outcome.

Morton et al. (34) Restrospective cohort 754 44 <1 month 24.6 Cranioplasty 15–30 days reduce infection, seizure,

resorption, <90 days reduces hydrocephalus.

Beauchamp et al. (75) Case-control 69 30 NR 39.1 No statistical significant difference in time to

cranioplasty between those with and those without

complications.

De Bonis et al. (14) Restrospective cohort 185 All adults <3 months 19.7 No significant difference in complication rates for

early or late cranioplasty.

Gooch et al. (76) Restrospective cohort 62 32 <1 month 33.8 OR for complications requiring reoperation was

highest for patients undergoing cranioplasty

100–136 days after craniectomy.

Song et al. (77) Restrospective cohort 43 NR <12 weeks NR No effect on complication rate and global outcome

by GOS.

Huang et al. (78) Restrospective cohort 105 41.9 NR 9.5 Timing of cranioplasty is not related to outcome.

Piedra et al. (79) Restrospective cohort

(Vascular)

74 47 <10 weeks 18.9 Complication are similar for early and delayed

cranioplasty.

Piedra et al. (80) Restrospective cohort

(Traumatic)

157 29.5 <12 weeks 35 Early cranioplasty does not alter the incidence of

Complication.

Mukherjee et al. (17) Retrospective cohort 144 41 <16 weeks 26.4 No difference in pre- and post-op GOS between

time intervals.

Sundseth et al. (81) Retrospective cohort

(non-traumatic)

47 47.8 NR 26.4 Timing of cranioplasty is not related to the risk of

infection

Kim et al. (82) Retrospective cohort 85 50.3 <1 month 7.05 No statistical difference in infection rate between the

2 groups

Coulter et al. (83) Restrospective cohort 166 39 NR 40.4 Timing of cranioplasty did not appear to be

predictive of outcome.

Tsang et al. (28) Restrospective cohort NR 46.3 <3 months 16.7 Timing of cranioplasty had no significant association

with complications.

Krause-Titz et al. (84) Restrospective cohort 248 NR 18.5 Timing of cranioplasty had no significant influence

on complications.

Schuss et al. (85) Restrospective cohort 280 46 <2 months 16.4 Early cranioplasty with significantly higher rates of

complications (25.9% early vs. 14.2% late).

Thavarajah et al. (86) Restrospective cohort 82 NR NR 11 Cranioplasty between 0 and 6 months had the

greatest rate of infection.

Early cranioplasty is not uniform among the various studies. Adapted from Piedra et al. (79).

concept itself of early CP remains ill-defined and refers to time
intervals varying from as little as 4 weeks up to as long as 12
weeks (Table 1).

Timing varies according to three pre-CP scenarios
encountered, setting the earliest time at which a CP can
be performed.
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FIGURE 2 | Timing of Cranioplasty. In this graph are compared different clinical courses after cranioplasty analyzed from different papers, where the timing of onset of

complication is well-reported. In this partial analysis of literature data, a higher rate of complication is suggested when cranioplasty has been performed between the

third and fifth month.

Type 1: The brain is depressed with a significant sinking
of the post-DC flap due to a posttraumatic brain atrophy or
overdrainage of a ventriculoperitoneal shunt (VPS). Thus, a
pre-CP long-lasting CSF diversion should be avoided.

Type 2: The post-craniectomy scalp flap is at the same level
as the margins of the cranial vault. The brain should be in the
most physiological condition thus at a low risk of observing the
development of HC and/or postoperative blood collections.

Type 3: The post-craniectomy scalp flap is over the cranial
vault margin due to brain swelling and/or HC/VM. This could
well be the worst scenario due to the difficulty of diagnosis and
treatment.

Infection was reported to be the highest risk within 14 days
of craniectomy, HC within 90 days, and seizure risk after 90
days. Hence, some advocate for an ultra-early CP taking place
between 15 and 30 days that would minimize infection, seizure,
and autologous flap resorption risks.

In a retrospective cohort study (71), the functional outcome
was found to be better for CP performed at the <7 weeks
and at 7–12 weeks group compared with the >12 weeks
group. Nevertheless, the authors stressed an earlier time to
CP should be set as soon as brain edema had normalized
so as to have higher chances of a better neurologic outcome
and not apparently increased infection rate. At the same
time, CP performed at <7 weeks was associated with a
significant increase in infection rates when comorbidities,
such as diabetes, thromboembolism, and colonization with
multidrug resistant (MDR) pathogens, were present (87).

Thus, both clinical status and infective status are strong
determinants of the outcome of an early CP (<7 weeks) and
are of paramount importance in establishing the timing of an
early CP.

Conclusions regarding early CP vary widely among different
studies (75, 76, 88). Some authors attribute a lower rate of
complications to an early CP (67–69, 71, 73, 74), others describe
a lower risk of hydrocephalus (34, 70), while no improvement in
outcome following early CP was also found (72, 78). Moreover,
no impact of timing on outcome (17, 83) or complications
(3, 14, 28, 77, 79–82, 84) have been reported. Only two authors
(85, 86) associated an early CP with poor outcome, in particular,
the highest rate of infection between 0 and 6 months (86). An
analysis of literature data suggests a higher rate of complication
when CP has been performed between the third and fifth month
(Figure 2).

Last reported systematic review and meta-analysis (3)
suggested that early CP may lead to even greater improvements.
Nevertheless, despite a growing consensus that earlier is better,
no more than low-level evidence from retrospective, poorly
matched cohort studies (Class IIb, Level C) has been published
on this subject.

CONCLUSION

Despite its therapeutic and cosmetic advantages, CP following
DC is not reported to correlate strongly with improved
neurologic rehabilitation and outcome.
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Different surgical approaches can be used to reduce the
surgical complications that may arise at any point of the clinical
course among which bifrontal CP is a strong independent
risk factor.

Autologous bone is the most commonly used material despite
its association with BFR and higher rate of implant failure
requiring removal.

A consensus has yet to be reached with regard to the best
heterologous material for CP. Porous prostheses may offer
promising results despite higher costs.

Standards of care for DC are not applicable in LMICs due to
high costs, and thus autologous bone grafts are favored.

Regarding HC, the optimal timing for shunting is yet to be
firmly defined. A one-step surgery with CP and CSF shunting
and a two-step surgery with or without external CSF drainage are
reported as alternatives of management. Finally, CSF shunting
without a timely CP should be avoided.

While waiting for results of an ongoing randomized controlled
trial (RCT) on early vs. late CP promoted by NIHRGlobal Health
Research Group on Neurotrauma, the timing of reconstructive
CP should rather be based on an objective case-by-case
assessment of the neurological status of each patient, resolution

of brain swelling, and complications associated with large
calvarial defects rather than arbitrary time windows (73) and
should be performed as soon as brain swelling resolves on CT
scan, provided that the patient is not in an infectious state (89).

The authors are aware that the results of future studies
may dictate updating many of the recommendations on several
aspects of CP after DC contained in this review.
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