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Abstract

In professional tennis, it is often acknowledged that the server has an initial advantage.

Indeed, the majority of points are won by the server, making the serve one of the most important

elements in this sport. In this paper, we focus on the role of the serve advantage in winning a

point as a function of the rally length. We propose a Bayesian isotonic logistic regression model

for the probability of winning a point on serve. In particular, we decompose the logit of the

probability of winning via a linear combination of B-splines basis functions, with athlete-specific

basis function coefficients. Further, we ensure the serve advantage decreases with rally length

by imposing constraints on the spline coefficients. We also consider the rally ability of each

player, and study how the different types of court may impact on the player’s rally ability. We

apply our methodology to a Grand Slam singles matches dataset.

Keywords: Bayesian isotonic regression; Constrained B-splines; Bradley-Terry models; Sports

forecasting; Serve advantage in racquet sports.
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1 Introduction

Predicting the outcome of tennis matches has attracted much attention within sport analytics over

the years for a number of applications. For example, prediction models can provide coaches useful

feedback about how players are improving over time and who they should be able to beat. Further,

prediction models could help assess fan engagement and determine who is the favourite player, by

how much, and who is currently the best player. See, for example, Glickman (1999); Klaassen

and Magnus (2003); Barnett and Clarke (2005); Newton and Keller (2005); Gilsdorf and Sukhatme

(2008); Gomes et al. (2011); Smith (2013); Irons et al. (2014); Kovalchik (2016) and references

therein.

It is nowadays generally acknowledged that the service is one of the most important elements

in tennis. Indeed, it has been observed that the serving player wins more points than the receiving

player in elite tennis (Lees, 2003). With the advances in racquet technologies, most top male players

can hit service speeds of over 200 Kph. Kotze J. and Rothberg (2000) point out that if the serving

speed reaches the receiver’s reacting threshold, it becomes virtually impossible for the receiving

player to return the ball. In the extreme, a strong serve strategy that gets rarely broken reduces

the competitiveness of the game, and this may result in a loss of spectator interest. For this reason,

the International Tennis Federation (ITF) monitors the importance of the serve and can undertake

measures, such as slowing surface speeds, to ensure the game’s combativeness is not endangered.

While it is reasonable to assume that the serve advantage gets lost as the rally length increases,

there are only a few contributions in the literature attempting to quantify the serve advantage and

relate it to rally length via a statistical model. An early contribution is given by O’Donoghue and

Brown (2008), where the authors describe the advantage of serving in elite tennis by comparing

points won by both the server and the receiver for a given rally length. They conclude that the

serve advantage is lost after the 4th rally shot on men’s first serve. Subsequently, Kovalchik (2018b)

proposes a Bayesian hierarchical model to estimate player-specific serve curves that also adjust for

the opponent rally abilities. In particular, the author uses an exponential decay function to model

the decline in serve advantage plus a random effect, representing the difference between the rally

ability of the opponents.

In this paper, we focus on the role of the serve advantage in winning a point as a function of the

rally length. Our approach falls into the Bradley-Terry class of models (Bradley and Terry, 1952)
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and is built upon of Kovalchik (2018b). We propose a Bayesian isotonic logistic regression model by

representing the logit of the probability of winning a point on serve, f , as a linear combination of

B-splines basis functions, with athlete-specific basis function coefficients. We point out that while

the term isotonic is used to denote regression models where monotonicity is imposed everywhere,

in our application we may also want to accommodate for monotonicity only in a subinterval of

the function domain. The smoothness of f is controlled by the order of the B-splines, while their

shape is controlled by the associated control polygon C (de Boor, 2001). In particular, to ensure

the serve advantage is non-increasing with rally length we constrain the spline function f to be

non-increasing by controlling its control polygon. This essentially results in imposing a constraint

on the coefficients of the spline function. Further, we allow for the probability to win on serve to

also depend on the rally abilities of the opponents. We note that the rally advantage component of

the model draws on Kovalchik (2018b), but we extend it further to study how the different types of

court (e.g., clay, hard) may impact on the player’s rally ability. It is indeed well known that some

players favour and perform better on particular surfaces (e.g., Nadal holds 11 French Open (clay)

titles and 2 Wimbledon (grass) titles). Each surface material presents its own unique characteristics

and provides different challenges to the players, with certain playing styles working better on some

types of court and less effectively on others. For example, a grass court is the fastest type of court

because of its low bounce capacity. Players must get to the ball more quickly than with clay or hard

courts, thus players with stronger serve will generally perform better on grass. The rally advantage

component of our model reflects how a player is likely to perform on a particular surface, and this

in turns affects the win probability.

Our contribution is twofold: first, the basis function decomposition allows for a more flexible

modelling of the longitudinal curve for serve advantage than that attainable via an exponential

decay function. Our hierarchical Bayesian framework further accommodates for the borrowing of

information across the trajectories of the different athletes, and allows for out-of-sample prediction;

second, our construction allows for the inclusion of covariates (e.g., the type of terrain) in the

modelling of the rally abilities of the opponents. Therefore, it becomes possible to examine how

covariates impact on the rally abilities, and ultimately on the distribution of the serve advantage

curves.

The remainder of the paper is organised as follows. In Section 2 we provide an overview of
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the data used for our analysis. In Section 3 we present our hierarchical Bayesian isotonic logistic

model. In Section 4 we compare our model with Kovalchik (2018b). Section 5 presents the results

of our real data analysis, and conclusions are outlined in Section 6.

2 Grand slam data

We consider point-by-point data for main-draw singles Grand Slam matches from 2012 forward.

Organisations such as the ITF and Grand Slam tournaments record some data on professional

tennis matches, but rarely make it available to the public. In this paper, we use data scraped from

the four Grand Slam websites shortly after each event by Jeff Sackmann1. The data is also available

with the R package deuce (Kovalchik, 2018a).

There are four Grand Slam tournaments, namely, the Australian Open, French Open, Wimble-

don, and US Open. These tournaments are subdivided in two types of associations: the Association

of Tennis Professionals (ATP), containing all the matches played by male athletes, and the Women’s

Tennis Association (WTA), containing all matches played by female athletes. We consider the male

and female tournaments separately, thus obtaining two datasets. For both datasets, we include play-

ers with three matches or more in the training data. For a more robust inference, we consider only

rally lengths between zero and thirty, counting as zero the first shot played by the server. For both

datasets, we extract the following variables: rally length, the series of return hits of the ball from

a player to the opponent (an integer between zero and thirty); the ID (name and surname) of the

players serving and receiving, respectively; an indicator variable denoting if the server wins the

point; the tournament name, used to derive the type of court in the different tournaments. Indeed,

the Australian Open and US Open tournaments are played over a hard court, the French Open is

played on clay while Wimbledon is played on grass. Unfortunately, other information of potential

interest, e.g. the serve’s speed and direction, is not available for every rally. Table 1 reports some

summary statistics about the dataset. In Table 2 we report the total number of rallies in the ATP

and WTA tournaments, respectively. Short rallies, i.e. rally lengths smaller than or equal to 4,

constitute 90% of the rallies played during the Grand Slam tournaments.

In Figure 1 we report the observed relative frequency of rallies won by the server given the

number of shots. It appears that the server has a higher chance of winning the point on odd-

1https://github.com/JeffSackmann
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Tournament

US Open Aus Open French Open Wimbledon

Matches

ATP 147 106 192 214

WTA 158 106 186 118

Players

ATP 108 107 132 107

WTA 108 127 119 104

Table 1: Number of matches and players in the four Grand Slam tournaments by association from 2012

forward. The data was collected by Jeff Sackmann1, and is also available with the R package deuce (Kovalchik,

2018a).

Short rallies Long rallies Total

ATP 130577 14933 145510

WTA 71592 10288 81880

Table 2: Number of rallies by tournament. We define as short a rally whose length is less than or equal to 4.
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rally lengths compared to the even-rally lengths. This pattern can be explained by the fact that

even-numbered rallies end on the server’s racquet, so he/she can win or make a mistake. Since the

y-axis report the observed relative frequency of winning for the server, all the even-shots in Figure

1 represent the case in which the server wins a point with a winner. A winner is a shot that is not

reached by the opponent and wins the point. Occasionally, the term is also used to denote a serve

that is reached but not returned into the court. On the other hand, the odd-numbered rallies are

the winners or errors made by the receiver. In particular, the odd-shots in Figure 1 represent the

errors done by the receivers.
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Figure 1: Observed frequency of rallies won by the server given the number of shots for the ATP tournament

(left) and the for the WTA (right). The blue points represent the odd-shots, while pink points are the even-

numbered rallies. The size of a point (x, y) is proportional to the number of the server’s victories with rally

length equal to x divided by the total number of points won by the server.

Because errors are more common than winners, we aggregate odd and even rally lengths (see

also Kovalchik (2018b)). We obtain a vector of integers, where 1 corresponds to rally lengths equal

to zero or one, 2 corresponds to values 2 or 3 of rally length and so on. This ensures that the same

set of outcome types for the server and receiver are represented within each group. The resulting

frequencies are showed in Figure 2. We observe that after the first shot the server’s chance of

winning the point drastically decreases. This is clear for both men and women. As conventional
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wisdom suggests, the server has the highest chance of winning a point at the beginning of the rally,

owing to the strength of the serve. As the rally progresses, the serve advantage is expected to

get increasingly small and have increasingly less influence on the outcome of the rally with each

additional shot taken.
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Figure 2: Conditional percentage of winning a point given the number of shots for the ATP tournament (left)

and the for the WTA (right). Since we aggregated the odd and even results, rally length is between 1 and 15.

The size of a point (x, y) is proportional to the number of the server’s victories with rally length equal to x

divided by the total number of points won by the server.

3 Hierarchical Bayesian isotonic logistic regression model

In this section, we present our Bayesian hierarchical isotonic regression approach to model the serve

advantage. Let x ∈ X be the discrete variable representing rally length, where X = {L, . . . , U} is

the set of all integers between L and U . Let Yi,j be a binary random variable which is equal to one

if server i wins the point against receiver j, and zero otherwise. We assume

Yi,j |pi,j(x) ∼ Bernoulli(pi,j(x)), x ∈ X (1)

where pi,j(x) is the probability that server i wins a point against receiver j at rally length x, e.g

P[Yi,j = 1|x]. We consider two components to model pi,j(x), the first describing the serve advantage

and the second representing the rally ability of the players. Specifically, we model the logit of pi,j(x)
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as follows:

logit P(Yi,j = 1|x) = logit [pi,j(x)] = fi(x) + (αi − αj), x ∈ X (2)

with

fi(s) =
M∑
m=1

βi,mbm(s), s ∈ [L,U ] ⊂ R (3)

for i = 1, . . . , ns, j = 1, . . . , nr and i 6= j, where ns is the total number of servers and nr the total

number of receivers. The α’s are athlete-specific parameters representing the rally ability of the

player. We observe that the function f(s) (i index omitted for simplicity) is defined for each s in

the continuous interval [L,U ], however only its values f(x), for x in the discrete set X ⊆ [L,U ],

enter the sampling model in Equation (2). The continuous structure of f(s) takes into account the

overall trend of the serving advantage (i.e., it estimates the drop of the serving advantage as the

rally length increases), accommodating for the longitudinal structure of the data.

The conditional log odds for the probability of the i-th server winning a point against the

j-th receiver is a non-linear function of the rally length, x. Function fi(s) in Eq. (3) represents

the decay part of the model via a linear combination of basis functions {bm(s)}Mm=1, where M is

the dimension of the spline basis. In particular, we opted for B-splines basis functions of order

k on [L,U ] ⊂ R, and the βi,m’s are athlete-specific basis function coefficients. Specifically, let

M ≥ k ≥ 1 and t ≡ {tm}M+k
m=1 be a non-decreasing sequence of knots such that tm < tm+k for all

m, and tk = L and U = tM+1. Function fi(s) is a linear combination of the B-splines b1, . . . , bM ,

and is called a spline function of order k and knot sequence t (de Boor, 2001). In other words,

each fi is a piecewise polynomial of degree (k − 1) with breakpoints tm, and the polynomials are

k − 1 − Card(tm) times continuously differentiable at tm. Here Card(tm) denotes the cardinality

of {tj : tj = tm}. Moreover, we recall that spline bm has support on the interval [tm, tm+k[ and

here we are going to assume t1 = · · · = tk = L and tM+1 = · · · = tM+k = U . A more extensive

presentation of spline functions is given in de Boor (2001).

In our model, the spline function is defined on the whole interval [L,U ] and does not go to zero

for high values of rally length. Indeed, by looking at the last value of rally length in our application,

e.g. x = 15, it is clear that the logit of the conditional probability of i winning the point against j

reduces to

logit P(Yi,j = 1|x = 15) =
M∑
m=1

βi,mbm(15) + (αi − αj).
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We consider this as an asymptote, describing the server’s (i-th player) log-odds of winning a point

against opponent j when the serve advantage has vanished. We can interpret parameter αi as the

rally ability of the i-th player. When the serve advantage vanishes, the probability of winning the

point depends on the discrepancy between the rally abilities of the two players plus a constant,

obtained from the B-splines basis.

In the next sections, we provide more details regarding the modelling of the serve advantage

and the rally ability, respectively.

3.1 Modelling the serve advantage

Hereafter we will denote a spline function as partially monotone if fi(s) is monotone only in a

sub-interval of its domain [L,U ], for example if fi(s) is monotone decreasing in [L0, U ] ⊂ [L,U ]. To

simplify the notation, we will omit index i that denotes individual-specific objects, so we will let

fi = f and βi,m = βm. Further, the spline coefficients {βm}Mm=1 will be also referred to as control

points in the following.

Given that the serve advantage is expected to decrease as rally length increases, the spline

function f(s) should be non-increasing in [L,U ]. While the non-increasing behaviour can be directly

learnt from the data for small values of rally length, this could be harder to achieve for large values

of rally length due to data sparsity in this part of the function domain. In other words, we may

have to impose that the spline function is non-increasing for large values of rally length. Given a

threshold L0, we may allow f(s) to be free to vary for small values of rally length (i.e., for s < L0),

while it is crucial to ensure that f(s) is non-increasing as s goes above L0. Thus, we would like f to

be partially monotone, according to our definition. Then, we need to investigate which condition

the spline function must verify to guarantee the partial monotonicity constraint. To this end we

will first provide the following definition.

Definition 1 (Control Polygon). Let t ≡ {tm}M+k
m=1 be a non-decreasing sequence of knots and

let f(s) =
∑M

m=1 βmbm(s) be a spline function of order k > 1 and knot sequence t. The control

polygon C(s) of f(s) is defined as the piecewise linear function with vertices at (tm, βm)Mm=1, where

tm =
tm+1 + . . .+ tm+k−1

k − 1

is called the mth knot average.
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We note that tm < tm+1 because it is assumed that tm < tm+k for all m. The left panel of

Figure 3 provides an illustrative example of a spline function with its associated control polygon.

The spline function has order k = 4 and knot vector

t = (1, 1, 1, 1, 2, 3, 4, 7, 11, 15, 15, 15, 15)

The control points {βm}Mm=1 are randomly drawn from standard Normal distribution. The control

polygon approximates the spline function f , and the approximation becomes more accurate as the

number of control points increases.
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Figure 3: Examples of spline functions (black solid lines) and associated control polygons (piecewise linear

lines). In both panels, the spline functions were generated assuming B-splines functions of order k = 4 on

[1, 15] and with knot sequence t = (1, 1, 1, 1, 2, 3, 4, 7, 11, 15, 15, 15, 15), and M = 9 is the dimension of the

spline basis. Left panel: control points are generated as βm
iid∼ N(0, 1), for m = 1, . . . ,M . Right panel: the

control polygon is restricted to be non-increasing in [t̄mL0
−k = t̄3 = 2, 15], and the resulting spline function

is such from the smallest knot greater than 2. Black rug bars indicate the knot averages, while orange rug

bars denote the interior knots.

To ensure the serve advantage is non-increasing with rally length, we need to control the shape

of the spline function f on an interval [L0, U ] ⊆ [L,U ]. To do so, we will follow the notation and

the construction of Abraham and Khadraoui (2015) hereafter. In particular, for all s ∈ [L,U ] we

denote by tms the smallest knot greater than s, with the proviso that ms = M + 1 if s belongs
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to ]tM , U ]. Further, we assume that tm < tm+1 for all m /∈ {1, . . . , k − 1,M + 1, . . . ,M + k} so

that tms−1 < s ≤ tms for all s ∈ [L,U ]. We identify splines bmL0
, . . . , bM as those whose support

intersects with [L0, U ]. In other words, [tm, tm+k]∩ [L0, U ] 6= ∅ for m ∈ {mL0 − k, . . . ,mU − 1} and

[tm, tm+k] ∩ [L0, U ] = ∅ for m /∈ {mL0 − k, . . . ,mU − 1}, and the spline function restricted to the

interval [L0, U ] reduces to

f[L0,U ](s) =
M∑

m=mL0
−k
βmbm(s), s ∈ [L0, U ] (4)

We define the restricted control polygon on [L0, U ] as the control polygon associated to the

spline (4), that is, the piecewise linear function that interpolates the vertexes Pm := (t̄m, βm) for

m = mL0 − k, . . . ,M . We denote by C[L0,U ](s) this restricted control polygon, which is defined for

s ∈ [t̄mL0−k
, t̄M ]. We also observe that C[L0,U ] is defined on a interval that contains [L0, U ]. Indeed

t̄mL0−k
≤ L0 and t̄M = U .

The spline function f(s) can be restricted to be non-increasing on [L0, U ] by imposing that the

associated restricted control polygon C[L0,U ](s) is non-increasing as the following Proposition states.

Proposition 1. Let f(s) be a spline function with s ∈ [L,U ] ⊂ R, and let C(s) be the associated

control polygon. Consider a real L0 such that L ≤ L0. If the restricted C[L0,U ](s) is non-increasing

on its support [t̄mL0−k
, t̄M ], then the restricted spline function f[L0,U ](s) is also non-increasing on

[L0, U ].

The proof of Proposition 1 is given in Appendix A. Abraham and Khadraoui (2015) remark

that if the control polygon is unimodal in [L0, U ], then f is unimodal or monotone on [L0, U ], but

it is possible to force f to be unimodal by increasing the number of knots.

Controlling the shape of the control polygon reduces to controlling the magnitude of the sequence

of control points {βm}Mm=1. For example, for a non-increasing constraint on [L0, U ], the broken line

with vertexes (t̄m, βm)MmL0
−k is non-increasing if βmL0

−k ≥ · · · ≥ βM . In particular, we impose that

the spline coefficients of the restricted spline satisfy

βm ≤ βm−1 m ∈ {mL0−k+1, . . . ,M} (5)

Thus we have that the spline coefficients β1, . . . , βmL0
−k are free, while the spline coefficients

βmL0
−k+1, . . . , βM must be chosen such that condition in Equation (5) is satisfied. The right panel

11



of Figure 3 shows an example of spline function whose shape is constrained to be non-increasing on

[L0 = 3, U = 15]. Given knots t = (1, 1, 1, 1, 2, 3, 4, 7, 11, 15, 15, 15, 15), it is simple to realise that

mL0 = 7. Thus, βm
iid∼ N(0, 1), for m = 1, . . . ,mL0−k = 3, while the remaining coefficients are such

that β3 ≥ β4 ≥ β5 ≥ . . . ≥ β9. The resulting control polygon is decreasing from t̄3 = 2, and the

spline function decreases from L0 = 3.

3.2 A new prior for the isotonic model

Now, let us return to the athlete-specific notation, that is, let’s denote with fi(s) the spline function

and with βi,m the spline coefficients for athlete i. Hereafter, we will construct the spline function

fi(s) as (an intercept plus) a combination of M B-spline functions defined on the closed set [L,U ] ⊂

R, with order k and knot vector t = {t1, . . . , tM+k}. For rally lengths x ∈ [L,L0], the decreasing

behaviour of the spline function f is learnt from the data (Figure 2), whereas the non-increasing

trend for rally length larger L0 is assured by controlling the trend of to the restricted spline f[L0,U ](s).

In order to specify a Bayesian model which takes into account the constraints on fi(s), we

have to specify a prior distribution on the spline coefficients β1, . . . , βM such that the conditions

described in section 3.2 are satisfied. With this goal in mind, the free spline coefficients are given

a Normal prior distribution with mean βm and variance σ2βm :

βim|βm, σ2βm
iid∼ N (βm, σ

2
βm) for m = 1, · · · ,mL0 − k (6)

The prior mean and precision τ2m = 1
σ2
βm

are given conditionally conjugate prior distributions:

βm|β0, σ2β0 ∼ N (β0, σ
2
β0) and τ2m|rτ , sτ ∼ Γ

(
rτ
s2τ
,

(
rτ
sτ

)2
)
, (7)

where rτ is the mean and sτ is the variance of τ2m. Further:

β0 ∼ N (0, 100),
1

σ2β0
∼ Γ(0.1, 0.1)

rτ ∼ U(0, 10), sτ ∼ U(0, 10)

With regard to the constrained coefficients, we need to ensure the condition in Equation (5) is

verified. Therefore, we define these parameters recursively by letting

βi,m := βi,m−1 − εi,m, m = mL0 − k + 1, . . . ,M (8)
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where εi,m are random decrements with

εi,m|rε, sε ∼ Γ

(
rε
s2ε
,

(
rε
sε

)2
)
, where rε ∼ U(0, 10) and sε ∼ U(0, 10) (9)

The last equation shows how a spline basis can be easily constrained to be non-increasing, while

still retaining its essential flexibility.

For our application, we choose the same setup discussed in the example of Section 3.1. The

constrain L0 = 3 satisfies the empirical conclusion of O’Donoghue and Brown (2008), namely,

that the serve advantage is lost after the 4th rally shot. We assume independent Normal priors

as in Equation 6 for the first three spline (m = 1, . . . , 3) coefficients and we adopt the recursive

construction (8), with the prior in (9), for the remaining (m = 4, . . . , 9) coefficients.

3.3 Modelling the rally ability

As outlined above, parameter αi in Equation (2) can be interpreted as the rally ability of server

i. It is clear that parameters αi and αj in Equation (2) are not identifiable, that is, adding and

subtracting a constant to these parameters leaves (αi − αj), thus inference, unchanged. Non-

identifiability of the α’s is not a concern if one is solely interested in learning the logit of pi,j(x).

However, we are also interested in direct inference of the rally ability parameters, thus we need

to include an identifiability constraint (Gelfand and Sahu, 1999; Baio and Blangiardo, 2010). In

particular, we adopt a sum-to-zero constraint by setting

N∑
i=1

αi = 0,

where N is the total number of players in the dataset. We specify a Gaussian prior distribution for

the rally ability parameter as in Kovalchik (2018b):

αi|α0, σα ∼ N (α0, σ
2
α), for i = 1, . . . , N − 1 (10)

Finally, we specify the following conditionally conjugate non-informative priors on the hyperpa-

rameters:

α0 ∼ N (0, 100)
1

σ2α
∼ Γ(0.1, 0.1)
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3.4 Estimating a court effect

In the Grand Slam tournaments, players play over three different types of court: clay, grass, and

hard, respectively. The tennis season begins with hard courts, then moves to clay, grass, and

back again to hard courts. While very popular in the past, nowadays only Wimbledon is played

on grass. Each surface elicits different ball speed, bounce height, and sliding characteristics. For

example, grass courts produce little friction with the ball, which will typically bounce low and at

high speed on this court. Conversely, clay slows down the ball a little and allows players more

time to return it, resulting in longer rallies. Players have to adapt their technique effectively to the

surface. However, adapting training and playing schedules is extremely physically demanding on

the player. As a result, it is very difficult for one player to dominate across all the courts, and thus

all the slams (Starbuck et al., 2016).

It is therefore reasonable to state that the surface type can impact on a player’s performance.

Gorgi et al. (2018) study the effect of the different courts for ATP players using a Bradly-Terry

model and conclude that taking this information into account leads to improved rankings of the

players. In our model, it is straightforward to include court as a covariate within a regression model

for the rally ability of each player, and observe the best player for each court. In particular, we

define the probability of winning a point on serve given both the rally length and the type of court:

logit pi,j(x, c) = logit P[Yi,j = 1|x, c] =

M∑
m=1

βi,mbm(x) + (αi,c − αj,c), (11)

for i = 1, . . . , ns, j = 1, . . . , nr and i 6= j, where ns is the total number of servers, nr the total

number of receivers, and M is the dimension of the splines basis. Here index c denotes the type of

court, with c ∈ {1, 2, 3}, where 1 means clay, 2 stands for grass and 3 means hard.

Adding this covariate to our model does not affect the serve advantage, which is modeled as in

Section 3.1. Conversely, we now have a subject-specific vector of rally abilitiesαi = (αi,1, αi,2, αi,3)
>,

where αi,c refers to court type c. To ensure the αi’s are identifiable for all players, we impose

N∑
i=1

3∑
c=1

αi,c = 0,

where N is the total number of players in the dataset. We specify a Gaussian prior distribution on

the rally ability parameters:

αi,c|α0, σα ∼ N (α0, σ
2
α), (12)
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for i = 1, . . . , n − 1, c = 1, 2, 3, and for i = n and c = 1, 2. Finally, we specify the following

conditionally conjugate non-informative priors on the hyper-parameters:

α0 ∼ N (0, 100)
1

σ2α
∼ Γ(0.1, 0.1)

4 Model comparison

In this section, we compare different models in order to identify the best on the tennis data. In par-

ticular, we consider the pair-comparison exponential decay model, proposed by Kovalchik (2018b),

and three versions of our Bayesian isotonic logistic regression (BILR) model: 1) no constraints on

the spline coefficients, thus the spline function is free of monotonicity constraints; 2) set L0 = 3

(U = 15) and impose an order constraint on the coefficients of the B-splines with support in (3, 15],

thus the resulting spline function is non-increasing in (3, 15] (partially monotone); and 3) spline

function constrained to be non-increasing in [1, 15], with an order constraint on all basis function

coefficients, β1 ≥ β2 ≥ . . . ≥ βM . Setting 2) draws on O’Donoghue and Brown (2008), who observe

the serve advantage is lost after the 4th rally shot on men’s first serve.

To compare the performance of the different methods, we compute four goodness of fit indices

broadly used in the Bayesian framework. In particular, we consider the Log Pseudo Marginal

Likelihood (LPML) (Geyser and Eddy, 1979), which derives from predictive considerations and

leads to pseudo Bayes factors for choosing among models. Further, we compute the Deviance

Information Criterion (DIC) (Spiegelhalter and der Linde A., 2002), which penalizes a model for

its number of parameters, and the Watanabe Akaike information criterion (WAIC) (Watanabe,

2010). The latter can be interpreted as a computationally convenient approximation to cross-

validation and it is not effected by the dimension of the parameter vector. Finally, we also compute

the root mean squared error (RMSE).

Prior to implementing the BILR model, one has to choose the order of the B-spline bases k, the

number of knots and their location, which together determine the dimension of the spline basis.

We recall that M in Eq. (3) is determined as M = k + number of interior knots. Further, one has

to choose the sub-interval of the spline function domain where monotonicity is to be imposed. For

setting 2) above, this sub-interval is chosen to be (3, 15]. We performed some preliminary sensitivity

analysis to investigate changes in performance of the BILR model due to different choices for the
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number of bases, their degree, the knots location, and range [L0, U). Results of our sensitivity

analysis are reported in Orani (2019). For all three versions of our BILR model 1)-3) above, the

spline functions fi(s), with i = 1, . . . , ns, are constructed from a B-spline basis of dimension M = 9

as in Eq. (3), defined on the closed interval [L,U ] = [1, 15]. The spline functions have order k = 4

and knot vector t = (1, 1, 1, 1, 2, 3, 4, 7, 11, 15, 15, 15, 15). This model maximises the LPLM criterion

and minimises the DIC and the WAIC, as reported in Orani (2019).

In Figure 4 we compare the fit obtained for Andy Murray with the exponential model and

our three versions of our BILR model. The exponential decay model (top left) has a decreasing

behaviour until x = 5, and after that the chance of winning a point is a constant given by the

difference between Murray’s rally ability and the average rally ability of his opponents, i.e. to

plot the figure we substituted αj in Eq. (2) by ᾱi obtained averaging all the αj for j 6= i. Our

BILR model with no constraints (top right) allows for an increasing behaviour in the probability

of winning the point for some intermediate values of rally length, and this behaviour is unlikely

to be justified in practice. While for small values of rally length the decreasing trend in serve

advantage can be learned from the data, for large values of rally length this behaviour must be

imposed through the model given data sparsity. We recall that short rallies, i.e. x ≤ 4, constitute

90% of the rallies in the dataset. In this data-rich part of the domain, no constraint is needed to

adequately describe the data. Conversely, for long rallies, the decreasing behaviour imposed via

the prior on the coefficients leads to a model which is not influenced by outliers. Both the model

with monotonicity constraint in (3, 15] (bottom left) and the model with all spline coefficients

constrained to be non-increasing (bottom right) display a non-increasing behaviour for large values

of rally length.

For a quantitative evaluation of the performance of the four approaches, we compute the

goodness-of-fit measures for these models, reported in Table 3. Although no dramatic difference

in performance emerge, the BILR model under setting 2) above (spline function non-increasing in

(3, 15]) simultaneously maximises the LPML criterion and minimises the WAIC, DIC, and RMSE,

respectively. According to the results in Table 3, we select the model with six constrained splines.

Thus, our final model has a spline function for server i:

fi(s) =
9∑

m=1

βi,mbm(s), where s ∈ [1, 15], (13)
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Figure 4: Probability of winning a point as a function of rally length for Andy Murray estimated with the

exponential decay model (top left), BILR with no constrained splines (top right), BILR with order constraint

on the coefficients of the splines with support in (3, 15] (bottom left), and BILR with order constraint on all

spline coefficients (bottom right). The points represents the real data, while the black lines are the posterior

mean estimate of the probability of winning a point as a function of rally length obtained with these models.

The blue dashed lines are the 95% credible intervals.

with six constrained splines, that is, βi,4 ≥ βi,5 ≥ βi,6 ≥ βi,7 ≥ βi,8 ≥ βi,9 for all servers i = 1, . . . , ns.

5 Results

In this Section, we report results of the model fitted to point-by-point data for main-draw singles

Grand Slam matches from 2012 forward, which were described in Section 2. We divide both the

male and female datasets into training and test sets. In both training sets we have 90 randomly
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Goodness-of-fit-Measures

LPML WAIC DIC RMSE

Exponential model -52813.7 105821.3 105876 22.52

Spline models

No constraints -52760.4 105853.9 105818 20.71

Non-increasing in (3, 15] -52739.1 105747.6 105828 19.32

Non-increasing in [1, 15] -52744.9 105790.4 105875 20.37

Table 3: Predictive goodness-of-fit measures for different model settings.

chosen servers, while the receivers are 140 in the male training set and 139 in the female training

set. Conversely, in the male test set we have 50 servers and 140 receivers, whereas in the female

test set we have 49 servers and 139 receivers. We fit model (1)-(10) separately on both male and

female training sets, and perform predictions on the hold-out test sets. Our aim is to predict the

conditional probability of winning a point for servers in the test sets by borrowing information from

the training set results.

The posterior update of the model parameters was performed via Gibbs sampling, implemented

by the rjags package (Plummer et al., 2016) in the R programming language (R Core Team, 2013).

Posterior summaries were based on 20, 000 draws from the posteriors, with a burn-in of 1000

iterations and thinning every 20 iterations to reduce the autocorrelation in the posterior samples.

Convergence of the Markov Chain ha been assessed by visual inspection ad using the coda package

(Plummer et al., 2006). The sampler appeared to converge rapidly and mix efficiently.

Summaries of the serve advantage model parameters suggest a strong serve advantage. The

probability of the server winning conditional on the point ending on serve, E(Yij = 1|x = 1), is 0.83

with 95% credible interval (C.I.) (0.75, 0.94) for men and 0.69 for women with 95% C.I. (0.55, 0.83),

respectively. When the serve advantage is lost, e.g. x = 15, the probability of winning a point

is mainly given by the rally ability of the server against the rally ability of the opponent. In this

case, E(Yij = 1|x = 15) has credible intervals (0.51, 0.64) for men and (0.46, 0.55) for women,

respectively. In Figure 5 we show the estimated probability of winning a point as a function of

rally length for Rafael Nadal and Roger Federer. The mean posterior curves are very similar: both

18



2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rally length

P[
w

in
|x

]
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Rafael Nadal

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rally length

P[
w

in
|x

]

●

●
●

●

●
●

●
●

●

●

Roger Federer

Figure 5: Probability of winning a point as a function of rally length for Rafael Nadal and Roger Federer.

The points represents the real data, while the line is the posterior mean estimate of the probability of winning

a point as a function of rally length obtained with the model. The blue dashed lines are the 95% credible

intervals.

players have the highest chance of winning the point on serve, and then this probability decreases.

It is evident that the posterior mean estimate of the probability of winning a point on serve does

not undergo an exponential decay, and a similar pattern for this estimate is observed on other

players as well. We remark again that the curve fi(s) estimates a global trend, namely it describes

how the serve advantage drops with rally length. Nevertheless, the value fi(x), for x = 1, 2, . . . , 15,

is the estimate of the serve advantage for athlete i at the (discrete) value of rally length, x. In our

Figure we decide to plot the posterior estimate of fi(s) as a continuous trajectory to underline the

longitudinal structure of the data.

Figure 6 displays the estimated posterior median serve advantage versus the estimated posterior

median rally ability. Specifically, the x-axis displays the posterior median of αi estimated under the

baseline model (Section 3.3), whereas the y-axis displays the total serve advantage (fi(0)− fi(15)),

where fi(s) is defined in Eq. (3). Let us observe the three top players according to the ATP singles

ranking as of January 2019, namely, Roger Federer, Rafael Nadal and Novak Djokovic. We notice

that Djokovic excels in terms of rally ability, confirming that he is better in defence than in attack.

Conversely, Federer wins more at the first shot than on the long play. Finally, Nadal stands out

in both terms of serve advantage and rally ability. Figure 7 displays the same plot for the female

dataset. We observe that Serena Williams excels on the long play, while Angelique Kerber and
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Figure 6: The posterior median rally ability αi estimated under the baseline model (Section 3.3), on the

x-axis, against the total serve advantage (fi(0)− fi(15)) (Eq. (3)), on the y-axis, for male players in the

ATP tournaments. The red lines represent the median rally ability of male athletes, parallel to the y-axis,

and the median of the serve advantage. The red points indicate the top four players of the ATP tournaments.

We only display those athletes whose 95% CI for serve advantage and rally ability do not include zero.

Simona Halep are better on serve. Caroline Wozniacki displays a good balance between serve and

rally abilities.

Further, we want to investigate the effect of the surface on the rally ability. To this end we

fit the extension of our model described in Section 3.4. Since the court is likely to have an effect

on the player’s rally abilities, we study how the court affects the players’ skills. We report here
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Figure 7: The posterior median rally ability αi estimated under the baseline model (Section 3.3), on the

x-axis, against the total serve advantage (fi(0)− fi(15)) (Eq. (3)), on the y-axis, for female players in the

WTA tournaments. The red lines represent the median rally ability of female athletes, parallel to the y-axis,

and the median of the serve advantage. The red points indicate the top four players of the WTA tournaments.

We only display those athletes whose 95% CI for serve advantage and rally ability do not include zero.

the posterior median estimate for the rally ability along with 95% credible intervals for the three

different courts for the best players in the ATP and WTA tournaments, respectively. We also

compute the posterior median estimate, with 95% credible intervals, for αi, obtained with the

model which does not take the court effect into account (Equation (2)). These estimates, reported

in Appendix B, are used to rank the athletes and understand how the different courts impact to
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the game of these top players.

Type of court

Ranking Baseline Clay Grass Hard

ATP

1 Djokovic (0.35) Nadal (0.52) Federer (0.28) Djokovic (0.34)

2 Nadal (0.31) Djokovic (0.29) Djokovic (0.28) Nadal (0.28)

3 Federer (0.16) Federer (0.09) Nadal (0.17) Federer (0.14)

WTA

3 Wozniacki (0.17) Halep (0.20) Kerber (0.16) Wozniacki (0.21)

1 Halep (0.11) Wozniacki (0.09) Halep (0.11) Kerber (0.15)

2 Kerber (0.03) Kerber (0.01) Wozniacki (0.11) Halep (0.11)

Table 4: Ranking of the players on different court surfaces. The second column lists the official ATP and

WTA year-end final rankings (by points) for singles for the 2018 championships season.

The results (Table 4) confirm common knowledge about these athletes. Djokovic and Nadal

are both great at rallying. Djokovic is good on all courts, while Nadal is very good on clay and

hard courts, but less favorite on grass. Federer appears to be weaker in rallying compared to the

other two athletes, though he is the strongest on grass courts. Regarding the WTA tournament,

Angelique Kerber is good at rallying on both hard and grass court, but underperforming on clay

courts. Caroline Wozniacki is good on all types of court, and in fact she is the player with the

highest estimated rally ability α among the three female athletes. Simona Halep is good on clay,

but does not outperform other players either on grass and hard courts. In general, however, the

female athlete with the highest estimated α in the WTA dataset is Serena Williams (Figure 7).

The median estimate of her rally ability α in the baseline model is 0.26 (0.18-0.35), whereas the

estimates on clay, grass, and hard courts are, respectively, 0.17 (0.05-0.30), 0.17 (0.11-0.21) and

0.27 (0.17-0.37).

In Figure 8 we observe the out-of-sample prediction for two players belonging to the male and

female test sets, Gilles Simon and Eugenie Bouchard. The estimated probability of winning a point

for a server in the test set (e.g., the black solid curve in Figure 8), is obtained by drawing the
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Figure 8: Probability of winning a point as a function of rally length for Gilles Simon, on the left, and for

Eugenie Bouchard, on the right. The points represent the real data, while the line is the estimated posterior

mean probability of winning a point as a function of rally length obtained with the model. The blue dashed

lines are the 95% credible intervals.

basis functions coefficients βi,1, . . . , βi,M and the positive random decrements {εi,m}Mm=mL0
+1 as

per Equations (6), (9), (8), using the posterior estimates of the non-subject specific parameters,

that is, βm, σ2βm , rε and sε. The rally ability is just computed in the training phase. The strength

of the hierarchical model is the ability to infer the conditional probability of winning for a hold-out

subject by borrowing strength from athletes in the training dataset. The estimated trajectory for

these players is in line with the observed realisations given by the points in Figure 8.

6 Conclusions

In this paper, we presented a framework to modelling the serve advantage in elite tennis. Our

approach extends Kovalchik (2018b) by replacing a simple decay exponential function for the serve

advantage with a B-spline basis function decomposition, thus achieving more flexible results. Con-

straints on the basis function coefficients guarantee that the serve advantage is non-increasing with

rally length. As in Kovalchik (2018b), we allow the conditional probability of winning on serve to

also depend on the rally ability of the two players, and investigate how the different types of court

may impact on such rally ability. When the exponential decay function in Kovalchik (2018b) goes

to zero, the conditional probability of winning a point is only given by the difference between two
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rally abilities, thus a constant. Conversely, our spline function is defined on [1, 15] by construction,

and therefore non-zero everywhere in the spline domain. This results in higher uncertainty as rep-

resented by wider credible intervals for large values of rally length. This should be considered as a

positive feature of our model, that is able to reflect larger uncertainty in presence of sparser data.

Our results show a sort of trade-off between serve advantage and rally ability. The most suc-

cessful tennis players in the dataset show higher rally ability (rally ability above training median

value) relative to their serve advantage. Indeed, if two players have the same chance of winning the

point on the first shot, the match will be won by the player with the higher rally ability. We can

conclude that although the service is important, what makes a tennis player great is his/her rally

ability.

Although motivated by the analysis of tennis data, our methodology can be applied to pair-

comparison data in general, with applications ranging from experimental psychology to the analysis

of sports tournaments to genetics.

A Proof of Proposition 1

Consider the restricted spline function

fL0,U (s) =

M∑
m=mL0

−k
βmbm,k(s),

where k is the order of the B-splines. Following Formula (12) on page 116 and Formula (13) of

de Boor (2001), we can compute its derivative as

f ′L0,U (s) = (k − 1)
M∑

m=mL0
−k+1

βm − βm−1
tm+k−1 − tm

bm,k−1(s)

≤ (k − 1) sup
m∈{mL0

−k+1,...,M}

{
βm − βm−1
tm+k−1 − tm

} M∑
m=mL0

−k+1

bm,k−1(s)

= (k − 1) sup
m∈{mL0

−k+1,...,M}

{
βm − βm−1
tm+k−1 − tm

}

where we used the fact that that
∑M

m=mL0
−k+1 bm,k−1(s) = 1. The latter follows from Formula (37)

on page 96 of de Boor (2001), and from the fact that bm,k−1(s) = 0 for s ∈ [L0, U ] and m /∈ {m =
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mL0−k+1, . . . ,M}. It is straightforward to observe that the constant supm∈{mL0
−k+1,...,M}

{
βm−βm−1

tm+k−1−tm

}
is smaller or equal than zero if and only if

βm ≤ βm+1 for each m ∈ {mL0 + k − 1}

The latter property is equivalent to requiring that the restricted control polygon C[L0,U ](s) is not

increasing on its support, i.e. for s ∈ [t̄mL0
−k, t̄M ].

B Rally abilities on different types of courts

Type of court

Players Baseline Clay Grass Hard

α α1 α2 α3

Novak Djokovic 0.35 (0.23-0.46) 0.26 (0.17-0.36) 0.25 (0.14-0.36) 0.30 (0.22-0.40)

Rafael Nadal 0.31 (0.19-0.40) 0.49 (0.39-0.60) 0.15 (0.03-0.28) 0.25 (0.16-0.32)

Roger Federer 0.16 (0.07-0.25) 0.09 (0.01-0.21) 0.27 (0.18-0.35) 0.11 (0.03-0.20)

Caroline Wozniacki 0.17 (0.03-0.29) 0.03 (0.00-0.11) 0.11 (0.04-0.26) 0.21 (0.11-0.31)

Simona Halep 0.11 (0.03-0.21) 0.20 (0.09-0.30) 0.11 (0.01-0.22) 0.11 (0.02-0.19)

Angelique Kerber 0.03 (0.01-0.10) 0.09 (0.03-0.13) 0.16 (0.06-0.32) 0.15 (0.06-0.24)

Table 5: Credible intervals for the rally abilities of the top players for the ATP and the WTA tournaments.
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