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The Antarctic region has been experiencing some of the planet’s strongest
climatic changes, including an expected increase of the land temperature. The
potential effects of this warming trend will lead ecosystems to a risk of losing
biodiversity. Antarctic mosses and lichens host different microbial groups, micro-
arthropods andmeiofaunal organisms (e.g., tardigrades, rotifers). The eutardigrade
Acutuncus antarcticus is considered a model animal to study the effect of
increasing temperature due to global warming on Antarctic terrestrial
communities. In this study, life history traits and fitness of this species are
analyzed by rearing specimens at two different and increasing temperatures
(5°C vs. 15°C). Moreover, the first transcriptome analysis on A. antarcticus is
performed, exposing adult animals to a gradual increase of temperature (5°C,
10°C, 15°C, and 20°C) to find differentially expressed genes under short- (1 day) and
long-term (15 days) heat stress. Acutuncus antarcticus specimens reared at 5°C
live longer (maximum life span: 686 days), reach sexual maturity later, lay more
eggs (which hatch in longer time and in lower percentage) compared with animals
reared at 15°C. The fitness decreases in animals belonging to the second
generation at both rearing temperatures. The short-term heat exposure leads
to significant changes at transcriptomic level, with 67 differentially expressed
genes. Of these, 23 upregulated genes suggest alterations of mitochondrial
activity and oxido-reductive processes, and two intrinsically disordered protein
genes confirm their role to copewith heat stress. The long-term exposure induces
alterations limited to 14 genes, and only one annotated gene is upregulated in
response to both heat stresses. The decline in transcriptomic response after a
long-term exposure indicates that the changes observed in the short-term are
likely due to an acclimation response. Therefore, A. antarcticus could be able to
cope with increasing temperature over time, including the future conditions
imposed by global climate change.
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Introduction

Industrial, agricultural and livestock activities have been
identified as drivers of the changes in atmospheric composition,
providing evidence supporting the influence of human activities on
global warming (IPCC, 2018). The global mean temperature of
Earth surface has increased by 1.09°C over the last 150 years, and it is
projected to warm by 1.0°C–5.7°C by 2100, in relation to the
emissions of greenhouse gases (Chown et al., 2022). Especially,
the Antarctic region has been experiencing some of the planet’s
strongest climatic changes, including extreme climate and weather
events, droughts, floods, accelerated ice loss, increased glacier and
ice sheet meltwater, ocean acidification and changes in mean sea
level (Golledge et al., 2019; Edwards et al., 2021; Chown et al., 2022;
Constable et al., 2022). The land temperature increased to 0.61°C
± 0.34°C per decade between 1989 and 2018 (IPCC, 2018; Robinson,
2022), while the ocean is experiencing the greatest absolute oxygen
loss (Bronselaer et al., 2020). Moreover, significant stratospheric
ozone depletion persists over Antarctica during the austral spring
season, even though evidence suggests that the hole in the ozone
layer over Antarctica is showing signs of recovery since the year 2000
(IPCC, 2021). The increased frequency, severity, and duration of
extreme events in the short term, will lead many terrestrial,
freshwater, coastal, and marine ecosystems to a very high or high
risk of losing biodiversity (IPCC, 2022). Antarctic ecosystems have
significantly lower biodiversity than the rest of the planet (Convey
and Stevens, 2007). Life on the land is mostly restricted to the small
ice-free areas of the continent (<0.5% by total area; Chown et al.,
2022); mosses and lichens are common, and include different
microbial groups (prokaryotes, algae, fungi, and protists), micro-
arthropods (mites, springtails, and midges) and micro-invertebrates
of the meiofauna (i.e., nematodes, rotifers, and tardigrades; Câmara
et al., 2021; Phillips et al., 2022). Nevertheless, switches between
dominant and least represented communities for both moss
communities and invertebrate species have been recently
evidenced (Chown et al., 2022). The primary factors influencing
the abundance, composition, and distribution of Antarctic terrestrial
biodiversity are temperature, liquid water and nutrient availability
(Kennedy, 1993; Convey, 1996; Hogg et al., 2006; Sinclair et al., 2006;
Bissett et al., 2014; Chown and Convey, 2016). However, recent
evidence indicates an important role of biotic interactions within
and between species in shaping Antarctic communities (Potts et al.,
2020).

Due to the ongoing trend of increasingly warmer summers and
more frequent warming events, the effects of climate change on
Antarctic biodiversity are becoming progressively clear in the
transformation, damage, and degradation of ecosystems
(Andriuzzi et al., 2018; IPCC, 2022). To expand the knowledge
about the effects of global warming on Antarctic meiofauna, we
investigated the adaptive responses of the Antarctic tardigrade
Acutuncus antarcticus (Richters, 1904) to increasing temperature.
We analyzed and compared its life history traits at different
temperatures (5°C vs. 15°C), and we performed a transcriptome
analysis to investigate the molecular mechanisms involved in heat
response and tolerance of this species. A. antarcticus is the most
abundant and common eutardigrade in Antarctica (Cesari et al.,
2016) inhabiting freshwater ecosystems and terrestrial soils, mosses,
and lichens (Murray, 1910; Dastych, 1991; Cesari et al., 2016). It is

considered to be a parthenogenetic pan-Antarctic species and it is
herbivorous and bacteriophagous (Altiero et al., 2015; Cesari et al.,
2016). Previous studies demonstrated that it is able to tolerate
dehydration, freezing, short exposure (1 h) to high temperatures
(up to 37°C), and exposure to UV radiation (Giovannini et al., 2018).
Since it colonizes different habitats, it could be considered as a
representative animal model for Antarctic terrestrial communities.

Materials and methods

Sampling and rearing

Specimens of A. antarcticus were extracted from bottom
sediments of a temporary freshwater pond close to the Italian
Antarctic base “Mario Zucchelli” in Victoria Land (125 m a.s.l.,
74°42.5800 S, 164°06.0860 E, Terranova Bay, Antarctica) and used to
create rearing microcosms at two different temperatures (5°C and
15°C), as described in Altiero et al. (2015). The microcosms were
kept at photoperiod 12 h/12 h (L/D) andmaintained in several flasks
with algal culture medium in springmineral water (volume ratio 1:3)
and unicellular alga Chlorococcum sp. as a food source at the
laboratory of Evolutionary Zoology of University of Modena and
Reggio Emilia (Italy).

Life history traits

To collect data on life history traits of A. antarcticus, 10 adult
females with oocytes in the gonad were collected from the
microcosms and defined as the parental generation (P). These
animals were individually cultured for 141 days at 5°C with a
photoperiod 12 h/12 h (L/D) as indicated in Altiero et al. (2015).
Laid eggs were isolated until hatching and the newborns were
individually reared from birth to death and kept at the same
laboratory conditions. The offspring of the parental females
represented the successive filial (F1 and F2) generations.

For animals belonging to F1 and F2 generations, data on active
life span, number of molts, age at first oviposition, number of
ovipositions per life span, number of laid eggs per life span
(fecundity), number of eggs per clutch (fertility), interval of time
between ovipositions, egg hatching time and egg hatching
percentage were collected (Supplementary files S1–S3). The
reproductive features analyzed for the P generation were: interval
of time between ovipositions, egg hatching time and hatching
percentage (Supplementary files S1–S3).

Statistical analysis

A statistical comparison of each life history trait among
generations was carried out. The comparisons of each life history
trait between the rearing temperature of 5°C (obtained in present
study) and the rearing temperature of 15°C [data obtained in a
previous study by Altiero et al. (2015)] were also performed to
evaluate the effect of increasing temperature on each life history
trait. Statistical analyses were performed using R (R Core Team,
2020; Supplementary file S4). Generalized linear models (GLM)
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were carried out to test the effects of the generation, the increasing
temperature, and their interaction on each life history trait. In
addition, the effect of the order of oviposition on fertility was
evaluated, as well as the effect of egg number per clutch on egg
hatching time and on egg hatching percentage. Reports of these
GLM models were generated with the R package “report”
(Makowski et al., 2020; Supplementary Table S1). Standardized
parameters were obtained by fitting the GLM models on a
standardized version of the dataset. The 95% Confidence
Intervals (CIs) and p-values were computed using a Wald
z-distribution approximation.

Fitness formula

A fitness score was calculated for each female belonging to both
F1 and F2 generations and reared at 5°C or 15°C. Parameters
considered to calculate fitness score were those relevant to
contribute to future generations: early age at first oviposition,
short hatching time, high number of laid eggs (fecundity) and
high percentage of hatched eggs. Fecundity and total hatched
eggs were normalized in range 0–1 using the min-max
normalization formula:

!
x −min x( )

max x( ) −min x( )
The number of hatched eggs was considered the fundamental

requirement to contribute to successive generations and a fitness
score of zero was attributed to females that never laid eggs or whose
laid eggs did not hatch.

The hatching time and the age at first oviposition were
normalized in range 0–1 using the formula:

! 1 −
x −min x( )

max x( ) −min x( )
The fitness scores are obtained by calculating a mean of the four

values previously normalized. The data were analyzed using the
program Google Colab (in Python) and the libraries Pandas,

Seaborn and Matplotub. The fitness scores were statistically
compared among generations and rearing temperatures with the
non-parametric Kruskal-Wallis test using the SPSS 28 program.

Expression library preparation

The experimental protocol used for the setting-up of
transcriptomic libraries involved sequential increments of 5°C of
the incubation temperature. The rearing microcosms, initially
maintained at 5°C (control temperature), were then raised to
10°C, then to 15°C, and finally to the highest tested temperature
of 20°C. The shift from one temperature to the next one was
performed every 15 days (Figure 1). Transcriptomic analysis was
conducted at two different time-point stresses for each incubation
temperature: 1 day and 15 days after the start of exposure to the
stress-inducing incubation temperature. Exposure after 1 day
simulates short-term heat stress (ST), while exposure after
15 days simulates long-term heat stress (LT). For each thermal
increase step (10°C, 15°C, and 20°C), as well as for both ST and
LT stress conditions, 3 pools of 100 active animals were utilized for
RNA extraction. As an experimental control, RNAwas isolated from
three replicates of 100 active animals each that were collected from
the microcosms at 5°C.

Before being subjected to RNA extraction, tardigrades of each
pool were kept starved in rearing water for 24 h at the assayed
experimental temperature. At the end of this period, inactive
tardigrades were replaced with live specimens from a reserve
pool kept in the same conditions. Any laid eggs and exuviae
were also removed from each microtube.

For the RNA extractions, tardigrades were placed in microtubes
from which as much water as possible was removed. RNA
extractions were performed using the Tissue-ruptor, a tissue
homogenizer, and the Trizol (TRI) reagent. To reduce DNA
contaminations, an enzymatic digestion step was also performed,
using DNAase I. RNAwas retro-transcribed into cDNA using the kit
SuperScript® III First-Strand Synthesis System for RT-PCR
(ThermoFisher Scientific). Each qPCR was performed placing in
the multi-well plate the cDNA from extracted RNA, a positive

FIGURE 1
Experimental protocol. Temperatures tested: 5°C (control temperature), 10°C, 15°C, and 20°C. Thermal stress tested: ST short-term (1 day of
exposure) and LT long-term (15 days of exposure). ST and LT were planned for 10°C, 15°C, and 20°C. Non-step shifts were performed from
one temperature to the next every 15 days.
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control (genomic DNA of A. antarcticus), a negative control (no
template) and the extracted RNA in order to evaluate the
amplification of the 18S gene. The amplification of cDNA and no
amplification of RNA indicates the absence of DNA contamination
in the RNA sample. To assess the RNA integrity, a step of qualitative
validation was carried out using the Agilent 2100 Bioanalyzer
system.

RNAseq data preparation

Sequencing of the RNA libraries was performed by the
Genomics and Epigenomics Platform of Area Science Park
(Trieste, Italy) on an Illumina® NovaSeq 6000 platform with a
2 × 150 bp strategy. Raw sequencing reads were uploaded to
SRA under the BioProject id PRJNA851942 for public availability
(https://dataview.ncbi.nlm.nih.gov/object/PRJNA851942?reviewer=
3eipk7fcuuqbppjdr0en90cq8e).

The quality of the raw reads was assessed with fastqc
(Andrews, 2020) plus multiqc (Ewels et al., 2016), and
trimmed according to the results with fastp v0.20 (Chen et al.,
2018). Trimmed reads were merged in order to assemble a
reference transcriptome using the multi-assembler strategy
provided by the Oyster River Protocol (ORP) pipeline
(MacManes, 2018), with the TPM_FILT parameter set to 1 and
all other parameters left as default. The assembled transcriptome
was quality checked with the trinityStats.pl script provided within
the Trinity software package (Grabherr et al., 2011), while its
completeness was assessed with BUSCO v.5 (Manni et al., 2021)
against the Metazoa database of OrthoDB v.10 (Kriventseva et al.,
2019). Since an exploratory analysis on the expression data
showed high intra-replica variability, suggesting the presence of
some level of contamination, we used published tardigrade
genomes to refine it. This was achieved using blastn (Camacho
et al., 2009) to query it to the reference genomes of Hypsibius
dujardini [Delmont and Eren, 2016; Yoshida et al., 2017;
redescribed as Hypsibius exemplaris by Gąsiorek et al. (2018)],
and Ramazzottius varieornatus (Hashimoto et al., 2016) with a
word size of 9 and e-value threshold of 1 × 10−5. The completeness
of the refined assembly was re-evaluated with BUSCO and the
contigs were functionally annotated with annot.aM available at
https://gitlab.com/54mu/annotaM. To identify transcriptional
isoforms within the transcriptome, the proteomes derived from
the aforementioned tardigrade genomes were clustered with cd-
hit v.4.8.1 (Fu et al., 2012) (-c parameter set to 0.99) and merged
with the UniProt-SwissProt database. This sequence collection
was then used as a database for a run of diamond (Buchfink, 2021)
in blastx mode, using the transcriptome as a query. Contigs
sharing the same best hit (by bitscore) were assigned to the
same gene and deemed transcriptional isoforms. Although this
approach does not discriminate between proper splicing isoforms
and multi-copy genes, it is useful to remove noise during the
Differential Gene Expression analysis. Gene Expression
quantification was performed with salmon v.1.8 (Patro et al.,
2017) on the individual samples, quantifying at both transcript
and gene level using the count metric. Expression data was finally
loaded in a R environment for Differential Gene Expression
(DGE) analysis.

Gene expression analysis

Batch effect was evaluated and removed with RUVSeq (Risso
et al., 2014) with an empirical control gene list, created from the
1000 genes showing the lowest variation in gene expression. This
list was obtained from a first pass of Differential Gene
Expression (DGE) analysis, with an all vs. all design with
edgeR (McCarthy et al., 2012). Identification (and subsequent
removal) of potential outlier samples was performed by
visualization of MDS and PCA plots. The normalized data
was then processed in a second pass of DGE with edgeR,
analyzing the two exposure times together and independently.
The two exposure times were analyzed separately and jointly,
and each temperature group was compared with the control
group in an ANOVA-like fashion. DEGs were identified with the
Generalized Linear Model built into edgeR, with a FDR corrected
p-value significance threshold of 0.01. Gene Ontology (GO) and
PFAM domain enrichment analysis was performed by
hypergeometric test (Falcon and Gentleman, 2008),
comparing the DEG sets with the set of all expressed genes
(obtained by the filterByExpr function of edgeR). A term was
deemed significantly enriched with a FDR <0.05 and an
observed-expected value >3.

Results

The active life span of A. antarcticus reared at 5°C reached a
maximum value of 686 days in a specimen of F2 generation. Adult
females laid eggs freely once a fortnight, and they molted before
every egg oviposition. Throughout her life span, each female laid up
to 93 eggs, with a maximum of 34 ovipositions. Newborns molted
once before their first oviposition at the age of about 34 days. The
eggs hatched in about 22 days. Detailed collected data and
performed analyses of life history traits of P, F1, and F2
generations reared at 5°C are presented in Figure 2
(Supplementary Table S2, Supplementary files S1–S3).

GLM results

Life span, number of molts, the number of ovipositions per life
span, and the number of laid eggs per life span are reduced by the
effect of F2 generation, by the effect of increasing temperature (from
5°C to 15°C) and by the effect of the high temperature (15°C) on the
F2 generation (Figures 2A, B, D, F; Supplementary file S5).

The age at first oviposition is decreased by the effect of
increasing temperature (from 5°C to 15°C; Figure 2C;
Supplementary file S5).

The time interval between ovipositions is reduced by the
effect of parental generation and by the effect of increasing
temperature (from 5°C to 15°C; Figure 2E; Supplementary file
S5). On the other hand, this life history trait is increased by the
effect of F2 generation and by the effect of the high temperature
(15°C) on the parental generation (Figure 2E; Supplementary
file S5).

The number of eggs per clutch significantly increased in relation
to the order of oviposition, therefore the number of eggs per clutch
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increased during the life span for all animals. No effects on the
number of eggs per clutch were evidenced in relation to the
temperature increase (from 5°C to 15°C) and to the belonging to
different generations (Figure 2G; Supplementary file S5).

The egg hatching time is reduced by the effect of parental
generation, by the effect of increasing temperature (from 5°C to
15°C) and by the effect of the high temperature (15°C) on the F2
generation (Figure 2H; Supplementary file S5). Nevertheless, the
hatching time is increased by the effect of the number of eggs per

clutch and by the effect of the high temperature (15°C) on the
parental generation (Figure 2H; Supplementary file S5).

The egg hatching percentage is increased by the effect of parental
generation, by the effect of increasing temperature (from5°C to 15°C) and
by the effect of the number of eggs per clutch (Figure 2I; Supplementary
file S5). Otherwise, the hatching percentage is reduced by the effect of F2
generation, by the effect of the high temperature (15°C) on the parental
generation and by the effect of the high temperature (15°C) on the F2
generation (Figure 2I; Supplementary file S5).

FIGURE 2
Plots comparing the life history traits of A. antarcticus among the three generations (P: parental; F1: first filial generation; F2: second filial generation)
under different rearing temperatures (5°C and 15°C). (A) Active life span. (B) Number of molts. (C) Age at first oviposition. (D) Number of ovipositions
per life span. (E) Interval of time between ovipositions. (F) Number of laid eggs per life span (fecundity). (G) Number of eggs per clutch (fertility). (H)
Egg hatching time. (I) Hatching percentage. A–F; (H)within each box, horizontal black lines denote median values; boxes extend from the 25th to the
75th percentile of each group’s distribution of values; vertical extending lines denote adjacent values (i.e., the most extreme values within 1.5 interquartile
range of the 25th and 75th percentile of each group); dots denote observations outside the range of adjacent values. (I) vertical black lines denote the 95%
confidence interval.
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FIGURE 3
Fitness scores of Acutuncus antarcticus specimens belonging to F1 (first filial generation) and F2 (second filial generation) reared at different
temperatures (5°C and 15°C). (A) Means ± standard deviation of fitness scores of specimens of both F1 and F2 generations reared at 5°C or 15°C.
(B) Plots comparing the fitness scores of specimens of both F1 and F2 generations reared at 5°C or 15°C. Within each box, horizontal yellow lines
denote median values; boxes extend from the 25th to the 75th percentile of each group’s distribution of values; vertical extending lines denote
adjacent values (i.e., the most extreme values within the 1.5 interquartile range of the 25th and 75th percentile of each group); dots denote observations
outside the range of adjacent values. (C) Individual fitness scores of specimens reared at 5°C. (D) Individual fitness scores of specimens reared at 15°C.
(A,B)Different letters above columns and plots indicate significant differences between groups, whereas shared letters indicate no significant differences.
B differs from A (p < 0.05); C differs from A and B (p ≤ 0.001).
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Fitness score

Among parameters relevant to calculate fitness score, the high
number of laid eggs and the high number of hatched eggs
contributed positively to future generations of animals reared at
5°C, while the early age at first oviposition and the short hatching
time contributed positively to future generations of animals reared at
15°C. The data obtained on fitness scores are shown in Figure 3
(Supplementary file S6). The maximum value was 0.66 and was
reached by a female of F1 generation reared at 5°C (Figure 3C).

Fitness scores of animals belonging to F2 generation reared at
5°C showed statistically significant decrease (p < 0.05) compared
with the fitness scores of animals belonging to F1 generation and
reared at the same temperature. Moreover, a significant reduction
(p ≤ 0.001) was recorded in the fitness scores of animals belonging to
the F2 generation and reared at 15°C compared with other animal
fitness scores (Figures 3A, B). Among animals reared at 15°C and
belonging to the second generation, there were 26 females with a
fitness score of zero, since 13 did not lay eggs and 13 laid eggs that
never hatched (Figure 3D).

FIGURE 4
Clustered heat map of expression levels of the DEGs identified as short-term (ST) response to heat stress. Gene expression values are expressed as
row-normalized, log transformed cpm. Column clusters identify exposure temperature, and each column identifies a replicate. Row clusters in
green show DEGs upregulated with the increase in temperature, while row clusters in orange show DEGs downregulated with the increase in
temperature.
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Transcriptomic results

The overall high quality of sequencing reads (Supplementary file
S7) allowed a high quality first assembly, with 79% complete, 7.7%
fragmented and 13.3% missing BUSCOs compared with the
Metazoa OrthoDB. The complete BUSCOs showed a high degree
of redundancy, 362 out of 754 complete BUSCOs were marked as
duplicated. After the removal of contaminant sequences, the
BUSCO scores were unchanged.

The first part of the expression analysis evidenced a high degree
of variability between samples, independent of the presence of
sequences from putative contaminants. As a consequence, many
samples were considered outliers and had to be removed from the
analysis. As a matter of fact, the most diverse control sample was
discarded.

Overall, DGE could be identified only by independently
analyzing the LT and ST groups (Supplementary file S8). A total
of 67 DEGs was found to be altered by short-term exposure. These
DEGs showed two main temperature-dependent patterns: 23 were
upregulated with the increase in temperature, and 44 were
downregulated with the increase in temperature (Figure 4). The
GO enrichment on the upregulated subset of DEGs suggested that
processes related to mitochondria were being activated, while no
significant GO term could be enriched from the downregulated
genes (Supplementary file S8). In this subset, a PFAM entry could be
enriched, namely, Pupal cuticle protein C1, which displayed an FDR
of 6.74 × 10−12 and a O/E value of 182.79. Interestingly, genes
encoding for intrinsically disordered proteins CAHS and SAHS were
included in the group of DEGs that are upregulated with
temperature (Figure 5). Within this group, all samples exposed to
15°C were excluded due to their high intra-replicate diversity.
Nonetheless, we identified 14 DEGs that responded to the
temperature increase. Specifically, two DEGs were upregulated,

while the remaining 12 were downregulated. Of these, only two
could be annotated based on their similarity with sequences from the
H. exemplaris genome. The first one is OQV21646.1, which encodes
for a protein containing a von Willebrand factor A domain and was
found to be downregulated. The second one is OQV17502.1, which
is annotated as a putative conserved regulator of innate immunity
protein 3 and was upregulated.

Discussion

The eutardigrade Acutuncus antarcticus was considered an
animal model to study the effects of increasing temperature due
to global climate change on Antarctic ecosystems. The life cycle and
the fitness of this species at different increasing temperatures were
investigated to simulate the ongoing global warming. The most
surprising result was the maximum life span of 686 days (about
23 months) reached by a specimen of the F2 generation reared at 5°C,
in contrast with the maximum value of 130 days reached by a F1
specimen reared at 15°C (Altiero et al., 2015). A life span so long has
never been recorded before in tardigrade species (Altiero et al.,
2018), where the longest record of longevity was 518 days (about
17 months) for a clonal strain of the terrestrial eutardigrade
Paramacrobiotus fairbanksi (Altiero et al., 2006), and 18 months
for the marine heterotardigrade Halobiotus crispae (Kristensen,
1982). This result was also unexpected, even comparing it with
the life cycle in rearing conditions of other extremophile organisms
inhabiting Antarctica: the rotifers Adineta grandis and Philodina
gregaria lived 40 and 89 days, respectively (Dartnall, 1992); the soil
nematode Scottnema lindsayae, reared at 10°C, lived 218 days
(Overhoff et al., 1993), and the terrestrial soil nematode Plectus
murrayi, reared at 15°C, shows an annual life cycle duration (de
Tomasel et al., 2013). Consistent with our results, previous studies
showed that temperature has different effects on various aspects of
life cycle and development of soil nematodes, especially cold
temperature produces an extended adult lifespan (Moorhead
et al., 2002).

Acutuncus antarcticus specimens reared at 5°C lived longer,
molted more times, and reached sexual maturity later than those
reared at 15°C. Moreover, during their life span, animals at 5°C laid
more eggs that hatched after a longer time and in lower percentage,
and showed a longer interval time between successive ovipositions.
Other Polar invertebrates exposed to increasing temperature showed
a shorter development (Yoon et al., 2023) and their eggs hatched
earlier (Weydmann et al., 2015), even though their hatching success
decreased (Birkemoe and Leinaas, 2000). In A. antarcticus, the egg
hatching time also decreased when the eggs were exposed to 15°C,
although their hatching percentage increased. This increased
hatching success could balance the low number of laid eggs when
tardigrades were reared at the highest temperature. Overall, this
strategy could represent a warm climatic adaptation in response to
the unpredictable Antarctic environmental conditions exhibiting
temperature fluctuations even within the same day (Altiero et al.,
2015).

Differences among generations of A. antarcticus reared at two
different temperatures were evidenced in relation to some life
history traits. In particular, animals belonging to the first
generation lived longer than the second generation. The interval

FIGURE 5
Box plots of the expression values of CAHS and SAHS genes in the
short-term (ST) heat exposure experiments in log (cpm). Within
each box, horizontal black lines denote median values; boxes
extend from the 25th to the 75th percentile of each group’s
distribution of values; vertical extending lines denote adjacent
values (i.e., the most extreme values within the 1.5 interquartile
range of the 25th and 75th percentile of each group).

Frontiers in Physiology frontiersin.org08

Giovannini et al. 10.3389/fphys.2023.1258932

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1258932


time between successive ovipositions was minimum for the animals
of parental generation, and it increased for the filial generations. As a
possible adaptive strategy to balance the longer interval time
between ovipositions, the eggs laid by the F2 generation hatched
earlier than other eggs. The hatching percentage was higher in eggs
laid by the parental generation, and it strongly decreased in eggs laid
by filial generations. The unhatched eggs could however be resting
eggs, needing a stimulus such as desiccation-rehydration or
freezing-thawing to hatch, as observed in other tardigrade species
(Altiero et al., 2010; Møbjerg and Neves, 2021). Furthermore, the
animals belonging to the first generation, reared at both tested
temperatures (5°C and 15°C), showed the highest fitness.
Otherwise, the fitness of the F2 generation at 15°C was
significantly lower than the fitness of the other animal groups.
These data suggest that the first generation is able to acclimate to
the increasing temperature, while the second one is negatively
affected. As a whole, the differences among generations in the
fitness and in the life history traits, especially the ones associated
with reproduction, could be due to genetic and maternal effects, and
consequently to phenotypic plasticity (Marshall and Uller, 2007;
Yeates et al., 2009; Fusco and Minelli, 2010; Altiero et al., 2015;
Pazzaglia et al., 2021).

The first transcriptome of A. antarcticus exposed to increasing
temperature was obtained. Upon a first analysis, expression data
showed a high degree of inter sample diversity, which could not be
ascribable to experimental variables. Such an effect could be the
result of an unexpectedly high inter-individual diversity, which in
turn could explain the unexpectedly low total number of statistically
significant DEGs. The high duplication rate resulting from the
BUSCO results could indeed indicate high heterozygosity, but
this needs to be supported by genomic data, which are not yet
available for this species. After removing the unwanted variability, a
set of DEGs for both exposure times could be found. Finally, the
reduced availability of high-quality genomes of tardigrade species
represents a limitation to the precise annotation of transcripts in our
assembled transcriptome, restricting the retrieval of information to
databases such as UniProt/SwissProt and PFAM.

When animals were exposed for 1 day to heat (short-term),
67 DEGs were found. The expression patterns of such genes showed
a linearity between expression fold change and applied temperature,
reinforcing the idea that the observed alterations are a
transcriptional response to the temperature increase. While the
difference in gene expression is small between 5°C and 10°C, the
changes become evident at 15°C and even more dramatic at 20°C.
The 23 upregulated genes were significantly enriched in GO terms
suggesting alterations of mitochondrial activity and oxido-reductive
processes. Among these, NADH-ubiquinone oxidoreductase chain 4
and 5, cytochrome b, and cytochrome c oxidase subunits 1 and 2 are
involved in the respiratory chain (Sousa et al., 2018). Since NADH-
ubiquinone oxidoreductase is a major source of Reactive Oxygen
Species (ROS) in mitochondria (Kusmann and Hirst, 2006;
Esterházy et al., 2008), its upregulation, evidenced also in other
tardigrade species exposed to heat stress (Neves et al., 2022), induces
cellular oxidative stress. Moreover, as evidenced by Oomen et al.
(2022), transcripts involved in cellular respiration are upregulated in
response to heat, increasing metabolic energy requirements, oxygen
consumption, and ROS, damaging complex molecules and cellular
structures. The downregulation of two peroxidase (peroxidasin and

chorion peroxidase) with the increasing temperature is in line with
an oxidative stress scenario, since their functions are related to the
protection of animals and eggs from ROS (Benoit et al., 2012;
Schokraie et al., 2012).

Nudix hydrolases are widely found in prokaryotes and
eukaryotes, and are involved in a variety of cellular processes
such as cellular metabolism, homeostasis, and mRNA processing
(Yoon et al., 2018; Yang et al., 2022). The observed upregulation of
Nudix hydrolases with increasing temperature suggests a role in
defense against oxidative stress, as it has already demonstrated in
potato (Brouwer et al., 2021).

Disordered proteins help mediate tolerance to different abiotic
stresses including freezing, osmotic stress, high temperatures, and
desiccation in several organisms (Hesgrove and Boothby, 2020).
Recently, three novel families of intrinsically disordered proteins
(IDP) were discovered in tardigrades and revealed to contribute to a
general stress response (Yamaguchi et al., 2012; Tanaka et al., 2015;
Boothby et al., 2017; Hesgrove and Boothby, 2020; Yagi-Utsumi
et al., 2021; Neves et al., 2022; Krakowiak et al., 2023). In this study,
two intrinsically disordered protein genes, namely, Cytosolic-
abundant heat soluble protein (CAHS) and secretory-abundant
heat soluble protein (SAHS), were upregulated in response to
heating. The aforementioned genes refer to several assembled
transcripts (40 and 8 respectively) that were grouped under the
same gene by best similarity and, due to the absence of a reference
genome, may represent splicing isoforms and/or paralogous genes as
well. As previously evidenced in Ramazzottius varieornatus for other
IDPs (Neves et al., 2022), these obtained results confirm the role of
tardigrade IDPs to cope with heat stress. The putative gene for
conserved regulator of innate immunity protein 3 was also
upregulated with the increasing temperature. This gene is
described in nematodes as homologous to the mammalian C1qbp
(Alper et al., 2008), which has several functions in cell activity and a
key role in the activation of the complement system, and therefore of
innate immunity (Ghebrehiwet and Peerschke, 2004).

Among the 44 DEGs that were downregulated with the increase
in temperature, there are genes related to the protein turnover
(cathepsin B and UBA domain-like superfamily; Förster et al.,
2012), a gene (Multidrug resistance-associated protein 1) involved
in dauer larva regulation of the nematode Caenorhabditis elegans
(Yabe et al., 2005), and two genes (CREB-binding protein and
Homeodomain-interacting protein kinase 2) relevant for the
control of cellular proliferation, differentiation and apoptosis
(Kovács et al., 2015). The loss of function of a Homeodomain-
interacting protein kinase (HPK) shortens lifespan and hastens
tissue aging in C. elegans (Berber et al., 2016). Similarly, the
downregulation of HPK gene in specimens of A. antarcticus
exposed to increasing temperature could have reduced the life
span of animals reared at 15°C compared to those reared at 5°C.

Regarding the long-term (15 days) exposure, only two DEGs out
of 14 could be annotated. The gene coding for a von Willebrand
factor A domain containing protein (VWA) is downregulated. The
VWA plays a role in cell adhesion, extracellular matrix proteins, and
integrin receptors (Whittaker and Hynes, 2002). However, the oldest
known proteins containing the VWA domain are intracellular and
involved in functions such as transcription, DNA repair, ribosomal
and membrane transport, and the proteasome (Whittaker and
Hynes, 2002). The other annotated DEG (i.e., putative conserved
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regulator of innate immunity protein 3) is upregulated in response to
long-term exposure as well as short-term exposure, as described in
the previous paragraph. The observed decline in transcriptomic
response after a 15-day exposure indicates that the differences
observed in the short term are likely due to an acclimation
response. It is reasonable to hypothesize that with longer
exposure durations, a return to a normal transcriptional
landscape would be expected, although further data is needed to
confirm this assertion.

Considering that A. antarcticus is a pan-Antarctic species and
that the average daily pond temperatures in Victoria Land
(Antarctica) range between −5 and +6°C during the summer
(Cucini et al., 2022), the exposure to 15°C represents an unusual
condition for this species, as well as for other Antarctic organisms.
Overall, our findings indicate that the short-term heat exposure
leads to significant changes in the transcriptomic landscape of
A. antarcticus, as evidenced by the differential expression of
67 genes after 1 day of heat exposure. Notably, several genes
involved in oxidative metabolism and oxidative stress response
display changes in their expression patterns. Nevertheless, the
gene expression alterations observed after long-term exposure are
limited to 14 genes, and only the upregulation of a gene (putative
conserved regulator of innate immunity protein 3) is evidenced both
after 1 and 15 days of heat exposure.

Therefore, according to the results obtained from the life history
traits and gene expression this Antarctic tardigrade species could be
able to acclimate to higher temperatures over time, including
possible future conditions imposed by global warming.
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