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• We implemented a cortical model for the vergence control based on a population of disparity detectors.
• The model is able to autonomously learn its behavior by means of an internal parameter.
• The speed of convergence and the precision of the control precision were evaluated on different disparity ranges and learning signals.
• The informative content of the different orientation channels was assessed.
• The learning capabilities on real robot stereo pairs demonstrate an adaptation to the stimulus characteristics.
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a b s t r a c t

A robotic system implementation that exhibits autonomous learning capabilities of effective control for
vergence eye movements is presented. The system, directly relying on a distributed (i.e. neural) repre-
sentation of binocular disparity, shows a large tolerance to the inaccuracies of real stereo heads and to
the changeable environment. The proposed approach combines early binocular vision mechanisms with
basic learning processes, such as synaptic plasticity and rewardmodulation. The computational substrate
consists of a network of modeled V1 complex cells that act as oriented binocular disparity detectors. The
resulting population response, besides implicit binocular depth cues about the environment, also pro-
vides a global signal (i.e. the overall activity of the population itself) to describe the state of the system
and thus its deviation from the desired vergence position. The proposed network, by taking into account
the modification of its internal state as a consequence of the action performed, evolves following a dif-
ferential Hebbian rule. The overall activity of the population is exploited to derive an intrinsic signal that
drives the weights update. Exploiting this signal implies a maximization of the population activity itself,
thus providing an highly effective reward for the developing of a stable and accurate vergence behav-
ior. The role of the different orientations in the learning process is evaluated separately against the whole
population, evidencing that the interplay among the differently oriented channels allows a faster learning
capability and a more accurate control. The efficacy of the proposed intrinsic reward signal is thus com-
paratively assessed against the ground-truth signal (the actual disparity) providing equivalent results,
and thus validating the approach. Trained in a simulated environment, the proposed network, is able to
cope with vergent geometry and thus to learn effective vergence movements for static andmoving visual
targets. Experimental tests with real robot stereo pairs demonstrate the capability of the architecture not
just to directly learn from the environment, but to adapt the control to the stimulus characteristics.
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1. Introduction

The primary visual cortex (V1) is considered the processing sub-
strate for the retinal binocular disparity, and enables both stere-
opsis and vergence eye movements [1,2]. While stereopsis is the
process that allows for the perception of depth by disparity in-
formation, vergence movements are responsible for ensuring the
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singleness of vision and formaintaining stable fixations. These two
mechanisms mutually influence and develop together in a pro-
cess in which a finer vergence movement helps improving the
stereoacuity, and a finer stereoacuity provides effective informa-
tion for finer vergence movements.

When an infant starts looking around, both themechanisms are
not yet developed, and have to be learned. Since the infant has no
explicit teacher in learning how to control his/her own eyes [3], the
only ‘‘supervision’’ is gathered from interaction, i.e. from a direct
sensorimotor connection with the environment [4]. A plausible
learning process should count on a reward given when the eyes
fixate an object in the proper manner, thus when the singleness of
vision is guaranteed. This process ensures that an infant will learn
the correct vergence behavior [5,6], and that an adult can adapt the
control to the stimulus characteristics [7]. In fact, adaptation in the
vergence system is ‘‘essential for an organism to maintain optimal
visuomotor function’’ [8].

Consequently, the retinal binocular disparity is used by the
brain as a source of information, both to gain depth perception
and to control the eye movements, in order to actively get a better
perception of the scene, on the basis of the characteristics of the
scene itself. Indeed, a visual stimulus containing a disparity, like
a random dot stereogram (RDS), is equally effective in providing
depth perception and in triggering the correct vergence eye
movements [1,2,9].

From a computational point of view, although the complex cells
of V1 are the processing substrate for both stereopsis [10] and
vergence [1,2], these two tasks are carried out by two separate
cortical mechanisms. While the former is capable of producing a
single perception from two different retinal images, only within a
small range of disparities (Panum’s fusional area), the latter allows
us to extract a vergence control for large disparities as well [11].
Accordingly, disparity–vergence responses might follow a fast
reactive stream that directly involves V1 cells without resorting
to a high level interpretation of depth. In this way, the system
is brought back to the fusible range in order to ensure again the
singleness of vision.

From a modellistic point of view, even though the stereo and
vergence mechanisms are supposed to develop in parallel and
to refine and calibrate each other, the approaches that jointly
address this issues are very seldom [12–14]. Indeed, early works
showed, on the one hand, how it is in principle possible to learn
the receptive fields of simple and complex cells from the statistical
properties of the natural images [15–18] and, on the other hand,
how a network of disparity detectors is an effective substrate to
guide vergence eye movements [19,20]. At an intermediate level,
we can start from a large population of already developed V1-like
cells and make the network to develop effective vergence control.

In [21–23], the authors proposed a read-out mechanism of the
response of a population network of V1 complex cells so to spe-
cialize it for an effective vergence behavior. The vergence control
is computed through a weighted linear summation of the popula-
tion response. Theweights are obtained by a leastmean square (LS)
algorithm. The population tuning curves are used as basis function
and to approximate a desired behavior. On the one hand, imposing
a behavior allows the architecture to take full advantage of the re-
sources, so to cope with a wide range of disparities. On the other
hand, a behavior that is externally imposed, requires a complete
knowledge of the available resources.

In [24], a convolutional neural network is trained by exploiting
the vergence error (difference between the actual and the desired
vergence) as the learning signal. Notwithstanding the effectiveness
of the approach, it requires a ground-truth knowledge of the
robotic system in relation with the environment, that is unlikely
to be available in the real world.

From the perspective of an active vision system, a key point
is that the control should be learned actively through a direct
interaction with the environment, not by imposing an external
predefined behavior or by providing an external error. In [25] the
authors focus on how a learned sensory representation is able
to guide vergence movements in a behaving organism, using a
biological and unsupervised reward. To this end, the response of
a population of complex cells tuned to zero disparity is used to
obtain the emergence of disparity tuning in a three-layer neural
network, obtaining in such a way, a plausible substrate for guiding
vergence movements. The network is able to specialize different
servos with high sensitivity for a small disparity and broad curves
for large disparities, thereby validating the approach.

The more recent models of [26,27] propose to use the output
of different populations of complex cells, both for vergence control
and for the reward. In particular, the reward is directly computed
at each time step as the average activity of the population response,
computed after a normalization and a half-wave rectification stage.
As a consequence, the learning process relies on an internal param-
eter and requires no previous knowledge about the environment.
However, since they use receptive fields with a vertical orienta-
tion (θ = 0), their populations are tuned to the horizontal dispar-
ity component only, thus limiting the complexity of the problem.
Their approach was extended in [28], where the role of neurons
tuned to different orientations has been explored, demonstrating
a meaningful role of the non-vertical receptive fields.

It is worth noting that these models rely on a selected set of re-
sources, characterized by specific binocular properties, or specific
classes of disparity tuned cells. Much more appealing, in the con-
text of autonomous learning, is to assess (1) whether a network of
disparity detectors is able to learn the proper behaviorwithout any
external supervision, and (2)what can be an ideal signal to evaluate
the performance of the system and drive the learning phase. In [29]
the authors demonstrated how the activity of a population of dis-
parity detectors, designed according to biologically inspired spec-
ifications, can be exploited not only to compute the control for the
vergence movement, but also as a metric of the relative position of
the cameras with respect to the observed scene, and consequently
to evaluate the effect (positive or negative) of themovement on the
status of the system. Nevertheless, the proposed architecture was
trained by using a particle swarm optimization, which is not likely
to be a possible neural strategy.

In this paper, we demonstrate how a single scale neural ar-
chitecture of disparity detectors, that can be generally used for
different early vision tasks (e.g. disparity and optic flow estima-
tion [30], 3D object recognition and scene understanding [31]), im-
plicitly allows for a learning strategy of the control of vergence eye
movements, grounding on basic cortical mechanisms. Mimicking
the encoding of retinal disparity of primary visual cortex [32–34],
the population of disparity detectors is tuned to different two di-
mensional disparity magnitudes along different orientations, and
includes a normalization stage that ensures that the population ac-
tivity is stable and sensitive to retinal disparity only. The vergence
control is provided by a linear networkwhoseweights are updated
following a Hebbian rule. Since the mechanism has to evaluate the
effect of an action, the basic rule has beenmodified to take into ac-
count a temporal asymmetry, so to drive the architecture bymeans
of an internal reward signal that is provided by the overall popula-
tion activity. From this perspective, the learning capability of each
oriented channel has been evaluated, evidencing that the whole
population response is critical to gather a robust and precise con-
trol in a lower convergence time, than what can be achieved by
considering resources tuned to horizontal disparity, only. Indeed,
a correct reward for the actions taken by the system is internally
obtained by the overall increase of the population activity, which
can be used to autonomously train the system towards an effec-
tive solution. Moreover, while single-scale approach allows for a
reduced computational time with respect to a multi-scale one, the
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Fig. 1. The 2D response profile of two V1 modeled complex cells to a RDS stimuli. The stimulus disparity varies in the range [−3∆, 3∆] for both δH and δV . The parameters
used for the two represented cells are: (A) θ = 0 and ψ = π/2, and (B) θ = π/4, ψ = π/2. The top insets show the horizontal cross section of the actual (i.e. simulated)
responses for a fixed amount of vertical disparity equal to∆/2 (green), 0 (blue) and∆/2 (red), whereas the bottom ones represent the same cross sections for the analytical
model response. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
proper use of the cells tuned to non-vertical orientations allows for
a wide working range of the resulting control. The robustness and
adaptability of the architecture that arise from the population ap-
proach, are demonstrated on a real stereo pairs acquired by a robot
head in vergent geometry, in which the learned behaviors show a
conditioning from the characteristics of the actual stimulation.

The paper is organized as follows: Section 2 describes the
cortical architecture of V1 complex cells and the role of the divisive
normalization, Section 3 describes the implementation of the
learning algorithm, based on the population response, Section 4
analyzes the results obtained both with synthetic stimuli and with
the real robot stereo head, and finally in Section 5 we present our
conclusions.

2. Efficient coding of binocular disparity

Taking inspiration from neurophysiological evidences [33–36],
our architecture of disparity detector consists of a population of
V1-like binocular complex cells energy units obtained by summing
the squared responses of quadrature pairs of simple cells. These
complex cells, each with its own sensitivity to a specific vector dis-
parity δ(x) = (δH , δV ), allow the population to implicitly code the
full disparity information. The population is sensitive to disparities
bounded in a circular sub-region of the 2D disparity domain cen-
tered around zero. The region radius is directly related to the size of
the simple cell’s receptive field (RF), modeled by a complex-valued
Gabor filter:

h(x; θ, ψ) =
1

2πσ 2
e

−

1
2σ2

xTθ xθ

eȷ(k0xθ+ψ) (1)

where x are the spatial coordinates on the image plane, xθ T =

[xθ , yθ ] are the coordinates rotated by an angle θ about its center,
k0 = 2π f0 with f0 radial peak frequency of the filter, σ is the
spatial extent of the Gaussian envelop, and ψ is the phase value.
In particular, θ = 0◦ corresponds to a vertically oriented RF. The
responses of the left and right RFs centered in x in the images IL/R is:

rL/R(x; θ, ψL/R) = IL/R ∗ hL/R(x; θ, ψL/R) (2)
where ∗ denotes the spatial convolution operator; the response of
a modeled binocular complex cell is:

rc(x; θ,∆ψ) = |rL(x; θ, ψL)+ rR(x; θ, ψR)|
2 . (3)

Scaling up to the 2D case the 1D approach proposed in [9], it is pos-
sible to analytically derive the complex cell’s response by using as a
synthetic ideal stimulus, a white Gaussian noise characterized by a
constant Fourier power spectrum. Expanding Eq. (3), the resulting
tuning curve of a complex energy cell approximates to:
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where |Ĩ|2 is the constant power spectrum of the input noise im-
ages, assuming for the sake of simplicity that locally ĨL ≈ ĨR = Ĩ ,
and kθ = [k0 cos θ, k0 sin θ ] is the frequency vector. From Eq. (4),
considering kt

θδ(x) = k0δθ , where δθ is the projection of the full
disparity along the direction of θ , we can observe that the complex
cell is tuned to a specific stimulus disparity δθ = ⌊∆ψ⌋2π/k0, de-
pending only on the phase difference between the left and right
RFs, ∆ψ = ψL − ψR (see Fig. 1). Since the phase is constrained to
its principal value in the interval (−π, π], the maximum disparity
to which a cell can be selective is ±∆ = δθpref


∆ψ=±π = ±π/k0.

In order to obtain an efficient and complete representation of
the visual signal with a reduced number of channels, we imple-
mented a population of complex cells, tuned to different oriented
disparities, following the specification of [37]. The Gabor recep-
tive fields were designed in order to obtain an optimal coverage
of the spatial frequency space, without loss of information [38].
In particular, the extent of the Gaussian envelope σ and the ra-
dial peak frequency kθ were defined in order to have filters with
both a cut-off frequency corresponding to half of the amplitude
spectrum ∆kθ = 2

√
2 log 2/σ , and constant relative bandwidth
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σ =
1
kθ

2β+1
2β−1

√
2 log 2, with the constant relative bandwidth β set

at one octave. Under these specifications, the coverage of the an-
gular frequency is obtained by ∆θ = 2 arctan 2

√
2 log 2
kθσ

, leading to
a minimum number of oriented channels of No = 2π/∆θ . The
resulting population is composed by of Np × No disparity detec-
tors, where Np are the phase shifts ∆ψ along and No orientations,
equally spaced between −π and π and between 0 and π , respec-
tively.

Although the complex cell tuning curve presents a peak of
response at the preferred disparity, from Eq. (4) we note that it is
proportional to the energy of the image |Ĩ|2, too. Using a divisive
normalization stage (cf. [39,40]), we can rescale the activity of any
single cell by the energy Ebin of the entire population, pooled over
all the phases and the orientations:
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1
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This normalization stage allows us to obtain the normalized
complex cell response:

r̂c(x) =
rc(x)
Ebin

= 1 + cos(kT
θ δ(x −∆ψ)) sech(δ2/σ 2) (6)

independent of the stimulus luminance, but preserving the tuning
on the stimulus disparity.

3. The learning algorithm

Grounding on a population of complex cells tuned to Np phases
along No orientations, as introduced in Section 2, the goal of
the learning algorithm is to derive a proper disparity–vergence
control signal vS , by aweighted linear summation of the population
response in a foveal neighborhoodΩ , so that:

vS =


x∈Ω
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i=1
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where R̂i
c is the summation of the response of the ith cell r̂ ic over the

Ω , weighted by Gaussian profile G(x) centered in the fovea. In [29]
we demonstrated that the network, for its implicit characteristics,
can be exploited to drive the progress of learning and to move
the system towards an effective behavior. Indeed, by analyzing
the normalized complex cell response Eq. (6), we can see that it
oscillates about an unitary value, and is composed of a sinusoid and
a term in sech that defines the region on the disparity plane where
the cell is responsive. The latter term, presenting a maximum
for null disparity and decreasing as a function of the disparity
modulus, can be informative about the distance of the system from
a correct vergence position. Nevertheless, its computation requires
the reliable knowledge of the ground truth stimulus disparity, and,
since our aim is to endowan active visual systemwith autonomous
learning capabilities, we have to consider that the these data are
not available and thus we cannot rely upon them.

It is worth noticing from Eq. (6), thatwe can derive the standard
deviation (std) of the population response as a function of disparity
for a white noise stimulus:
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1
π

 π

0

1
2π

 π

−π


R̂c(kθ ,∆ψ)

2
d∆ψdθ − 1

=


1
2
sech


− |δ|2 /σ 2


(8)
Fig. 2. (Top) Response of a single orientation channel of the population (i.e. for
a fixed θ and with phase shifts ∆ψ ∈ [−π, π]) to a disparity stimulus δθ that
varies in the range [0, 3∆], along that orientation. (Bottom) The associated std of
thewhole population response. Each color plot corresponds to a different image set:
RDS (blue), pink noise (magenta), a natural image (red), stereo pairs acquired by a
robot head (green), and the theoretical std as in Eq. (8) (black). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

that, as desired, reflects the variability of the population activity
(see Fig. 2, black line), but can be computed directly by the internal
coding of the visual information, i.e. the population response,
without requiring any external knowledge from the environment.
Accordingly, this signal can be used as an effective reward for the
system, since it provides a propermeasure of the distance from the
goal of the vergence movements. Indeed, while the system moves
towards zero disparity, the population activity moves towards its
maximum activity, both for indicating how much the system is
close to the desired vergence (i.e. zero disparity) and evaluating
how much effectively and rapidly it guides the action towards the
fixation. In order to verify and validate the stability of thismeasure,
we computed the response profiles, and thus the std, not only for a
white noise stimulus (see Fig. 2, blue line), but also tomore natural
and real stimuli, i.e. to pink noise (magenta line), to a natural image
(blue line), and to real stereo pairs acquired by a robot head (green
line). The slightly different shapes of these signals with respect to
the theoretical std (black line) computed accordingly to Eq. (8) is
given by the fact that they are computed on real tuning curves, and
that they results from a summation instead of an integral over the
parameter space.

Differently from [29] where we rely on a particle swarm opti-
mization algorithm for the development of theweights, which is far
from being a plausible cortical mechanism, here we adopt a more
biologically plausible Hebbian rule to learn the vergence control.
Specifically, since the effect of the performed vergencemovements
can be evaluated at an instant of time subsequent to the one that
triggered it,we introduced a temporal asymmetry in the algorithm,
obtaining a differential Hebbian rule [41]. Analyzing the temporal
trend of the population, it turns out that the vergence control di-
rectly correlates with the variation of the activity of the complex
cells, i.e. the vS computed at t − 1, correlates with the variation
of the activity of the complex cells between the time t − 1 and t .
This observation leads to the following rule for the update of the
weightsw:

wi|t = (1 − η)wi|t−1 + ηvS(rc |t−1)∆r ic (9)

where∆r ic = r ic |t − r ic |t−1. Accordingly, the single synaptic weight
wi at the instant t is modified by its value at the previous instant
wi|t−1 plus the update term. Such a term is composed of the activity
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of the postsynaptic neuron (i.e. the vergence control) computed at
the previous instant vS(rc |t−1), multiplied by the variation of the
activity of the presynaptic neuron (complex cell) ∆r ic elicited by
the vergence control. The parameter η models the learning rate.
Since the variation of the cell’s activity can be positive or negative,
as well as the vergence control, such a rule positively reinforces
the synapses of presynaptic neurons whose variation correlated to
output of the postsynaptic neuron, and negatively those with anti-
correlated variations.

In order to avoid the weights to diverge to infinity, Eq. (7) has
been modified adopting, at each time step, a normalization, as in
Oja’s rule [42], ŵi = wi/w̄, where:

w̄|t =

Np×No
j=1

(w
p
j |t−1)

1/p (10)

with the exponent p set to 2.
At the beginning of the learning phase, the weights are ran-

domly initialized with uniform distribution between −1 and 1
with zero mean. Consequently, the initial vergence control is far
from yielding the correct movement. Nevertheless, the learning
rule enhances the influence of the cells with correlated and an-
ticorrelated variation, no matter what is the result of the action
taken. Instead of a fixed learning rate, our purpose is to include a
dynamic rate that is derived from the activity of the population it-
self, the variation of std, i.e. η = η|t = ∆std, that modulates the
learning algorithm [43], leading to:

ŵi|t =

(1 − η)wi|t−1 + ηvS(rc |t−1)∆r ic


/w̄. (11)

If in two consecutive time steps the std grows, it implies that
the vergence movement has been correct, and the learning rule
increases/decreases the weights corresponding to the cells with
correlated/anticorrelated variation. Otherwise, when the vergence
movement is incorrect, the sign of the learning rate is opposite, as
well as the update of the weights.

Considering the reward term directly in the learning rule, pro-
vides an update of theweights that depends on the resulting action
in twoways. First qualitatively, because the sign of the variation of
the reward∆std inverts the effect on the synapses. Second, quan-
titatively because the weights are strengthened proportionally to
the effectiveness of the action, i.e. on the modulus of ∆std. The
resulting process rapidly converges to a vergence control able to
move the system towards null disparity, and to provide stable and
correct fixations.

An interesting feature of the computational substrate that must
be taken into account is that the standard deviation is effective
in driving the learning because of the characteristic of the tuning
curves, that yield a preference for zero disparity in the overall
population response. Indeed, if the network were composed of
cells with ideal bell-shaped response (e.g. Gaussian) tuning curves,
the standard deviation of the population activity would be flat
in the region of interest (see Fig. 3, magenta line), providing no
information about the state of the system, and thus being useless
for the learning process.

4. Results

The learning algorithm is tested in three different conditions.
The first experiment is conducted with synthetic stimuli char-
acterized by constant disparity, and aims to assess: (1) the in-
formative content of each orientation channel separately, (2) the
capability to converge to a proper solution, and (3) the convergence
velocity with different learning signals. In the second experiment
we test the robustness of the algorithm by using a reduced subset
of cells, randomly chosen from the original population. The third
Fig. 3. The learning signals used to train the network: std is the standard deviation
of the population response (blue line), hw is the sum of the half-wave rectified
activity of the same population (magenta line), ph0 is the response of the cell
defined by ∆ψ = 0 and θ = 0 (red line), and δGT is a function of the ground
truth disparity (green line). Those signals are compared to the standard deviation
of a population of cells defined by Gaussian tuning curves (black dashed line). For
the sake of representation, the signals are normalized in order to have all a unitary
maximum. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

experiment analyzes the behavior of the vergence control in a re-
alistic situation, i.e. while the eyes are looking at a plane in a sim-
ulated environment resembling the optical characteristics of the
iCub stereo head. Finally, the effectiveness of the learning algo-
rithm is validated on real stereo image pairs acquired directly by
the iCub stereo head, and the learned control is tested for real-time
behavior on the robot.

4.1. Learning on synthetic stimuli

The algorithm is first testedwith synthetic stimuli randomly se-
lected among those used to derive the population tuning curves in
Section 2 (RDS, pink noise images and natural images). Such a con-
figuration can be considered a facilitated one, because the dispar-
ity is directly controllable and constant over the whole image, and
it is used to demonstrate the learning capabilities of the network.
From an implementation point of view, the filters have been spec-
ified according to Section 2, in order to provide the system with a
sufficient working range in peripersonal space, for the test in the
simulated environment and with the iCub stereo head. Indeed, the
range of disparities encoded by the population is defined by the ra-
dial peak frequency, set to f0 = 1/16 cycles per pixel, resulting in
∆ = 8 pixels, performed by Np = 9 phase shifts. The standard de-
viation of the Gaussian envelope is computed accordingly (σ ≈ 9
pixels), and the angular coverage the disparity is granted by using
No = 8 orientations. The filter size is set to 43× 43 pixels, in order
to cover the full spatial extent of the Gaussian envelope (≈5σ). The
binocular stimulus is created from two images, of size 256 × 256
pixels, where the left is an identical copy of the right one, shifted
by an equal amount of binocular disparity. For not-integer values of
disparity, the right image is obtained by a bilinear interpolation of
the left one. Each trial starts from a randomly initialized disparity
value in a continuum within the range [−∆,∆] for the horizontal
component. The system evolves for 8 time steps, where the dis-
parity content of the stimulus is modified at each t according to
the vergence control computed by Eq. (7). In order to qualitatively
take into account the vertical disparity that arises from the vergent
geometry, the range for the vertical component is set to 1/3 of the
horizontal one, following the disparity statistics that occurs in nat-
ural images [44].

Fig. 4 shows the evolution of a set of weights (column A) using
the std as the reward signal. The effectiveness of the weights
along their development can be assessed from the tuning curves
of the resources. Indeed, the resulting vergence control can be
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Fig. 4. Evolution of the learning process for a single set of weights at trial 0 (top panel), 200 (middle panel) and 1500 (bottom panel), using std as reward signal. A.
Representation of the learned set of weights with respect to the tuning characteristics of the cells’ RFs, i.e. the orientation θ and the binocular phase difference ∆ψ . Bright
and dark colors correspond to positive and negative weights, respectively. B. The resulting vergence control (i.e. disparity–vergence response) over the 2D disparity domain.
Bright and dark colors correspond to positive (convergence) and negative (divergence) controls, while white lines represent the zero crossing of the profile. The bottom
inset represents the corresponding horizontal cross sections of the control for a fixed vertical disparity pedestal equal to −∆/2 (green), 0 (blue) and∆/2 (red). C. Temporal
evolution of the vergence trajectories. Note that each panel shows a distinct stage of the learning process: trials 0–50 (top panel), 150–200 (middle panel), and 1450–1500
(bottom panel). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
derived by a weighted summation of the tuning curves (column
B). Since at the beginning the weights are initialized randomly, the
vergence control derived has not a specific shape, both in term of
the 2D profile and for what concerns its horizontal cross section
(column B, top). As a consequence, the resulting control, instead
of moving the system towards zero disparity, produces wrong
vergence trajectories (column C, top). After a limited number of
trials (e.g. 200 for the figure), the profile of the disparity–vergence
control evolves to more a symmetric shapes that approximates
linear servos, and produces vergence trajectories that drive the
system towards zero disparity (column B–C, middle). At the end of
the learning process (i.e. at trial 1550, for the figure), the weights
converge to a stable configuration, and the system is able to
complete effectively and precisely the vergence movement within
the given number of time steps (bottom row).

A qualitative analysis of the learned set of weights and their ca-
pability, pointed out that the resulting profiles are characterized by
two salient features typical of an effective vergence control: they
develop an odd symmetric controlwith a zero crossing for zero dis-
parity (see Fig. 4(B), bottom). At a first glance, the learned set of
weights have a characteristic structure that emerges after a suffi-
cient learning time. Indeed, so as the control, theweights exhibit an
odd symmetrywith respect to zero phase shift and vertical orienta-
tion (see Fig. 4(A), bottom). Cells characterized by the same orien-
tation provide opposite contribution, depending in the sign of the
zero phase shift, so as cellswith the samephase shift provide oppo-
site contribution with respect to the sign of the deviation from the
vertical orientation. As expected, cells with an odd tuning curve
(∆ψ ≠ 0,±π) contribute and compete in realizing the control,
whereas cells with even tuning curve (∆ψ = 0,±π) provide null
contribution, aswell as cells tuned to pure vertical disparity. More-
over, the robustness of the learned control to vertical disparity is
assessed by the fact that a meaningful vertical disparity pedestal
(e.g. ±∆/4) does not affect the effectiveness of the control, which
maintains its odd symmetry and the zero crossing (see Fig. 4(B),
blue, green and red cross section plots).

4.2. Role of the orientation channels

While a multi-scale approach allows implicitly for a larger
working range of the control, the proposed algorithm relies on a
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Fig. 5. Residual absolute error (in ∆ units) of the vergence control during
the training phase, over 1500 trials, where the different orientations are used
separately. The color represents the error according to the colorbar on the right,
while on each plot the x-axis represents the different consecutive trials, and the y-
axis indicates the four different ranges of disparities used in the learning process,
from [−∆/4,∆/4], to [−∆,∆]. From top to bottom: the error for θ = 0, θ =

±∆/4, θ = ±∆/2, θ = ±3∆/4, and, for comparison, the error obtained when
considering the whole orientation channels. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

single scale network in order to keep the computational cost min-
imal. It is the use of resources tuned to different orientations that
allows us to obtain a broader working range by the non-vertical
orientated channels [22,28]. Indeed, the more the 2D Gabor RF de-
viates from the vertical, the most its tuning curve for horizontal
disparity (i.e. δV ≈ 0) can be described by a 1D Gabor profile with
a lower frequency with respect to the nominal peak frequency f0
of the RF (see Fig. 1, blue cross-section plot). Considering that in
vergent viewing conditions the vertical disparity is not zero, the
tuning curve of the non vertically-oriented complex cells is consid-
erably modified (see Fig. 1, red and green cross section plot), and
a vergence control that relies on such resources have to cope with
this effect to maintain its effectiveness.

In order to assess the role of the different orientation channels
with respect to the stimulus disparity, we have extensively and
separately tested their contribution for different disparity ranges of
the input stimulus: [−∆/4,∆/4], [−∆/2,∆/2], [−3∆/4, 3∆/4]
and [−∆,∆]. The average behavior of the learning algorithm is
evaluated repeating the procedure presented in Section 4.1 50
times for each of the disparity range, and each set of weighs,
randomly initialized, is let evolve over 1500 different trials. The
performance of the resulting control with respect to the achieved
vergence is evaluated by the residual vergence error at the end
of each trial, i.e. the residual horizontal disparity at fixation.
Fig. 5 shows, for each orientation channel as well for the whole
population, the evolution of the residual vergence error along the
trials (x-axis), averaged over the 50 different sets of weights, for
the four different disparity ranges considered (y-axis).

Fig. 5 shows a trade-off in the learning capability of the control
between the extent of theworking range and the orientation of the
resources. The more the orientation deviates from the vertical, the
most its working range can increase, but its sensitivity to vertical
disparity increases together, weakening the effectiveness of the
learning capability. Indeed, the vertical oriented units, i.e. the ones
tuned to horizontal disparities only, even if not sensitive to vertical
disparity, are characterized by tuning curves to horizontal disparity
with a high frequency (see Fig. 1), and consequently with a small
working range. Accordingly, such units fall short in learning a
proper controlwhen thedisparity range approaches the theoretical
limit∆ (i.e. δ > 3∆/4). Conversely, the cells oriented to θ = 3π/8,
Fig. 6. Residual absolute error (in ∆ units) of the vergence control during the
training phase (as in Fig. 5), where different learning signals are used. From top
to bottom: the std; a function of the ground truth disparity δGT ; the hw summed
activity of the half-wave rectified complex cells’ response; the response ph0 of the
cell defined by ∆ψ = 0 and θ = 0; and the std− of the same population as
std, but when a reduced set of resources (50%) is considered. The blue contour line
represents a threshold of∆/8. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

which are the ones that are able to provide the widest working
range, are completely unable to drive the learning of a proper
control, due to their strong sensitivity to the vertical disparity. The
two intermediate orientations show a good learning capability for
disparities > ∆/4, where the sensitivity to the vertical disparity
simply results in a longer time for convergence. Finally, the results
show how each single orientation channel may not learn a stable
vergence behavior for small disparities (< ∆/4).

Therefore, so as the signals from different orientations facilitate
the disparity decoding [45], they play a key role on vergence con-
trol and its learning process. The comparison between the perfor-
mance of thewhole population and those achieved by the different
orientations separately, confirms the advantage of the population
coding. In agreement to [28], including other orientations than the
vertical one, decreases the time required to learn an effective ver-
gence behavior and increases the working range of control. The
main difference is that in [28] the added orientations have no ef-
fect on the resulting precision, whereas with our approach the use
of the whole population makes it possible a higher precision, par-
ticularly for small disparities (see Fig. 5, bottom). Such an effect is
likely to arise from the different training stimuli used. Indeed, [28]
employ images containing horizontal disparity, only, whereas the
synthetic stimuli we used is characterized by a vertical disparity
pedestal. It is the interplay among the different orientation chan-
nels that allows us to gain an insensitivity to the vertical disparity,
which is amandatory feature to obtain an effective andprecise hor-
izontal vergence control, able to cope with real stereo image pairs
acquired in a vergent viewing geometry.

4.3. Learning through different rewards

In order to have a direct comparison with the other methods
proposed in literature, the algorithm is tested using four different
reward signals (see Fig. 3), i.e. the ground truth disparity (δGT ),
the response of a zero disparity complex cell with θ = 0 and
∆ψ = 0 (ph0) [25], the sum of half-wave rectified population
activity (hw) [27], and finally the proposed standard deviation of
the population response (std) [29].

As in Figs. 5, 6 shows for thewhole population, the performance
of the different rewards for the considered disparity ranges. At a
first glance, it turns out that the larger is the range of disparities the
system has to copewith, the longer it takes to converge to an effec-
tive control. The proposed algorithm, exploiting the std, is able to
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Fig. 7. An example of a learned set of weights (left) and the resulting two-
dimensional profile of the vergence–disparity response (right), when considering
a population subset of 50% of the resources, presented with the same notation
of Fig. 4(A)–(B). The white crosses represent the cells that are removed from
the population. The bottom inset represents the corresponding horizontal cross
sections of the control for a fixed vertical disparity pedestal equal to ∆/2 (green),
0 (blue) and∆/2 (red). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Residual absolute error (in ∆ units) of the vergence control during the
training phase (as in Fig. 5), for the four different ranges of disparities, but using
different random percentages of the resources (from 100% to 5% of the whole
population of complex cells, at steps of 5%).

develop an effective vergence control (residual error smaller than
∆/8), within the first 20 trials, 250 trials, 500 trial and 550 trials,
for the four ranges of disparity tested, respectively. As expected,
whereas the std, the hw and the δGT are able to develop an effec-
tive control for all the tested ranges, the ph0 signal takes a slightly
longer time and it is not able to make the system to converge for
a large disparity range (±∆). This happens because the ph0 signal
is not monotone and it changes sign at about δ = ∆/2 (see Fig. 3),
providing a correct reward for small disparity ranges, only. The std
provides a performance comparable to hw, but with a lower er-
ror at the beginning of the learning phase and a slightly shorter
time to convergence, particularly for small disparities. Indeed, we
have to consider that, being the population tuned to different phase
shifts (i.e. disparities) the cells that respond below the average
are informative just like those that respond above average. As a
consequence, even if both std and hw carries similar information
content, the first signal, not using the half-wave rectification, al-
ways exploits thewhole population response, thus yielding amore
robust signal (see Fig. 3) that provides a slightly improved perfor-
mance.

Finally, comparing the std and δGT , the velocity of convergence
can be considered equal for both signals, thus validating the
proposed unsupervised approach. The system, by exploiting an
internal parameter, the std, is able to learn a correct and effective
vergence behavior, with similar capabilities as if it were exploiting
a supervised ground truth signal.
4.4. Learning with a limited number of resources

A proper distribution of the resources over the feature space
may result in a oversimplification of the algorithm. Indeed, since
the system is pushed to develop a symmetric control through a
symmetric exploitation of the resources, it is unlikely to suppose
that in a real neural architecture the resources, although covering
the whole feature space, are so regularly distributed over it
(see for example [32]). In order to further validate the proposed
learning algorithm, we repeated the tests removing a subset of
cells from the population (see Fig. 7, right). The removed cells are
randomly chosen among thewhole set, so to prevent the system to
rely on symmetric resources. Nevertheless, the developed control
provides the two required salient features (see Fig. 7, left), and
shows a capability that is qualitatively equivalent to that obtained
by the whole population.

Analyzing the convergence velocity of the systemwhen exploit-
ing only the 50% of the resources (see Fig. 6, bottom), it is evident
how it takes a longer time to develop an effective control, but the
final behavior is equal to that obtained when using the whole set.

In order to assess the robustness of the learning algorithm, as
long as the effectiveness of the reward signal, the learning phase
where repeated for different random percentages of resources
used on the four disparity ranges used. Fig. 8 shows how for
small disparities ([−∆/4,∆/4] and [−∆/2,∆/2]), the 15% of the
population is sufficient to learn a proper control, whereas for
[−3∆/4, 3∆/4] the percentage raises to 25%, and finally for large
disparities ([−∆,∆]) a 50% is needed.

4.5. Test on a frontoparallel plane

In order to assess the effectiveness of the learned control in re-
alistic environment, characterized by vergent geometry and vary-
ing azimuth and elevation of the gaze direction, we implemented
a virtual environment (Fig. 9(A)) that resembles the geometrical
and optical characteristics of the iCub stereo head used in the next
section. The interocular distance is b = 70 mm, the focal length is
fc = 6 mm, and the stimulus is projected onto the retinal plane,
with a size of 1/3′′ mm, thus with a field of view of about ≈80°,
horizontally, and ≈60°, vertically. The images are rendered with
a resolution of 120 × 160 pixels, thus leading to a square pixel of
0.5°. The binocular head look at a planar surface characterized by
a pink noise texture. According to Eq. (7), the vergence control is
computed by weighting the cells’ response with a Gaussian profile
centered in the fovea and with a standard deviation of 1.5°. From a
functional point of view, the filter size is selected starting from the
assumption that the architecture should be at least able to learn
the proper vergence control in range of disparities encoded by the
population, i.e. ∆. Accordingly, it has been set to f0 = 0.0.125° cy-
cles/degree, leading to∆ = 4°, in order to provide the systemwith
a sufficient vergence working range in peripersonal space.

The geometry of the modeled binocular vision system is
characterized by a commonelevation for the left and right cameras,
and independent azimuth angles, as in the Helmholtz reference
frame [46]. This configuration yields a simplified parametrization
of the visual direction in terms of version and vergence (α)
angles, where, the vergence control necessary to move the fixation
point, while keeping constant the gaze direction, is applied
symmetrically on both the eyes [23]:∆α = − arctan(vS/2fc).

Unlike the case with parallel optical axes, where the proper cal-
ibration allows a cancellation if the vertical disparity component
across the whole image, in a realistic system with vergent geom-
etry the arising pattern is more complex [29], and would require
a continuous recalibration. Hence a vertical disparity tolerant sys-
tem is highly desirable. Adopting the Helmholtz geometry, the op-
tical axes are always intersecting, and the vertical disparity is zero
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Fig. 9. A. Simulated experimental setup for the test of the learned vergence control on a textured plane. B. Mean and standard deviation of the fixation point trajectory
in depth, computed over different gaze directions and plane orientations, according to the learned vergence control (blue solid line), when following a step, a ramp and a
sinusoid movement of a textured plane stimulus (dashed black line).
along the horizontal meridian, only. More precisely, the vertical
disparity growswith the retinal eccentricity, and it is influenced by
three factors: (1) a gaze direction that deviates from the straight-
ahead, (2) the non-perpendicularity of the observed surface with
respect to the binocular line of sight, (3) large vergence angles.
Thus, aiming to learn a vergence control that would be able to cope
with a changeable and unknown environment, the vertical dispar-
ity is a major concern that is mandatory to take it into account. In
order to test the effectiveness of the learning algorithm in a more
realistic situation,wemoved the gaze direction from−30° to 30° at
steps of 5° both for the azimuth and the elevation. Moreover, the
orientation of the plane in space has been chosen not perpendicu-
lar to the binocular line of sight, but its orientation is changed be-
tween−20° and 20° at steps of 2°with respect to both the degrees
of freedom of orientation.

At the first time step, the plane and the fixation point are at the
same Z , then the plane is moved to a new depth, and the vergence
angle starts moving. Working in a visually-closed loop, the control
is updated at each time step and, particularly for small disparities,
it has a value proportional to the binocular disparity in the fovea.
As a consequence, when the fixation point reaches the depth of the
stimulus, the vergence control intrinsically turns to zero and the
fixation point remains steady at the depth of the plane.

Taking inspiration from psychophysiological experiments [47],
the effectiveness of the learned control is evaluated with three
different tests, i.e. with a frontoparallel plane whose position in
depth varies in time as a step, as a ramp and as a sinusoid. Fig. 9(B)
shows the mean trajectory of the fixation point and its standard
deviation (blue), computed over all the gaze directions and plane
orientations considered, with respect to the ground truth depth of
the plane (black). These tests show how the system developed the
two salient features of the control. In fact, it is capable of producing
fast changes of the fixation point for abrupt changes of the stimulus
depth (Fig. 9(B), top panel) and smooth movements to follow
the depth of the stimulus (Fig. 9(B), center and bottom panel).
Likewise, it is able to produce stable fixations on a steady stimulus
(Fig. 9(B), top panel) with the fixation point laying correctly at
the depth of the stimulus. Moreover, the small standard deviation
of the trajectories validates the robustness of the control to the
varying vertical disparity present in the different trials.

4.6. Learning on real stereo image pairs

The effectiveness of the learning algorithm is tested on the iCub
stereo head [48]. Being designed to resemble the human head, it
has the interesting feature of a baseline of 70 mm, i.e. similar to
the baseline of a human being. This allows the system, working
in the peripersonal space, to experience binocular images with
disparities close to those that would fall on the human retinas in
similar conditions. The original images from theDragonfly cameras
(768 × 1024), are sub-sampled to 120 × 160 pixels, in order
to allow the system to achieve real-time performances [23]. The
filter specifications are the same of that used in the previous
experiments, thus leading to∆ = 4°.

The learning algorithm is trained offline, following similar
principles to those described in Section 4.1. The training set of
images consists of stereo pairs acquired from the iCub head, in
a setup similar to that used in the simulated environment. A
textured plane is kept fixed at a depth of approximately 600 mm,
and perpendicular to the binocular line of sight. The images are
acquired with the fixation point encompassing the depth range
necessary to obtain stereo images characterized by a horizontal
disparity between [−∆,∆], i.e. ≈[350, 1500] mm, with steps of
≈10 mm.

The flexibility of the population of disparity detectors provides
an effective substrate to gather the reward signal for the learning
phase also with real robot stereo image pairs (see Fig. 2, green
line). The fixation point, starting over a set of 1500 different depths
randomly chosen within a predefined range, is updated by means
of vS , applied as in Section 4.5, and should converge towards the
actual depth of the stimulus, i.e. 600 mm.

The obtained control is tested with a textured plane, moved
smoothly by hand following a trajectory that oscillates about a
mean depth of ≈600 mm with an almost constant frequency of
0.15 Hz, and with increasing amplitude from 0 to ≈600 mm (see
Fig. 11). The stereo image pairs are acquired at a frame rate of
≈14 fps, and the vergence command is applied to the azimuth
motors at the same frequency. The depth of the stimulus with
respect to the stereo head is measured with a Microsoft Kinect
sensor device, precisely calibrated for the task at hand [49]. The
actual depth of the fixation point (red solid line)with respect to the
ground truth of the stimulus (black dotted line), is estimated by the
position of the azimuth axes provided by the magnetic encoders
of the motors, returned by the robot head. The stimulus motion is
initiated after a few seconds, that are given to the system so that
the fixation point precisely reaches the actual depth of the plane.
Notwithstanding the high motor backlash (≤ ±1°) that produces
both biased evaluation of the depth of the fixation point, and a
delay between the stimulus and the fixation point trajectories, the
control shows the capability of correctly following a real stimulus
in depth, for both small and large movements. The robustness of
the computed control is demonstrated by the smooth the motion
of the fixation point, which resembles the stimulus trajectory.

Notwithstanding the different sources of error, the algorithm
is able to learn an effective control from real stereo image pairs.
Indeed, representing the learned control in feature space (see
Fig. 10), shows how the behavior is qualitatively similar to those
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Fig. 10. An example of a learned set of weights (left) and the resulting two-
dimensional profile of the vergence–disparity response (right), when considering
real robot stereo image pairs, presentedwith the same notation of Fig. 4(A)–(B). The
green line represents the actual full disparity experienced by the robot for different
vergence angles.

Fig. 11. Vergence trajectories achieved by the real robot system (red solid line),
while it is binocularly tracking a frontoparallel plane (black dotted line) moving
with constant a frequency and an increasing amplitude.

controls obtained on synthetic data. First of all, our population
network, encoding explicitly the vertical disparity, allows us to
cope: (1) with real images not compensated for lens distortion,
(2) with the not-constant vertical disparity pattern that arises in
vergence geometry [50], and (3) with the vertical disparity offset
due to the misaligned optical axes. Secondly, the zero crossing
solves the error given by the motors’ backlash. In fact, working in
a closed visual loop, when the disparity in the fovea is reduced
to a value close to zero, the control consequently becomes be
zero, regardless of the real depth of the object and of the actual
position of the motors. Thirdly, it is possible to assess a direct
relationship between the shape of the obtained 2D response profile
(see Fig. 10, left), and the real disparities experienced by the robot
in the foveal area. Fig. 10 shows how the learned controls preserve
the mandatory feature of zero crossing for zero disparity, both
for the cross section defined by δV = 0 (blue line), and, more
essentially, for the actual vector disparity characterizing the stereo
pairs (green line). Indeed, the learned profile is slightly tilted and
has a small vertical offset, according to the characteristics of the
real stimulus disparities. Such a feature evidences the capability
of the algorithm to learn directly from the environment and to be
conditioned by it, in order to drive the system towards a control
that is not just able to cope with different disparity patterns, but
also to adapt to the contingent situation.

Nevertheless, while at a functional level the large backlash
is compensated by the closed visual loop, its drawback on the
learning capability is that it sever the temporal relation between
the computed vergence command and the action achieved
(i.e.with the reinforce provided according to the action), seriously
jeopardizing the online learning on the robot. The problem can be
in principle solved by a temporal integration of the learning signal,
and this is currently an ongoing work.

A further advice given by this result is that, a Helmholtz ge-
ometry with three degrees of freedom like in the iCub stereo
head, has many advantages for simplifying the control and the
properties of the disparity pattern, but it has a drawback on the
learning capability of the presented algorithm. In fact, since the
designed architecture is characterized by oriented binocular en-
ergy detectors that span the whole 2D disparity plane, such
resources are not fully exploited by a Helmholtz system.More pre-
cisely, the Helmholtz kinematics bounds the mean disparity on a
single stripe, limiting in this way the learning capabilities of the
system to copewith large disparities. It is evident how theworking
range of the learned vergence control comes to be larger when the
vertical disparities are constrained (see Fig. 10), respect to when
they varies randomly (see Fig. 4, bottom). Accordingly, while an
online implementation of the proposed algorithm on a robot head
characterized is straightforward for an Helmholtz geometry, more
interesting results are expected to rise using different mechanical
geometries, as the Fick-like gimbals implemented on the binocular
turret of the K-Team Koala [51] or the non-conventional mecha-
tronic binocular eye systems with two degrees of freedom for each
camera (e.g., see [52]). Indeed, the extension of themechanical sys-
tem to four degrees of freedom would, from the one hand compli-
cate the algorithm is expected to slow down the learning process,
but from the other hand it would allow for a more natural study of
the problem of binocular coordination in three-dimensional space,
so as of the relation existing amongdepth perception, vergence and
oriented disparity.

In conclusion, by exploiting a precise and complete knowledge
either of the resources (tuning curves) or of the environment
(ground truth disparity), it is possible to obtain an effective
vergence control. Nevertheless, such techniques are grounded on
a kind of knowledge that prevents the system to autonomously
learn its behavior from data. On the other side, the proposed
architecture, designed by mimicking the neural parameters, gains
the intrinsic characteristics of providing in internal parameter,
related to the whole population activity, which is able to drive
the learning of the vergence behavior and to obtain equivalent
performances, both on synthetic stimuli and real stereo image
pairs.

5. Conclusion

In this paper, we proposed a neural architecture that is able
to exploit its internal state to drive the development a proper
vergence behavior, thus without any external supervision. The
proposed approach, grounds on basic corticalmechanisms both for
the representation of the visual signal and for the learning strategy.

From an algorithmic point of view, the distributed coding of the
visual signal, allows an effective estimation of the state of the sys-
tem, and, consequently, of the proper action to reach another state.
Relying on the efficacy of the divisive normalization mechanism,
the state estimation is robust and stable, and invariant with im-
age features other than the disparity. The obtained population re-
sponse is modulated by the retinal disparity only, both with white
noise stimuli and with more natural ones like pink noise, natural
images and, above all, with stereo pairs acquired by a real robot
head.

More precisely, the estimation of the relationship between the
system and the environment (i.e. the system’s state) is obtained on
a visual basis. Indeed, it is directly the internal representation of the
visual signal that drives the learning of themotor control, causing a
behavior that naturally emerges from the interaction between the
system and the environment. The visual exploration performed by
the system, also corresponds to an exploration of the capabilities
of the system itself, and to an autonomous tuning exercise for a
better interaction with the environment.
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From amethodological point of view, the proposed architecture
points out the advantages and the flexibility of distributed cortical-
like architectures against solutions based on a conventional
systemic coupling of sensing and motor components. Indeed, the
linear network, despite its simplicity, does not require any pre-
vious knowledge about the resources in use, but rather it is able
to exploit the interaction with the environment to learn the rele-
vance of each cell of the population, that comes to cooperate for
the generation of the motor control. Each orientation channel, in-
deed, is not sufficient, by itself, to provide the necessary learning
capabilities, whereas it is the interplay among them that concurs
to develop an effective and precise control in a short time, attesting
how a complete representation of the visual signal is instrumental
to gather an effective motor control. The cortical-like architecture
is thus an effective substrate, able to derive correctly the vergence
movements, and to gather the reward signal for the learning phase.
The proposed learning rule, extending the standard Hebbian learn-
ing, takes into account (1) a temporal asymmetry (and thus the
dynamic of the system), and (2) a reward signal that directly af-
fects the learning rate, implementing a direct andmutual influence
between the control and the population activity that generated it,
i.e.with the stimulus that evoked the activity. Indeed, grounding on
the flexibility of the distributed approach, the developed vergence
behavior is not just able to cope with the mechanical and optical
inaccuracies that affect a real vision system, but it is also implicitly
suited to the stimulus.

More generally, the proposed architecture, by exploiting an
early synergy between the sensing modules and motor control, al-
lows us not just to close the loop between action and perception at
system level, but shorten it at an inner one. This allows not just the
emergence of spatial competences but provides an instrumental
conditioning by which the behavior arises directly from the inter-
action between the environment and the perceiving system,which
could modify its interactions with the world.
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