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On the validity of variational inequalities for
obstacle problems with non-standard growth

Michela Eleuteri and Antonia Passarelli di Napoli

Abstract. The aim of the paper is to show that the solutions to variational problems with

non-standard growth conditions satisfy a corresponding variational inequality expressed in terms

of a duality formula between the constrained minimizers and the corresponding dual maximizers,

without any smallness assumptions on the gap between growth and coercitivity exponents. Our

results rely on techniques based on Convex Analysis that consist in establishing pointwise relations

that are preserved passing to the limit. We point out that we are able to deal with very general

obstacle quasi-continuous up to a subset of zero capacity.

Epästandardin kasvun esteongelmia koskevien

variaatioepäyhtälöiden voimassaolosta

Tiivistelmä. Tutkimuksen tavoitteena on osoittaa, että epästandardeja kasvuehtoja sisältävien

variaatio-ongelmien ratkaisut toteuttavat vastaavan variaatioepäyhtälön, joka muotoillaan duaali-

suuskaavana rajoitetusehdon toteuttavien minimoijien ja vastaavien duaalimaksimoijien välillä. Tä-

mä pätee ilman mitään kasvu- ja koersiivisuuseksponenttien välimatkaa koskevia pienuusoletuksia.

Tuloksemme nojaavat konveksiin analyysiin perustuviin tekniikoihin, joissa kyse on rajankäynnissä

säilyvien pisteittäisten suhteiden osoittamisesta. On huomionarvoista, että pystymme käsittelemään

hyvin yleisiä esteitä, jotka ovat nollakapasiteettista osajoukkoa vaille kvasijatkuvia.

1. Introduction

More than 30 years ago, the celebrated papers by Marcellini [17, 18] opened the
way to the study of the regularity properties of minimizers of integral functionals with
non-standard growth conditions. Since then, many contributions appeared in several
directions and many problems have been solved; however not all the questions have
been addressed in an exhaustive way, in particular for what concerns the obstacle
problems.

One of these problems deals with the relation between minima and extremals, as
long as it is well known that, for both the constrained and unconstrained setting, the
regularity of the solutions often comes from the fact that are also extremals, i.e. they
solve a corresponding variational inequality or equality. While in the case of standard
growth conditions the situation is well established (see for instance [8]), in the case of
non-standard growth conditions, already for unconstrained minimizers the relation
between extremals and minima is an issue that requires a careful investigation.

Some years ago Carozza, Kristensen and Passarelli di Napoli investigated such
a topic in the case of minimizers of convex integral functionals, with the aim of
showing that these minimizers are characterized to be the energy solutions to the
Euler–Lagrange system for the functionals under non-standard growth conditions
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[2]. The main tool there has been a suitable regularization procedure: the integrand
F has been approximated by a sequence of strictly convex and uniformly elliptic
integrands Fk, satisfying standard p-growth conditions, whose minimizers uk strongly
converge to the minimizer u in W 1,p; then, to every such minimizer uk, according to
the standard duality theory for convex problems, it has been associated a row-wise
solenoidal matrix field denoted by σk. Finally, for the pairing (Duk, σk), suitable
pointwise estimates that are preserved in passing to the limit have been proved.
Such estimates then provide conditions in order for the Euler–Lagrange system to
hold for an F -minimizer. In a subsequent paper [3] the same achievement has been
carried on under more general growth assumptions, by means of the use of Ekeland
variational principle and Young measures, to obtain the necessary estimates for the
pairing (Duk, σk) to be able to pass to the limit.

In this paper we address the analogue issue in the case of constrained minimizers
since, for the so called obstacle problem, the situation has not been well established
yet. In the recent paper [5] the authors, dealing with the question of Lipschitz con-
tinuity for minimizers of the obstacle problem, were forced to deal with the relation
between minima and extremals, in the sense of solutions to a corresponding varia-
tional inequality. In that specific situation, this problem has been solved thanks to a
suitable higher differentiability result and imposing a smallness condition on the gap
between the coercivity and the growth exponent of the lagrangian. Indeed, a direct
derivation of such a relation can be obtained in a trivial way only if the gap between
the growth and the ellipticity exponent satisfies a suitable smallness condition.

On the other hand, relying on techniques of convex analysis, Scheven and Schmidt
[21, 22] investigated the Dirichlet minimization problem for the total variation and
the area functional with one-sided obstacle. The main point is that they were able to
identify certain dual maximization problems for bounded divergence-measure fields
and to establish duality formulas and pointwise relations between (generalized) BV
minimizers and dual maximizers. Their results are very general and apply to very
general obstacle, such as BV obstacles and thin obstacles; the proof of their results
crucially depend on a new version of Anzellotti type pairing which involves general
divergence measure fields and specific representative of BV functions, by employing
several fine results on capacities and one-sided approximation.

This framework seems to be the right one in order to extend the results in [2] to
very general obstacle problems, as long as, by means of the Anzellotti pairings we
are able to express the natural counterpart of the variational inequality in this very
general setting, which will reduce to the usual one once we have the right summability
for the functions involved.

We also investigated the same problem for obstacle in the Sobolev class W 2,q
loc (Ω)

and imposing a smallness condition on the gap q

p
. In this case, we show that the

solutions to the obstacle problem locally belong to W 1,q(Ω) and therefore they satisfy
the corresponding variational inequality.

Our paper is organized as follows: in Section 2 we state the main results of the
paper while Section 3 contains some notations and preliminary results. The proof
of the main results are contained in Section 4 (proof of Theorem 2.1) and Section 5
(proof of Theorem 2.2).
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2. Statement of the main results

Let us consider a class of variational obstacle problems of the form

(2.1) min

{
ˆ

Ω

F (Dz) : z ∈ K
F
ψ (Ω)

}

,

where Ω is a bounded open set of Rn, n ≥ 2. The integrand F : Rn → R is C1 and
satisfies the following growth and strict convexity assumptions:

ℓ|ξ|p ≤ F (ξ) ≤ L(1 + |ξ|q),(H1)

ν|Vp(ξ)− Vp(η)|
2 ≤ F (ξ)− F (η)− 〈F ′(η), ξ − η〉(H2)

for all ξ, η ∈ R
n, for 0 < ℓ < L, ν > 0 and 1 < p ≤ q < ∞ and where we used the

customary notation

(2.2) Vp(ξ) = (1 + |ξ|2)
p−2
4 ξ.

The function ψ : Ω → [−∞,+∞) is called obstacle and will satisfy the following two
assumptions

(2.3) ψ is Capq-quasi-continuous

where q > 1 is the exponent appearing in assumption (H1). Moreover, the following
compatibility condition with the boundary values is in force: there exists a function
g ∈ u0 +W

1,q
0 (Ω) with

(2.4) ψ ≤ g∗ Capq-a.e. on Ω.

The class K
F
ψ (Ω) is defined as

(2.5) K
F
ψ (Ω) := {z ∈ u0 +W

1,p
0 (Ω) : z∗ ≥ ψ Capq-a.e. in Ω, F (Dz) ∈ L1(Ω)},

where u0 ∈ W 1,q(Ω) is a fixed boundary value.
The symbol u∗ denotes as usual the precise representative of the function u in the

spirit of Definition 3.3 (for more details we refer to Subsection 3.1). Assumption (2.4)
means that we are assuming the existence of a function g ∈ u0 +W

1,q
0 (Ω) ∩K

F
ψ (Ω),

and therefore K
F
ψ (Ω) is not empty.

To simplify the statement of our main result, we shall assume that the integrand
F satisfies a sort of ∆2 condition, i.e.

(H3) F (λξ) ≤ C(λ)F (ξ),

for every real positive λ > 1 and every ξ ∈ R
n. Actually, without (H3), our result

holds true supposing that F (cDu0) ∈ L1(Ω), for some constant c > 1.
It is worth mentioning that if G is a C1 function satisfying (H1) and (H2) with

p = q, i.e.G satisfies standard p-growth conditions, the minimization problem reduces
to

(2.6) min

{
ˆ

Ω

G(Dz) : z ∈ Kψ(Ω)

}

,

where

(2.7) Kψ(Ω) := {z ∈ u0 +W
1,p
0 (Ω) : z∗ ≥ ψ Capp-a.e. in Ω}.

In this case, because of the standard growth conditions, it is well known that, if
u ∈ u0+W

1,p
0 (Ω) is a solution to (2.6), then u is also a solution to the corresponding
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variational inequality

(2.8)

ˆ

Ω

〈G′(Du), Dz −Du〉 dx ≥ 0

for every z ∈ Kψ(Ω). This can be proved by observing that, since Kψ(Ω) is a convex
set, the function u+ ε(z − u) = (1− ε)u+ εz ∈ Kψ(Ω) is an admissible variation for
each 0 ≤ ε < 1. On the other hand, if u ∈ Kψ(Ω) and ϕ ≥ 0, with ϕ ∈ C∞

0 (Ω), then
u+ϕ ∈ Kψ(Ω) and thus, if u is a solution to (2.6), then also the following inequality
holds

(2.9)

ˆ

Ω

〈G′(Du), Dϕ〉 dx ≥ 0

for all ϕ ∈ C∞
0 (Ω), ϕ ≥ 0 (see [14]).

Our goal is to show that, if we assume (2.3) and (2.4), the solutions to obstacle
problems with non standard growth conditions solve a natural counterpart of the
usual variational inequality, expressed in terms of duality formulation of the obstacle
problem, involving the minimizers and the corresponding dual maximizers, namely
(2.12) below. This formula is based on a new version of the Anzellotti type pairing [1]
and relies on fine properties of capacities and one-sided approximation. This allows
us to take into account the very general nature of the obstacle considered in our
paper. More precisely the main result of the manuscript can be stated as follows.

Theorem 2.1. Let F : Rn → R be a C1 function satisfying (H1), (H2) and (H3).
Assume moreover that (2.3) and (2.4) hold true. If u ∈ K

F
ψ (Ω) is the solution to the

obstacle problem (2.1), then

(2.10) F ∗(F ′(Du)) ∈ L1(Ω), 〈F ′(Du), Du〉 ∈ L1(Ω)

and

(2.11) divF ′(Du) ≤ 0

in the distributional sense. Moreover, it holds the following

(2.12)

ˆ

Ω

F (Du) dx = [[F ′(Du), ψ]]u0(Ω)−

ˆ

Ω

F ∗(F ′(Du)) dx.

Here F ∗ denotes the polar, or Fenchel conjugate, of the convex continuous func-
tion F , introduced in (3.1) of Subsection 2.4, while the symbol [[F ′(Du), ψ]]u0(Ω)
inspired by the Anzellotti pairing is defined in Subsection 3.5. Hence, in view of
Theorem 2.1, u in particular solves the corresponding variational inequality and
F ′(Du) ∈ Lq

′

(Ω;Rn) with q′ = q

q−1
.

It is worth noting that, under our assumptions, F (ξ) needs not to depend on the
length of ξ nor to be the sum of its components ξi. Indeed, as an example of F (ξ)
satisfying our assumptions we have the following

F (ξ) = |ξ1 − ξ2|
q + |ξ1 + ξ2|

p logα(1 + |ξ1|), ξ ∈ R
2, α ∈ R,

with 2 ≤ p ≤ q (constructed in [7]) .
In case the gap q

p
satisfies a suitable smallness assumption and if the obstacle

ψ ∈ W
2,q
loc

(Ω), we are able to prove that the solution to problem

(2.13) min

{
ˆ

Ω

F (Dz) : z ∈ Kψ(Ω)

}

,
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with Kψ(Ω) as in (2.7), locally belongs to W
1,q
loc

(Ω) and therefore it satisfies the
corresponding variational inequality, without any regularity on the boundary datum
u0. More precisely, we have the following

Theorem 2.2. Let F : Rn → R be a C1 function satisfying (H1), (H2) and (H3).
Assume that

Dψ ∈ W
1,q
loc

(Ω)

and let u ∈ Kψ(Ω) be the solution to the obstacle problem (2.13). If

(2.14) 1 < p ≤ q <
np

n− 1
,

then

F ∗(F ′(Du)) ∈ L1
loc
(Ω), 〈F ′(Du), Du〉 ∈ L1

loc
(Ω)

and

divF ′(Du) ≤ 0

locally, in the distributional sense and moreover u ∈ W
1,q
loc

(Ω).

Remark 2.3. Note that, arguing as in [2], in case

np

n− 1
≤ q < p∗

and Dψ ∈ W
1,q
loc

(Ω), then the solution u to the obstacle problem (2.6) belongs to

W
1,r
loc

(Ω) for all r < p̄ being

p̄ :=
np

n− p

p−1

(

1− n
(

1
p
− 1

q

)) .

This result prevents the Lavrentiev phenomenon that may occur in the case of
anisotropic growth conditions.

Let us mention a few words about the techniques employed. Our Lagrangian F
has been suitably approximated by strictly convex and uniformly elliptic integrands
Fk, in order to facilitate a systematic use of the dual problems, in the sense of Convex
Analysis. The minimizers of Fk, say uk, strongly converge in W 1,p to the minimizer
u of (2.1) and to every such minimizer uk we can associate the solutions of certain
dual maximization problems for divergence-measure fields.

Next, we establish duality formulas and pointwise relations between minimizers
and dual maximizers that are preserved in passing to the limit. Such estimates will
provide conditions in order for the variational inequality, in the form of (2.12), to hold
for a constrained minimizer. The statement and the proofs of our results, that are the
counterpart of those in [2] concerning the unconstrained setting, rely on a suitable
version of Anzellotti type pairing which involve general divergence-measure fields and
specific representation of Sobolev functions, and which reduces to integration by part
formula once the correct summability is required on the fields involved.

3. Notations and preliminary results

In this paper we shall denote by C or c a general positive constant that may vary
on different occasions, even within the same line of estimates. Relevant dependen-
cies will be suitably emphasized using parentheses or subscripts. In what follows,
B(x, r) = Br(x) = {y ∈ R

n : |y − x| < r} will denote the ball centered at x of radius
r. We shall omit the dependence on the center and on the radius when no confusion
arises.
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For the auxiliary function Vp, introduced in (2.2), we recall the following estimate
(see the proof of [12, Lemma 8.3]):

Lemma 3.1. Let 1 < p <∞. There exists a constant c = c(n, p) > 0 such that

c−1
(

1 + |ξ|2 + |η|2
)
p−2
2

≤
|Vp(ξ)− Vp(η)|

2

|ξ − η|2
≤ c

(

1 + |ξ|2 + |η|2
)
p−2
2

for any ξ, η ∈ R
n, ξ 6= η.

3.1. Capacities and quasi (semi)continuity. For p ∈ [1,∞) the p-capacity
of a set E ⊂ Ω can be defined by

Capp(E) := inf

{
ˆ

Ω

(|u|p + |Du|p) dx : u ∈ W 1,p(Ω), u ≥ 1 a.e. on an open

neighbourhood of E

}

.

With this definition, we say that a property holds Capp-a.e. on a set U in Ω if
it holds on U \ E with some subset E of U such that Capp(E) = 0. It is clear
from the definition that a set with zero p-capacity is negligible for the Lebesgue
measure, therefore a Capp-a.e. requirement is stronger than the corresponding Ln-
a.e. requirement, where Ln is the n-dimensional Lebesgue measure. For more details
on this topic we refer to the monographs [11, 14].

With the notion of capacity, we recall the concept of (semi)continuity up to small
sets.

Definition 3.2. For any p ∈ [1,∞), we say that a Capp-a.e. defined, real-valued
function Ψ on an open subset Ω of Rn is Capp-quasi upper semicontinuous on Ω if
for every ε > 0 there exists an open subset E of Ω with Capp(E) < ε such that
the restriction of Ψ to Ω \ E is everywhere defined and upper semicontinuous. In a
similar way we can define the corresponding concept of Capp-quasi lower semiconti-

nuity and a function is called Capp-quasi continuous if it is both Capp-quasi upper
semicontinuous and Capp-quasi lower semicontinuous.

Definition 3.3. Assume that f ∈ L1(Ω). Then

f ∗(x) =







lim
r→0

−

ˆ

B(x,r)

f(y) dy if this limit exists,

0 otherwise

is the precise representative of f .

We remark that if f, g ∈ L1
loc(Ω) with f = g Ln-a.e., then f ∗ = g∗ for all points

x ∈ Ω. In view of the Lebesgue–Besicovith Differentiation Theorem with µ = Ln,
limr→0−

´

B(x,r)
f(y) dy exists Ln-a.e.. Moreover the following result holds.

Theorem 3.4. Suppose that f ∈ W 1,p(Ω), 1 ≤ p < n.

(i) There exists a Borel set E ⊂ R
n such that

Capp(E) = 0

and

lim
r→0

−

ˆ

B(x,r)

f(y) dy = f ∗(x)

exists for each x ∈ Ω \ E.
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(ii) Moreover,

lim
r→0

−

ˆ

B(x,r)

|f(y)− f ∗(x)|p
∗

dy = 0

for each x ∈ Ω \ E.

(iii) The precise representative f ∗ is Capp-quasicontinuous.

We conclude this subsection recalling the following lemma.

Lemma 3.5. (Strong convergence in W 1,1 implies convergence Hn−1-a.e.) Sup-

pose that uk converges to u strongly in W 1,1(Ω). Then there exists a subsequence

u∗kl that converges Hn−1-a.e. on Ω to u∗.

3.2. Besov spaces. Let us recall that, for every function f : Rn → R the finite
difference operator is defined by

τs,hf(x) = f(x+ hes)− f(x)

where h ∈ R, es is the unit vector in the xs direction and s ∈ {1, . . . , n}. Let
1 ≤ p < ∞ and 0 < α < 1. The Besov space Bα

p,∞(Rn) consists of the function
v ∈ Lp(Rn) such that

[v]Ḃαp,∞(Rn) = sup
h∈Rn

(
ˆ

Rn

|v(x+ h)− v(x)|p

|h|αp
dx

)
1
p

<∞.

One can simply take supremum over |h| ≤ δ and obtain an equivalent norm. By
construction, Bα

p,∞(Rn) ⊂ Lp(Rn).
Given a domain Ω ⊂ R

n, we say that v belongs to the local Besov space Bα
p,∞,loc

if ϕ v belongs to the global Besov space Bα
p,q(R

n) whenever ϕ belongs to the class
C∞
0 (Ω) of smooth functions with compact support contained in Ω.

We also have the following embedding theorem that relates Sobolev or Lebesgue
and Besov spaces, that can be deduced with the arguments of [23, Section 30–32].

Theorem 3.6. Let Ω ⊂ R
n. The continuous embedding

Bα
q,∞,loc(Ω) →֒ Ltloc(Ω)

holds for all t < nq

n−αq
provided α ∈ (0, 1), q > 1, αq < n and the embedding

W
1,p
loc (Ω) →֒ Bα

q,∞,loc(Ω)

holds, provided 1 < p < q < +∞ and α = 1− n
(

1
p
− 1

q

)

> 0.

3.3. Some approximation results. Now, we state a useful approximation
lemma whose proof can be found in [2, Proposition 3.1] and that will be needed in
the sequel.

Lemma 3.7. Let F : Rn → R be a C1 function satisfying assumptions (H1)–
(H2). Then there exists a sequence (Fk) of C1 functions Fk : R

n → R, monotonically

convergent to F , such that

(I) for every ξ ∈ R
n, and for every k1 < k2, it holds

Fk1(ξ) ≤ Fk2(ξ) ≤ F (ξ),

(II) for every ξ ∈ R
n, we have

c(p, ν) |Vp(ξ)− Vp(η)|
2 ≤ Fk(ξ)− Fk(η)− 〈F ′

k(η), ξ − η〉

,
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(III) for every ξ ∈ R
n, there exist constants L0, L1, independent of k, and L1,

depending on k, such that

L0(|ξ|
p − 1) ≤ Fk(ξ) ≤ L1(1 + |ξ|)q,

Fk(ξ) ≤ L1(k)(1 + |ξ|)p,

(IV) if ξk → ξ, then Fk
′(ξk) → F ′(ξ) locally uniformly.

Actually, a careful inspection of the proof of [2, Proposition 3.1] reveals that there
exists a sequence µk ∈ R such that

lim
k→∞

µk = 0

and

(IIk) Fk(ξ) ≥ L0|ξ|
p − µk for every k ∈ N.

In the sequel, we shall also use the following

Lemma 3.8. Let ψ be Capp-quasicontinuous and let u0 ∈ W 1,p(Ω), with p ≥ 1.

Suppose that there exists g ∈ u0 +W
1,p
0 (Ω) such that

g∗(x) ≥ ψ(x) Capp-a.e. in Ω.

Then there exists a non increasing sequence of functions ψk ∈ u0+W
1,p
0 (Ω) such that

ψ∗
k → ψ Capp-a.e. in Ω.

For the proof, we refer to [22, Lemma 2.19] which is a suitable version for our
purposes of [9, Lemma 1.5].

3.4. Harmonic extension of Sobolev functions. Let us fix a ball BR ⊂ R
n

and consider the following Dirichlet problem
{

∆h = 0 in BR,

h = f on ∂BR,
(D)

where f ∈ W 1,p(∂BR). Browder–Minty Theorem implies that problem (D) admits a
unique solution u ∈ W 1,p(BR) and we can define the solution operator

S∆ : f ∈ W 1,p(∂BR) 7→ u ∈ W 1,p(BR).

We shall use the following particular case of [4, Theorem 4.1]:

Theorem 3.9. For 1 < p ≤ q ≤ pn

n−1
, it holds that

||DS∆(f)||Lq(BR;Rn) ≤ c(n, p, q)||Df ||Lp(∂BR;Rn−1)||f ||Lp(∂BR).

It is worth mentioning that previous result is well known, but it is difficult to
find an explicit proof and this is the reason why we refer to [4].

3.5. Dual formulation of the obstacle problem. This section is devoted to
establish the dual formulation of obstacle problems with standard growth conditions,
extending classical ideas of Kohn and Temam [15] and Anzellotti [1] and following
[22]. For the readers’ convenience we recall a few key results about convex duality
here and we refer to [10, Chapter 1] for details.

Given a convex continuous function F : Rn → R, its polar (or Fenchel conjugate)
is defined by

(3.1) F ∗(ζ) := sup
ξ∈Rn

(〈ζ, ξ〉 − F (ξ)) ∀ ζ ∈ R
n.
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The function F ∗ : Rn → R is convex and, if F satisfies assumption (H1), F ∗ has (q′, p′)
growth, where p′ and q′ are the Hölder conjugate exponents of p, q respectively, i.e.
there exist constants c(L), c(ℓ) such that

c(L)|ζ |q
′

− L ≤ F ∗(ζ) ≤ c(ℓ)|ζ |p
′

∀ ζ ∈ R
n.

One can check that the bipolar integrand F ∗∗ := (F ∗)∗ equals F at ξ if and only if
F is lower semicontinuous and convex at ξ, as it is the case here.

From the definition of polar function directly follows the Young-type (or Fenchel)
inequality

(3.2) 〈ζ, ξ〉 ≤ F ∗(ζ) + F (ξ)

for all ζ, ξ ∈ R
n. Notice that, for a given ξ, we have equality in (3.2) precisely for

ζ ∈ ∂F ∗∗(ξ), the subgradient of F ∗∗ at ξ. In particular, when F is C1, for every
ξ ∈ R

n, we have equality in (3.2) precisely for ζ = F ′(ξ). Actually, it holds the
following

(3.3) F (ξ) + F ∗(F ′(ξ)) = 〈F ′(ξ), ξ〉,

for every ξ ∈ R
n. Indeed, the convexity of F , since F ∈ C1, gives

F (ξ) ≥ F (η) + 〈F ′(η), ξ − η〉 ∀ ξ, η ∈ R
n,

which is equivalent to

〈F ′(η), η〉 − F (η) ≥ 〈F ′(η), ξ〉 − F (ξ) ∀ ξ, η ∈ R
n.

From this we deduce that

〈F ′(η), η〉 − F (η) ≥ sup
ξ∈Rn

[〈F ′(η), ξ〉 − F (ξ)] = F ∗(F ′(η)),

by the definition of F ∗(ζ) at (3.1). Thus

〈F ′(η), η〉 ≥ F (η) + F ∗(F ′(η))

which obviously gives equality in (3.2), i.e. (3.3).
Now, we consider for any p > 1

(3.4) S
p′

− (Ω) = {σ ∈ Lp
′

(Ω) : divσ ≤ 0 in D′(Ω)},

where as usual p′ = p

p−1
and, for u0 ∈ W 1,p(Ω), and U Capp-quasicontinuous, we

introduce a measure [[σ, U ]]u0 on Ω by setting

(3.5) [[σ, U ]]u0(Ω) =

ˆ

Ω

(U − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx,

where we recall that the symbol u∗ denotes the precise representative of u. It is

known that for σ ∈ S
p′

− (Ω), the distribution divσ is a non positive Radon measure
that vanishes on set with p-capacity zero (see [22, Section 4]). Since the precise
representative is a function Capp-a.e. defined, the duality pairing defined above is
meaningful in this setting.

For ũ ∈ u0 + W
1,p
0 (Ω), the quantity [[σ, ũ]]u0(Ω) corresponds to the integral of

the function 〈σ,Dũ〉 ∈ L1(Ω) as it follows from the well known integration by parts
formula

(3.6)

ˆ

Ω

ϕd(− div σ) =

ˆ

Ω

〈σ,Dϕ〉 dx,

that holds true for every ϕ ∈ W
1,p
0 (Ω).
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The dual formulation of obstacle problems under standard growth conditions is
contained in the following:

Theorem 3.10. Let G : Rn → R be a C1, strictly convex function satisfying

ℓp(|ξ|
p − 1) ≤ G(ξ) ≤ Lp(1 + |ξ|p),

for all ξ ∈ R
n, for constants 0 < ℓp ≤ Lp and an exponent p > 1. If u0 ∈ W 1,p(Ω), ψ

satisfies (2.3) and (2.4) with p = q, then

(3.7) min
v∈Kψ(Ω)

ˆ

Ω

G(Dv) dx = max
σ∈Sp

′

−
(Ω)

(

[[σ, ψ]]u0(Ω)−

ˆ

Ω

G∗(σ) dx

)

where S
p′

− (Ω), [[σ, ψ]]u0 and Kψ(Ω) are defined in (3.4), (3.5) and (2.7) respectively.

If, moreover, u ∈ Kψ(Ω) is the solution to (2.6), then

(3.8)

ˆ

Ω

G(Du) dx = [[G′(Du), ψ]]u0(Ω)−

ˆ

Ω

G∗(G′(Du)) dx.

Proof. Let us consider an arbitrary vector field σ ∈ S
p′

− (Ω) and a function
v ∈ Kψ(Ω). Since − div σ is a non-negative Radon measure and v∗ ≥ ψ Capp-a.e. in
Ω, we have

(3.9)

ˆ

Ω

(v∗ − ψ)d(− div σ) ≥ 0.

By the definition at (3.5) and by using (3.9), we infer that

[[σ, ψ]]u0(Ω) =

ˆ

Ω

(ψ − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx

=

ˆ

Ω

(ψ − v∗ + v∗ − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx

≤

ˆ

Ω

(v∗ − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx.

Since v, u0 ∈ W 1,p(Ω) and v = u0 on ∂Ω, we can use (3.6) in the first integral of the
last line of previous formula, thus getting

[[σ, ψ]]u0(Ω) =

ˆ

Ω

〈σ,Dv −Du0〉 dx+

ˆ

Ω

〈σ,Du0〉 dx

=

ˆ

Ω

〈σ,Dv〉 dx ≤

ˆ

Ω

G(Dv) dx+

ˆ

Ω

G∗(σ) dx,

by the Young’s type inequality at (3.2). This entails that
ˆ

Ω

G(Dv) dx ≥ [[σ, ψ]]u0(Ω)−

ˆ

Ω

G∗(σ) dx

and thus, passing to the minimum in v in the left hand side and to the maximum in
σ in the right hand side of previous inequality, we get

(3.10) min
v∈Kψ(Ω)

ˆ

Ω

G(Dv) dx ≥ max
σ∈Sp

′

−
(Ω)

(

[[σ, ψ]]u0(Ω)−

ˆ

Ω

G∗(σ) dx

)

.
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In order to prove the reverse inequality, we start from (3.3) with the choice F = G

and ξ = Du, being u ∈ Kψ a solution to (2.6). Integrating over Ω we have that
ˆ

Ω

G(Du) dx =

ˆ

Ω

〈G′(Du), Du〉 dx−

ˆ

Ω

G∗(G′(Du)) dx

=

ˆ

Ω

〈G′(Du), Du−Du0〉 dx+

ˆ

Ω

〈G′(Du), Du0〉 dx−

ˆ

Ω

G∗(G′(Du)) dx.

Accordingly to the terminology used so far, we set σ := G′(Du) and use again (3.6)
to deduce that
ˆ

Ω

G(Du) dx =

ˆ

Ω

〈σ,Du−Du0〉 dx+

ˆ

Ω

〈σ,Du0〉 dx−

ˆ

Ω

G∗(σ) dx

=

ˆ

Ω

(u∗ − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx−

ˆ

Ω

G∗(σ) dx

=

ˆ

Ω

(ψ − ψ + u∗ − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx−

ˆ

Ω

G∗(σ) dx(3.11)

=

ˆ

Ω

(ψ − u∗0) d(− div σ)−

ˆ

Ω

(ψ − u∗) d(− div σ)

+

ˆ

Ω

〈σ,Du0〉 dx−

ˆ

Ω

G∗(σ) dx.

Now, since u ∈ u0 + W 1,p(Ω) and u∗ ≥ ψ as long as u is the solution to our
obstacle problem, we can use Lemma 3.8 to construct a non increasing sequence
ψk ∈ u0 +W

1,p
0 (Ω) such that

ψ∗
k → ψ Capp-a.e. in Ω.

Therefore,

ψk ∈ Kψ(Ω)

and, since u is a solution to (2.8), we have
ˆ

Ω

〈σ,Dψk −Du〉 dx ≥ 0 for every k ∈ N.

Via the Monotone Convergence Theorem, passing to the limit in the previous in-
equality, we deduce that

ˆ

Ω

(ψ − u∗) d(− div σ) = lim
k→∞

ˆ

Ω

(ψ∗
k − u∗) d(− div σ)

= lim
k→∞

ˆ

Ω

〈σ,Dψk −Du) dx ≥ 0,

(3.12)

where we used again (3.6). Inserting (3.12) in (3.11) we obtain
ˆ

Ω

G(Du) dx ≤

ˆ

Ω

(ψ − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx−

ˆ

Ω

G∗(σ) dx

≤ [[σ, ψ]]u0(Ω)−

ˆ

Ω

G∗(σ) dx.

(3.13)
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Summing up we have

min
v∈Kψ(Ω)

ˆ

Ω

G(Dv) dx =

ˆ

Ω

G(Du) dx ≤ [[σ, ψ]]u0(Ω)−

ˆ

Ω

G∗(σ) dx

≤ max
σ∈Sp

′

−
(Ω)

{

[[σ, ψ]]u0(Ω)−

ˆ

Ω

G∗(σ) dx

}

.

Combining previous estimate with (3.10), we establish (3.7) and, recalling that σ =
G′(Du), the equality at (3.8). �

4. Proof of Theorem 2.1

In this section we shall establish the validity of the variational inequality asso-
ciated to our obstacle problem, by using the duality theory and the approximation
Lemma of the previous section. More precisely we are ready to give the

Proof of Theorem 2.1. For the sake of clarity we shall divide the proof in steps.
In the first one, we shall use the approximation Lemma to construct a sequence of ob-
stacle problems with standard growth conditions for which the dual problem is given
by Theorem 3.10. In the second step, we prove that the sequence of approximating
minimizers converges to the solution of problem (2.1), as well as the sequence of dual
maximizers converges to a field whose divergence is a non positive Radon measure.
Finally in Step 3 and 4 we establish the validity of the variational inequality.

Step 1. The approximation. Let Fk be the sequence of functionals obtained
applying Lemma 3.7 to the integrand F . We recall that Fk ր F and that Fk are of
class C1 and strictly convex, with p-growth.

Let uk ∈ Kψ(Ω) be the solution to the obstacle problem

(4.1) min
w∈Kψ(Ω)

ˆ

Ω

Fk(Dw) dx

and let

(4.2) σk := F ′
k(Duk) ∈ Sp

′

− (Ω)

be the solution to the dual problem given by (3.7), i.e. σk is such that

max
σ∈Sp

′

−
(Ω)

{

[[σ, ψ]]u0(Ω)−

ˆ

Ω

F ∗
k (σ) dx

}

= [[σk, ψ]]u0(Ω)−

ˆ

Ω

F ∗
k (σk) dx,

where F ∗
k denotes the polar function of Fk. By (II) and (III) of Lemma 3.7, we are

legitimate to apply Theorem 3.10 to each Fk. Therefore, from (3.8) with G = Fk,
u = uk and σ = σk, we have that the following equality

ˆ

Ω

Fk(Duk) dx = [[σk, ψ]]u0(Ω)−

ˆ

Ω

F ∗
k (σk) dx

holds for all k ∈ N.
As long as Fk satisfy a uniform (p, q)-growth condition, then, as already remarked

in Section 3, F ∗
k satisfy a uniform (q′, p′)-growth condition, and, since Fk(ξ) ր F (ξ),

it is not difficult to check that F ∗
k (ζ) ց F ∗(ζ) as k → ∞, pointwise in ζ . Furthermore,

since Fk satisfy standard growth conditions, we also have that uk solve the following
variational inequality

(4.3)

ˆ

Ω

〈σk, Dϕ−Duk〉 dx ≥ 0 ∀ϕ ∈ Kψ(Ω) and ∀ k ∈ N.
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Step 2. Passage to the limit. Our next purpose is to prove that uk → u strongly
in W 1,p(Ω), where u is the solution to the obstacle problem at (2.1).

First of all, we observe that

L0

ˆ

Ω

|Duk|
p dx ≤

ˆ

Ω

[Fk(Duk) + L0] dx ≤

ˆ

Ω

[Fk(Dg) + L0] dx

≤

ˆ

Ω

[F (Dg) + L0] dx < +∞,

(4.4)

where we used the growth condition on Fk expressed at (III) of Lemma 3.7, the
minimality of uk, the fact that, by virtue of assumption (2.4), we can use g as test
function and also that Fk ր F . This tells us that the sequence {uk}k is bounded
in W 1,p(Ω). Then, by the reflexivity of W 1,p(Ω), it admits a subsequence weakly
converging to some v ∈ W 1,p(Ω). We have that v ∈ Kψ(Ω) because uk ∈ Kψ(Ω) and
Kψ(Ω) is a convex closed set, therefore weakly closed.

Fix k0 ∈ N, by the lower semicontinuity of Fk0, we have

lim inf
k→+∞

ˆ

Ω

Fk0(Duk) dx ≥

ˆ

Ω

Fk0(Dv) dx

and the monotonicity of the sequence Fk yields
ˆ

Ω

Fk0(Duk) dx ≤

ˆ

Ω

Fk(Duk) dx

for every k > k0. Therefore
ˆ

Ω

Fk0(Dv) dx ≤ lim inf
k→+∞

ˆ

Ω

Fk(Duk) dx

and since Fk ր F , taking the limit as k0 → ∞, we deduce, by the Monotone
Convergence Theorem, that

(4.5) lim inf
k→+∞

ˆ

Ω

Fk(Duk) dx ≥

ˆ

Ω

F (Dv) dx.

Remark that previous inequality implies
ˆ

Ω

F (Dv) dx ≤ lim inf
k→+∞

ˆ

Ω

Fk(Duk) dx ≤ lim inf
k→+∞

ˆ

Ω

Fk(Dg) ≤

ˆ

Ω

F (Dg) dx.

Thus in particular it turns out that v ∈ K
F
ψ (Ω) and so we can exploit the minimality

of u in the class K
F
ψ (Ω) to finally end up with

(4.6) lim inf
k→+∞

ˆ

Ω

Fk(Duk) dx ≥

ˆ

Ω

F (Dv) dx ≥

ˆ

Ω

F (Du) dx.

On the other hand, by the minimality of uk we have
ˆ

Ω

Fk(Duk) dx ≤

ˆ

Ω

Fk(Du) dx,

since u ∈ Kψ(Ω) ⊂ Kψ(Ω). Using once more the Monotone Convergence Theorem,
we get

(4.7) lim sup
k→+∞

ˆ

Ω

Fk(Duk) dx ≤ lim sup
k→+∞

ˆ

Ω

Fk(Du) dx =

ˆ

Ω

F (Du) dx.

By a direct comparison of (4.5) and (4.7) we deduce that

(4.8)

ˆ

Ω

Fk(Duk) dx→

ˆ

Ω

F (Du) dx =

ˆ

Ω

F (Dv) dx,
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but the strict convexity of F implies the uniqueness of the solutions and therefore
u = v.

To deduce the strong convergence of uk towards u, we exploit (II) of Lemma 3.7
and (4.3) with u in place of ϕ, namely

c(p, ν)

ˆ

Ω

|Vp(Du)− Vp(Duk)|
2 dx

≤

ˆ

Ω

(Fk(Du)− Fk(Duk)− 〈F ′
k(Duk), Du−Duk〉) dx

≤

ˆ

Ω

(Fk(Du)− Fk(Duk)) dx→ 0

as k → +∞, where in the last line we used (4.8) and the equality in (4.7). Therefore,
by Lemma 3.1, we get

c

ˆ

Ω

|Du−Duk|
2(1 + |Du|2 + |Duk|

2)
p−2
2 dx ≤

ˆ

Ω

|Vp(Du)− Vp(Duk)|
2 dx→ 0

which entails the desired strong convergence

uk → u strongly in W 1,p(Ω).

Indeed, if p ≥ 2, this follows from the trivial inequality

|Du−Duk|
p ≤ |Du−Duk|

2(1 + |Du|2 + |Duk|
2)

p−2
2

while, for 1 < p < 2, we may use Hölder’s inequality with exponents 2
p

and 2
2−p

as
follows
ˆ

Ω

|Du−Duk|
p dx

=

ˆ

Ω

|Du−Duk|
p(1 + |Du|2 + |Duk|

2)
p(p−2)

4 (1 + |Du|2 + |Duk|
2)

p(2−p)
4 dx

≤

(
ˆ

Ω

|Du−Duk|
2(1 + |Du|2 + |Duk|

2)
(p−2)

2 dx

)
p
2
(
ˆ

Ω

(1 + |Du|2 + |Duk|
2)

p
2 dx

)
2−p
2

≤ C

(
ˆ

Ω

|Du−Duk|
2(1 + |Du|2 + |Duk|

2)
(p−2)

2 dx

)
p
2

,

where, in the last line, we used (4.4).
The use of (IV) of Lemma 3.7 for ξk = Duk and ξ = Du, yields that

σk = F ′
k(Duk) → F ′(Du) locally uniformly as k → ∞.

It follows in particular that F ′
k(Duk) → F ′(Du) in measure on Ω and so passing to

the limit in the equality

(4.9) 〈σk, Duk〉 = F ∗
k (σk) + Fk(Duk),

which has been deduced by (3.3) with ξ = Duk and G = Fk, we recover, with
σ = F ′(Du), the pointwise extremality relation

(4.10) 〈F ′(Du), Du〉 = F ∗(F ′(Du)) + F (Du).

Step 3. The validity of (2.10). Since by assumption (2.4), g ∈ K
F
ψ (Ω) ⊂ Kψ(Ω)

we can use (4.3) with g in place of ϕ, thus getting
ˆ

Ω

〈σk, Dg −Duk〉 dx ≥ 0 ∀ k ∈ N.
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Therefore, integrating (4.9) over Ω and using previous inequality, we obtain
ˆ

Ω

F ∗
k (σk) dx =

ˆ

Ω

〈σk, Duk〉 dx−

ˆ

Ω

Fk(Duk) dx

≤

ˆ

Ω

〈σk, Dg〉 dx−

ˆ

Ω

Fk(Duk) dx

=
1

2

ˆ

Ω

〈σk, 2Dg〉 dx−

ˆ

Ω

Fk(Duk) dx

≤
1

2

ˆ

Ω

F ∗
k (σk) dx+

1

2

ˆ

Ω

Fk(2Dg)−

ˆ

Ω

Fk(Duk) dx.

Reabsorbing the first term in the right hand side by the left hand side, we get

(4.11)
1

2

ˆ

Ω

F ∗
k (σk) dx ≤

1

2

ˆ

Ω

F (2Dg) dx−

ˆ

Ω

Fk(Duk) dx ≤ C

ˆ

Ω

F (Dg) dx,

by (H3) and (4.4).
Recalling that F ∗

k ց F ∗, from (4.11) we also have that
ˆ

Ω

F ∗(σk) dx ≤ C

ˆ

Ω

F (Dg) dx.

Since we already observed that σk → F ′(Du) a.e., by Fatou’s Lemma and by previous
estimate

ˆ

Ω

F ∗(F ′(Du)) dx ≤ lim inf
k→+∞

ˆ

Ω

F ∗(σk) dx ≤ C

ˆ

Ω

F (Dg) dx.

Thus

F ∗(F ′(Du)) ∈ L1(Ω).

Whence, by (4.10), we also have

〈F ′(Du), Du〉 ∈ L1(Ω)

since F (Du) ∈ L1(Ω) by the definition of minimizer.

Step 4. The validity of the variational inequality. For this purpose, we note that
in view of the (q′, p′)-growth of F ∗(σ) and of F ∗

k (σk), previous inequality and (4.11),

(4.12)

ˆ

Ω

|F ′(Du)|q
′

dx ≤ lim sup
k→+∞

ˆ

Ω

|σk|
q′ ≤ C

ˆ

Ω

F (Dg) dx.

Therefore

σk ⇀ σ weakly in Lq
′

(Ω)

and by the convergence of σk to σ in measure, we also have

(4.13) σk → σ strongly in Lr(Ω) for every r < q′;

thus also σk → σ a.e. up to a subsequence. The minimality of uk yields the validity
of the following variational inequality

(4.14)

ˆ

Ω

〈σk, Dη〉 dx ≥ 0 for all η ∈ C∞
0 (Ω), η ≥ 0,

and so, by the weak convergence of σk to σ in Lq
′

(Ω), passing to the limit as k → ∞
in previous inequality, also

(4.15)

ˆ

Ω

〈σ,Dη〉 dx ≥ 0 for all η ∈ C∞
0 (Ω), η ≥ 0.
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This yields that div σ ≤ 0 in the distributional sense, i.e. (2.11). By (4.3), we have

(4.16)

ˆ

Ω

〈σk, Dz −Duk〉 dx ≥ 0 for all z ∈ K
F
ψ (Ω),

since K
F
ψ (Ω) ⊂ Kψ(Ω). Before going on, we note that

(4.17)

ˆ

Ω

〈σ,Du〉 dx ≤ lim inf
k→+∞

ˆ

Ω

〈σk, Duk〉 dx.

Indeed, by (4.9) we get

(4.18) 〈σk, Duk〉 = F ∗
k (σk) +Fk(Duk) ≥ C(L)|σk|

q′ +L0|Duk|
p−L−µk ≥ −L−µk,

where we used (IIk) and that F ∗
k (ξ) ≥ F ∗(ξ) ≥ C(L)|ξ|q

′

−L.
Therefore for the sequence of functions 〈σk, Duk〉 that converges a.e. to 〈σ,Du〉,

we are legitimate to apply Fatou’s Lemma to deduce that

(4.19)

ˆ

Ω

〈σ,Du〉 dx ≤ lim inf
k→+∞

ˆ

Ω

(

〈σk, Duk〉+ µk
)

dx = lim inf
k→+∞

ˆ

Ω

〈σk, Duk〉 dx,

i.e. (4.17). Since u0 ∈ W 1,q(Ω) and by assumptions (2.3) and (2.4), by Lemma 3.8
there exists a nonincreasing sequence ψj ∈ u0+W

1,q
0 (Ω) such that ψj → ψ a.e. Using

(4.3) with ψj in place of ϕ, we get
ˆ

Ω

〈σk, Duk〉 dx ≤

ˆ

Ω

〈σk, Dψj〉 dx

and the weak convergence of σk to σ in Lq
′

(Ω) implies that

(4.20) lim inf
k

ˆ

Ω

〈σk, Duk〉 dx ≤ lim inf
k

ˆ

Ω

〈σk, Dψj〉 dx =

ˆ

Ω

〈σ,Dψj〉 dx.

Combining (4.10), (4.19) and (4.20) we obtain

(4.21)

ˆ

Ω

F (Du) dx+

ˆ

Ω

F ∗(σ) dx =

ˆ

Ω

〈σ,Du〉 dx ≤

ˆ

Ω

〈σ,Dψj〉 dx = [[σ, ψj ]]u0(Ω)

At this point, passing to the limit as j → ∞, the monotone convergence theorem
yields

(4.22)

ˆ

Ω

F (Du) dx+

ˆ

Ω

F ∗(σ) dx ≤ [[σ, ψ]]u0(Ω)

On the other hand, we have

[[σ, ψ]]u0(Ω) =

ˆ

Ω

(ψ − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx

=

ˆ

Ω

(ψ − u∗ + u∗ − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx

≤

ˆ

Ω

(u∗ − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx

(4.23)

where we used (3.9) with u in place of v. For a standard sequence of mollifiers ϕε, let
uε = u ⋆ ϕε, by Lemma 3.5, Fatou’s Lemma and next integrating by parts, we have
that

[[σ, ψ]]u0(Ω) ≤ lim inf
ε

ˆ

Ω

(u∗ε − u∗0) d(− div σ) +

ˆ

Ω

〈σ,Du0〉 dx

= lim inf
ε

ˆ

Ω

〈σ,Duε〉 dx ≤ lim inf
ε

ˆ

Ω

F (Duε) dx+

ˆ

Ω

F ∗(σ) dx.

(4.24)
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where we used (3.2). Jensen’s inequality implies
ˆ

Ω

F (Duε) dx =

ˆ

Ω

F (Du ⋆ ϕε) dx ≤

ˆ

Ω

ϕε ⋆ F (Du) dx

and so

lim inf
ε

ˆ

Ω

F (Duε) dx ≤

ˆ

Ω

F (Du) dx.

Inserting previous estimate in (4.24), we get

(4.25) [[σ, ψ]]u0(Ω) ≤

ˆ

Ω

F (Du) dx+

ˆ

Ω

F ∗(σ) dx.

Combining (4.22) with (4.25), we obtain

[[σ, ψ]]u0(Ω) =

ˆ

Ω

F (Du) dx+

ˆ

Ω

F ∗(σ) dx,

i.e. the conclusion. �

5. Proof of Theorem 2.2

This section is devoted to the proof of the regularity result stated in Theorem 2.2.

Proof of Theorem 2.2. We start by observing that every z ∈ Kψ(Ω) belongs
to W 1,p(Ω). For every x0 ∈ Ω, we can find a ball B = B(x0, R) ⊂ Ω such that
z|∂B ∈ W 1,p(∂B), see for instance [24]. Then, by Theorem 3.9, z|∂B has an harmonic

extension H to B, such that H ∈ W 1, np
n−1 (B). Therefore, by the assumption q < np

n−1

and by virtue of (H1), we get F (DH) ∈ L1(B). Using the arguments of the proof of
Theorem 2.1, replacing Ω with B and u0 with H , give that

F ∗(F ′(Du)) ∈ L1
loc
(Ω), 〈F ′(Du), Du〉 ∈ L1

loc
(Ω)

and
divF ′(Du) ≤ 0

locally, in the distributional sense.
Our next purpose is to prove that u ∈ W

1,q
loc

(Ω). To this aim, let Fk, uk be
respectively the sequence of functionals and their minimizers introduced in the proof
of previous Theorem. Let us consider ϕk := uk+ tvk for a suitable vk ∈ W

1,p
0 (Ω) such

that

(5.1) uk − ψ + tvk ≥ 0 for t ∈ [0, 1).

Such function ϕk belongs to the admissible class Kψ(Ω), because ϕk = uk + tvk ≥ ψ

and ϕk ∈ u0 +W
1,p
0 (Ω).

Now we fix balls BR
2
⊂ Bρ ⊂ B 3

4
R such that B2R ⋐ Ω and a cut off function

η ∈ C∞
0 (B 3

4
R), 0 ≤ η ≤ 1, η ≡ 1 on Bρ such that |Dη| ≤ c

R−ρ
. Due to the local

nature of our results, we suppose R ≤ 1 without loss of generality. Then, for |h| < R
4
,

we take

(5.2) v1k(x) = η2(x)[(uk − ψ)(x+ h)− (uk − ψ)(x)].

From the regularity of uk and ψ, we deduce that v1k ∈ W
1,p
0 (Ω). Moreover v1k fulfills

(5.1). Indeed, for a.e. x ∈ Ω and for any t ∈ [0, 1)

uk(x)− ψ(x) + tv1k(x) = uk(x)− ψ(x) + tη2(x)[(uk − ψ)(x+ h)− (uk − ψ)(x)]

= tη2(x)(uk − ψ)(x+ h) + (1− tη2(x))(uk − ψ)(x) ≥ 0,



412 Michela Eleuteri and Antonia Passarelli di Napoli

because uk ∈ Kψ(Ω). With this choice in (4.3), we obtain

(5.3) 0 ≤

ˆ

Ω

〈F ′
k(Du(x)), D[η2(x)[(uk − ψ)(x+ h)− (uk − ψ)(x)]]〉 dx.

On the other hand, if we introduce

(5.4) v2k(x) = η2(x− h)[(uk − ψ)(x− h)− (uk − ψ)(x)],

then v2k ∈ W
1,p
0 (Ω) and it satisfies condition (5.1), as long as v2k(x) = v1k(x − h).

Choosing in (4.3) as test function ϕk = uk + tv2k, where v2k is defined in (5.4), we get

0 ≤

ˆ

Ω

〈F ′
k(Duk(x)), D[η2(x− h)[(uk − ψ)(x− h)− (uk − ψ)(x)]]〉 dx,

Changing variable we get

(5.5) 0 ≤

ˆ

Ω

〈F ′
k(Duk(x+ h)), D[η2(x)[(uk − ψ)(x)− (uk − ψ)(x+ h)]]〉 dx.

Thus by adding (5.3) and (5.5), we obtain

0 ≤

ˆ

Ω

〈F ′
k(Duk(x)), D[η2(x)[(uk − ψ)(x+ h)− (uk − ψ)(x)]]〉 dx

+

ˆ

Ω

〈F ′
k(Duk(x+ h)), D[η2(x)[(uk − ψ)(x)− (uk − ψ)(x+ h)]]〉 dx

=

ˆ

Ω

〈F ′
k(Du(x))− F ′

k(Duk(x+ h)), D[η2(x)[(uk − ψ)(x+ h)− (uk − ψ)(x)]]〉 dx,

which implies

0 ≥

ˆ

Ω

〈F ′
k(Duk(x+ h))− F ′

k(Duk(x)), η
2(x)D[(uk − ψ)(x+ h)− (uk − ψ)(x)]〉 dx

+

ˆ

Ω

〈F ′
k(Duk(x+ h))− F ′

k(Duk(x)), 2 η(x)Dη(x)

· [(uk − ψ)(x+ h)− (uk − ψ)(x)]〉 dx.

The previous inequality can be rewritten as follows

0 ≥

ˆ

Ω

〈F ′
k(Duk(x+ h))− F ′

k(Duk(x)), η
2(Duk(x+ h)−Duk(x))〉 dx

−

ˆ

Ω

〈F ′
k(Duk(x+ h))− F ′

k(Duk(x)), η
2(Dψ(x+ h)−Dψ(x))〉 dx

+

ˆ

Ω

〈F ′
k(Duk(x+ h))− F ′(Duk(x)), 2η Dητh(uk − ψ)〉 dx

=: I + II + III,

(5.6)

that yields

(5.7) I ≤ |II|+ |III|.

The ellipticity of Fk expressed by (II) of Lemma 3.7 and Lemma 3.1 imply

(5.8) I ≥ c(p, ν)

ˆ

Ω

η2|τhVp(Duk)|
2 dx.

For the estimation of II and III, we use Hölder’s inequality to deduce that

|II|+ |III| ≤

(
ˆ

Ω

ηq
′

|F ′
k(Duk(x))|

q′ dx

)
1
q′
(
ˆ

Ω

ηq|τhDψ|
q dx

)
1
q
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+

(
ˆ

Ω

ηq
′

|F ′
k(Duk(x))|

q′ dx

)
1
q′
(
ˆ

Ω

|Dη|q|τhuk|
q dx

)
1
q

+

(
ˆ

Ω

ηq
′

|F ′
k(Duk(x))|

q′ dx

)
1
q′
(
ˆ

Ω

|Dη|q|τhψ|
q dx

)
1
q

≤

(
ˆ

BR

|F ′
k(Duk(x))|

q′ dx

)
1
q′

(5.9)

·

[

(
ˆ

BR

|τhDψ|
q dx

)
1
q

+
c

R− ρ

(
ˆ

BR

|τhuk|
q dx

)
1
q

+
c

R− ρ

(
ˆ

BR

|τhψ|
q dx

)
1
q

]

,

where we used the properties of η and that, since u ∈ W 1,p(Ω) and q < pn

n−1
< pn

n−p

we have that τhu ∈ Lq(Ω). We used also that
ˆ

B 3
4R

|f(x+ h)|q
′

dx ≤ c

ˆ

BR

|f(x)|q
′

dx,

for |h| < R
4
. Denoted by Hu the harmonic extension of u to the ball B2R, we can use

(4.12) with Hu in place of u0 to obtain
(
ˆ

BR

|F ′
k(Duk(x))|

q′ dx

)
1
q′

≤ C

(
ˆ

B2R

F (DHu(x)) dx

)
1
q′

and so

|II|+ |III|

≤

(
ˆ

B2R

F (DHu(x)) dx

)
1
q′

·

[

(
ˆ

BR

|τhDψ|
q dx

)
1
q

+
c

R− ρ

(
ˆ

BR

|τhuk|
q dx

)
1
q

+
c

R− ρ

(
ˆ

BR

|τhψ|
q dx

)
1
q

]

(5.10)

≤ C

(
ˆ

B2R

(|DHu(x)|
q + 1) dx

)
1
q′

·

[

(
ˆ

BR

|τhDψ|
q dx

)
1
q

+
c

R− ρ

(
ˆ

BR

|τhuk|
q dx

)
1
q

+
c

R− ρ

(
ˆ

BR

|τhψ|
q dx

)
1
q

]

where we used the right inequality in (H1). Therefore, plugging (5.8) and (5.10) in
(5.7) and using that η ≡ 1 on Bρ, we obtain

c(p, ν)

ˆ

Bρ

|τhVp(Duk)|
2 ≤ C

(
ˆ

B2R

(|DHu(x)|
q + 1) dx

)
1
q′

·

[

(
ˆ

BR

|τhDψ|
q dx

)
1
q

+
c

R− ρ

(
ˆ

BR

|τhuk|
q dx

)
1
q

+
c

R − ρ

(
ˆ

BR

|τhψ|
q dx

)
1
q

]

.

(5.11)

Using the assumption on ψ, i.e. Dψ ∈ W
1,q
loc (Ω), and the embedding of Theorem 3.6

with

α = 1− n

(

1

p
−

1

q

)

> 0 and q =
np

n− αp
,
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we arrive at
ˆ

Bρ

|τhVp(Duk)|
2 ≤ C

(
ˆ

B2R

(|DHu(x)|
q + 1) dx

)
1
q′

·

[

|h|

(
ˆ

B2R

|D2ψ|q dx

)
1
q

+
C|h|α

R− ρ

(
ˆ

BR

|Du|p dx

)
1
p

+
C|h|

R− ρ

(
ˆ

B2R

|Dψ|q dx

)
1
q

]

≤ C|h|α
(
ˆ

B2R

(|DHu(x)|
q + 1) dx

)
1
q′
(

||Du||Lp(B2R) + ||ψ||W 2,q(B2R)

)

.

(5.12)

Estimate (5.12) implies that Vp(Duk) ∈ B
α
2
2,∞,loc(Ω) and therefore, again by Theo-

rem 3.6, we have

Vp(Duk) ∈ Ls
loc
(Ω) for every s <

2n

n− α
and so by the definition of the function Vp(ξ) and recalling the value of α

Duk ∈ Lt
loc
(Ω) for every t <

np

n
(

1 + 1
p
− 1

q

)

− 1
.

Following [2], we now define the sequence of exponents

p = p0, pj =
np

n
(

1 + 1
pj−1

− 1
q

)

− 1
=

np

n− 1− n
q
+ n

pj−1

.

Arguing inductively, we have that

(5.13) Duk ∈ Ltloc(Ω) for every t < pj−1 =⇒ Duk ∈ Ltloc(Ω) for every t < pj.

Note that, in case 1 < p < q ≤ n
n−1

(that obviously implies n− 1− n
q
≤ 0), we have

pj ≥
np
n

pj−1

= p · pj−1 =⇒ pj ≥ p0 · p
j−1 = pj

and so pj is an increasing sequence such that

pj → ∞.

Therefore, there exists j̄ such that to have q < pj, for every j > j̄.

In case n
n−1

< q < pn

n−1
, one can easily check that if pj−1 <

n(p−1)
n−1−n

q

, then

pj ր
n(p− 1)

n− 1− n
q

and that, for q < pn

n−1
, we have

q <
n(p− 1)

n− 1− n
q

.

Hence, also in this case there exists j̄ such that to have q < pj, for every j > j̄.
Therefore, by virtue of (5.13), iterating estimate (5.12) we deduce that the se-

quence uk is bounded in W 1,q(BR) and therefore its limit u also belongs to W 1,q(BR).
This conclude the proof. �
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