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This paper deals with empirical processes of the type

Cn(B) = √
n{μn(B) − P(Xn+1 ∈ B | X1, . . . ,Xn)},

where (Xn) is a sequence of random variables and μn = (1/n)
∑n

i=1 δXi
the empirical measure. Conditions

for supB |Cn(B)| to converge stably (in particular, in distribution) are given, where B ranges over a suitable
class of measurable sets. These conditions apply when (Xn) is exchangeable or, more generally, condi-
tionally identically distributed (in the sense of Berti et al. [Ann. Probab. 32 (2004) 2029–2052]). By such

conditions, in some relevant situations, one obtains that supB |Cn(B)| P→ 0 or even that
√

n supB |Cn(B)|
converges a.s. Results of this type are useful in Bayesian statistics.

Keywords: Bayesian predictive inference; central limit theorem; conditional identity in distribution;
empirical distribution; exchangeability; predictive distribution; stable convergence

1. Introduction and motivations

A number of real problems reduce to the evaluation of the predictive distribution

an(·) = P(Xn+1 ∈ ·|X1, . . . ,Xn)

for a sequence X1,X2, . . . of random variables. Here, we focus on those situations where an

cannot be calculated in closed form and one decides to estimate it based on the available data
X1, . . . ,Xn. Related references are [1–3,5,6,8,10,15,18,20].

For notational reasons, it is convenient to work in coordinate probability space. Accordingly,
we fix a measurable space (S, B) and a probability P on (S∞, B∞), and we let Xn be the nth
canonical projection on (S∞, B∞,P ), n ≥ 1. We also let

Gn = σ(X1, . . . ,Xn) and X = (X1,X2, . . .).
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Since we are concerned with predictive distributions, it is reasonable to make some (qualita-
tive) assumptions about them. In [6], X is said to be conditionally identically distributed (c.i.d.)
when

E(IB(Xk)|Gn) = E(IB(Xn+1)|Gn) a.s. for all B ∈ B and k > n ≥ 0,

where G0 is the trivial σ -field. Thus, at each time n ≥ 0, the future observations (Xk :k > n) are
identically distributed given the past Gn. In a sense, this is a weak form of exchangeability. In
fact, X is exchangeable if and only if it is stationary and c.i.d., and various examples of non-
exchangeable c.i.d. sequences are available.

In the sequel, X = (X1,X2, . . .) is a c.i.d. sequence of random variables.
In that case, a sound estimate of an is the empirical distribution

μn = 1

n

n∑
i=1

δXi
.

The choice of μn can be defended as follows. Let D ⊂ B and let ‖ · ‖ denote the sup-norm on
D. Suppose also that D is countably determined, as defined in Section 2. (The latter is a mild
condition, only needed to handle measurability issues.) Then

‖μn − an‖ = sup
B∈D

|μn(B) − an(B)| a.s.−→ 0, (1)

provided (X is c.i.d. and) μn converges uniformly on D with probability 1; see [5]. For in-
stance, ‖μn − an‖ a.s.−→ 0 whenever X is exchangeable and D is a Glivenko–Cantelli class.
Also, ‖μn − an‖ a.s.−→ 0 if S = R, D = {(−∞, t] : t ∈ R}, and X1 has a discrete distribution
or infε>0 lim infn P (|Xn+1 − Xn| < ε) = 0; see [4].

To sum up, under mild assumptions, μn is a consistent estimate of an (with respect to uniform
distance) for c.i.d. data. This is in line with de Finetti [10] in the particular case of exchangeable
indicators.

Taking (1) as a starting point, the next step is to investigate the convergence rate, that is, to
investigate whether αn‖μn − an‖ converges in distribution, possibly to a null limit, for suitable
constants αn > 0. This is precisely the purpose of this paper.

A first piece of information on the convergence rate of ‖μn − an‖ can be obtained as follows.
For B ∈ B, define

μ(B) = lim sup
n

μn(B),

Wn(B) = √
n{μn(B) − μ(B)}.

By the SLLN for c.i.d. sequences, μn(B)
a.s.−→ μ(B); see [6]. Hence, for fixed n ≥ 0 and B ∈ B,

one obtains

E(μ(B)|Gn) = lim
k

E(μk(B)|Gn) = lim
k

1

k

k∑
i=n+1

E(IB(Xi)|Gn)

= E(IB(Xn+1)|Gn) = an(B) a.s.
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In turn, this implies that
√

n{μn(B) − an(B)} = E(Wn(B)|Gn) a.s., so

‖μn − an‖ ≤ 1√
n

sup
B∈D

E(|Wn(B)||Gn) ≤ 1√
n
E(‖Wn‖|Gn) a.s.

If supn E‖Wn‖k < ∞ for some k ≥ 1, it then follows that

E{(αn‖μn − an‖)k} ≤
(

αn√
n

)k

E‖Wn‖k → 0 whenever
αn√

n
→ 0.

Even if obvious, this fact is potentially useful since

sup
n

E‖Wn‖k < ∞ for all k ≥ 1, if X is exchangeable, (2)

for various choices of D; see Remark 3. In particular, (2) holds if D is finite.
The intriguing case, however, is αn = √

n. For each B ∈ B and probability Q on (S∞, B∞),
write

CQ
n (B) = EQ(Wn(B)|Gn) and

Cn(B) = CP
n (B) = √

n{μn(B) − an(B)}.
In Theorem 3.3 of [6], the asymptotic behavior of Cn(B) is investigated for fixed B . Here, instead,
we are interested in

‖Cn‖ = sup
B∈D

|Cn(B)| = √
n‖μn − an‖.

Our main result (Theorem 1) is the following. Fix a random probability measure N on R and
a probability Q on (S∞, B∞) such that

‖CQ
n ‖ → N stably under Q and

‖Wn‖ is uniformly integrable under both P and Q.

Then,

‖Cn‖ → N stably whenever P 
 Q. (3)

A remarkable particular case is N = δ0. Suppose, in fact, that for some Q, one has ‖CQ
n ‖ Q→ 0

and ‖Wn‖ uniformly integrable under P and Q. Then,

‖Cn‖ P→ 0 whenever P 
 Q.

Stable convergence (in the sense of Rényi) is a stronger form of convergence in distribution.
The definition is recalled in Section 2.

In general, one cannot dispense with the uniform integrability condition. However, this condi-
tion is often true. For instance, ‖Wn‖ is uniformly integrable (under P and Q) provided D meets
(2) and X is exchangeable (under P and Q).
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To make (3) concrete, a large list of reference probabilities Q is needed. Various examples
are available in the Bayesian nonparametrics framework; see, for example, [16] and references
therein. The most popular is perhaps the Ferguson–Dirichlet law, denoted by Q0. If P = Q0,
then X is exchangeable and

an(B) = αP (X1 ∈ B) + nμn(B)

α + n
a.s. for some constant α > 0.

Since ‖μn − an‖ ≤ (α/n) when P = Q0, something more than ‖Cn‖ P→ 0 can be expected in
the case P 
 Q0. Indeed, we prove that

n‖μn − an‖ = √
n‖Cn‖ converges a.s.

whenever P 
 Q0 with a density satisfying a certain condition; see Theorem 2 and Corollary 5.
One more example should be mentioned. Let Xn = (Yn,Zn), where Zn > 0 and

P(Yn+1 ∈ B|Gn) = αP (Y1 ∈ B) + ∑n
i=1 ZiIB(Yi)

α + ∑n
i=1 Zi

a.s.

for some constant α > 0. Under some conditions, X is c.i.d. (but not necessarily exchangeable),
‖Wn‖ is uniformly integrable and ‖Cn‖ converges stably; see Section 4.

The above material takes a nicer form when the condition P 
 Q can be given a simple
characterization. This happens, for instance, if S = {x1, . . . , xk, xk+1} is finite, X exchangeable
and P(X1 = x) > 0 for all x ∈ S. Then, P 
 Q0 (for some choice of Q0) if and only if

(μ{x1}, . . . ,μ{xk})
has an absolutely continuous distribution with respect to Lebesgue measure. In this particular
case, however, a part of our results can also be obtained through the Bernstein–von Mises theo-
rem; see Section 3.

Finally, we make two remarks:

(i) If X is exchangeable, our results apply to Bayesian predictive inference. Suppose, in fact,
that S is Polish and B the Borel σ -field, so that de Finetti’s theorem applies. Then, P is a unique
mixture of product probabilities on B∞ and the mixing measure is called the prior distribution
in a Bayesian framework. Now, given Q, P 
 Q is just an assumption on the prior distribution.
This is plain in the last example where S = {x1, . . . , xk, xk+1}. In Bayesian terms, such an exam-

ple can be summarized as follows. For a multinomial statistical model, ‖Cn‖ P→ 0 if the prior is
absolutely continuous with respect to Lebesgue measure, and

√
n‖Cn‖ converges a.s. if the prior

density satisfies a certain condition.
(ii) To our knowledge, there is no general representation for the predictive distributions of

an exchangeable sequence. Such a representation would be very useful. Even if only partially,
results like (3) contribute to filling the gap. As an example, for fixed B ∈ B, one obtains an(B) =
μn(B) + oP ( 1√

n
), provided X is exchangeable and P 
 Q for some Q such that C

Q
n (B)

Q→ 0

and Wn(B) is uniformly integrable.
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2. Main results

A few definitions need to be recalled. Let T be a metric space, BT the Borel σ -field on T and
(�, A,P ) a probability space. A random probability measure on T is a mapping N on � × BT

such that: (i) N(ω, ·) is a probability on BT for each ω ∈ �; (ii) N(·,B) is A-measurable for
each B ∈ BT . Let (Zn) be a sequence of T -valued random variables and N a random probability
measure on T . Both (Zn) and N are defined on (�, A,P ). We say that Zn converges stably to
N in the case where

P(Zn ∈ ·|H) → E(N(·)|H) weakly for all H ∈ A such that P(H) > 0.

Clearly, if Zn → N stably, then Zn converges in distribution to the probability law E(N(·))
(just let H = �). Stable convergence has been introduced by Rényi in [17] and subsequently
investigated by various authors; see [9] for more information.

Next, we say that D ⊂ B is countably determined in the case where, for some fixed countable
subclass D0 ⊂ D, one obtains supB∈D0

|ν1(B) − ν2(B)| = supB∈D |ν1(B) − ν2(B)| for every
pair ν1, ν2 of probabilities on B. A sufficient condition is that for some countable D0 ⊂ D, and
for every ε > 0, B ∈ D and probability ν on B, there is B0 ∈ D0 satisfying ν(B	B0) < ε. Most
classes D involved in applications are countably determined. For instance, D = {(−∞, t] : t ∈
R

k} and D = {closed balls} are countably determined if S = R
k and B is the Borel σ -field. As

another example, D = B is countably determined if B is countably generated.
We are now in a position to state our main result. Let N be a random probability measure on

R, defined on the measurable space (S∞, B∞), and let Q be a probability on (S∞, B∞).

Theorem 1. Let D be countably determined. Suppose ‖CQ
n ‖ → N stably under Q, and

(‖Wn‖ :n ≥ 1) is uniformly integrable under P and Q. Then,

‖Cn‖ = √
n‖μn − an‖ → N stably whenever P 
 Q.

Proof. Since D is countably determined, there are no measurability problems in taking supB∈D .
In particular, ‖Wn‖ and ‖Cn‖ are random variables and ‖Cn‖ is Gn-measurable. Let f be a
version of dP

dQ
and Un = f − EQ(f |Gn). Then,

Cn(B) = E(Wn(B)|Gn) = EQ(f Wn(B)|Gn)

EQ(f |Gn)

= CQ
n (B) + EQ(UnWn(B)|Gn)

EQ(f |Gn)
, P -a.s., for each B ∈ B.

Letting Mn = EQ(|Un|‖Wn‖|Gn)

EQ(f |Gn)
and taking supB∈D , it follows that

‖CQ
n ‖ − Mn ≤ ‖Cn‖ ≤ ‖CQ

n ‖ + Mn, P -a.s.
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We first assume f to be bounded. Since ‖CQ
n ‖ → N stably under Q, given a bounded random

variable Z on (S∞, B∞), one obtains∫
φ(‖CQ

n ‖)Z dQ −→
∫

N(φ)Z dQ

for each bounded continuous φ : R → R, where N(φ) =
∫

φ(x)N(·,dx).

Letting Z = f IH /P (H) with H ∈ B∞ and P(H) > 0, it follows that ‖CQ
n ‖ → N stably under

P . Therefore, it suffices to prove that EMn → 0. Given ε > 0, since ‖Wn‖ is uniformly integrable
under Q, there exists some c > 0 such that

EQ

{‖Wn‖I{‖Wn‖>c}
}

<
ε

supf
for all n.

Since Mn is Gn-measurable,

EMn = EQ(f Mn) = EQ(EQ(f |Gn)Mn) = EQ(|Un|‖Wn‖)
≤ cEQ|Un| + (supf )EQ

(‖Wn‖I{‖Wn‖>c}
)
< cEQ|Un| + ε for all n.

Therefore, the martingale convergence theorem implies that

lim sup
n

EMn ≤ c lim sup
n

EQ|Un| + ε = ε.

This concludes the proof when f is bounded.
Next, let f be any density. Fix k > 0 such that P(f ≤ k) > 0 and define K = {f ≤ k} and

PK(·) = P(·|K). Then, PK has the bounded density f IK/P (K) with respect to Q. By what has
already been proven, ‖CPk

n ‖ → N stably under PK , where

CPk
n (B) = EPK

(Wn(B)|Gn) = E{IKWn(B)|Gn}
E(IK |Gn)

, PK -a.s.

Letting Rn = IK − E(IK |Gn), it follows that

E{IK‖Cn − CPk
n ‖} = E

{
IK sup

B∈D

∣∣∣∣E{RnWn(B)|Gn}
E(IK |Gn)

∣∣∣∣}
≤ E

{
IK

E{|Rn|‖Wn‖|Gn}
E(IK |Gn)

}
= E{|Rn|‖Wn‖}

≤ cE|Rn| + E
{‖Wn‖I{‖Wn‖>c}

}
for all c > 0.

Since E|Rn| → 0 and ‖Wn‖ is uniformly integrable under P , arguing as above gives that

EPK

∣∣‖Cn‖ − ‖CPk
n ‖∣∣ ≤ E{IK‖Cn − C

Pk
n ‖}

P(K)
−→ 0.
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Therefore, ‖Cn‖ → N stably under PK . Finally, fix H ∈ B∞, P(H) > 0 and a bounded con-
tinuous function φ : R → R. Then P(H ∩ K) = P(H ∩ {f ≤ k}) > 0 for k sufficiently large
and

P(H)
∣∣E(φ(‖Cn‖)|H) − E(N(φ)|H)

∣∣
≤ 2 sup |φ|P(f > k) + ∣∣E(

φ(‖Cn‖)|H ∩ K
) − E

(
N(φ)|H ∩ K

)∣∣.
Since E(φ(‖Cn‖)|H ∩ K) → E(N(φ)|H ∩ K) as n → ∞ and P(f > k) → 0 as k → ∞, this
concludes the proof. �

Next, we deal with the particular case Q = Q0, where Q0 is a Ferguson–Dirichlet law on
(S∞, B∞). If P 
 Q0 with a density satisfying a certain condition, the convergence rate of
‖μn − an‖ can be remarkably improved.

Theorem 2. Suppose D is countably determined and supn EQ0‖Wn‖2 < ∞. Then,
√

n‖Cn‖ =
n‖μn − an‖ converges a.s., provided P 
 Q0 and

EQ0(f
2) − EQ0{EQ0(f |Gn)

2} = O

(
1

n

)
for some version f of

dP

dQ0
.

Proof. Let Dn(B) = √
nCn(B). Then, ‖Dn‖ is Gn-measurable (as D is countably determined)

and

E(‖Dn+1‖|Gn) = E

(
sup
B∈D

∣∣∣∣∣
n+1∑
i=1

IB(Xi) − (n + 1)E(μ(B)|Gn+1)

∣∣∣∣∣∣∣∣Gn

)

≥ sup
B∈D

∣∣∣∣∣E
(

n+1∑
i=1

IB(Xi)|Gn

)
− (n + 1)E(μ(B)|Gn)

∣∣∣∣∣
= sup

B∈D

∣∣∣∣∣
n∑

i=1

IB(Xi) − nE(μ(B)|Gn)

∣∣∣∣∣ = ‖Dn‖ a.s.

Since ‖Dn‖ is a Gn-submartingale, it suffices to prove that supn E‖Dn‖ < ∞.
Let Un = f −E0(f |Gn), where E0 stands for EQ0 . By assumption, there exist c1, c2 > 0 such

that

E0‖Wn‖2 ≤ c1, nE0U
2
n = n{E0(f

2) − E0(E0(f |Gn)
2)} ≤ c2 for all n.

As noted in Section 1, since Q0 is a Ferguson–Dirichlet law, there is an α > 0 such that

√
n‖CQ0

n ‖ = √
n sup

B∈D

∣∣E0(Wn(B)|Gn)
∣∣ ≤ α for all n.
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Define Mn = E0(|Un|‖Wn‖|Gn)
E0(f |Gn)

and recall that ‖Cn‖ ≤ ‖CQ0
n ‖ + Mn, P -a.s.; see the proof of The-

orem 1. Then, for all n, one obtains

E‖Dn‖ = √
nE‖Cn‖ ≤ √

n(E‖CQ0
n ‖ + EMn) ≤ α + √

nE0(f Mn)

= α + √
nE0(|Un|‖Wn‖) ≤ α + √

n

√
E0U2

nE0‖Wn‖2

≤ α +
√

c1nE0U2
n ≤ α + √

c1c2. �

Finally, we clarify a point raised in Section 1.

Remark 3. There is a long list of (countably determined) choices of D such that

sup
n

E‖Wn‖k ≤ c(k) for all k ≥ 1, if X is i.i.d.,

where c(k) is some universal constant; see, for example, Sections 2.14.1 and 2.14.2 of [21]. Fix
one such D, k ≥ 1, and suppose that S is Polish and B is the Borel σ -field. If X is exchangeable,
then de Finetti’s theorem yields E(‖Wn‖k|T ) ≤ c(k) a.s. for all n, where T is the tail σ -field of
X. Hence, E‖Wn‖k = E{E(‖Wn‖k|T )} ≤ c(k) for all n. This proves inequality (2).

3. Exchangeable data with finite state space

When X is exchangeable and S finite, there is some overlap between Theorem 1 and a result of
Bernstein and von Mises.

3.1. Connections with the Bernstein–von Mises theorem

For each θ in an open set � ⊂ R
k , let Pθ be a product probability on (S∞, B∞) (that is, X is

i.i.d. under Pθ ). Suppose the map θ �→ Pθ(B) is Borel measurable for fixed B ∈ B∞. Given a
(prior) probability π on the Borel subsets of �, define

P(B) =
∫

Pθ(B)π(dθ), B ∈ B∞.

Roughly speaking, the Bernstein–von Mises (BvM) theorem can be stated as follows. Suppose
π is absolutely continuous with respect to Lebesgue measure and the statistical model (Pθ : θ ∈
�) is suitably “smooth” (we refer to [13] for a detailed exposition of what “smooth” means). For
each n, suppose that θ admits a (consistent) maximum likelihood estimator θ̂n. Further, suppose
the prior π possesses the first moment and denote by θ∗

n the posterior mean of θ . Then,

√
n(θ̂n − θ∗

n )
Pθ0−→ 0

for each θ0 ∈ � such that the density of π is strictly positive and continuous at θ0.
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Actually, the BvM theorem yields much more than asserted; what is reported above is just the
corollary connected to this paper. We refer to [13] and [14] for more information and historical
notes; see also [18].

Assuming a smooth, finite-dimensional statistical model is fundamental; see, for example,
[11]. Indeed, the BvM theorem does not apply when the only information is that X is exchange-
able (or even c.i.d.) and P 
 Q for some reference probability Q. One exception, however, is
when S is finite.

Let us suppose

S = {x1, . . . , xk, xk+1}, X is exchangeable, P(X1 = x) > 0

for all x ∈ S and D = B = power set of S.

Also, let λ denote Lebesgue measure on R
k and π the probability distribution of

θ = (μ{x1}, . . . ,μ{xk}).
As noted in Section 1, π 
 λ if and only if P 
 Q0 for some choice of Q0. Since D is finite

and X exchangeable under P and Q0, ‖Wn‖ is uniformly integrable under P and Q0. Thus,
Theorem 1 yields ‖Cn‖ P→ 0 whenever π 
 λ. On the other hand, π is the prior distribution
for this problem. The underlying statistical model is smooth and finite-dimensional (it is just a
multinomial model). Further, for each n, the maximum likelihood estimator and the posterior
mean of θ are, respectively,

θ̂n = (μn{x1}, . . . ,μn{xk}), θ∗
n = (an{x1}, . . . , an{xk}).

Thus, the BvM theorem implies that ‖Cn‖ P→ 0, provided π 
 λ and the density of π is contin-
uous on the complement of a π -null set.

To sum up, in this particular case, the same conclusions as from Theorem 1 can be drawn from
the BvM theorem. Unlike the latter, however, Theorem 1 does not require any conditions on the
density of π .

3.2. Some consequences of Theorems 1 and 2

In this subsection, we focus on S = {0,1}. Thus, D = B = power set of S and λ denotes Lebesgue
measure on R. Let N (0, a) denote the one-dimensional Gaussian law with mean 0 and variance
a ≥ 0 (where N (0,0) = δ0). Our first result allows π to have a discrete part.

Corollary 4. With S = {0,1}, let π be the probability distribution of μ{1} and

	 = {
θ ∈ [0,1] :π{θ} > 0

}
, A = {

ω ∈ S∞ :μ(ω, {1}) ∈ 	
}
.

Define the random probability measure N on R as

N = (1 − IA)δ0 + IAN
(
0,μ{1}(1 − μ{1})).
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If X is exchangeable and π does not have a singular continuous part, then

Cn{1} → N stably and ‖Cn‖ → N ◦ h−1 stably,

where h(x) = |x|, x ∈ R, is the modulus function.

Proof. By standard arguments, the corollary holds when π(	) ∈ (0,1), provided it holds when
π(	) = 0 and π(	) = 1. Let π(	) = 0. Then, π 
 λ as π does not have a singular continuous
part, and the corollary follows from Theorem 1. Thus, it can be assumed that π(	) = 1. Since
Cn{0} = −Cn{1}, ‖Cn‖ = |Cn{1}| and the modulus function is continuous, it suffices to prove
that Cn{1} → N stably.

Next, exchangeability of X implies that Wn{1} → N (0,μ{1}(1 − μ{1})) stably; see, for ex-
ample, Theorem 3.1 of [6]. Since π(	) = 1, we have N = N (0,μ{1}(1 − μ{1})) a.s. Hence, it
is enough to show that E|Cn{1} − Wn{1}| → 0.

Fix ε > 0 and let Mn = Wn{1}. Since X is exchangeable, Mn is uniformly integrable. There-
fore, there exists some c > 0 such that

sup
n

E
(|Mn|I{|Mn|>c}

)
<

ε

4
.

Define φ(x) = x if |x| ≤ c, φ(x) = c if x > c, and φ(x) = −c if x < −c. Since Cn{1} =
E(Mn|Gn) a.s., it follows that

E|Cn{1} − Wn{1}| ≤ E
∣∣E(Mn|Gn) − E(φ(Mn)|Gn)

∣∣
+ E

∣∣E(φ(Mn)|Gn) − φ(Mn)
∣∣ + E|φ(Mn) − Mn|

≤ E
∣∣E(φ(Mn)|Gn) − φ(Mn)

∣∣ + 4E
(|Mn|I{|Mn|>c}

)
< E

∣∣E(φ(Mn)|Gn) − φ(Mn)
∣∣ + ε for all n.

Write 	 = {a1, a2, . . .} and Mn,j = √
n(μn{1} − aj ). Since σ(Mn,j ) ⊂ Gn and P(μ{1} ∈ 	) =

π(	) = 1, one also obtains

E
∣∣E(φ(Mn)|Gn) − φ(Mn)

∣∣
=

∑
j

E
∣∣E(

φ(Mn,j )I{μ{1}=aj }|Gn

) − φ(Mn,j )I{μ{1}=aj }
∣∣

=
∑
j

E
∣∣φ(Mn,j )

{
P(μ{1} = aj |Gn) − I{μ{1}=aj }

}∣∣
≤ c

m∑
j=1

E
∣∣P(μ{1} = aj |Gn) − I{μ{1}=aj }

∣∣ + 2c
∑
j>m

π{aj } for all m,n.
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By the martingale convergence theorem, E|P(μ{1} = aj |Gn) − I{μ{1}=aj }| → 0 as n → ∞, for
each j . Thus,

lim sup
n

E|Cn{1} − Wn{1}| ≤ ε + 2c
∑
j>m

π{aj } for all m.

Taking the limit as m → ∞ completes the proof. �

If π is singular continuous, we conjecture that Cn{1} converges stably to a non-null limit.
However, we do not have a proof.

In the next result, a real function g on (0,1) is said to be almost Lipschitz in the case where
x �→ g(x)xa(1 − x)b is Lipschitz on (0,1) for some reals a, b < 1.

Corollary 5. Suppose S = {0,1}, X is exchangeable and π is the probability distribution of
μ{1}. If π admits an almost Lipschitz density with respect to λ, then

√
n‖Cn‖ converges a.s. to a

real random variable.

Proof. Let V = μ{1}. By assumption, there exist a, b < 1 and a version g of dπ
dλ

such that φ(θ) =
g(θ)θa(1 − θ)b is Lipschitz on (0,1). For each u1, u2 > 0, we can take Q0 such that V has a
beta-distribution with parameters u1, u2 under Q0. Let Q0 be such that V has a beta-distribution
with parameters u1 = 1−a and u2 = 1−b under Q0. Then, for any n ≥ 1 and x1, . . . , xn ∈ {0,1},
one obtains

P(X1 = x1, . . . ,Xn = xn)

=
∫ 1

0
θr(1 − θ)n−rπ(dθ)

=
∫ 1

0
θr−a(1 − θ)n−r−bφ(θ)dθ

= c

∫
V r(1 − V )n−rφ(V )dQ0, where r =

n∑
i=1

xi and c > 0 is a constant.

Let h = cφ. Then, h is Lipschitz and f = h(V ) is a version of dP
dQ0

.
Let Vn = E0(V |Gn), where E0 stands for EQ0 . Since h is Lipschitz,∣∣f − E0(f |Gn)

∣∣ ≤ |h(V ) − h(Vn)| + E0
(|h(V ) − h(Vn)||Gn

)
≤ d|V − Vn| + dE0(|V − Vn||Gn),

where d is the Lipschitz constant of h. Since E0‖CQ0
n ‖2 ≤ E0‖Wn‖2 and

√
n|V − Vn| = |CQ0

n {1} − Wn{1}| ≤ ‖CQ0
n ‖ + ‖Wn‖,
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it follows that

E0(f
2) − E0(E0(f |Gn)

2) = E0
{(

f − E0(f |Gn)
)2} ≤ 4d2E0{(V − Vn)

2}

≤ 4d2

n
E0{(‖CQ0

n ‖ + ‖Wn‖)2} ≤ 16d2

n
E0‖Wn‖2.

Since supn E0‖Wn‖2 < ∞, we have E0(f
2) − E0(E0(f |Gn)

2) = O(1/n). An application of
Theorem 2 completes the proof. �

Corollaries 4 and 5 deal with S = {0,1}, but similar results can be proven for any finite S; see
also [12] and [19].

4. Generalized Pólya urns

In this section, based on Examples 1.3 and 3.5 of [6], the asymptotic behavior of ‖Cn‖ is inves-
tigated for a certain c.i.d. sequence.

Let (Y , B Y ) be a measurable space, B+ the Borel σ -field on (0,∞) and

S = Y × (0,∞), B = B Y ⊗ B+, Xn = (Yn,Zn),

where Yn(ω) = yn,Zn(ω) = zn for all ω = (y1, z1, y2, z2, . . .) ∈ S∞.

Given a law P on B∞, it is assumed that

P(Yn+1 ∈ B|Gn) = αP (Y1 ∈ B) + ∑n
i=1 ZiIB(Yi)

α + ∑n
i=1 Zi

a.s., n ≥ 1, (4)

P(Zn+1 ∈ C|X1, . . . ,Xn,Yn+1) = P(Z1 ∈ C) a.s., n ≥ 0, (5)

for some constant α > 0 and all B ∈ B Y ,C ∈ B+. Note that (Zn) is i.i.d. and Zn+1 is independent
of (Y1,Z1, . . . , Yn,Zn,Yn+1) for all n ≥ 0.

In real problems, the Zn should be viewed as weights, while the Yn describe the phenom-
enon of interest. As an example, consider an urn containing white and black balls. At each time
n ≥ 1, a ball is drawn and then replaced together with Zn more balls of the same color. Let Yn

be the indicator of the event {white ball at time n} and suppose that Zn is chosen according to
a fixed distribution on the integers, independently of (Y1,Z1, . . . , Yn−1,Zn−1, Yn). The predic-
tive distributions of X are then given by (4)–(5). Also, note that the probability law of (Yn) is
Ferguson–Dirichlet in the case where Zn = 1 for all n.

It is not hard to prove that X is c.i.d. We state this fact as a lemma.

Lemma 6. The sequence X assessed according to (4)–(5) is c.i.d.

Proof. Fix k > n ≥ 0 and A ∈ B Y ⊗ B+. By a monotone class argument, it can be assumed
that A = B × C, where B ∈ BY and C ∈ B+. Further, it can be assumed that k = n + 2. Let
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n = 0 and G0 be the trivial σ -field. Since X2 ∼ X1 (as is easily seen), E(IB(Y2)IC(Z2)|G0) =
E(IB(Y1)IC(Z1)|G0) a.s. If n ≥ 1, define

G∗
n = σ(X1, . . . ,Xn,Zn+1).

Noting that E(IB(Yn+1)|G∗
n) = E(IB(Yn+1)|Gn) a.s., one obtains

E(IB(Yn+2)|G∗
n) = E{E(IB(Yn+2)|Gn+1)|G∗

n}

= αP (Y1 ∈ B) + ∑n
i=1 ZiIB(Yi) + Zn+1E(IB(Yn+1)|G∗

n)

α + ∑n+1
i=1 Zi

= (α + ∑n
i=1 Zi)E(IB(Yn+1)|Gn) + Zn+1E(IB(Yn+1)|Gn)

α + ∑n+1
i=1 Zi

.

= E(IB(Yn+1)|Gn) = E(IB(Yn+1)|G∗
n) a.s.

Finally, since Gn ⊂ G∗
n , the previous equality implies that

E(IB(Yn+2)IC(Zn+2)|Gn) = P(Z1 ∈ C)E{E(IB(Yn+2)|G∗
n)|Gn}

= P(Z1 ∈ C)E{E(IB(Yn+1)|G∗
n)|Gn}

= E(IB(Yn+1)IC(Zn+1)|Gn) a.s.

Therefore, X is c.i.d. �

Usually, one is interested in predicting Yn more than Zn. Thus, in the sequel, we focus on
P(Yn+1 ∈ B|Gn). For each B ∈ B Y , we write

Cn(B) = Cn

(
B × (0,∞)

)
, an(B) = an

(
B × (0,∞)

) = P(Yn+1 ∈ B|Gn),

and so on.
In Example 3.5 of [6], assuming EZ2

1 < ∞, it is shown that

Cn(B) → N (0, σ 2
B) stably, where σ 2

B = var(Z1)

(EZ1)2
μ(B)

(
1 − μ(B)

)
.

Here, we prove that Cn converges stably when regarded as a map Cn :S∞ → l∞(D), where
l∞(D) is the space of real bounded functions on D equipped with uniform distance; see Sec-
tion 1.5 of [21]. In particular, stable convergence of Cn as a random element of l∞(D) implies
stable convergence of ‖Cn‖ = supB∈D |Cn(B)|.

Intuitively, the stable limit of Cn (when it exists) is connected to the Brownian bridge. Let
B1,B2, . . . be pairwise disjoint elements of B Y and

D = {Bk × (0,∞) :k ≥ 1}, T0 = 0, Tk =
k∑

i=1

μ(Bi).
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Also, let G be a standard Brownian bridge process on some probability space (�0, A0,P0). For
fixed ω ∈ S∞,

L(ω,Bk) =
√

var(Z1)

EZ1
{G(Tk(ω)) − G(Tk−1(ω))}

is a real random variable on (�0, A0,P0). Since the Bk are pairwise disjoint and G has contin-
uous paths, L(ω,Bk) → 0 as k → ∞. It thus makes sense to define M(ω, ·) as the probability
distribution of L(ω) = (L(ω,B1),L(ω,B2), . . .), that is,

M(ω,A) = P0(L(ω) ∈ A) for each Borel set A ⊂ l∞(D).

Similarly, let N(ω, ·) be the probability distribution of supk≥1 |L(ω,Bk)|, that is,

N(ω,A) = P0

(
sup
k≥1

|L(ω,Bk)| ∈ A
)

for each Borel set A ⊂ R.

Theorem 7. Suppose B1,B2, . . . ∈ B Y are pairwise disjoint and D, M , N are defined as above.
Let X be assessed according to (4)–(5) with a ≤ Z1 ≤ b a.s. for some constants 0 < a < b. Then,

sup
n

E‖Wn‖2 ≤ c

√√√√P

(
Y1 ∈

⋃
k

Bk

)
(6)

for some constant c independent of the Bk , and Cn → M stably (in the metric space l∞(D)). In
particular, ‖Cn‖ → N stably.

Let Q1 denote the probability law of a sequence X satisfying (4)–(5) and a ≤ Z1 ≤ b a.s.
In view of Theorem 7, Q1 can play the role of Q in Theorem 1. That is, for an arbitrary c.i.d.
sequence X with distribution P , one has ‖Cn‖ → N stably, provided P 
 Q1 and ‖Wn‖ is
uniformly integrable under P . The condition of pairwise disjoint Bk is actually rather strong.
However, it holds in at least two relevant situations: when a single set B is involved, and when
S = {x1, x2, . . .} is countable and Bk = {xk} for all k.

Proof of Theorem 7. This proof involves some simple but long calculations. Accordingly, we
provide only a sketch of the proof and refer to [7] for details.

Since X is c.i.d., for fixed B ∈ B Y , one has an(B) = E(μ(B)|Gn) a.s. Hence, (an(B) :n ≥ 1)

is a Gn-martingale with an(B)
a.s.−→ μ(B) and this implies that

E
{(

an+1(B) − μ(B)
)2} = E

{(∑
j>n

(
aj (B) − aj+1(B)

))2}
=

∑
j>n

E
{(

aj (B) − aj+1(B)
)2}

.

Replacing aj (B) by (4) and using the fact that a ≤ Zi ≤ b a.s. for all i, a long but straightfor-
ward calculation yields

∑
j>n E{(aj (B) − aj+1(B))2} ≤ c1

n
P (Y1 ∈ B), where c1 is a constant
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independent of B . It follows that

E‖an+1 − μ‖2 = E
{

sup
k

(
an+1(Bk) − μ(Bk)

)2
}

≤
∑

k

E
{(

an+1(Bk) − μ(Bk)
)2}

=
∑

k

∑
j>n

E
{(

aj (Bk) − aj+1(Bk)
)2} ≤ c1

n

∑
k

P (Y1 ∈ Bk)

= c1

n
P

(
Y1 ∈

⋃
k

Bk

)
as the Bk are pairwise disjoint.

Precisely as above, after some algebra, one obtains

E‖μn − an+1‖2 ≤ c2

n

√√√√P

(
Y1 ∈

⋃
k

Bk

)

for some constant c2 independent of B1,B2, . . . . Therefore,

E‖Wn‖2 = nE‖μn − μ‖2 ≤ 2nE‖μn − an+1‖2 + 2nE‖an+1 − μ‖2 ≤ c

√√√√P

(
Y1 ∈

⋃
k

Bk

)
,

where c = 2(c1 + c2). This proves inequality (6).
It remains to prove that Cn → M stably (in the metric space l∞(D)). For each m ≥ 1, let �m

be the m × m matrix with elements

σk,j = var(Z1)

(EZ1)2

(
μ(Bk ∩ Bj ) − μ(Bk)μ(Bj )

)
, k, j = 1, . . . ,m.

By Theorems 1.5.4 and 1.5.6 of [21], for Cn → M stably, it is enough that:

(i) (finite-dimensional convergence):

(Cn(B1), . . . ,Cn(Bm)) → Nm(0,�m) stably for each m ≥ 1,

where Nm(0,�m) is the m-dimensional Gaussian law with mean 0 and covariance matrix �m;
(ii) (asymptotic tightness): for each ε, δ > 0, there exists some m ≥ 1 such that

lim sup
n

P
(

sup
r,s>m

|Cn(Br) − Cn(Bs)| > ε
)

< δ.

Fix m ≥ 1, b1, . . . , bm ∈ R and define Rn = ∑m
k=1 bkIBk

(Yn). Since (Rn :n ≥ 1) is c.i.d., ar-
guing exactly as in Example 3.5 of [6], one obtains

m∑
k=1

bkCn(Bk) =
∑n

i=1{Ri − E(Rn+1|Gn)}√
n

−→ N
(

0,
∑
k,j

bkbjσk,j

)
stably.
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Since b1, . . . , bm are arbitrary, (i) holds. To check (ii), given ε, δ > 0, take m such that

P

(
Y1 ∈

⋃
r>m

Br

)
<

(
ε2δ

4c

)2

,

where c is the constant involved in (6). By what has already been proven,

P
(

sup
r,s>m

|Cn(Br) − Cn(Bs)| > ε
)

≤ P
(

2 sup
r>m

|Cn(Br)| > ε
)

≤ P
(

2E
(

sup
r>m

|Wn(Br)||Gn

)
> ε

)
≤ 4

ε2
E

{
sup
r>m

Wn(Br)
2
}

≤ 4c

ε2

√
P

(
Y1 ∈

⋃
r>m

Br

)
< δ.

Thus, (ii) holds and this completes the proof. �
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