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Abstract

The soybean aphid\phis glycinedMatsumura (Hemiptera: Aphididae) is a serious pest
of the soybean planGlycine maxa major world-wide agricultural crop. We asserdide
de novagenome sequence Ap. glycinesBiotype 1, from a culture established shortly
after this species invaded North America. 20.4%hefA\p. glycinegproteome is
duplicated. These in-paralogs are enriched witheG@ntology (GO) categories mostly
related to apoptosis, a possible adaptation ta plaemistry and other environmental
stressors. Approximately one-third of these gehesvarallel duplication in other
aphids. ButAp. gossypiiits closest related species, has the lowest nuoflibese
duplicated genes. An lllumina GoldenGate assay38@SNPs was used to determine
the world-wide population structure Ap. GlycinesChina and South Korean aphids are
the closest to those in North America. China islitkedy origin of other Asian aphid
populations. The most distantly related aphidsitsé in North America are from
Australia. The diversity of\p. glycinesn North America has decreased over time since
its arrival. The genetic diversity éfp. glycinedNorth American population sampled
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shortly after its first detection in 2001 up to 20does not appear to correlate with
geography. However, aphids collected on soylRagexperimental varieties in
Minnesota (MN), lowa (lA), and Wisconsin (WI), clrsto high densitiRhamnus
catharticastands, appear to have higher capacity to colaegistant soybean plants than
aphids sampled in Ohio (OH), North Dakota (ND), &uith Dakota (SD). Samples
from the former states have SNP alleles with Highvalues and frequencies, that
overlap with genes involved in iron metabolismyac@l metabolic pathway that may be
affected by thdRag-associated soybean plant response.AhgylycinesBiotype 1
genome will provide needed information for futurelyses of mechanisms of aphid
virulence and pesticide resistance as well asiti@elcomparative analyses between
aphids with differing natural history and host gleange.

1. Introduction

Native to Asia, the soybean plaflycines maxL.) has been grown in China for
4000-5000 years (Ma, 1984) and its cultivation agre® other Asian countries
approximately 2,500 years ago (Wu et al., 2004)e 3oybean aphidphis glycines
native to the same region, is a highly successfydrmsm with a wide geographic
distribution. In Asia it can be found over a ranigat spans from northern China, eastern
Russia, Japan, Korea, to the more southern arelisailind, Malaysia, Indonesia, the
Philippines, Vietham and Myanmar (Wu et al., 20Rdgsdale et al., 2004; Krupke et al.,
2005). More recently, facilitated by commerce anchan movement, it has invaded
Australia (Fletcher and Desborough, 2000), the éthftates and Canada (Venette, 2004;
Ragsdale et al., 2004).

Like most aphidsAp. glycinedhas a life cycle during which both sexual and
asexual morphs are produced (holocyclic) on altergglant hosts (heteroecious).
Rhamnusp. constitute the primary host, which the aptselsuto overwinter and
reproduce sexually (Blackman and Eastop, 1984).cliltezated soybean plant is used
during the summer months, when the parthenogefoetitc can reach extremely high
population densities. However, other plant spesieh a<s. sojaSieb. & Zucc., and
other species (Wang et al., 1962; Ragsdale €G@04; Hill et al., 2004b) have been
reported as summer hosts. During the summer, wingeghs (alates) can develop in
response to low host quality, crowding or otheestors. These alates disperse to new
host plants locally and in some cases wind aidsng-distance dispersal. Fall,
temperatures, photoperiod and changes in soybesirgbality trigger the production of
winged females that viviparously produces the skgeaeration (gynoparae). The
gynoparae fly ttRkhamnusvhere they feed and give birth to nymphs (ovippdsstined
to bear the overwintering eggs. Alate males, pcedwon senescing soybean, seek the
oviparae orRhamnusnd mate. Mated oviparae lay fertilized eggdenfolds of
Rhamnududs (Ragsdale et al., 2004) (Fig. 1). In ARhamnus davuric®allus anR.
japonicaMaxim. are most commonly used as overwinteringsh@Bakahashi et al.,
1993; Kim et al., 2010), while in North Ameri€a cathartica also an invasive species
widely diffused in the north—central region of tie5., is utilized as the overwintering
plant host (Voegtlin et al., 2004; Ragsdale et204).
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Similar to many other insects, the most widely usacktrol method for soybean
aphid has been the application of chemical pestsc{éiodgson et al., 2012; Ragsdale et
al., 2011; Hesler et al., 2013). However, inseatgehcommonly met this challenge by
developing resistance to highly used modes of aaifansecticidal compounds (Pedigo
and Rice, 2009; Mahmood et al., 2014). The soylagdid is no exception and resistance
to organophosphates and pyrethroids has been @osiernAsia (Wang et al., 2011a,b; Xi
et al., 2015) and North America (Hanson et al., 7201

The production of soybean in China is mainly ledain the north and northeast
region and the soybean aphid is the most sericgtstipeat to productivity (Wu et al.,
2004) (A compendium of translated papers regargasg research conducted in China on
the soybean aphid is available at
http://www.ksu.edu/issa/aphids/reporthtml/citatidnisil (Wu et al., 2004). In Asia, the
soybean aphid, where it has co-existed with thevatéd soybean for several thousand
years, has a large number of natural enemies éima $0 moderate its populations. These
include 15 species of aphelinids and braconidssiaids, 9 species of hyperparasitoids
as well as multiple predators such as anthococltEmnaemyiids, chrysopids,
coccinellids, linyphiids, lygaeids, mirids, nabidsd syrphids (Wu et al., 2004). Within
Asia, the soybean aphid inhabits a geographic tp#swith highly varied topography
including mountains and large bodies of water toalld serve as barriers, however, its
dispersal was facilitated by human activity anddabecomitant dissemination of the
soybean plant, an easy to grow source of protednodrand is now present in much of
Asia (Wu et al., 2004).

The recent increase in world-wide commerce and numability has facilitated
the movement afhe soybean aphid beyond the Asian continent, ngakkione of the
most important invasive agricultural insect pestdlorth America. First observed in
July of 2000 on soybean fields in Wisconsin, llimland Minnesota (Hartman et al.,
2001; Alleman et al., 2002; Venette and Ragsd#@4?y, it rapidly spread to 22 states
and three Canadian provinces in 4 years. It has pemosed that it was likely present in
the U.S. for several years prior to 2000, but im feumbers that escaped detection and or
confirmation (Hunt et al., 2003; Venette and Ragsd2004; Ragsdale et al., 2004p.
glycinesis now established in most of the soybean growiegs of North America and
its economic impact in terms of crop loss is sigaifit. In 2001, yield losses greater than
50% were reported in Minnesota. Ragsdale et aQ{Rfeported yield losses of 40%, and
in 2003 losses were estimated at $80 million inMésota and $45 million in lllinois. In
2003 the state of lllinois spent an estimated $81t million in insecticides to control
the soybean aphid. Damage estimates from the sowpdad, if left untreated, are
estimated at $2.4 billion annually (Song et alQ&0 Large aphid populations reduce
soybean production directly by causing severe plantage during feeding, resulting in
leaf distortion, stunting, and desiccation. Feedipg relatively small number of aphids
can affect photosynthesis (Macedo et al., 2003yvéder, soybean aphids also indirectly
affect soybean plants by facilitating the growttbtafck sooty mold fungus that grows on
aphid honeydew and inhibits photosynthesis (Malump897; Hartman et al., 2001). In
addition to direct feeding damage, the soybeandajppansmits several plant viruses such
asSoybean mosaic vir{/SMV), Soybean dwarf viruSbDV), as well as viruses of other
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crops such a€ucumber mosaic virlCMV) andPotato virus Y(PVY) (Sama et al.,
1974; Iwaki et al., 1980; Hartman et al., 2001} Hilal., 2001; Clark and Perry, 2002;
Domier et al., 2003; Davis et al., 2005; Sass.eabD4). Probe feeding by migrating
soybean aphids can transmit viruses to non-hosts asipotatoSolanum tuberosuitn,,
(Davis and Radcliffe, 2008) and be&thaseolus spp(Mueller et al., 2010).

While there have been efforts to establish enviremially sound biological
controls methods (Chacén et al., 2008; Heimpel.e2@04; Nielsen and Hajek, 2005;
Rutledge and O'Neil, 2005; Wu et al., 2004; Wyckhayal., 2007) the application of
insecticides to reduce soybean aphid populatiotigeisnost common management
method (Hodgson et al., 2012; Magalhaes, 2008; Mgtal., 2005). For some U.S.
states, as much as 57% of soybean acres havedygeted as treated with insecticide
during outbreak years (Ragsdale et al., 2007). 8apand insecticide treatments based
on economic threshold have been shown to be aroatoal way to manage soybean
aphids with insecticide (Ragsdale et al., 2007; ¢$od et al., 2012; Koch et al., 2016;
Ragsdale et al., 2011).

Most aphid species are specialized to feed ontacpkar plant family or a few
plant species within a family (Blackman and Easgiif)0; Powell et al., 2006 Ap.
glycinesis highly specialized towards soybean and itsedbeelatives, likely the result of
a long period of co-evolution between ancestorsmfglycinesandGlycineplant species
in their center of origin, probably in present aeyythwest China (Wu et al., 2004).

The basics of the life cycle @éip. glycineswere constant through the first few
years of its establishment in North America (Fig.Soybean was utilized as the summer
host andR. cathartica, R. lanceolatandR. alnifoliaas winter host plants (Voegtlin et
al., 2004). The latter two species are uncommairesmand not of significance in the
year-to-year survival of the soybean aphid in Néaherica (Fig. 1). In 2006 two
biological changes were observed in the soybearaihie detection of virulent biotypes
and the colonization of a new genus of overwingehinst plant.

As part of the research effort to limit the impatAp. glycineson soybean
production, a portion of the USDA soybean germplasitection, housed at the
University of lllinois, was tested and several atic lines were discovered with host
resistance against the soybean aphid (Hill e@D4a). From this initial screening, two
ancestral soybean lines found to have host resistgenes against the soybean aphid
were identified. The resistance in these lines evasacterized for mode of action and
inheritance. It was found that each line had gindbminant acting gend3agl1(Hill et
al., 2006a) an®Rag (Jackson{Hill et al., 2006b; Li et al., 2007) that conditied
antibiosis-type resistance against the aphid péstse genes were subsequently
transferred through conventional backcross breeditogelite pre-commercial lines. In
2006, experimental soybean plots of soybean brgdufies with theRaglgene, planted
in the field in Ohio, were unexpectedly found tododonized by soybean aphids. A
clonal colony of these aphids was establishederiahoratory and tested in a greenhouse
on aphid host resistant plant lines, and compareghhids from a soybean aphid colony
established in 2001 from samples collected indibrshortly after the soybean aphid was
detected in the U.S. The latter were unable toreeéoany of the plants with host



228 resistance, while the Ohio-derived culture showiedlence on the resistant soybean
229 genotypes Dowlingag), LD05-16611 RagJ), and JacksorRag(Jackson)) The

230  ability of this new soybean aphid isolate, to c@terplants withRaglor Rag(Jackson)
231 which likely are allelic host resistance genesl(étilal., 2012), demonstrated that the
232 Ohio isolate was a representative of a new, preslyounknownAp. glycinesBiotype 2

233 (B2) that could overcomRagZXconditioned resistance and had a different vircgen

234 spectrum compared to the original avirulent isotatkected in lllinois, now called

235 Biotype 1 (B1) (Kim et al., 2008; Alt and Ryan-Mattagic, 2013), and whose genome
236 s described herein.

237

238 A second significant biological change was obsedugihg the fall of 2006 when
239  soybean aphid colonies and eggs were observé&damgulaalnus(glossy leaved

240  buckthorn) at three widely separate locations intihrn Indiana. For aphids the switch
241  to a different woody plant species that servesi@®verwintering primary host, is

242 uncommon due to the specialization of the fundatrotph on the primary host plant

243  (Moran, 1988). In the spring of 2007, colonieApt glycinesvere again observed én
244  alnusat two locations, demonstrating that the aphid swatessfully overwintered on this
245  new host plant (O’Neil, R. and Voegtlin, D.J., Reral communication). Previous

246  observations and laboratory tests had shown teaghglycineggynoparae (Fig. 1)

247  would accepkF. alnusin the fall, feed and produce nymphs, but theselevoot mature
248 into oviparae and thus not deposit overwinteringse(yoegtlin et al., 2004). Aphids

249  from Indiana found to have survived over winterForalnuswere taken into culture and
250 tested on a panel of aphid-resistant soybean tmdstermine their virulence spectra
251  (Hill et al., 2010). From the results of the testis aphid clone, established from

252  viviparous aphids collected ¢h alnus behaved as a new biotype (Biotype 3; B3), which
253 was able to colonize soybean genotypes wittRiig2gene (Hill et al., 2009).

254

255 These findings showed that the soybean aphid pesggmtentially significant
256  genetic variability that resulted in virulence, jmgsa threat to the durability of plant host
257  resistance used to manage this pest. This kno@lpdgnpted soybean breeders to

258 expand their search for new host resistance so(iftik®t al., 2017) and develop genetic
259  strategies to improve the durability of host resise genes, such as pyramiding multiple
260 resistance genes together within soybean cultidcEarville, et al., 2014; Ajayi-

261  Oyetunde et al., 20)6to retard the adaptation to host resistance lwdtie erosion of
262  resistance efficacy. MultiplRaggenes have been mapped in soybean and several
263 commercial varieties witRagl Rag2andRag}2 are commercially available

264  (McCarville et al., 2014; Hesler et al., 2013). vitver, several viruler&p. glycines

265  biotypes have been documented: B2, virulenRagl B3, virulent onRag2 B4, virulent
266 onRagl Rag2 andRagl+2(Kim et al., 2008; Hill et al., 2010; Alt and Ryan

267 Mahmutagic, 2013). The facility with which tig. glycinedNorth American population
268 has developed virulent biotype to resistant plamieties has prompted the question of
269  whether aphids in North America hybridized withegident species and whether this
270  “hybrid vigour” contributed to its success.

271

272 Two possible candidate species that also utlRkamnusas an overwintering host
273  areAp. gossypiandAp. nasturtiilLagos, 2014). Hybridization between different spec
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of aphids has been documented (Mueller, 1985) dsawéhe hybridization producing
fertile offspring in the laboratory betwedp. grossulariaendAp. triglochiniswhere the
morphology and host preference of the former ugwidminated in the hybrid clones
(Rakauskas, 2000). Hybridization has also been dstraied betweeAp. glycinesand
Ap. gossypii.While Ap. gossypidoes not share soy as a summer host it does share
Rhamnuss the overwintering host plant. In China wheretihe species share.
purshiana(Cascara buckthorn or Cascara sagrada), Zhangleordy (1982) observed
natural crossbreeding between the cotton and soydggad in Jilin Province, China and
conducted laboratory hybridization experiments tlteahonstrated that mating between
the species occurred. A greater number of via@s @ccurred in the crodg. glycines
female xAp. gossypimales than its reciprocal and offspring of botbsses could only
live on the corresponding host of the female parent

Efforts have been made to compare the populatioptgestructure of the
ancestral Asian and invasive U.S. populations (Klieh al., 2009; Jun et al., 2013).
Using populations from Ontario, Canada, nine déferJ.S. midwestern states and seven
microsatellites, previously designed fgp. fabaeandAp. gossypiifound significant
genetic differentiation between South Korean andiNAmerican populations.

However, for the latter, genetic diversity was assted with time of collection, June to
September 2008, rather than geographic locatiewljrig to the conclusion that this
observed pattern was the result of successful atelanal populations expanding and
colonizing other localities during a growing seaghlichel et al., 2009). Eighteen simple
sequence repeats (SSRs) used to examine the popudaticture of the soybean aphids
collected from two localities in the U.S., two ini@h Korea and one in Japan had
resolution to discern differences in the aphidgioating from the different countries but
not between the two samples within the U.S. andtBKarea (Jun et al., 2013).

Genomic resources for agricultural crops and irsstit affect them are
increasing. Currently there are 12 publicly avdéajienomes of agricultural aphid pests
which differ in genome size, life history pattergepgraphic distribution and impact as
pestsAp. gossypi(Quan et al., 2019Myzus persicaéMathers et al., 2017M. cerasi
(AphidBase; https://bipaa.genouest.org/is/aphiddakeyrthosiphon pisur(irhe
International Aphid Genomics Consortium, 201Diyraphis noxia(Nicholson et al.,
2015),Melanaphis saccha(NCBI; PRINA413550)Rhopalosiphum maidiNCBI;
PRJINA480062)R. padi(AphidBase; https://bipaa.genouest.org/is/aphidhase
Schizaphis graminupandSipha slavagNCBI; PRINA472250), including the genome of
Ap. glycinesobtained by sequencing specimens from laboratgnees and field
specimens from six geographic localities in the wadt U.S. (Wenger et al., 2017) and
the genome of the strain Ap. glycineqB1) presented herein (Table 1). In addition to
the recently-obtained genomes of the cedar aBimdra cedri (Julca et al., in presghd
of the phylloxerarDaktulosphaira vitifoliagRispe et al.2019, in pressyvere kindly
provided prior to publication for comparative arsy

This paper provides a high-quality genome and atioot of Ap. glycinesB1. A
laboratory culture established from specimens ctdtéin the field in Illinois in 2001.
We include an analysis of the soybean aphid B1 menwith respect to the currently



320 available aphid genomes mentioned above includsgjster species, the cotton aphid,
321 closely related but with widely different host rasgAp. glycinesises the soybean plant
322 as asummer host and a few species in the gehasinuss the overwintering host,

323 while Ap. gossypiutilizes over 900 species of plants (Blackman Bastop, 1984;

324  Carletto et al., 2009; Wang et al., 2016). Despstevidespread distribution and highly
325 polyphagous nature the cotton aphid has the smake®me of the currently available
326  aphid genome assemblies and was found to havewest number of private genes

327 (Quan et al., 2019). A superficial look at genasire differences does not hold the

328 answer to the differences in the natural historggiids. Rather, answers are likely to lie
329 in the manner in which gene expression is reguldtdhers et al. (2017) showed that
330 identical clones of the polyphagoMs persicaecan colonize different distantly related
331 host plants via the differential regulation of emgad gene families which collectively
332 upregulate within days of experiencing a chandeoist plant.

333

334 We present a phylome report, the complete colleatigphylogenetic trees of

335 genes encoded in the soybean aphid genome andrtieatty available aphid genomes to
336 elucidate the evolutionary history of this pestatidition, because structural cuticular
337 proteins (CPs) are the major constituents of apihtlaexoskeleton and also candidates for
338 host receptors of plant viruses we have investijtte full set of structural CPs present
339 in this aphid species (Webster, 2018; Kamanga, 20 %his study we describe the

340 different CPs subfamilies detected in g glycineggenome after extensive manual
341 curation that led to the annotation of the full gkthis group of proteins. Phylogenetic
342 analyses were done on two specific subfamilieskRd,Ghe RR-1 and RR-2 proteins, that
343  contain a central chitin-binding domain (Anderseale 1995; Rebers and Willis, 2001,
344  Willis, 2010) such as the conserved 64- amino-aBi&R domain (Cornman and Willis,
345  2008).

346

347 Furthermore, we also include an analysis of théesag aphid world-wide

348 population structure and its invasion of the Na@ktherican continent using single

349  nucleotide polymorphisms (SNPs) and specimensatetiefrom across its world

350 geographic distribution between 2001 and 2013. tAAke the genetic changes of this
351 population during its early period of colonizatiohthe U.S. and Canada, with the aim to
352 determine the adaptive process and genes thatwenleselection as it adapted to the
353  North American landscape. We also examine theenite of resistant soybean cultivars
354  on the genetic diversity of aphids that colonizenthand the genes associated with this
355 selection process (See Fig. S1 for work flow diagra

356

357 North America presented the soybean aphid an emvieat with drastically

358 different topography, resources, predators anctirggoulation control methods than it
359 experienced in its original Asian environment. Uvexing how the genome of this

360 species has and continues to navigate the oppbesiand challenges that present

361 themselves will inform as to the best manner tarobit and other agricultural pests.

362 2. Materialsand Methods

363 2.1 Laboratory aphid rearing and field collectioobsamples
364
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DNA for the sequencing of the genomeAg. glycinesvas obtained from a
laboratory culture of B1, established from specisenilected in Urbana, lllinois in 2001
and kept in the laboratory from that time onwardg. glycinespecimensvere reared
on individual plant leaves @lycines maxvariety Williams 82 (W82), placed in petri
dishes (100 x 20 mm) with a moistened cotton digids were maintained in Percival
incubators at 25°C with a light regimen of 16L/8&phids were collected with a
paintbrush and immediately placed in a tube onaryParthenogenetic soybean aphids
were collected in the field for the SNP based patioth analysis, preserved in 95%
ethanol and stored at -20°C prior to being proagsse

2.2 Extraction of DNA used for lllumina, 454 andcB&o

DNA was extracted using a phenol/chloroform methAdstarting material of
~100ul of aphids was used for the extraction. 1hidp were ground in Drosophila
homogenization buffer: DHB - 0.1 M NaCl, 0.2 M soge, 0.01 M EDTA (pH8) and
0.03 M Tris (pH8), the solution was sterile andatbat 4C (Teknova) and phage lysis
buffer: PLB--0.25M EDTA, 0.5M Tris (pH9.2) and 2.5%DS, this solution was sterile
and stored at room temperature (RT) (Teknova). $ubeubated at 6& for 30 min
after which they were spun briefly at low speed seidto incubate overnight at°&7
with 5pl of 20mg/ml of Proteinase K (-2D). 2). 30ul of 3M KAc was added to the
tubes, mixed gently, and placed on ice for 30 nesuTubes were centrifuged in a
refrigerated microfuge for 10 minutes after whibk supernatant was removed. 3) An
equal volume (500pl) of Tris equilibrated phenoh(fI3:Phenol) was added and the
tubes mixed by hand. Tubes were then spun fombit@s at room temperature. The
upper aqueous phase (475ul) was removed to frégls twhile avoiding the interphase
material. 4) An equal amount of ChCI3 was addele flibes were shaken by hand, spun
for 5 minutes at RT, the aqueous phase retrievdgkated into new tubes. 5) 1ul of
32mg/ml of RNaseA (-20C) (Sigma R4642) was addddltes, which were mixed and
incubated at 37 for 15min. 6) 100-95% ethanol, in a volume ob tivnes the amount
of supernatant, (700-800ul) was added to tubedednhdvernight at -20C. 7) Tubes
were spun in refrigerated centrifuge for 30 mine Bapernatant was removed while
being careful not to disturb the pellet, which wasshed with 1ml of ethanol and stored
at -20°C. 8) Tubes were spun in refrigerated centrifugyebfminutes then dried in an
incubator at 38C while not allowing the DNA to get overly dry tadilitate re-
suspension. 9) 20ul of TE was added to tubes tespesid DNA at 37T overnight. 10)
DNA from separate tubes was pooled into a singbe with a concentration of ~1180

ng/pl.
2.3 Extraction of RNA, library construction and seqcing

For 454 data, total RNA was extracted from 3 groups of aphids: B1, B2 and B3 using
Trizol. mRNA was isolated from 20ug of total RNA using Oligotex (Qiagen, CA). cDNA was
synthesized using random hexamers with the Superscript Double-Stranded cDNA
synthesis kit (Invitrogen, CA). cDNA was then nebulized to a size of 400-1000 bp and
blunt-ended. 454 adaptors were obligated to both ends; adaptors with unique sequence
identifiers (barcodes) were used for the different samples to enable sample



411  identification upon sequencing. The adaptored cDNA was amplified for 10 cycles and
412  normalized with the Trimmer Direct kit (Evrogen, Russia). The three barcoded

413  normalized cDNA libraries were pooled and sequenced on two 1/16th regions of a 454-
414  Titanium plate (titration). The titration yielded 79,326 reads with an average length of
415  385bp.

416

417  For lllumina data, RNA was extracted with Trizoh@mo Fisher, MA) as per the
418 manufacturer’s protocol with one modification: RMAas treated with DNAse (Qiagen,
419 CA) before precipitation. RNA was eluted in RNAsed water (Thermo Fisher),

420 quantitated with Qubit (Thermo Fisher) and thegntg of the RNA rRNA bands and
421  absence of DNA were evaluated in a 1% Ex-Gel reext 1kb DNA ladder (Thermo
422  Fisher).

423

424  RNAseq libraries were constructed using the TruSHé Sample Preparation Kit

425  (lllumina, CA). Briefly, messenger RNA was selectexin one microgram of high
426  quality total RNA. First-strand synthesis was swsiked with a random hexamer and
427  SuperScript Il (Thermo Fisher, MA). Doble strand®dA was blunt-ended, 3’-end A-
428 tailed and ligated to indexed adaptors. The addgated double-stranded cDNA was
429 amplified by PCR for 10 cycles. The final librarsre quantitated Qubit (Thermo
430 Fisher) and the average size was determined orgdanfAbioanalyzer DNA7500 DNA
431  chip (Agilent Technologies, DE) and diluted to 10nhe individually barcoded

432 libraries were pooled in equimolar concentratione pooled libraries were further
433  quantitated by gPCR on an ABI 7900.

434

435 The multiplexed libraries were loaded onto three$aof an 8-lane flowcell for cluster
436 formation and sequenced on an Illlumina Genome Aeallx. The libraries were

437  sequenced from one end of the molecules to aresal length of 100nt. The raw .bcl
438 files were converted into demultiplexed fastq fidth the software Cassava 1.6

439  (lllumina, CA).

440

441

442 2.4 Extraction of DNA for SNP analysis

443

444 DNA was extracted using the Qiagen DNeasy Bloodigsde kit (Cat

445  No./ID: 69504) according to the manufacturer'sinstions with some minor

446  modifications. Using a fine sable paintbrush anthwhe aid of a microscope, individual
447  aphids preserved in 95% ethanol and stored at 208 placed on clean kimwipes to
448  absorb ethanol and dry out and then transferreti, adine sable paintbrush, to an

449  eppendorf tube with 180ul of lysis solution and BfiProteinase K.

450 While visualizing the aphid under the scope, thecBpen was macerated against the
451  side of the walls of the tube with a pestle (Pabygylene, Bel-Art Products, Cat #

452  19923001). Tubes were briefly pulse-vortexed tw then were placed in a heat block to
453  incubate overnight at 50°C. Tubes were spun dawB® seconds at low speed in a

454  small bench top spinner to bring down any condémrsain the inside of the caps.

455  Extraction was treated with the addition of 1luRMNAase (R4642 Sigma-Aldrich) ~24
456  mg/ml. Tubes were briefly vortexed and incubatexam temperature (25°C) for 10
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min. Tubes were centrifuged for 30 seconds. 200pUffer AL was added and tubes
mixed briefly by pulse-vortex. Tubes were incublaa¢ 70°C for 5 min to dissolve
precipitate, vortexed briefly at low speed, andilveted for an additional 3 min or until
all precipitate was dissolved. Tubes were spueflgrat low speed to bring down
condensation on the inside of the caps, and cdol€alto ten minutes. 200ul of cold (-
20°C) ethanol (96-100%) was added and tubes vattbsefly after which they were
placed at 4°C overnight to allow DNA to precipitatelbes were briefly centrifuged and
the entire lysate transferred to Promega columrgdky SV Minicolumns Part #
A129B) without wetting the rim, and centrifugedd®00 rpm for 1 min. The flow
through was discarded and the column membrane wagitle 5001 Buffer AW1,
centrifuged at 8,000 rpm for 1 min and rewashednagéh 5001 Buffer AW2 and
centrifuged at 8,000 rpm for 1 min. A final ceniige step at 12,000 rpm for 3 min was
used to dry the membrane completely. The columnties placed in a clean, labeled,
1.5 ml Eppendorf tube and 50ul of Sigma tissueucaltvater was added to the center of
the membrane and allowed to saturate the membeoar@erinutes. Membrane was
centrifuged at 12,000 rpm for 3 min to elute theADNTubes with eluted DNA were
incubated in a heat block at 60°C for ~1/2 hrpngure that all residual ethanol from the
wash buffers evaporated which reduced the volunteka to 30ul +/-3ul. Tubes were
vortexed gently and spun down briefly. DNA was m&ad using a Qubit Fluorometer
(Thermo Fisher Scientific, U.S.). As aphids usdtedid in size the DNA obtained with
the above protocol ranged from ~230 to 650ng @l ONA from a single aphid. Aphid
specimens resulting in a concentration of 300 @ng0n a 7pl volume were chosen for
the downstream steps. DNA resulting in a concepotraif 300 to 400ng (~395ng) in a 7-
30 pl volume, was placed in individual wells of@Well plate. The plates were sealed
and run in a SpinVac to dry without heat for 1Plates were checked to confirm if dry,
if not, the procedure was repeated for another ibbites. 7l of water was added to
wells in plated, covered with film and the DNA alled to re-suspend overnight at 4°C.
If the plate was not run right away it was store@@fC.

2.5 Sequencing of genome

An lllumina HiSeq 2000 and 454 Titanium system wsasd to generate lllumina
and 454 sequences (NCBI SRA accessions: PRINASYTPW® types of libraries were
prepared and sequenced with 454 Titanium platfdjmandom shotgun, in which
genomic DNA was randomly sheared to a size of 66D@t2kb and 2) paired-end, in
which DNA was sheared to a size of 8kb and 20kpnfrents. On Illumina HiSeq 2000
system, the shotgun libraries, with a fragment eiz200bp, were sequenced from both
ends (paired-end sequencing), each read being ID@mgth. Mate-pair libraries with a
jump size of 3kb and 8kb were sequenced at 35nt &ach end of the fragments. Using
Pacific Biosciences (PacBio) RSII sequencing ptatfaiith C2 chemistry, we sequenced
a 10K library on 8 SMRT cells which yielded a tabvél193,586 sequences that passed
quality filters (NCBI SRA accessions: PRINAS512'Mgan length of these sequences
was 4,274 bases. Total number of bases in all38¢86 sequences was 1,299,749,757.

2.6 Genome sequence assembly

11



503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

We used sequencing reads from lllumina HiSeq 2B@gific Biosciences
(PacBio) RSII and 454 FLX Titanium sequencersntiilna sequencing data contained
both paired-end reads and mate pairs with 3kb 8kl farget insert sizes. The 454
sequencing data contained mate pairs with targetisize of 8Kb. The PacBio reads
were produced on the RSII sequencer with P6-C4 dtigmMaSuRCA assembler
version 3.2.2 (Zimin et al., 2017) was used to mbde sequencing reads from the three
different sequencing platforms. At initial step, M1ERCA error-corrects Illlumina reads,
followed by filtering of the lllumina paired reatly removing PCR duplicates and short
non-junction pairs. It then transforms llluminanea-end reads into super-reads (Zimin
et al., 2013). The super-reads were assembledniaga reads using PacBio reads as
templates. MaSuURCA then assembled the mega-reawig &ith error corrected and
filtered lllumina and 454 paired reads with CABO§s@mbler version 8.2.

2.7 Optical BioNano Genome (BNG) map constructiot assembly

Aphids were harvested from leaves, immediatelydroan dry ice and shipped to
MOgene LC (St. Louis, MO) for optical map constrost High-molecular-mass DNA
was extracted using the Bionano IrysPrep AnimasdesDNA Isolation Fibrous Tissue
User Guide” (Document # 30071, v.A, 2016). In hrtefsue was briefly fixed in
formaldehyde to protect DNA from mechanical shearifhis was followed by
homogenization using a rotor stator. Subsequendyctude homogenate of the extracted
DNA was embedded in agarose plugs to undergo patidin. The process yielded
300ng of high molecular weight DNA (HMW).

Using the Knickers software (v1.5.5), we determitieat the best nicking enzyme
for this genome was BssSI (New England BioLabsth wilabelling density of
approximately 16 nicks per 100kb (http://www.bnxalscom/knickers/Knickers.htm).
To obtain Nicked, Labeled, Repaired and StainedRS)LNLRS-gDNA 300 ng of g
DNA was used using the protocol in the IrysPrepdliag-NLRS User Guide (Document
#30024, v.G, 2016). In brief, extracted genomicADMas placed in a Nicking master
mix and allowed to incubate for 2 hrs at 37°C. T&s subsequently combined with the
labeling master mix and incubated for 1hr at 722Crepair master mix was then added
for 0.5 hrs at 37°C for the purpose of repairing micks. Lastly the mixture was stained
and incubated overnight at 4°C. At the end ofNh&®S procedure the labeled sample
was quantified using the Bionano Irys System. NigEBNA was loaded onto IrysChip
(part # 20249, v2; SN: 850024985) and the Irys@mag scanned using the protocol
given in the Irys User Guide (Document # 30047, 2816). The raw data output of
221.9 GB obtained from these scans was analyzed UyisView software (v2.5.1) and
the protocol given in “IrysView v2.5.1 Software ireng Guide” (Document # 30035,
v.G, 2016). The filtered data output consisted@#.6 Gb.

Using the BioNano Genomics assembly pipeline, genomaps of DNA
molecules in bnx format were aligned against edbbraand assembled into BioNano
Genome map contigs. There were 665 BioNano Genoape(BNG) contigs that
covered 358 Mb of thAp. glycineggenome. MaSURCA was used to generate scaffolds
that were further extended as well as joined wittenscaffolds utilizing BNG contigs.

12
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Using BioNano Genomics software Refaligner, seqa@ssembly scaffolds were
aligned against BNG contigs. These alignments weveessed with the BioNano
Genomics pipeline and a total of 85 hybrid scafdlsht spanned 303 Mb were
generated. There were 198 sequence assembly sisafitégrated into the hybrid
scaffolds and these covered approximately 280 Mitheogenome. The utilization of
BNG contigs resulted in the reduction of the nundfescaffolds in thé\p. glycines
genome assembly from 3,261 to 3,254 scaffolds.N%@ scaffold length increased from
2,957,263 bp to 5,358,903. The increase in the $¢affold length is due to merging the
largest scaffolds of the sequence assembly usin@ Bdntigs as the template.

2.8 Filtering of assembly scaffolds

Genome assembly scaffolds were aligned against M@Blredundant (NR)
protein database (version from 2017-11) using BLXEdmmand of diamond aligner
(version 0.9.10). All the lllumina and 454 readsdito assemble the genome were
aligned against the assembled scaffolds using BVéMirtversion 0.7.15). These two
alignments were given as input to Blobtools (ver€i®.19.6) (Laetsch et al., 2017) to
identify scaffolds that belonged to proteobactand these were subsequently removed
from the downstream analysis. The supplementagylfitontains the parameters used to
create BlobDB database using the diamond BLASTXltesnd parameters to create and
view the blobplot.

2.9 Benchmarking Universal Single-Copy Orthologd 88 0O) analysis

To evaluate the relative completeness of the adgeBUOSCO (Siméo et al.,
2015) version 3.0.1 was run on the final versioasdembled scaffolds with the insect
single copy ortholog database version 9.

2.10 Assembly of transcriptome reads

To assist in the annotation of the soybean aphidme two transcriptome
assemblies were generated using 43,138,024 sindl#lemina RNA Seq reads and a
second using 4,403,008 454 sequences. lllumina BdAreads were first preprocessed
with Trimmomatic (Bolger et al., 2014) softwarettion adapter bases using parameter
ILLUMINACLIP and all reads shorter than 25 basesewemoved using parameter
MINLEN. To improve the efficiency of assembling ttiata,in silico read normalization
was performed on trimmed reads using Trinity'spgofGrabherr et al., 2011) with
parameters --JM 500G --max_cov 30 --pairs_togedhdr--PARALLEL_STATS.
lllumina reads thus normalized were assembled uBiimity version 2.1.1 (Grabherr et
al., 2011) in genome guided mode with parametgeneme_guided_bam --
genome_guided_max_intron 10000 --max_memory 50GsBemble 454 transcriptome
sequences, newbler (Margulies et al., 2005) wasvitmall default parameters.

2.11 Alignments of RNA Seq reads against genonmeisee

13
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RNA Seq reads of previously published soybean apeie¢ downloaded from the
NCBI short read archive database with accessiorbetsn SRP031835, SRP033884,
SRP050997, SRP062763. Raw reads were preprocessgdluimmomatic (Bolger et
al., 2014) to trim low quality bases and adaptegusaces using parameters
LEADING:28 TRAILING:28 SLIDINGWINDOW:4:20 MINLEN:30
ILLUMINACLIP:2:15:10 and subsequently were aligneghinst the assembled scaffolds
using STAR aligner (version 2.5.3a) (Dobin et 2013) using all default parameters.
Similarly, RNA Seq reads used in creating the ttaptome assemblies were also
aligned against the assembled scaffolds using Sal&jRer.

2.12 Annotation of soybean aphid genome

To annotate the genome sequence of soybean apAIER annotation pipeline
version 3.01.1 (Cantarel et al., 2008) was used.first round of MAKER was run by
giving as input a transcriptome assembly genenagety 454 sequences, another
transcriptome assembly generated using lllumineedand reads, protein sequences
from closely related species such as cotton agpich( et al., 2019prosophila
melanogastefdownloaded from flybase version FB2016_@)raphis noxia
(Nicholson et al., 2015), arMyzus persicaéclone G006 and clone O downloaded from
AphidBase), all the protein sequences from swiggpatabase (version 2016-05) and
alignments of RNA Seq reads against the genomesgegqu

By running command “maker -CTL” four parameterdilgere created. Of all the
files thus generated maker_opts.ctl file was medito include the full path to all the
above data. Full path to the genome sequence wes gsing the parameter “genome”,
full path to transcriptome assemblies was givengisie parameter “est”, full path to the
RNA-Seq read alignments was given using the paetiest gff’, protein sequences of
closely related species was given using paramptetein”. To infer gene predictions
using transcriptome assemblies and closely rekgtedies’ proteins, est2genome and
protein2genome were set to 1. MAKER accepts regdraents in GFF format. To
convert read alignments in BAM format to GFF forpthey were first converted to bed
format using bedtools bamtobed tool and then cdeddo BAM format using
genometools bed_to_gff3 tool.

After the completion of the first round of MAKERmufasta_merge and
gff3_merge was run to generate FASTA file of prot@nd transcript sequences and the
genome annotation in GFF3 format. Using the genéetsccreated in the first round of
MAKER, sequences for training Augustus (Stankd.eR806) were extracted. This is
achieved by extracting the genomic regions thataormRNA annotations along with
1000 bases up and downstream of the mMRNA annosatising bedtools getfasta
(Quinlan and Hall, 2010) tool. These sequences gi&Bn as input to BUSCO and
BUSCO was run using parameters -m genome, -lopgyea_aphid -l insect_odb9. After
the BUSCO run was completed, the new config fiteg tvere generated by BUSCO
were renamed and copied to the species configrfold&ugustus.

To train SNAP (Korf, 2004) using the best modetsated from the first-round

MAKER, gene models with AED score of 0.25 or be#ted a sequence of 50 bases long
were extracted using maker2zff script using paramei 0.25 and -l 50. Training

14
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parameters were created by running forge commarnkdeoannotations and sequences
obtained after running the maker2zff script. Hmraessbler.pl script was run to generate
HMM models. The file with HMM models was given aput to MAKER.

For the second round of MAKER in the maker_optdilet] est2genome and
protein2genome was set to 0. “snaphmm” was assitreefiill path to the HMM file that
was created subsequent to the training of SNAPeagioned above. “augustus_species”
was set to the new species folder that was creatibe Augustus config folder and it
contains the parameters generated by BUSCO adiieirtg Augustus. After the
completion of the second round of MAKER fasta_meage gff3_merge was run to
extract genome annotation in GFF3 format and trgrissequences in FASTA format.
Annotation file thus obtained was examined usimgyse (Buels et al., 2016) to check
the integrity of annotation.

To obtain the functional annotation of tAp. glycinesgyenes, protein sequences in
FASTA format were aligned against UniProt datalssespiences and the first 20 best
alignments for each queAp. glycinegrotein sequence were extracted. Using the
"Retrieve ID/mapping" (https://www.uniprot.org/upldlists/) tool of UniProt database,
we extracted protein names based on the UniPra iznfrom the 20 best alignments.
All entries with protein name “Uncharacterized piot were excluded. From the
remaining entries the protein name of the firstyeigt assigned to th&p. glycineqquery
protein. Using the same approach, we extracted @0tations and protein names from
the UniProt database based on the 20 best aligsrf@argéach querpp. glycinegprotein
sequence (Table S1 and S2). In addition, we rapiedBase pipeline to align gene
sequences against the NCBI non-redundant protéatdse followed by uploading of the
BLAST results in XML format to BLAST2GO program (Gesa et al., 2005).
Subsequently the BLAST2GO program assigned GO t&sreach gene by querying the
GO database using the protein id from the BLASTiltssGO annotations obtained from
UniProt and NCBI were consolidated and from theBeal file was generated (Table
S1).

2.13 Retrieval of the full set of cuticular prateiin Ap. glycines genome

To retrieve the full set of genes coding for Csl(iding CPs with the R&R
motif defined as CPR proteins; Rebers and Riddjfd@88) in theAp. glycineB1
genome, CutProtFam annotation site (http://aiakuga.gr/CutProtFam-Pred/) was used,
with standard settings (loannidou et al., 2014)ndtated genes were then fully curated
on AphidBase through web-Apollo.

2.14 Aphis glycines phylome reconstruction

TheAp. glycinephylome was reconstructed using the PhylomeDBlipipe
(Huerta-Cepas et al., 2011). In brief, for eachtggmrecoding gene in the soybean aphid
genome we searched for homologs (Smith-Watermast B&arch, e-value cutoff < le-
05, minimum contiguous overlap over the query segeeutoff 50%) in a protein
database containing the proteomes of the 16 spearesdered (Table S3). The most
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similar 150 homologues were aligned using threreiht programs (MUSCLE (Edgar,
2004), MAFFT (Katoh et al., 2005) and KALIGN (Lasznm and Sonnhammer, 2005) in
forward and reverse direction. These six alignmemise combined using M-COFFEE
(Wallace et al., 2006), and trimmed with trimAl BXCapella-Gutiérrez et al., 2009)
using a consistency cut-off of 0.16667 and a gagstiold of 0.1). Phylogenetic trees
were built using Maximum Likelihood approach as liempented in PhyML v3.0
(Guindon and Gascuel, 2003) using the best fittirglel among seven different ones
(JTT, LG, WAG, Blosum62, MtREV, VT and Dayhoff). &two models best fitting the
data were determined based on likelihoods of draiNeighbor Joining tree topology
and using the AIC criterion. We used four rate gaties and inferred fraction of
invariant positions and rate parameters from tha.ddl alignments and trees are
available for browsing or download at PhylomeDBhathe PhylomelD 709 (Huerta-
Cepas et al., 2014).

2.15Alignment and phylogenetic reconstruction of cuécproteins RR-1 and RR-2
sub-groups

Phylogenetic analyses were performed using thespanding protein sequences
sets of updated RR-1 or RR-2 genes retrieved freendphid genome#\p. glycines31,
M. persicagMathers et al., 2017R. pisum(Gallot et al., 2010)D. noxia(Nicholson et
al., 2015)R. padiand the close-related aphid specigsktulosphaira vitifoliae RR-1
and RR-2 sub-groups were treated separately. Adtaoval of predicted signal peptides
using SignalP-5.0 Server (Almagro Armenteros et28119), RR-1 mature protein
sequences were used in phylogenetic analyses. & ptoteins, only the extended 69
amino acids RR domain (pfam00379) was used forqgeyletic analyses, because they
tend to be highly divergent and difficult to aliglong their full length. RR-2 proteins
from Ap. glycinesM. persicagA. pisum, D. noxigR. padiandD. vitifolia, were aligned
using Clustal Omega (Sievers et al., 2011) ancligeed extended domain of each RR-2
protein was extracted for further phylogenetic gseas.

Phylogenetic analyses of the RR-1 and RR-2 protgere then assessed using
the Seaview software (Gouy et al., 2009). To geratgnments, MUSCLE software
(Edgar, 2004), a part of the European Moleculatdgjp Laboratory-European
Bioinformatics Institute (EMBL-EBI) sequence anagdool kit, was used (Madeira et
al., 2019). Ambiguous regions after alignment @@ntaining gaps and / or poorly
aligned) were removed with Gblocks (v0.91b) usimg following parameters: minimum
length of a block after gap cleaning: 10, no gagitoms were allowed in the final
alignment and all segments with contiguous non exsl positions bigger than 8 were
rejected, minimum number of sequences for a flamiosition: 85%.

Phylogenetic trees were reconstructed using thermam likelihood method
implemented in the PhyML program (v3.1/3.0 aLRTd &eaView v 4.6.2). The WAG
amino-acid substitution model was selected, assyiannestimated proportion of
invariant sites, and 4-categories gamma-distribtagglto account for rate heterogeneity
across sites. The gamma shape parameter was estidiggctly from the data
(gamma=3.517) and reliability for internal brancasrassessed using the aLRT test (SH-
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2.16 Prediction of gene duplications, and ortholegyl paralogy relationships

Orthology and paralogy relationships were predittased on phylogenetic
evidence from the soybean aphid phylome. We usdth\EST(Huerta-Cepas et al., 2010a)
to infer duplication and speciation relationshiggng a species overlap approach. The
relative age of detected duplications was estimaséug a phylostratigraphic approach
that uses the information on which species divepgent and after the duplication node
(Huerta-Cepas and Gabaldén, 2011). Duplicationueagies at each node in the species
tree were calculated by dividing the number of digpions mapped to a given node in
the species tree by all the gene trees that cotitatmode. For this analysis we excluded
gene trees that contained large species-specfi@anesions (expansions that contained
more than five members). All orthology and paralogiationships are available through
PhylomeDB (Huerta-Cepas et al., 2014).

2.17 Gene ontology term enrichment for phylomeyaisl

Gene Ontology (GO) terms enrichment analysis wa®peed using FatiGO (Al-
Shahrour et al., 2007). We compared two lists ofgins Ap. glycinespecific
duplications and duplications at the ancestral raddel aphids) against all the other
proteins encoded in the genome.

2.18 Species tree reconstruction

The trimmed alignments of 67 larger genes (>10tKkh) had single orthologs in
the 16 species considered were selected and coatadie The final alignment containing
109,282 amino acid positions was used to recortdfneanaximum likelihood species
tree with RAXML v8.1.17 (Stamatakis, 2014) using thG amino acid substitution
model, and 100 bootstrap replicates.

2.19 SNP Discovery and genotyping using llluminédéo Gate Assay

RNA-Seq reads fromp. glycinesB1, B2 and B3 reared on susceptible plants
(Dowling) were trimmed using the FASTX toolkit (Glam and Hannon, 2010). Bases
with quality score less than 20 were trimmed frorer8l and reads that were less than 50
nucleotides in length were discarded. A total a89,179 reads from B1, 8,081,931
reads from B2 and 12,458,830 reads from B3 werd fman silico SNP discovery.
Reads from each individual biotype were alignedresgahe preliminary set of contigs
assembled using lllumina and 454 sequences byngriophat v1.3.1 (Trapnell et al.,
2009) with parameters —solexal.3-quals and —g li. fBe single best alignments were
used for the downstream SNP discovery pipeline geery reads with more than one
best alignment, tophat chose at random only orleeobest alignments. Alignment
output files in BAM format were sorted using sangod.i et al., 2009) based on
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alignment coordinates on the contigs. Sorted BAKEfivere processed using samtools
mpileup and bcftools with default parameters tatdg potential SNPs.

The maximum coverage used to allow the detectiam®RNP/indel was 100, this was
achieved by setting parameter varFilter to -D100PSidentified using reads from each
individual biotype were combined into a single V{I€. There was a total of 45,071
SNPs identified using reads from all three biotygaisall the SNPs, 30,509 SNPs had
one hundred bases flanking on either side of e&lth @& the assembled contigs. This set
of SNPs was sent to lllumina to generate genotgsegdability scores.

A GoldenGate Universal-32, which contained 307X plssay Kit with UDG and
custom designed Soybean Aphid Custom Oligo AssaysReas generated by lllumina
(San Diego, CA). Briefly the manufacturing stepsluded the following: the assay
design tool was used to identify 50 base upstreadown-stream of the identified SNP
and associated flanking regions to determine whidnd would function best as a probe.
Probes were synthesized to the flanking regiomigfrést and these included a universal
forward or reverse primer, with the latter contagithe locus specific region, the
lllumicode Sequence tag and the Universal revesgaence primer. DNA oligos
complementary to the allele specific sequencewarthesized and attached to a bead.
These are pooled and applied to a bead chip wheltgptas of each bead type localize in
each of the 32 sample areas on the chip. Theillmmanufacturing QC uses a decode
process that sequences each unique Illlumina copesee tag to check its location (X,

Y coordinate on the chip) and that each bead typegresented (Gunderson et al., 2004).
The SNP specific bead chip as well as the SNP specimer pool is the product of this
process. Probes are then pooled and stored at &tif@sed in the golden Gate
genotyping assay. The custom GoldenGate chipnaatlabove was used to process
250ng, according to the manufacturer’s instructiongach of all samples used in the
population analysis. Slides were scanned usinuanina iScan beadscanner and image
processing and QC analysis was carried out usimp@eStudio software.

A total of 3,072 SNPs with best designability ssoneere selected for genotyping
a total of 4,421 samples collected from Austraianada, China, Indonesia, Japan,
Myanmar, South Korea, Taiwan, Thailand and USAngsilumina genome studio,
genotype clusters for all 3,072 SNPs were man@igmined and edited. Of 4,421
samples, 212 were excluded because the call ratéessthan 95% and 418 were
excluded because they were lab culture sample3,032 SNP clusters, 637 SNP
genotype clusters were manually flagged as being goality and removed from the
analysis. Of the remaining 2,435 SNPs, 55 had notgpes in more than 100 samples
and were subsequently discarded from the downstegeatysis. This resulted in the final
set of 2,380 SNP genotypes in 3,791 samples (TQlleat was used in the downstream
analysis.

2.20 Annotation of genes overlapping SNPs
There were 1,700 genes that overlapped with 2,380sSOf the genes found to

overlap, GO terms were obtained for 1,185 genekafyotic Orthologous Groups
(KOG) categories were obtained for 1,025 genes&imcyclopedia of Genes and
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Genomes (KEGG) pathway names were identified 4dr genes. To obtain KOG
categories, RPS BLAST of gene sequences was runsa¢fae KOG database with -
max_target_seqs 1 -evalue 1e-10 as parametersn@dasions were downloaded from
AphidBase. In turn, to obtain KEGG K numbers foctegene, protein sequences in
FASTA format were submitted to the KEGG’s GhostKOX&erver
(https://www.keqgq.jp/ghostkoala/).

Databases used for gene annotation, while havitegaamultiple organisms,
vertebrate and invertebrates, have the greateatrambinformation for model
organisms that have been well studied. If we restiir analysis to insects it would not
be possible to identify pathway information for payenes in our study. Moreover,
much of the existing insect annotation is derivedthe well-studied model species
such as human, rat, mouse. Hence, some of the gadgsmthway names listed have
human specific nomenclature.

2.21 Assessment and management of ascertainment bia

Our SNP discovery process is based on the aligruérstequence reads from
U.S. samples against the reference genome ofAp.SylycinesThere is an
ascertainment bias 1) when SNPs ascertained ip@mgation are used to genotype
other populations 2) when SNPs ascertained ussmadl set of samples are used to
genotype larger set of samples of the same populé@lielsen et al., 2004; Lachance and
Tishkoff 2013). As a result of ascertainment biasy few SNPs with allele frequencies
close to 0 or 1 are found in the populations use®&NP discovery while SNPs with
these frequencies are more frequent in the popuakamot used for the SNP
ascertainment (Albrechtsen et al., 2010). We detkitttis pattern in the allele frequency
spectrum generated for U.S./Canada and Asia/Aispapulations (Fig. S2).

The allele frequencies for the U.S./Canada popmrahow a bell-shaped
distribution, with values ranging from 0.3 to Owhile those of the Asian/Australian
population combined have a bimodal curve with fexgpies ranging from 0O to 1 (Fig.
S2). The difference in the allele frequency duttion is a reflection of the manner in
which SNPs were identified. Namely, highly polymioiploci determined from
sequencing reads of U.S. samples were chosen ags@nRlates. With this approach,
and by not having sequence reads from the Asiatv&lign population, our assay
resulted in containing a high number of SNPs widlyfiencies closer to 0 and 1 in the
Asian/Australian population.

Unless one obtains whole genome sequence of evdingdual in the population,
it is not possible to remove SNP ascertainment dvaspletely. It has been proposed that
sequencing data from samples of all populationsgoeompared can help to address this
problem, however, this is also prone to bias aswety individual in the population
would be considered (Lachance and Tishkoff 2018)aAneans to compensate for the
ascertainment bias, when comparing U.S./Canad®&siath/Australian populations, we
resolved to restrict our analysis to the use of SREs that fall within the allele
frequency range of 0.3 and 0.7 in the combined/Asistralia population, as these are
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present in all populations being evaluated (Fig. B&hile we run the risk of eliminating
informative SNPs in the Asian/Australian populasiptiis more conservative approach
limits the use of SNPs that are fixed in these padmns. This selection did not
eliminate all SNPs with frequencies of 0 and Iheait chose SNPs for each population,
with allele frequencies that formed a bell-shapstridution, as can be seen in Fig. S2.
We analyzed and compared U.S./Canada and AsiagNagbopulations using both the
original complete 2,380 SNPs as well as the red926dSNPs obtained via the method
outlined above.

2.22 Principle component analysis

Principle component analysis (PCA) was conductéagu¥VP version 13. A
VCF file with SNP genotype data was converted atab delimited file with genotypes
coded as “0” for the homozygous reference allelé f6r the heterozygote and “2” for
the homozygous alternate allele. After importing tab delimited text file into IMP,
missing genotypes were imputed using “Multivaridtemal Imputation” function in
JMP. “Principle components” function under “Multate methods” was used to run the
principle component analysis on the imputed geregyphe graph builder function of
JMP was used to generate a PCA plot with thetiivetprinciple components.

2.23 Identification of clonal copies

To identify clonal copies among samples, princq@enponents were obtained for all
samples. The first three principle component vafoegach sample were rounded to
non-decimal values. All samples with the same pieccomponent values were grouped
into clusters of clones.

2.24 Calculation of Ervalues

VCF tools version 0.1.15 (Danecek et al., 2011) wsex to calculatBstvalues
according to the method described in Weir and Cdekka 1984. VCF file with 3,791
samples and 2,380 SNPs was given as input to tHedd® using --weir-fst-pop option
for each population in the pairwise comparidég:values were calculated for all
pairwise comparisons between all populations sasn@astralia, China, Japan, South
Korea, Indonesia, Taiwan, Thailand, Myanmar, CarsaahU.SFsrvalues were also
calculated using the same set of SNPs to comp&esdmples collected in 2001 and
those sampled in 2005, 2006, 2008, 2009, 2010,,Z01R. In additionkstvalues were
calculated in comparisons between aphids from gtidde soybean plants arfithg
varieties:Ragl, Rag2andRag1+2

2.25 Manhattan plots
Tab delimited files withFstvalues for all markers in pairwise comparisonsewer
imported into JMP version 13. The graph builderction of JIMP was used to generate

Manhattan plots by assigning SNP chromosome coatelirto the x-axis arfekrvalue
to the y-axis.
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2.26 Heat maps

Comma delimited files witlrstvalues were imported into R using the read_csv
function. Heat maps were generated on the impdéiteslalues using pheatmap function
of R package pheatmap (Kolde, 2015).

2.27 Over representation analysis

Over representation analysis was performed foriplelsets of genes that overlap
with SNPs withFstvalues 1) >0.14 in a comparison between U.S. sssrgallected in
2001 and 2005 2) >0.1 in a comparison between $a@ples collected in 2001 and
2009, 2010, 2011, and 2012 3) >0.2 in comparistwdrenRag(Ragl Ragl+2 Rag?
and susceptible aphid samples. To identify the &®¢ or KEGG pathways
overrepresented among these two sets of geneg,geygpeetric analysis was performed
using the GOStats package (Falcon and Gentlemar).Z0Be genes that overlapped
with the 2,380 SNPs used in this study were constlas “universe”. The read.table
function was used to import input files into R. Floe GO terms over representation
analysis, GOALLFrame and GeneSetCollection dataabjwere created using
GOAIllIFrame and GeneSetCollection functions of GSBS&package (Morgan et al.,
2019). The GSEAGOHyperGParams and hyperGTest umstivere used to perform
hypergeometric test on GO terms, while GSEAKEGGH@karams and hyperGTest
functions were used to perform hypergeometricdaEGG pathway terms.

2.28 Identification of non-synonymous SNPs

To identify the non-synonymous SNPs among the 2&8Ps, Ensembl Variant
Effect Predictor (McLaren et al., 2016) was ruraoninput file with 2,380 SNPs in VCF
format using paramenter “-i” along with the genea@tation file in GFF format with
parameter “-gff” and the genome sequence in FASArAnat using parameter “-fasta”.

2.29 Data availability

The genome sequence assembly scaffolds, gene sanatad functional
annotation files are available at AphidBase (hitbgaa.genouest.org/is/aphidbase/). The
genome sequence assembly and gene annotationseadeglosited at NCBI GenBank
under the accession VYZN01000000; GenBank asseatggssion GCA _009761285.1;
BioProject PRINA551277; BioSample SAMN12143004. fidve sequence data was
deposited at NCBI SRA database under accession R&IR77. The SNP genotype
data was deposited at the European Variation Aectinder project PRJEB35243 and
analyses ERZ1108186ttps://www.ebi.ac.uk/
ena/data/view/PRJEB35243).

3. Results and discussion
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3.1. Genome assembly and evaluation

Of the currently available aphid genome sequensenalslies the soybean aphid
is amongst one of the three smallest. The asseofld{p. glycinedBB1 has an estimated
size of 308 Mbp, 3,224 scaffolds and an N50 valug bp making it next best
assembly afteR. maidigTable 1). The smallest aphid assemblgs glycinessister
speciesAp. gossypifollowed byM. sacchari The most recently sequenced genomes,
obtained with technologies that produce longer seadl the use of new mapping tools,
have the smallest number of scaffol@s:maidis andM. saccharifollowed by theAp.
glycinesB1 assembly included herein. Of all the singleycogithologs tested by BUSCO,
92.2% were identified to full length in the asseyndnhd 88.9% were found as single
copy. Only 1.2% of BUSCOs were fragmented and 68 missing.

Aphids listed in Table 1 differ in their life hisies and plant host range. Some are
specialist and use a limited number of host plaush as\p. glycineswhose host plant
range was mentioned in the introductibh.cerasiutilizes several species in the genus
Prunusand a limited number of secondary hosts in theli@snAsteraceae, Brassicaceae
Rubiaceae and Scrophulariaceae. Most of the afibidd,D. noxig M. saccharjR.
maidis R. padj S. flava S. graminumandM. saccharihave a middle level plant host
range and utilize various number and species asgsa(Kindler and Springer 1989;
Mezey and Szalay-Marzso, 2001; Blackman and Ea€98g). The remaining species
range from the polyphagous specied/fofpersicaeandA. pisumto the highly
polyphagou#p. gossypiiThis latter species, unlike other members ofApbis
frangulaegroup, can overwinter on several other plant gebesides Rhamnaceae.
However, the full range of the cotton aphid’s catyato exploit different species of
plants and their respective chemistries is best sethe number of summer host that it
can utilize that span over 92 species of plant liam{van Emden and Harrington, 2007;
Blackman and Eastopm, 1984). The current limitedpe size of complete genome
assemblies, from various and mostly distantly eglaphid genera, does not permit a
ready examination of the possible links betweerogensize and life history.

3.2 Phylome analysis

To elucidate the evolutionary history Ap. glycineswe reconstructed the
phylome in the context of sixteen other insect gee® (Table S3). This phylome was
analyzed to infer duplication and speciation eveasl derive paralogy and orthology
relationships (Gabaldon, 2008). The soybean apiytbme, including the alignments,
phylogenetic trees and orthology and paralogyimlahips, is available for browsing
and downloading in PhylomeDB (phylomelD: 709, Httgwvw.phylomedb.org) (Huerta-
Cepas et al., 2014).

The phylome oAp. glycinesncludes 14,914 gene trees, which cover 76.7% of
the proteome. Genes with less than two homologsotibave sufficient information to
generate a tree and therefore were not includedh\gbpe trees were generated. A total
of 13,845 proteins (71.2%) have an ortholog ireast one of the other species that were
analyzed.
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When considering orthologs present in all sixtgegcges, we determined that on
average 1,848 are present in each species. Ofdings811 have single-copy orthologs
present in all species (Fig. 2, Table S4). When idesran species were considered
separately, we found an average of 288 orthologéthese 130 were single-copy.
Whereas for aphid species, we found 141 ortholégghech 81 were single-copy.

We reconstructed the evolutionary relationshipallol6 species included in the
analysis by using the alignment of 67 single-cogiiaogs longer than 10 Kb. The
resulting species tree (Fig. 2) was congruent ptivious analyses (Novakova et al.,
2013).

An analysis ofAp. glycineggeneduplications, including large gene family
expansions, showed that there is a total of 3,8yBesan aphid proteins (20.4% of the
proteome) that have paralogs. These genes condideli@-paralogs can be assigned to
1,028 specific gene expansions (Table S5). Mosamrsipns (785, 76%) have small to
moderate number of copies (2-5), and a few (13%)18ave larger expansions
corresponding to >10 copies (Fig. S3). As previpusported for other aphid genomes,
Ap. glycinesalso has a number of genes that have very largensigns of up to 483 in-
paralogs (The International Aphid Genomics Congorfi2010; Mathers et al., 2017;
Huerta-Cepas et al., 2010b).

A functional GO term enrichment analysisAgd. glycinesn-paralogs shows
enrichment in large part for terms involved in ajosgs such as negative regulation of
apoptotic process, homophilic cell adhesion vigmpia membrane adhesion molecules,
inhibition of cysteine-type endopeptidase actiwityolved in apoptotic process, negative
regulation of cysteine-type endopeptidase activitplved in execution phase of
apoptosis, JAK-STAT cascade, spermatid nucleusréiftiation, protein
monoubiquitination, protein desumoylation, and pmoneddylation (Table S6). Similar
enriched functions were found in other aphids-dmeduplications (Mathers et al., 2017;
Duncan et al., 2016; Huerta-Cepas et al., 2010b).

The proteins involved in the above listed functiaffect processes of cell cycle,
proliferation, contact inhibition and cell adhesimd death. Ubiquitination is a crucial
process involved in apoptosis, autophagy, andé¢heygcle. In humans, disturbance of
these processes can lead to disease states staticas. While these processes are
involved in cell death, they can function as prtte&cmechanisms during exposure to
stress and protect cells from apoptosis. Duplicatiof apoptotic related genes may
facilitate Ap. glyciness colonization of host plants with differing chetrysas well as
permit a successful response to pesticide exposure.

We examined other aphid species in our analysietermine whether they had
gene duplications in parallel as those that oatépi. glycinesThere are 1,621 (41%)
Ap. glycineggenes that are involved in 1,028 gene expansientsyof these 372 occur
in at least one other aphid species (Table S5)xpawtedly Ap. gossypiithe most
closely related species, in this comparison hasothiest number of parallel duplication
events (Fig. S4). A functional analysis of the pno$ ofAp. glycineghat have parallel
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1047  duplications in other aphids examined in this studgicate that most GO enrichment
1048 terms are related to apoptotic processes such BEOSbfotease specific activity,

1049 NEDDS activity, apoptotic process, spermatid nusldifferentiation, sensory organ

1050 development, negative regulation of Wnt signallr@ghway, regulation of JAK-STAT
1051 cascade, negative regulation of compound eye tetatledeath, antennal morphogenesis,
1052 defense response to Gram-negative bacterium (&g)le

1053 To identify genes under selectionAp. glycinesand its most closely related,
1054  specieAp. gossypiiwe calculated the dN/dS ratios of 7,502 singlpyocorthologs ofAp.
1055 glycinesandAp. gossypiusingM. persicae G00@&s the outgroup. Of these orthologs,
1056 3,825 passed the cut off filters (see Materialsiethods). Most of the genes (~98%) of
1057  both soybean and cotton aphid have dN/dS ratiosrdiwan 1, suggesting the action of
1058  purifying selection, while the remaining fractiohgenes (~2%) show dN/dS ratios

1059 higher than 1, indicative of positive selectionli§leaS7, Fig. 3).

1060

1061 Of the 3,825 single copy orthologs, six proteingendentified as under positive
1062  selection in bottAp. glycinesandAp. gossypispecies, and only one, Groucho had
1063  known functional information. Groucho proteins &&A-binding repressors that inhibit
1064  transcription by interacting with a repression don(®aroush et al., 1994; Fisher et al.,
1065 1996; Aronson et al 1997; Dubnicoff et al., 199Mehez et al., 1997)

1066

1067 There are 47 genes identified as under positivexgeh inAp. glycines

1068  Functional information is available for 31 of thegmes. These encompass a range of
1069  metabolic functions from P450s involved in detaation, to arrestin domain-containing
1070  protein that transports proteins between cellgjstone acetyltransferase that acetylates
1071 lysine on histone proteins (Table S8).

1072

1073 Of 42 genes determined to be under positive sele@tiAp. gossypii24 have

1074  known functional annotations. Genes under thisgmaiealso cover a wide variety of
1075 metabolic functions from Azurocidin, an anti-micralgprotein, to optomotor-blind

1076  protein required for optic lobes and wing developm# the sodium channel protein
1077  Nach, involved in the clearance of tracheal liquid.

1078

1079 3.3 Cuticular proteins

1080

1081 The manual curation and annotationApf. glycinescuticular protein (CP) genes

1082  allowed the identification of 106 unique genes hglog to seven well-identified

1083  cuticular protein subfamilies present in Orthopterresects (Willis, 2010) (Table S9).

1084  Similar representatives numbers in each CPs suliésnaire found in aphid genomes and
1085 in D. vitifoliae, the grape wine pest species belonging to Phyllodteay a Superfamily
1086  considered to be the nearest sister taxon of thedajplea. Of the genomes examined
1087 thus far, onlyA. pisumshows a major expansion of the RR-2 protein (T&8lg Such an
1088 increase of gene contentAn pisumhas been discussed and appears to be a chatacteris
1089  of this aphid species (Mathers et al., 2017). Tutb@s explained this feature by an

1090 increase in lineage-specific genes and widesprapticdtion of genes from conserved
1091 families (Mathers et al., 2017). More specificallyAp. glycineghe final CPs set

24



1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

1135

includes 13 and 71 unique genes harboring respdgtive RR-1 and RR-2 motif (Table
S9). As mentioned in the introduction section thadafamilies (named CPRSs) are of
major importance in insect physiology. They arddnthe largest CPs subfamilies in
every species of arthropod sequenced so far arehapp be restricted to this group of
invertebrates (Willis, 2005). The R&R Consensus dionpresent in CPRs confer chitin-
binding properties to these proteins and is invlvecuticle formation (Rebers and
Riddiford, 1988). It seems that RR-1 proteins aedgyentially present in soft (flexible)
cuticle while RR-2 proteins are found in hard @igcuticles (Willis, 2010). Interestingly
these proteins are poor in cysteine residues. Aedef2005) suggested that cystine could
react with ortho-quinones and interfere with sdieedion of the cuticle.

Most RR-1 proteins fromAp. glycinesseem to display 1-to-1 orthology relationships with
other aphid species and this reduced complexityadsghe absence of specific
duplication trends for this protein subfamily (F&bA). An ortholog of Stylin 01,
originally identified inA. pisumandM. persicaewas also found iAp. glycines
(AG6029153) (grey box, Fig. S5A). This RR-1 protpmesent at the tip of aphid stylets

is believed to be a receptor of non-circulativeises (i.e. viruses transmitted during short
punctures without internalization of the viral pelgs) such as th€auliflower mosaic

virus (CaMV), or the CMV which is transmitted B\p. glycinegUzest, 2007; Webster
2018; Gildow et al., 2008). Indeed Stylin 01, narpeeviously Mpcp4 irM. persicae
(Dombrovsky, 2007), was shown to interact in ya@tt the coat protein of the CMV.
However, there is still no direct evidence of dterin CMV transmission (Liang and

Gao, 2017).

Most CPR proteins harbor signal sequences, consisith their
extracellular/secretory localization, and most GjelRes display the canonical first intron
in this signal peptide. Noteworthy, CPR gene sulifasare located on different genome
scaffolds (data not shown) showing a differentidtedlization depending of the CPR
nature (RR-1 or RR-2) as it was previously showrMopersicagMathers et al., 2017).
Moreover, some scaffolds harbor several RR-2 gergamnized as tandem repeats.
Within these tandem arrays some genes occur is paalmost identical adjacent
sequences and were reported in other organismsasédedes aegyp(iCornman and
Willis 2008). The presence of tandem repeats nmgfitect duplications events as
suggested by phylogenetic analyses (Fig. S5B).

RR-2 proteins are also good candidates as plam véceptors. CMV has been
reported to interact with several RR-2 peptidegcted in aphid stylets (Webster et al.,
2017). However, it was not possible to precisegniify one specific candidate.
Recently, Kamangar and colleagues (2019) reponedale of MPCP2, a RR-2 protein
of M. persicaein the transmission of PVY, another non-circiatvirus.Ap. glycines
ortholog (AG6024500) of MPCP2 (referred as Mp_ 0@ in Fig. S5B) belongs to a
well conserved cluster among different aphid spgear@D. vitifoliae (grey box, Fig.
S5B). SincéAp. glycinedransmit PVY (Davis et al., 2005) it would be ugeb
investigate the role of this RR2-protein in PVYnsaission.

3.4 Origin and distribution of Ap. glycines popurdats
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1136 The 2,380 SNPs lllumina Golden Gate assay develfgpetlis study was based
1137  on sequence data froAp. glycinesamples obtained in North America. When this assay
1138 is used to genotype populations not included inSN® discovery process an

1139  ascertainment bias can result (Nielsen et al., 2R@&sen 2005; McTavish and Hills
1140 2015). We chose to adjust for this bias when amadythe world populations &p.

1141  glycineslisted in Table 2, by using a subset of 926 SNEs [daterials and Methods for
1142  specific details).

1143

1144 Using this set of 926 SNPs we conducted a PCA arsalygsing genotypes from
1145 individual soybean aphid specimens collected fr@cduntries acrosap. glycines’s

1146  world-wide distribution. Data from 2001 to 2013 fl&2; Fig. 4). shows that the

1147 U.S./Canada and Asian/Australian populations arsteted in separate groups with U.S.
1148 samples collected in 2001 overlapping with Asiamgles (Fig. 4 a, b). In U.S. the

1149  soybean aphid was first detected in 2000. Sampdes 2001 are the closest

1150 approximation to the aphids that were introduceNanth America. Their similarity to
1151  Asian samples is supported by the overlap sedmsrahalysis further confirming that
1152  Ap. glycineghat invaded North America originated from Asiangles in the North

1153  American cluster display a more diffuse distribattbhan those in the Asian and

1154  Australian cluster.

1155

1156 While samples from each Asian country form theinahuster, there is

1157 considerable overlap between countries (Fig. 4n@as from China overlap

1158  with South Korea, Taiwan, Indonesia, Thailand, Bhy@nmar but not Japan (Fig. 4 c, d)
1159  suggesting that the soybean aphid has dispersedCGiona to these countries.

1160 Populations oAp. glycinedrom Japan do overlap with those from South Kofédas

1161  distribution is likely the result of the higher@nactions that have taken place historically
1162  between South Korea and Japan. Due to the oveelayebn Indonesian and Australian
1163  samples it is likely that the former is the likalgurce of this relatively recent invasive
1164  population (Fig. 4 ¢ and d).

1165

1166 The results and interpretations derived from thé R@alysis are in concordance
1167  with those derived from the pairwigrvalues calculated for all countries (Fig. 4 e)eTh
1168 lowestFstvalues were observed between the U.S. and Canadhese form a cluster in
1169 the PCA plot (Fig. 4; a, b, e). Pairwise comparssofhthe two North American

1170  populations against the Asian countries show thatdwest value igis a visSouth

1171  Korea, followed by China and Japan, indicating thatlikely source of the North

1172 American population ofp. glyciness South Korea and/or China. The highestvalue
1173  between the North American population and Asiamtaes is Myanmar. The population
1174  of Ap. glycinesn Myanmar may be an isolated population thaedéhtiated subsequent
1175 to its dispersal from China or conversely a localestral Asian population &fp.

1176  glycines.

1177

1178 When Asian countries are compared to each othenaCtas the loweststvalue.
1179  This also supports that China was the source amd pbdispersal of the current

1180 population ofAp. glycinedo all other Asian countries. The lowé@stris seen between
1181 China and South Korea and the highest between Gimd&Myanmar. The genotypic
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composition of the current Asian population is lfjka consequence of the recent human
facilitated dispersal oAp. glycinedrom China. However, when considering all the
sampled populations the high&st values are those observed between Myanmar and
Australia followed by those between Australia améiland (Fig. 4 €). The highesgr
value across all populations is between North Aozeaind Australia, likely because the
latter, derived from Indonesia is a differentiapegbulation, and like the U.S. population
the result of a recent bottleneck. This relatiopshnd all the other pairwigesr
comparisons are also illustrated in the Neighbaridg tree (Fig. 4 f).

The same analysis was conducted with the fulb62t{380 SNPs (Fig. S6 ).
The same relationship between populations fronegfit countries were seen using Fst
values even though the PCA plot reflects ascertamtrnias in that the US/Canada and
Asia/Australia form two separate distinct clustgfgy. S6 a-f).

A comparison of PCA plots using the complete 2,386. S7 A) and the reduced
926 (Fig. S7 B) SNP data sets, for U.S./Canadatamh/Australian samples collected
in different years: 2001; 2008; 2010-2013, for th&./Canada and Asia/Australia
clusters, show separation of populations in theres and their closeness in the B
series.

The yearly analysis in Fig S6 B also shows tha®@l U.S. samples overlap
with Chinese samples from Hei Long Jiang and {itovinces, two of the major soybean
growing areas of China, and not samples from Japammn the available samples tested,
the results indicate that the first introductiorAgf. glycinego the North American
continent in 2001was likely from China. For subsatguyears a direct overlap between
U.S. and Asian samples is only seen in 2011 whe®e &phids overlap with South
Korean samples from the provinces of Cheonan amb8@and Japanese samples from
Tochigi prefecture. These results could be intégar@s a possible second introduction to
the U.S. in 2011 from these localities or an oyerkssulting from the high diversity of
genotypes being generated in the U.S. invasivelptpo as it adapted to the North
American landscape.

3.5 Change in the U.S./Canada Ap. glycines poputativer time.

As the U.S./Canada population was the source ®6HP discovery process, the
complete 2,380 SNP data set was utilized for subsm#canalyses that pertained to this
population PCA plots generated using the total number of 2380's for samples from
the U.S. and Canada from 2001 to 2013 but dividetiree time periods: 2001-2005;
2006-2009; and 2010-2013 show that the samplditihe period 2010-2013 are less
diffused than the previous two periods, indicatit@ decrease in genetic diversity with
time (Fig. 5; A, B, C, D). These results lead te tdonclusion that the U.S./Canakia
glycinespopulation underwent directional selection asla@ed to the North American
continent. These results are reflected infikgvalues obtained when comparing the same
time periods (Fig. 5). In contra®?CA plots for Chinese and Japanége glycines
populations for the time period from 2001 and 28&Inot show a decrease in diversity
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over the same time periods (Fig. S8; A, B) and ttmsot show the same directional
pattern observed in the U.S./Canada population.

As indicated in previous work (Michel et al., 2008)ir results indicated that
overall, time was a better predictor of genetifedtdnces in the U.S./Canada. glycines
population than geographic provenance. PCA anabfssamples from years that
included collections from more than two stateséatbd no apparent structure to &
glycinesNorth American population with respect to geograpdcality (Fig. S9). While
apterous aphids move very short distances, hisibyrit has been thought that aphid
flight is common (Close and Tomlison, 1975; Llewaslet al., 2003, Irwin et al., 2007;
Shufran et al., 2009) and that most flights arerat@y (Johnson, 1954). Recently it has
been proposed that migration is a rarer event laaidaphids tend to move shorter
distances, with migration being an exception (Ldedsd al., 1993, 1999; Ward et al.,
1998). Our data shows that there is overlap betw#ehe states sampled. This could be
interpreted that the aphids are involved in longgeamovement across the Midwest or
that the degree of diversity generated inApe glycinegpopulation within a state is
greater than that between states and aphids madenabving long distances.

TheAp. glycinesn the North American landscape can reach astrazaiy high
population numbers, especially at the end of tmenser when such population
explosions can become airborne and a componehedgerial plankton”. The
environmental parameters involved in the predictba given aphid species propensity
to migrate short or long distance are highly comptés likely that there is a continuum
of migratory behavior that is species and enviromndependent (Irwin et al., 2007,
Parry, 2013).

We visualized the distribution of the 2,380 SNP4 tneir respectiv€stvalues
across the genomic scaffolds for the years 20022808-2012. The Manhattan plots
generated (Fig. S10) show that the SNPs with thledsit-stvalues, and the
corresponding genes that these overlap with, areertdrated in the first (1-5) and the
last (14-79) scaffolds of thep. glycinedB1 genome. The intervening scaffolds of 6-13
had SNPs with loweFstvalues. SNPs trailing behind those with hig values are in
close proximity on the scaffolds and are hitchhikgdhe lead SNP. If the genes that
overlap with highFstvalue SNPs are under positive selection thenitehtiked genes
could increase in frequency due to linkage withgblected genes as it has been proposed
by the draft model (Nielsen 2005; Gillespie 200002).

The corresponding heat map for these samples@fghows that thEstvalues
for most SNPs change through time. With the exoepdi the samples from 2005, those
from other years show few SNPs at the highesvalues and these occur for usually one
year and repeat for a maximum of three.

The higher thé-stvalue the greater the difference in allele freaqyest a SNP
between the samples tested. A sample with a higibeu of clonal individuals would
result in higher allele frequencies for the SNRa they possessed which in turn increase
its Fstvalues. Most of the samples from the aphids ctdtkat two localities in 2005 are
clonal copies. The year 2005 when compared t@@04 baseline has SNPs with
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1273  significantly higheiFsrvalues than the other yeafg. glycinegeproduces clonally in
1274  the summer months and all samples tested wereoagtparthenogenetic individuals
1275  collected in the field. If a particular clone iscsassful it will have greater representation
1276  in a given sample. We examined the number of unéaeclonal copies for each

1277  collection year (Fig. S11). For the year 2005 we &ecess to 41 individual samples from
1278  two localities, Wl and IL, of these 32 were cloaald 9 unique. All the clonal

1279 individuals originated from the IL locality and megent a successful clonal lineage at
1280 this time and place.

1281

1282 We examined the GO terms (Table S10) and Kyoto Elopgdia of Genes and
1283  Genomes (KEGG) pathways (Table S11) for genes aweimg with SNPs havingst
1284  values greater than or equal to 0.14 for the commpabetween 2001 and 2005

1285 population. We visualized genes with higkrvalue SNPs that were assigned to enriched
1286 GO terms in comparison between samples collect2@@i and 2005 to see their

1287  respectiveFstvalues in samples collected in subsequent years.

1288

1289 The GO ID’s for genes overlapping with SNPs haviigh Fstvalues for the
1290 2005 year comparison (Table S10) such as progranamedegulation of cell death,
1291 regulation of apoptotic process, response to teulistance, stress response to metal ion
1292  are indicative of exposure to stress. As indicatetie introduction, 2006 was the year
1293  whenAp. glycineswvere observed to colonize a new species of ovéewny plant,

1294  Frangula alnus and also when the first aphids were observedsog/on Raglresistant
1295 cultivars in the field in Ohio. Furthermore, smatperimental plots dRagresistant

1296  cultivars had been planted in several localitiehenMidwest such as IL and IA in the
1297  previous year. The stress response genes withHgigralues may be indicative of the
1298 response of successful clones as they adapted teethh challenges of the North

1299 American landscape.

1300

1301 SNPs that had highstvalue (>0.2) in 2005 fluctuated in subsequent €afith
1302  the exception of AG6029093 (Fig. S12), correspogdmthe gene signal peptidase
1303 complex catalytic subunit SEC11 (EC 3.4.21.89) (@&2), which contains a SNP with
1304  Fsrvalues of 0.23 and 0.19 for the years 2006 an® 28€pectively, all the other genes
1305 hadFgsrvalues that were below 0.06.

1306

1307 We also examined the GO terms (Table S10) and Kg&Bways (Table S11)
1308 for genes containing highstvalue SNPs for 2009, 2010, 2011 and 2012.

1309

1310 The GO terms repeated across the years (Tablead)were associated with the
1311  category Biological Processes, correspond to wgiading pathways localized in the
1312  plasma membrane and the myosin complex, as wétleaiolecular functions of

1313  hydrolase, phosphodiesterase activity, ribonualecéind carbohydrate derivative

1314  binding. The GO term in the Biological Processdsgary of cellular response to

1315 chemical stimulus (2009, 2011 and 2012), 3',5'icymlicleotide phosphodiesterase
1316  activity (2009, 2010 and 2011) and myosin comp&X10, 2011 and 2012), were

1317 repeated for three years, with the latter two insgzutive years.

1318
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1319 3.6 Response to Rag resistant varieties.

1320

1321 As part of the goal to examine the change in thectire of theAp. glycines

1322  U.S./Canada population since the time of first n@ation, and because the field

1323  deployment oRagresistant varieties has been one of the signifiearironmental

1324  factors that has challenged thp. glycinegopulation in North America, we conducted
1325 an analysis using aphids collected frBxagexperimental plots from the states of

1326  Wisconsin, Minnesota, lowa, North Dakota, South @akand Ohio.

1327

1328 Manhattan plots oAp. glycinessamples collected froRagexperiment plots and
1329 compared to samples collected on susceptible plmtthe years 2010 (WI) and 2013
1330 (MN and IA) show overall highdfstvalues (Fig. S13) than the n&agplotsAp.

1331  glycinessamples collected in the years 2003 to 2010 wighetxception of 2005 (Fig.
1332 S10). In addition, SNPs with highstvalues from th&agexperiment plots are not
1333  restricted to the first and latter numbered scdfaf theAp. glycinesB1 genome

1334  assembly, as they were for samples collected orRagfield plants, but rather more
1335 uniformly distributed along the entire number céffalds. This is especially relevant for
1336 samples collected from tliRaglandRagl+2soybean varieties. Previous laboratory tests
1337  have shown that these two resistant varieties ptesere challenging environments for
1338  theAp. glycinedo colonize and thrive on thd&ag2(Ajayi-Oyetunde et al 2016; Hill et
1339  al 2017).

1340

1341 The distribution of SNPs and their respecti¢g values for all the localities from
1342  which Ragexperimental samples were collected are showrheeamap (Fig. 7). SNPs
1343  with the highesEsrvalues are found in 1A, Wl and MN. In comparistire remaining
1344  states, ND, SD, and OH, have few SNPs with sinyilarjh Fstvalues. An evaluation of
1345 the number of clonal and unique aphids from eaafpiag locality shows that aphid
1346  samples from IA, WI and MN, with SNPs with higlrvalues, have a higher number of
1347  clonal than unigue individuals compared to thosgeoled for ND, SD and OH (Fig. 8).
1348  We hypothesize that aphids collected in IA, WI &t (Group 1) had the capacity to
1349 colonize the resistant soybean plants and reprodoeally in higher numbers, while
1350 aphids collected in ND, SD, and OH (Group 2) catedithe resistant plants but were
1351  unable to reproduce clonally to the same degrageha greater number of unique
1352 individuals are detected at these latter locations.

1353

1354 The differences in the number of clonal individualtsserved on resistant varieties
1355  between locations in Group 1 and Group 2 is redi@at the higheFstvalues seen for
1356  Group 1. These differences are likely the resuthefformer location proximity to areas
1357  with high density oR. cathartica the over wintering primary host 8p. glycineqFig.
1358 9). This is likely to influence the genetic makeafpsummerAp. glycinepopulations that
1359  colonize soybeans in multiple ways. One way is thate is a higher probability &ag
1360 resistant aphid clones selected in one summer séasverwinter in near big.

1361 catharticastands and recolonize resistant soybean varigaesed the following year.
1362

1363 We determined the GO terms (Table S12) and KEGB®wmts (Table S13) for
1364  genes overlapping with SNPs havifgr values greater than or equal to 0.1 for the
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comparison betweeRagexperimental and susceptible soybean varietiesdtir Group

1 and 2 localities. The highest number of gene®wassigned to the Biological Processes
and Molecular Function categories. These genesngpass a wide range of functions
that include nervous system development, carbolgadnatabolism and mitochondrial
function. We chose to focus on GO terms that wepeated for more than one year,
location or treatment (Table 4).

All GO terms occur twice with the exception of osrdductase activity which
occurs three times on IRagl andRagl+2as well as MNRagl1+2 Most of the GO
terms listed in Table 4 are critical componentpathways involved in iron homeostasis
and crucial to the function of fundamental processech as respiration and nitrogen
fixation (Rouault and Klausner, 1997; Nichol et 2002). Iron is commonly used by all
organisms from bacteria to plants due to its abooelan the environment, versatility and
reactivity, however, because of this flexibilityistnecessary that it is tightly regulated. A
balance needs to be maintained between levelsismififor metabolic processes and
avoidance of iron toxicityRouault and Klausner, 1997).

The GO terms listed in Table 4 such as iron-sudfuster binding (GO:0051536)
and 4 iron, 4 cluster (GO: 0051539), common fromid@a to humans, indicate metallo
co-factors that are part of proteins involved iecgélon transport, enzymatic catalysis and
regulation and also have important roles in cetlatad mitochondrial iron balance.
Mitochondrial aconitase (GO:0003994; aconitate hiabe activity) contains a 4Fe-4S
cluster, and one iron atom of this cluster fad#itsathe dehydration-hydration reaction
that converts citrate to isocitrate as part ofditeéc acid cycle, a crucial metabolic
process (Rouault and Tong, 2005).

Repeating GO terms were observe®RaglandRagl+2varieties, the harshest
environments of the three varieties tested. We thgsize that GO terms associated with
iron related pathways are enriched as a resulfpefturbation of these processes in the
aphids byRaglandRagl+2mechanisms of plant resistance.

4. Conclusion

This study is comprised of a high-quality draft geme sequence assembly and gene
annotation oAp. glycinesB1, a culture established shortly after the inticitbn of this
species to North America. As such it representslibsest approximation to the invasive
genotype. The companion papers in this speciatibane benefited from thp.
glycinesB1 genome sequence assembly and gene annotatimngtother findings, the
analysis of this genome has shown that the duplicpbrtion ofAp. glycinegproteome is
mostly comprised of genes related to apoptosiscatide of possible adaptations to plant
chemical defenses. These duplicated genes, imtagnserve as pre-adaptations that
facilitate aphids’ ability to surmount anthropogestressors such as pesticides and
resistant plant varieties. The duplicated genesapgxitical, as one-third are duplicated
in parallel in other aphid species. The sequendbi®igenome has brought to the fore
that a comparative genomic approach to the studybid pest species is crucial. This is
evident in the difference in the level of geneslaaped inAp. glycinesthat have less
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than three percent in parallel duplicatiorAp. gossypjisuggestive of different strategies
to overcome environmental stressors. The world-\ijgulation analysis suggests that
the place of origin of the North American invaspapulation ofAp. glyciness likely to

be China or South Korea. Genetic variation of Néutherican soybean aphids has
decreased through time and appears not correlatedyaography, implying a high
degree of dispersal capacity for this species.gér®mic resources provided in this
study will facilitate future research in the idéicttion of specific genes, pathways and
mechanisms involved in the adaptation of the saylagdid and other pests to the North
American agricultural landscape, leading to sustaleand non-polluting measures for
their control.
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Fig. 1. Life cycle of the soybean aphid (Aphis glycines Matsumura). (A) Fundatrix on Rhamnus spp.; (B) Apterous viviparous female on Rhamnus spp.; (C) Alate viviparous female, spring migrant from Rhamnus spp. to soybean; (D) Apterous viviparous female on soybean; (E) Alate viviparous
female, summer migrant; (F) Gynopara, fall migrant from soybean to Rhamnus spp.; (G) Male migrates from soybean to Rhamnus spp.; (H) Ovipara, on Rhamnus spp.; (I) Overwintering egg on Rhamnus spp. (1) Representations of different life stages of A. glycines on their summer and
overwintering hosts. A. Alate and nymphs on a soybean leaf. B. Gynoparae and abundance of nymphs that will develop into ovipara on a leaf of Rhammus catharctica. C. Ovipara and eggs adjacent to a bud of R. cathartica. (Photo credits David Voegtlin).



Table 1 Comparison of assembly statistics for currently available aphid genomes. Entries with an asterix (*) indicate genome sequence assemblies not available at GenBank but at AphidBase.

Statistics A géﬁmes IA:ie%ggQSS A. gossypii M. persicae M. cerasi A. pisum D. noxia M. sacchari R. maidis R. padi S. graminum S. flava

GenBank Accession NA" NA" GCF_004010815.1 GCF_001856785.1 NA" GCF _000142985.2 GCF 001186385.1 GCF_002803265.2 GCA 003676215.3 NA" GCA _003264975.1 GCF_003268045.1
# Scaffolds 3,224 8,397 4,718 4,021 49,286 23,925 5,637 1,347 220 15,587 7,859 1,923
Genome (Scaffolds) Size Mb 308 303 294 347 406 542 395 300 326 319 385 353
Longest Scaffold Mb 23.00 1.00 5.00 2.00 0.26 3.00 2.00 26.00 94.00 0.62 13.00 8.00
Shortest Scaffold nt 60 2000 889 959 1001 200 928 1662 1096 1001 1004 1000

# Scaffolds > 500 nt 3,209 (99.5%) 8,397 (100.0%) 4,718 (100.0%) 4,021 (100.0%) 49,286 (100.0%) 23,451 (98.0%) 5,637 (100.0%) 1,347 (100.0%) 220 (100.0%) 15,587 (100.0%) 7,859 (100.0%) 1,923 (100.0%)
# Scaffolds > 1K nt 3,208 (99.5%) 8,397 (100.0%) 4,487 (95.1%) 4,017 (99.9%) 49,286 (100.0%) 12,914 (54.0%) 5,613 (99.6%) 1,347 (100.0%) 220 (100.0%) 15,587 (100.0%) 7,859 (100.0%) 1,922 (99.9%)
# Scaffolds > 10K nt 410 (12.7%) 2,716 (32.3%) 1,574 (33.4%) 1,845 (45.9%) 9,745 (19.8%) 2,355 (9.8%) 2,941 (52.2%) 808 (60.0%) 155 (70.5%) 3,832 (24.6%) 2,425 (30.9%) 860 (44.7%)
# Scaffolds > 100K nt 121 (3.8%) 968 (11.5%) 683 (14.5%) 788 (19.6%) 178 (0.4%) 1,106 (4.6%) 902 (16.0%) 161 (12.0%) 8 (3.6%) 940 (6.0%) 325 (4.1%) 318 (16.5%)
# Scaffolds > 1M nt 55 (1.7%) 1 (0.0%) 33 (0.7%) 38 (0.9%) 0 (0.0%) 89 (0.4%) 34 (0.6%) 78 (5.8%) 4 (1.8%) 0 (0.0%) 93 (1.2%) 122 (6.3%)
Mean Scaffold size Kb 95 36 62 86 8 22 70 223 1,481 20 49 183
Median Scaffold size Kb 3 4 3 7 3 1 10 12 20 3 7 9

N50 Scaffold Length Mb 6.00 0.10 0.44 0.44 0.02 0.50 0.40 3.00 93.00 0.12 1.29 1.68

L50 Scaffold Count 15 512 195 224 4472 280 281 25 2 782 71 67
Scaffold %A 35.77 36.08 34.47 34.82 35.04 32.41 26.57 36.18 36.15 36.09 33.71 34.45
Scaffold %C 134 13.88 12.88 14.94 14.93 13.73 10.89 13.22 13.85 13.88 12.98 14.8
Scaffold %G 13.41 13.87 12.9 14.93 14.93 13.73 10.89 13.22 13.84 13.89 12.99 14.8
Scaffold %T 35.73 36.03 34.31 34.78 35.05 32.4 26.57 36.2 36.15 36.12 33.7 34.46
Scaffold %N 1.68 0.14 5.44 0.53 0.05 7.71 24.94 1.17 0.01 0.02 6.63 1.49
Scaffold N Mb 5.18 0.42 16 1.84 0.2 41.78 98.53 3.52 0.05 0.05 25.52 5.26

% Assembly in Scaffolded Contigs 0.831 0.267 0.959 0.761 0.196 0.951 0.99 0.915 0.984 0.224 0.842 0.924

% Assembly in Unscaffolded Contigs 0.169 0.733 0.041 0.239 0.804 0.049 0.01 0.085 0.016 0.776 0.158 0.076
Average Length of Ns Between Contigs 14284 316 2152 941 93 1139 2185 3785 100 99 4839 3132
# Contigs 3,587 9,610 12,144 5,971 51,353 60,594 50,723 2,276 689 16,133 13,128 3,599
# Contigs in Scaffolds 530 2,223 9,224 3,020 3,858 41,082 48,794 1,180 473 998 6,404 2,084
# Contigs not in Scaffolds 3,057 7,387 2,920 2,951 47,495 19,512 1,929 1,096 216 15,135 6,724 1,515
Contigs Size Mb 303 303 278 345 405 500 296 298 326 319 360 348
Longest Contig Mb 7.7 0.88 0.71 1.5 0.21 0.42 0.17 2.4 42.51 0.57 0.78 2
Shortest Contig 60 0 415 1 1001 200 60 81 1096 1001 48 146
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Fig. 2. Species tree obtained from the concatenation of 67 widespread single-gene families using D. melanogaster as the outgroup. Bootstrap values
below 100% are indicated in red, the rest are not shown. Bars on the right represent relationships of orthologous genes among different taxa used in
the analysis. 1) 811 single copy genes present in all taxa; 2) Multi copy genes present in all taxa (range: 935-1,589); 3) 130 single copy Hemiptera-
specific genes; 4) Multi copy Hemiptera-specific genes (range: 155-276); 5) 81 single copy aphid-specific genes; 6) Multi copy aphid-specific genes
(range: 52-93); 7) Single copy species-specific genes (range: 1-140); 8) Multi copy species-specific genes (range: 56-6,426); 9) Remaining genes not
included in the previous categories. The genomic resources for C. cedri and D. vitifoliae are not publicly accessible, and were kindly made available
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Fig. 3. dN/dS ratios for 3,825 one to one orthologous genes between A. glycines and A. gossypii that passed the filtering cutoffs (see Materials and
Methods for cutoff values). Genes under selection with dN/dS values >2 and with available annotations are labeled with the specific name of the
gene. Those under selection in both A. glycines and A. gossypii are in yellow circles, those in A. glycines are indicated in pink, and those in A.

gossypii are represented in aqua marine.



Table 2 Tally of all SBA samples used in the population structure analysis. Samples are listed by country, region,
and year collected. A total of 3791 samples were collected and analyzed. Samples indicated with asterix (*)
represent those collected from experimental Rag plots. Abbreviations used are as follows: Australia (NSW, New
South Wales; QLD, Queensland); Canada (MB, Manitoba; ON, Ontario; QC, Quebec); USA (1A, lowa; IL,
Illinois; IN, Indiana; KY, Kentucky; M1, Michigan; MN, Minnesota; MO, Missouri; NY, New York; ND, North
Dakota; OH, Ohio; PA, Pennsylvania; SD, South Dakota; VA, Virginia; WI, Wisconsin)

Location Year # of Samples Location Year # of Samples
Asia 656 North America 3104
China 167 Canada 457
Guangxi 2008 10 MB 2011 167
Hebei 2008 7 ON 2003 28
2010 11 2011 85
Hei long jiang 2001 12 QC 2004 55
2008 10 2011 88
Hubei 2007 10 2012 34
Jiangsu 2010 24 USA 2647
Jilin 2001 12 IA 2010 9
2010 24 2011 147
Shanxi 2008 12 2012 73
2010 24 2013 93"
Zhejiang 2008 11 IL 2001 5
Indonesia 112 2005 34
Cianjur 2013 57 2008 17
Lombok 2010 5 2009 55
Majalengka 2013 10 2010 35
Malang 2010 24 2011 23
Maros 2012 15 IN 2011 22
Sakabumi 2013 1 KY 2001 23
Japan 244 Ml 2001 96
Aomori 2008 9 2006 15
2010 24 MN 2001 13
Furukawa 2001 11 2005 7
Ibaraki 2001 12 2009 12
Iwate 2008 5 2010 92
Unknown loc 2001 12 2011 192
Morioka 2001 12 2012 339
Nagano 2010 24 2013 113
Shimane 2010 6 MO 2001 10
Tochigi 2001 12 ND 2009 21
2008 22 2011 34
2011 48 2013 76
Yamagata 2001 12 NY 2011 38
Yamaguchi 2008 11 2012 72
2010 24 OH 2001 132
Myanmar 48 2010 12
Shan 2013 48 2013 o1




South Korea 50
Asan 2012 12
Cheonan 2011 14
Muan 2012 12
Suwon 2011 12

Taiwan 18
Kao-Usuing 2003 6

2011 12

Thailand 2011 17

Australia 31
NSW 2004 7
QLD 2012 24

PA 2001 108
2010 12
2011 23
SD 2008 23
2009 20
2011 96
2012 96
2013 83"
VA 2009 16
Wi 2009 19
2010 109
2011 141
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Fig. 4. Population structure analysis of the SBA world wide geographic distribution, Asia,
Australia and North America, using 926 SNPs with minimized ascertainment bias. (a) PCA of
samples for all populations for all years with 2001 US samples in yellow (X-axis PC1; Y-axis
PC2); (b) PCA of samples for all populations for all years; (c) Enlargement of Asian and
Australian populations indicated in rectangle in (a); (d) Enlargement of Australian and Indonesian
populations indicated in square in (c). (e) Fs values for all pairwise comparisons of populations
used in this study calculated according to Weir and Cockerham (1984). Color scale under the table
indicates relationship between color and F; level; (f) Neighbor Joining tree for all populations
generated using F values as distances using the program QuickTree; (g) World map indicating the
countries whose SBA populations were sampled. Colors in map correspond to the colors usen in
the PCA plots.
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Fig. 5. PCA of all samples from Canada and U.S. from 2001 to 2013 divided by three time periods (X-axis PC1; Y-axis PC2): 2001-2005; 2006-
2009; 2010-2013 generated using 2,380 SNPs. (A) All time periods combined. (B) Same as A but with 2001-2005 period highlighted. (C) Same
as A but with 2006-2009 period highlighted. (D) Same as A but with 2010-2013 highlighted. Table at the bottom of the figure shows F values
for comparisons between 2001 and each year of sample collection for U.S. and Canada.
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Fig. 6. Heatmap of F values calculated by comparing the allele frequencies for all 2,380 SNPs for
SBA samples collected in 2001 against those collected yearly from 2003 to 2012 and represented
in their respective columns. Similar to the Manhattan plot (Fig. 11), scaffolds are sorted by lengths
with the longest one at the top of the column, SNPs within scaffolds are sorted in ascending order
of their coordinates on the scaffolds. Each row represents the same SNP across the years sampled.
Intensity of color indicates level of F¢ value as represented in the scale bar on the top right corner.
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Table 3 List of enriched Gene Ontology (GO) terms that were identified repeatedly in more than one year, for genes overlapping

with SNPs having F values greater than or equal to 0.1 for the comparison between U.S. 2001 and those from years with the highest
number of samples (2009, 2010, 2011, 2012). P-values are from overrepresentation analysis. GO class abbreviations: BP= Biological
Processes, CC = Cellular Components, MF = Molecular Function

co 2009 2010 2011 2012
Class GOIb Term p- #sign p-  #sign  p-  #sign  p-  #sign
value genes value genes value genes value genes

G0:0070887 cellular response to chemical stimulus 0.035 2
GO0:0051716 cellular response to stimulus 0.049 15
G0:0051716 cellular response to stimulus 0.031 10
GO0:0007166  cell surface receptor signaling pathway 0.023 6
G0:0007166 cell surface receptor signaling pathway 0.026 5
GO0:0050794 regulation of cellular process 0.003 24
G0:0050794 regulation of cellular process 0.005 15
GO0:0065007 biological regulation 0.017 25
G0:0065007 biological regulation 0.028 15
G0:2001141 regulation of RNA biosynthetic process 0.026 7

BP  G0:2001141 regulation of RNA biosynthetic process 0.023 5
GO0:0006355 regulation of transcription, DNA-templated 0.026 7
GO0:0006355 regulation of transcription, DNA-templated 0.023 5
G0:0023052 signaling 0.029 14
G0:0023052 signaling 0.032 9
GO0:0007154  cell communication 0.029 14
G0:0007154 cell communication 0.032 9

regulation of nucleobase-containing
G0:0019219 compound metabolic process 0.031 7
regulation of nucleobase-containing

G0:0019219 compound metabolic process 0.026 5
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G0:0016459
G0:0016459
G0:0016459

myosin complex
myosin complex
myosin complex

0.014

G0:0098802
G0:0098802
G0:0098803

plasma membrane receptor complex
plasma membrane receptor complex
plasma membrane receptor complex

0.015

0.009

G0:0005887
G0:0005888

integral component of plasma membrane
integral component of plasma membrane

0.034

G0:0042578
G0:0008081

phosphoric ester hydrolase activity
phosphoric diester hydrolase activity

0.002

G0:0032555
G0:0032555

purine ribonucleotide binding
purine ribonucleotide binding

0.038

28

G0:0097367
G0:0097367

carbohydrate derivative binding
carbohydrate derivative binding

0.034

30

G0:0004114

G0:0004114

G0:0004114

3',5'-cyclic-nucleotide phosphodiesterase
activity
3',5'-cyclic-nucleotide phosphodiesterase
activity
3',5'-cyclic-nucleotide phosphodiesterase
activity

0.007

0.003

G0:0016818

G0:0016787
G0:0016788

hydrolase activity, acting on acid
anhydrides, in phosphorus-containing
anhydrides

hydrolase activity

hydrolase activity, acting on ester bonds

0.02

15

0.023

35

0.035
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Fig. 7. Heat map of F values calculated by comparing the allele frequencies for all 2,380 SNPs for
SBA field Rag experimental samples against SBA susceptible. Each row is a SNP, intensity of
color indicates level of Fg value as represented in the scale bar on the top right corner. WI samples
were collected in 2010, all other samples were collected in 2013. Abbreviations used are as
follows: Buck, Buckthorn; IA, lowa; MN, Minnesota; ND, North Dakota; SD, South Dakota; WI,
Wisconsin.
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Fig. 8. Histogram of total aphid numbers (Y-axis) sampled for localities sampled and their respective Rag varieties and buckthorn plants (X-axis) and their
corresponding unique and clonal individuals. Sample locations are indicated as W1, Wisconsin; IA, lowa; MN, Minnesota; ND, North Dakota; OH, Ohio; SD, South
Dakota.
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Table 4 List of enriched Gene Ontology (GO) terms for genes overlapping with SNPs having F values greater than or equal to 0.1 for the comparison between
Rag and susceptible plant varietiesfor WI, 2010; 1A and MN 2013. P-values are from overrepresentation analysis. GO class abbreviations: BP= Biological
Processes, CC = Cellular Components, MF = Molecular Function

2013 MN
Ragl+2

2013 MN
Rag?2

2010 Wi
Ragl

2013 1A
Ragl

2013 1A
Ragl+2

2013 MN
Ragl

GO
Class

GO ID

Term

p_

value genes value genes value genes value genes value genes value genes

#sign

p_

#sign

p_

#sign

p_

#sign

p_

#sign

p_

#sign

BP

G0:0007600
G0:0007605

sensory perception
sensory perception of sound

0.023

4

0.004

2

G0:0018205
G0:0018193

peptidyl-lysine modification
peptidyl-amino acid modification

0.029

3

0.03

G0:0016192
G0:0016192

vesicle-mediated transport
vesicle-mediated transport

0.04

0.032

10

G0:0010038
G0:0010038

response to metal ion
response to metal ion

0.03

0.025

2

G0:0001505
G0:0001505

regulation of neurotransmitter levels
regulation of neurotransmitter levels

0.03

0.045

CcC

G0:0031010
G0:0031010

ISWI-type complex
ISWI-type complex

0.025

2

0.03

MF

G0:0050660
G0:0050660

flavin adenine dinucleotide binding
flavin adenine dinucleotide binding

0.017

5

0.02

G0:0016705
G0:0016614

G0:0016627

oxidoreductase activity
oxidoreductase activity, CH-CH
donors

oxidoreductase activity, acting on the
CH-CH group of donors

0.02

0.038

0.015

5

G0:0051536
G0:0051539

iron-sulfur cluster binding
4 iron, 4 sulfur cluster binding

0.034

0.024

2

G0:0003994
G0:0003994

aconitate hydratase activity
aconitate hydratase activity

0.041

0.004

2
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Rhamnus cathartica

Sites Presence
@ Lamberton. MN
1 - 50 Records
B Madison WI
- 51 - 100 Records
* Maxwell, IA

B 101 - 200 Recards
Prosper, ND
P - 201 - 300 Records

Volga, SD
8 - > 300 Records
Wooster, OH

% 0 @

Fig. 9. Distribution of Rhamnus cathartica in the U.S. Presence levels of R. cathartica are indicated by degree of shading. Blue (Groupl) and yellow (Group2) symbols

indicate localities where soybean aphid samples were collected from experimental plots of Rag and susceptible soybean varieties. The map projection is in World
Geodetic System, 1984 (WGS84) and was made using ArcGIS 10.5.
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Draft genome of Aphis glycines Biotype 1, a culture established in 2001, the first year
subsequent to its discovery inthe U.S.

The duplicated portion of the Ap. glycines proteome mainly contains genes involved in
apoptosis, a possible adaptation to plant chemical defenses.

SNP based population analysis indicates China and South Korea as likely sources of the
invasive U.S. soybean aphid population.

Ap. glycines genetic diversity in North America has decreased over the sampled time
period.

Ap. glycines samples collected from Rag plants in Minnesota, lowa, and Wisconsin, but
not in Ohio, North Dakota, and South Dakota, show a higher frequency of specific alleles
of genes associated with iron metabolism compared to aphids on susceptible plants.



