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Abstract

Companies and organizations depend heavily on their data to make informed
business decisions. Therefore, guaranteeing high data quality is critical to
ensure the reliability of data analysis. Data integration, which aims to com-
bine data acquired from several heterogeneous sources to provide users with a
unified consistent view, plays a fundamental role to enhance the value of the
data at hand. When data integration involves a limited number of sources,
ETL (Extract, Transform, Load) is generally adopted as a paradigm: raw
data is collected, cleaned, and stored in a data warehouse to perform analysis
on it. Nowadays, big data integration needs to deal with millions of sources;
thus, the paradigm is more and more moving towards ELT (Extract, Load,
Transform). A huge amount of raw data is collected and directly stored (e.g.,
in a data lake), then different users can transform portions of it according
to the task at hand. Hence, novel approaches to data integration need to be
explored to address the challenges raised by this paradigm.

One of the fundamental building blocks for data integration is Entity
Resolution (ER), which aims at detecting records that describe the same real-
world entity, to consolidate them into a single consistent representation. ER
is typically employed as an expensive offline cleaning step on the entire data
before consuming it. Yet, determining which entities are useful once cleaned
depends solely on the user’s application, which may need only a fraction of
them. For instance, when dealing with Web data, we would like to be able to
filter the entities of interest gathered from multiple sources without cleaning
the entire continuously growing data. Similarly, when querying data lakes,
we want to transform data on-demand and return results in a timely manner.
Hence, we propose BrewER, a solution to evaluate SQL SP queries on dirty
data while progressively returning results as if they were issued on the cleaned
data. BrewER tries to focus the cleaning effort on one entity at a time,
according to the priority defined by the user through the ORDER BY clause.
For a wide range of applications (e.g., data exploration), a significant amount
of resources can therefore be saved.

Further, duplicates not only exist at record level, as in the case for ER,
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but also at dataset level. In the ELT scenario, it is common for data scientists
to retrieve datasets from the enterprise’s data lake, perform transformations
for their analysis, then store back the new datasets into the data lake. Sim-
ilarly, in Web contexts such as Wikipedia, a table can be duplicated at a
given time, with the different copies having independent development, pos-
sibly leading to the insurgence of inconsistencies. Automatically detecting
duplicate tables would allow to guarantee their consistency through data
cleaning or change propagation, but also to eliminate redundancy to free
up storage space or to save additional work for the editors. While dataset
discovery research developed efficient tools to retrieve unionable or joinable
tables, the problem of detecting duplicate tables has been mostly overlooked
in the existing literature. To fill this gap, we therefore present Sloth, a
solution to efficiently determine the largest overlap (i.e., the largest common
subtable) between two tables. The detection of the largest overlap allows to
quantify the similarity between the two tables and spot their inconsistencies.

BrewER and Sloth represent novel solutions to perform big data inte-
gration in the ELT scenario, fostering on-demand use of available resources
and shifting this fundamental process towards a task-driven paradigm.

Keywords
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Sommario

Sempre più spesso le decisioni di aziende e organizzazioni sono basate sui dati
di cui esse dispongono. Garantire la qualità di tali dati è fondamentale per
poter effettuare analisi accurate e affidabili. L’integrazione dei dati consiste
nel combinare dati acquisiti da molteplici sorgenti eterogenee per fornire
all’utente finale una vista unitaria e coerente su tali dati. Si tratta perciò di
un processo fondamentale per incrementare il valore dei dati disponibili. In
passato, operando su numeri limitati di sorgenti, si è affermato il paradigma
noto come ETL, che richiede di estrarre i dati grezzi, pulirli e immagazzinarli
in un data warehouse per poterli poi analizzare. Al giorno d’oggi, operando su
milioni di sorgenti, è invece sempre più diffuso il paradigma noto come ELT,
per il quale una grande quantità di dati grezzi viene raccolta e immagazzinata
senza trasformazioni, ad esempio in un data lake. Gli utenti possono poi
pulire le porzioni di dati utili per le loro applicazioni. È pertanto necessario
studiare soluzioni innovative per l’integrazione dei dati, maggiormente adatte
alle nuove sfide che tale modello comporta.

Uno dei processi fondamentali per l’integrazione dei dati è la riconcilia-
zione di entità, che consiste nell’individuare i profili che descrivono la stessa
entità reale (duplicati) per consolidarli in un unico profilo coerente. Storica-
mente, questo processo viene effettuato sull’intero dataset prima di poterlo
utilizzare, risultando spesso molto costoso. In molti casi, solo una porzione
delle entità pulite si rivela poi utile per l’applicazione dell’utente finale. Ad
esempio, operando su dati raccolti dal Web, è fondamentale poter filtrare le
entità d’interesse senza dover pulire l’intera mole di dati in continua crescita.
Allo stesso modo, quando si effettuano interrogazioni su un data lake, si vuo-
le pulire solo la porzione di interesse, ottenendo i risultati nel minor tempo
possibile. Per rispondere a tali esigenze abbiamo realizzato BrewER, una
tecnica per eseguire interrogazioni SQL su dati sporchi emettendo progres-
sivamente i risultati come se fossero stati ottenuti sui dati puliti. BrewER
focalizza il processo di pulizia su un’entità alla volta, in base a una prio-
rità definita dall’utente nella clausola ORDER BY. Per molte applicazioni,
come l’esplorazione dei dati, BrewER consente di risparmiare una grande
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quantità di tempo e risorse.
I duplicati non esistono solo a livello di singoli profili, ma anche a li-

vello di dataset. È infatti comune ad esempio che un data scientist per le
proprie analisi effettui trasformazioni su un dataset presente nel data lake
aziendale, immagazzinando poi anche la nuova versione ottenuta all’interno
del data lake stesso. Situazioni simili si verificano nel Web, ad esempio su
Wikipedia, dove le tabelle vengono spesso duplicate e le copie ottenute han-
no uno sviluppo indipendente, con la possibile insorgenza di inconsistenze.
Individuare automaticamente queste tabelle duplicate consente di renderle
coerenti con operazione di pulizia dei dati o propagazione delle modifiche,
oppure di rimuovere le copie ridondanti per liberare spazio di archiviazione o
risparmiare futuro lavoro agli editori. La ricerca di tabelle duplicate è stata
perlopiù ignorata dalla letteratura esistente. Per colmare questa mancanza
abbiamo quindi realizzato Sloth, una tecnica che, date due tabelle, con-
sente di determinarne la più grande sottotabella in comune, consentendo di
quantificarne la similarità e di rilevare le possibili inconsistenze.

BrewER e Sloth rappresentano soluzioni innovative per l’integrazione
dei dati nello scenario ELT, utilizzando le risorse a disposizione su richiesta e
indirizzando il processo di integrazione dei dati verso un approccio orientato
alle applicazioni.

Parole chiave

Integrazione dati · Deduplicazione dati · Tabelle correlate · ELT · Pay as you go
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Chapter 1

Introduction

Data is everywhere: available for searching on the Web, made accessible
by the public administration as open data1, collected using sensors and IoT
devices. In practice, most aspects of our lives are transformed into data,
and consequently in information with economic value, in a process known as
datafication [Cukier and Mayer-Schoenberger, 2013]. Being able to analyze
data therefore plays a fundamental role in many vital sectors of our society,
from business [Popovič et al., 2018] and healthcare [Belle et al., 2015] to
public administration [Kim et al., 2014] and smart cities [Bachechi et al.,
2022]. More and more companies and organizations rely on the analysis of
their data to take informed business decisions, a practice commonly referred
to as data-driven decision making [Brynjolfsson and McElheran, 2016]. In
addition to traditional techniques, Artificial Intelligence (AI) is widely (and
increasingly) used in data analysis, with several models, especially solutions
based on deep learning [LeCun et al., 2015], requiring large amounts of data
for their training and testing, often in a labeled form.

Nevertheless, in many cases data scientists and practitioners have to work
with data presenting quality issues [W. Fan and Geerts, 2012]. For instance,
it may contain wrong or outdated values, some information may be missing,
datasets may contain duplicates, and some annotations and labels may be
incorrect or inconsistent (e.g., due to the presence of multiple annotators
adopting different policies). Data quality represents a serious concern [Ba-
tini et al., 2009; Ehrlinger and Wöß, 2022], since data analysis can produce
correct and meaningful results only if it is performed on input data of good
quality, while input data with quality issues may significantly affect its out-
come (i.e., garbage in, garbage out) and therefore jeopardize the goodness
of final business decisions. Companies and organizations may suffer signifi-

1https://opendefinition.org/
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2 CHAPTER 1. INTRODUCTION

cant undesired additional costs due to unreliable analysis results [Haug et al.,
2011]. In fact, even the best AI models may perform badly on poor quality
data [Budach et al., 2022], while on the other hand ensuring the quality of
the data at hand can significantly improve the results of the analysis keep-
ing the model unchanged. Such considerations, apparently obvious but often
overlooked in practice [Sambasivan et al., 2021], led to an increasing demand
for a data-centric approach to AI [Jarrahi et al., 2023], putting emphasis
on the quality of the data rather than further improvements of state-of-art
models.

To ensure the quality of the dataset at hand, users are required to perform
a process of data preparation and cleaning [Fernandes et al., 2023], covering
a plethora of different operators, also known as preparators [Hameed and
Naumann, 2020], to fix possible issues present in the data. For instance, the
practitioner might be required to locate missing values and outliers, check
the presence of type-mismatched data, split or merge columns, etc. In par-
ticular, note that even if data preparation and data cleaning are often used
as synonyms (as also done in this thesis), the latter mostly denotes correc-
tions performed on the data at a semantic level (e.g., data deduplication
or missing value imputation), while the former covers syntactic transforma-
tions [Hameed and Naumann, 2020]. Moreover, to maximize the information
value of the dataset at hand, a practitioner is often required to enrich it with
information acquired from further related sources, hence performing data in-
tegration [X. L. Dong and Srivastava, 2015]. For instance, further datasets
might provide additional entities to integrate into the dataset at hand or
additional attributes describing further aspects of the entities in the dataset,
but also different representations of such entities that allow to assess the
correctness of the information contained in the dataset.

Although it is essential, guaranteeing data quality is often not straightfor-
ward, and may require high costs in terms of time and resources. A famous
survey [Press, 2016] indeed estimates that data scientists spend around 80%
of their time to prepare their data (60% for cleaning and organize the data
at hand, but also 19% for collecting datasets, and 3% for building training
sets), while only the remaining part is dedicated to proper data science tasks,
such as mining data for patterns (9%) or refining algorithms (4%). More-
over, a similar percentage of data scientists considers these steps as the least
enjoyable part of their work. In fact, data preparation is a trial-and-error
process that typically involves countless iterations over the data to define the
best pipeline of operators for a given task. Further, different operators do not
have the same impact on the downstream models [P. Li et al., 2021; Abdelaal
et al., 2023], and some aspects of this process include a subjective compo-
nent given by the decision criteria adopted by the different practitioners (a
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common phenomenon that affects data labeling or annotation). Similarly,
detecting useful datasets for the task at hand may require a significant ef-
fort too, especially inside large corpora, where scalability becomes a crucial
challenge [Paton et al., 2023].

Given the importance of data quality and the challenges that it requires to
overcome, scientific research has made great efforts to support data scientists
and practitioners in such tasks. Nevertheless, many issues remain open and
need to be solved. In particular, this thesis mostly focuses on the topic of
data integration, which constitutes the main research area of my PhD.

1.1 Data Integration

Data integration [X. L. Dong and Srivastava, 2015] is the process that com-
bines data acquired from multiple autonomous sources to provide users with
a unified consistent view on this data. Hence, data integration plays a fun-
damental role to enhance the value of the data at hand, allowing to combine
it with relevant information available in other data sources. The data inte-
gration process is composed of three major tasks: schema alignment, entity
resolution, and data fusion.

To provide a high-level intuition about the data integration process and
its three tasks, let us consider the toy example illustrated in Figures 1.1
and 1.2. Figure 1.1a depicts an excerpt from the CD catalog of a music shop.
For each album, the catalog stores a unique identifier (ID), its title (Title),
the artist that recorded it (Artist), and the number of copies available in the
store, ready to be sold (Items). The covers of the albums, reported on the
left of each row, show the real-world object that the row is describing. Since
the information collected about the albums is very limited, the employee
in charge of managing the catalog would like to enrich it. To avoid the
manual insertion of the values for additional attributes, he decides therefore
to integrate it with the data contained in a Web table about rock albums, an
excerpt of which is illustrated in Figure 1.1b. Compared to the CD catalog,
beyond the title of the album (Album) and the name of the artist (Artist),
the table contains information about the year of release (Year), the duration
of the album expressed in minutes (Length), and the record label responsible
of the release (Label).

Schema alignment [Rahm and Bernstein, 2001] has the goal of correctly
aligning the schemas of tables from different sources. In practice, schema
alignment has to solve the semantic ambiguity of the attributes. In fact,
it is common that a conceptual information is modeled differently across
multiple sources. For instance, the name of a person can be modeled using
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(a) An excerpt from the CD catalog of a music shop.

(b) An excerpt from a Web table about rock albums.

Figure 1.1: Excerpts from two datasets to be integrated.
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a single attribute Name, but also using the pair of attributes FirstName and
LastName, or alternatively Name and Surname. In the toy example, while the
columns about the artist share the same header in both tables, a different
naming is used for the album title, denoted as Title in the CD catalog
(Figure 1.1a) and as Album in the Web table (Figure 1.1b).

Schema alignment typically operates in three consecutive steps: (i) the
definition of the mediated schema, designed to capture the main aspects of
the domain, on which the users perform their queries; (ii) attribute match-
ing, that associates the attributes from the schema of each source to their
representation in the mediated schema; (iii) schema mapping, exploiting the
correspondences defined by the attribute matching to reformulate every user
query (performed on the mediated schema) into a set of specific queries, one
for each local source.

Entity resolution [Papadakis et al., 2021a] is the task of detecting the
instances (i.e., records or, more generally, profiles) that describe the same
real-world object (i.e., entity). Records describing the same entity are de-
noted as matches. In this case, the challenge is to solve the ambiguity in
the entity representations. In fact, the same entity can be described in mul-
tiple ways, and linking such different representations to the referred entity
might not be obvious. In the toy example, information about each album was
inserted manually over time into the CD catalog (Figure 1.1a) by multiple
employees of the store, who often used abbreviations or different conven-
tions to represent the artists and the album titles. In the Artist column,
acronyms were often used for some band names composed of more than two
words (e.g., BÖC for Blue Öyster Cult), and only the initial letter was some-
times reported for the first names of some artists (e.g., D. Bowie for David
Bowie or B. Springsteen for Bruce Springsteen). Similarly, the title of the
album The Rise and Fall of Ziggy Stardust and the Spider from Mars was
shortened as Ziggy Stardust and 30:30 - The Essential Collection simply de-
noted using the main title. Finally, the bands R.E.M. and The Pogues are
sometimes represented in the catalog as REM and Pogues, respectively.

Also entity resolution is generally performed with three major steps
[Christen, 2012b]: (i) blocking, which groups records in different blocks
according to some similarity criteria, discarding obvious non-matches
(mitigating the inherently quadratic complexity of the entity resolution
problem, which would require to compare all possible pairs of records);
(ii) entity matching, which compares each pair of records co-occurring in
the same block to determine if it constitutes a match or not; (iii) entity
clustering, which builds on the detected pairwise matches to determine
consistent clusters of records that refer to the same entity. The task of entity
resolution, which represents one of my main research areas, is described
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Figure 1.2: An excerpt from the CD catalog after data integration.

more extensively at the beginning of Chapter 2, in Section 2.1.

After detecting the cluster of records that refer to the same entity, data
fusion [Bleiholder and Naumann, 2008] consolidates them into a single repre-
sentative record for that entity with consistent values for its attributes. The
choice of the value for each attribute in the representative record can follow
different criteria. For instance, a source can be considered as more reliable,
hence preferred over the others. Alternatively, it is possible to choose the
most frequent value carried for that attribute by the records inside the clus-
ter, or using aggregation functions for numerical attributes to maintain for
instance the maximum value, the minimum value, or the average of the val-
ues. In the toy example, the Web table in Figure 1.1b is defined as the source
to trust in case of inconsistencies with the CD catalog (Figure 1.1a) on the
two common attributes (i.e., the artist name and the album title), obtaining
the result depicted in Figure 1.2. Note that the album 30:30 is not present
in the Web table about rock albums (Figure 1.1b), since it was categorized
by the website as a folk album. Thus, the cells of the new columns (i.e.,
Year, Length, and Label) present missing values in its row.

Finally, dataset discovery [Paton et al., 2023], i.e., the retrieval of fur-
ther datasets related to the dataset at hand according to specified relevance
criteria, plays a fundamental role for performing data integration in many
real-world scenarios. In fact, while in some cases (as in the previous toy ex-
ample) the datasets to integrate are already defined, in many other cases the
practitioner has a dataset and wants to retrieve further datasets from a cor-
pus that may add valuable information to it. In this case, it is fundamental
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to have efficient solutions to retrieve related datasets in the corpus in an au-
tomated way, according to the relevance criteria (i.e., the type of relatedness)
defined by the practitioner (e.g., joinability, unionability, or duplicate detec-
tion). The task of dataset discovery, touched by the contributions presented
in this thesis, is described in more detail at the beginning of Chapter 3, in
Section 3.1.

Note that similar concepts to data integration are data harmonization and
data federation. The idea of data harmonization is also strictly connected to
data preparation and cleaning, with the goal of unifying data from different
sources into a composite dataset with a consistent, standardized, and com-
prehensive format2, for instance to perform analysis on it. This term, which
is becoming popular in industry, is frequently used in different research ar-
eas, such as biology and medicine [Doiron et al., 2013; Rolland et al., 2015;
Mirzaalian et al., 2016]. Data federation can be viewed as a virtual approach
to data integration instead, enabling users to query and aggregate data from
multiple sources without moving it from its original source3, as supported
for instance by systems such as Denodo4 [Gu et al., 2022].

1.2 From ETL to ELT

Due to its fundamental role, data integration represents one of the longstand-
ing challenges in data management. Therefore, according to the evolution
of technology, the scenario in which data integration needs to be performed
has changed a lot over time [X. L. Dong and Srivastava, 2015]. In fact, data
integration was historically needed to operate on relatively limited quanti-
ties of data sources (often relational databases), for instance to integrate
data silos autonomously managed by distinct departments of the same com-
pany [Bergamaschi et al., 1999]. Nowadays, data integration needs to work
efficiently in an extremely different scenario, which often requires to take
into account millions of heterogeneous sources, such as databases, Web ta-
bles, open data, and data collected from sensors or IoT devices [Bergamaschi
et al., 2018].

When data integration involved a limited number of sources, ETL (Ex-
tract, Transform, Load) emerged as the most popular paradigm [Vassiliadis
et al., 2002]. As suggested by the acronym, ETL is composed of three main
steps. First, data is extracted from multiple sources, potentially heteroge-
neous. Then, this data is transformed into the desired format, performing

2https://www.tibco.com/reference-center/what-is-data-harmonization
3https://www.tibco.com/reference-center/what-is-a-data-federation
4https://www.denodo.com/

https://www.tibco.com/reference-center/what-is-data-harmonization
https://www.tibco.com/reference-center/what-is-a-data-federation
https://www.denodo.com/
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data preparation and cleaning operations. Finally, the transformed data is
loaded into a data warehouse [Inmon, 1992; Chaudhuri and Dayal, 1997],
enabling data scientists to perform business intelligence operations on the
integrated data in its cleaned version.

Subsequently, the explosion of big data radically changed the scenario.
Nowadays, big data integration often needs to deal with a huge amount of
data scattered across millions of sources, extremely heterogeneous in their
types and formats. Data stored in relational or NoSQL database manage-
ment systems, data collected from the Web, especially Web tables [Cafarella
et al., 2008; Bleifuß et al., 2021b], open data made available by public admin-
istrations [Miller, 2018], datasets purchased from data marketplaces [Azcoitia
and Laoutaris, 2022], data acquired from sensors and IoT devices [Marjani et
al., 2017]: each of these types of data has its own peculiar features and may
therefore require dedicated procedures for its management. Further, even
sources of the same type may differ significantly, for instance by adopting
very different formats for storing their data, following various encodings and
conventions (e.g., for representing dates or numeric values), etc.

In addition to the presented heterogeneity issues, many sources are also
extremely dynamic [Tatbul, 2010]: new data is generated very frequently (as
in the case of sensors or stock market) and possibly even existing data is
updated very often (for instance, in Web pages following ongoing events).
Moreover, data sources may present different levels of data quality and ac-
curacy [Berti-Équille and Borge-Holthoefer, 2015]. All these problems, con-
cisely described by the notorious 4 Vs of big data [X. L. Dong and Srivastava,
2015], i.e., volume, variety, velocity, and veracity, make data integration in
such a context very challenging. The need to overcome these issues led re-
searchers and practitioners to perform significant changes to established data
integration paradigms and techniques, making them more suitable to the new
scenario.

In particular, since applying the ETL approach to the case of big
data would be prohibitively expensive and often technically unfeasible,
the paradigm is more and more moving from ETL towards ELT (Extract,
Load, Transform) [Furche et al., 2016]. Differently from ETL, in the ELT
paradigm a huge amount of raw data is collected and directly stored as it
is, for instance in a data lake [Nargesian et al., 2019; Nargesian et al., 2020;
Armbrust et al., 2020]. Then, according to the task at hand, practitioners
can transform and integrate useful portions of this large data corpus, for
instance to perform business intelligence operation on the obtained clean
data or to store it in a relational database management system to efficiently
run queries on it [Gagliardelli et al., 2022b; Gagliardelli et al., 2023].
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1.3 Data Integration On-Demand

Data lakes and large table corpora pose many challenges to the different
tasks of data integration, which are therefore required to significantly change
established paradigms and approaches to meet the needs raised by this new
scenario. Indeed, in many situations nowadays it is not possible (or anyway
not efficient) to operate on the entire amount of data with an expensive and
time-consuming offline approach. This is for example the case of dynamic
sources, where data changes very frequently and gets outdated quickly, hence
timely results are needed. Further, this also happens anytime the practitioner
is only interested in a certain portion of the data (e.g., when running queries
to explore a novel dataset), hence cleaning the entire data would be a waste of
time and resources. Therefore, novel solutions are usually required to handle
only the data effectively needed for the task at hand, returning results in a
timely manner, often in a pay-as-you-go fashion. This allows to save time,
resources, and money (e.g., in case of pay-as-you-go contracts, popular in the
cloud), producing results in a limited amount of time so that they can be
useful to the practitioner.

The case of entity resolution clearly exemplifies this situation. In fact,
entity resolution is typically employed as an expensive offline cleaning step
on the entire data before consuming it. Yet, determining which entities are
useful once cleaned depends solely on the user’s application, which may need
only a fraction of them. For instance, when dealing with Web data, we would
like to be able to filter the entities of interest gathered from multiple sources
without entirely cleaning the continuously growing datasets. Similarly, when
querying data lakes, we want to transform only the portion of data interesting
for the query and return results in a timely manner.

To overcome the limitations of existing approaches, researchers directed
their efforts in two distinct directions. On one hand, query-driven ap-
proaches [Altwaijry et al., 2013; Altwaijry et al., 2015] aim to perform entity
resolution only on the portion of data which might be useful to answer the
issued query. On the other hand, progressive approaches [Whang et al.,
2013; Papenbrock et al., 2015a; Firmani et al., 2016; Simonini et al., 2018]
prioritize the comparisons that most likely lead to the detection of a match,
maximizing the number of matches detected in a certain amount of time.

The approach presented in this thesis, called entity resolution on-demand
and implemented by BrewER [Simonini et al., 2022; Zecchini et al., 2023;
Simonini et al., 2023], conciliates and goes beyond the two described re-
search directions. BrewER evaluates SQL SP queries on dirty data while
progressively returning results as if they were issued on the cleaned version
of this data, allowing therefore the user to run clean queries on dirty data.
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BrewER, described extensively in Chapter 2, tries to focus the cleaning
effort on one entity at a time, according to the priority defined by the user
through the ORDER BY clause. Hence, for a wide range of applications
(e.g., data exploration), it can save a significant amount of resources.

Another task that has been significantly affected by the new scenario is
dataset discovery. In fact, having to deal with very large corpora of tabular
datasets (e.g., Web tables, tables stored in data lakes, etc.), disposing of
solutions to efficiently detect in an automated way datasets in such corpora
related to the one at hand achieves a paramount importance. Hence, several
efficient methods have been proposed for the detection of related tables [Das
Sarma et al., 2012] in large table corpora, especially joinable tables [E. Zhu
et al., 2016; E. Zhu et al., 2019; Esmailoghli et al., 2022] and unionable
tables [Nargesian et al., 2018].

Nevertheless, duplicates not only exist at record level, as in the case for
entity resolution, but also at dataset level. In the ELT scenario, it is common
for data scientists to retrieve datasets from the enterprise’s data lake, per-
form transformations for their analysis, then store back the new datasets into
the data lake. Similarly, in Web contexts such as Wikipedia, a table can be
duplicated at a given time, with the different copies having an independent
development, possibly leading to the insurgence of inconsistencies. Automat-
ically detecting duplicate tables would allow to guarantee their consistency
through data cleaning or change propagation [Bleifuß et al., 2018], but also
to eliminate redundancy to free up storage space or to save additional work
for the editors. However, the problem of detecting duplicate tables has been
mostly overlooked in the existing literature.

Sloth [Zecchini et al., 2024], the second novel solution presented in this
thesis (where it is described extensively in Chapter 3), aims to fill this gap by
efficiently determining the largest overlap (i.e., the largest common subtable)
between two tables. The detection of the largest overlap allows to quantify
the similarity between the two tables and spot their inconsistencies. Fur-
ther, Sloth can be useful to multiple additional tasks, such as the detection
of potential copying across different sources or the automatic detection of
candidate multi-column joins, which is an open challenge in literature.

1.4 Contributions

The key contributions of this thesis are two novel solutions to perform big
data integration in the ELT scenario, fostering on-demand use of available
resources: BrewER and Sloth.

BrewER is a novel solution to perform entity resolution on-demand, al-
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lowing users to run SQL SP queries directly on dirty data obtaining the pro-
gressive emission of clean entities as if they were issued on the cleaned version
of this data, according to a priority defined by the user. BrewER is exten-
sively described in Chapter 2, which also contains a more detailed overview
of entity resolution (Section 2.1), from the historical offline paradigm to the
novel on-demand approach.

Sloth is a novel solution to efficiently determine the largest overlap (i.e.,
the largest common subtable) between two tables, allowing users to detect
different and possibly inconsistent versions of the same table, then ensure
their consistency through data cleaning and change propagation or delete
redundant copies. Sloth is extensively described in Chapter 3, which also
provides a description of the state-of-the-art solutions for dataset discovery
(Section 3.1) to better understand what are the related approaches and why
Sloth fills a relevant gap in the existing literature.

Finally, Chapter 4 concludes the thesis with an overview of the main
contributions presented in the previous chapters and some research directions
for further developing the novel solutions described in the thesis.
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Chapter 2

BrewER

This chapter provides the detailed description of BrewER, a novel solution
designed to perform entity resolution on-demand, allowing users to run SQL
SP queries on dirty data obtaining the progressive emission (according to the
specified priority) of the clean results as if they were issued on the cleaned
version of the same data. BrewER was presented in a dedicated research
paper at VLDB 2022 [Simonini et al., 2022] and its related demonstration
at VLDB 2023 [Zecchini et al., 2023], also appearing in a restricted version
as a discussion paper at SEBD 2023 [Simonini et al., 2023]. The code for
BrewER is openly available on GitHub1.

This chapter is structured as follows. First, Section 2.1 provides deeper
insight into entity resolution, describing its main challenges and the differ-
ent steps that compose the entity resolution pipeline, as it is designed in
the traditional batch approach. Section 2.2 shows the shortcomings of this
approach in some frequent real-world scenarios, introducing BrewER as
the proposed solution. BrewER is then compared to related approaches in
Section 2.3, highlighting their differences and the advantages of this novel
solution. Section 2.4 introduces some preliminary definitions and the formal-
ization adopted in the description of the proposed algorithm, illustrated in
detail in Section 2.5.2. Section 2.6 depicts some example real-world use cases
that can significantly benefit from BrewER, while Section 2.7 concludes the
chapter by reporting the details of its experimental evaluation.

2.1 Entity Resolution

Entity Resolution (ER) [Christophides et al., 2021] aims at detecting records
(or, more generally, profiles) in a dataset or across multiple datasets that de-

1https://github.com/dbmodena/BrewER
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scribe (or refer to) the same real-world object (i.e., entity). Entity resolution
is also known under multiple alternative names with slightly different shades
of meaning, such as record linkage [Christen, 2012b], duplicate detection [El-
magarmid et al., 2007; Naumann and Herschel, 2010], deduplication [Chu
et al., 2016], or sometimes, using a synecdoche, entity matching. Entity res-
olution can be performed on a single dataset containing duplicates to obtain
its cleaned version (this process is denoted as dirty entity resolution or dedu-
plication) or to link the different representations of the same entity across
multiple clean datasets (this process is denoted instead as clean-clean entity
resolution or record linkage), as in the toy example about the CD catalog
described in Chapter 1.

As previously stated, entity resolution plays a fundamental role in data
integration and, more generally, to ensure the quality of the data at hand,
with a notable impact on several real-world scenarios. For instance, entity
resolution can be used to link data about the same patient across multiple
health databases, data about the same product across multiple catalogs, data
about the same route from multiple travel company websites, etc. Entity
resolution is also used for master data management in enterprise information
systems [Loshin, 2008], to detect for instance multiple representations of the
same customer or product.

Entity resolution is therefore a longstanding problem in data manage-
ment. In fact, the father of entity resolution can be identified as the medical
doctor and statistician Halbert L. Dunn, who firstly defined it in the con-
text of vital statistics (especially death clearances) in 1946 [Dunn, 1946],
before the formalization carried out by Ivan P. Fellegi and Alan B. Sunter in
1969 [Fellegi and Sunter, 1969].

The first challenge that entity resolution needs to overcome is the het-
erogeneity among the different representations of the same entity, which can
sometimes make it very hard to correctly link a record to the described entity.
Let us consider for instance the example reported in Figure 2.1, represent-
ing a dirty dataset containing records about cameras scraped from several
e-commerce websites (e.g., Amazon, eBay, Alibaba, etc.). For each record,
the dataset contains the unique identifier (id), the brand (brand), the model
name (model), the type of camera (type), the resolution in megapixels (mp),
and finally the price (price). The dataset contains many duplicate records
that describe the same entity. This is denoted in Figure 2.1 through the
color of the record ID cell, representing the following clusters of matching
records: {R1, R2, R3}, {R4, R5}, {R6}, {R7, R8}. Records in the same
cluster can differ significantly, due for instance to the adoption of different
naming conventions (e.g., d-200 vs. d200 ), the presence of typos (e.g., 1.01
instead of 10.1 MP), and in general of missing or inconsistent values, includ-
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Figure 2.1: A dataset of cameras scraped from multiple e-commerce websites.
The color of the record ID cell denotes the described entity.

ing cases of homonymy and synonymy that might be extremely difficult to
detect without some specific domain knowledge. For example, the Canon
EOS 400D camera model (represented by records R1, R2, and R3) is sold in
North America as Digital Rebel XTi and in Japan as EOS Kiss Digital X.

Further, a second relevant challenge is related to the inherently quadratic
complexity of the entity resolution problem. In principle, it would indeed
require to compare all possible pairs of records in the dataset to determine if
they refer or not to the same entity (i.e., if they match). Nevertheless, this
would determine a huge number of comparisons, which is uselessly expensive
and in many cases not even affordable due to the size of the dataset. Hence,
the second issue to overcome is represented by scalability, with the need for
techniques to efficiently discard as many obvious non-matches as possible
while retaining useful comparisons.

The standard pipeline for entity resolution, depicted in Figure 2.2, is
designed to address the two presented challenges. As previously stated in
Chapter 1, it covers three main steps: blocking (which can be followed by an
optional block processing step), entity matching, and entity clustering. The
produced clusters of matching records are then served as input to data fusion,
which produces a single representative record from each cluster through a
conflict resolution function. The steps presented in Figure 2.2 are described
in more detail in the following dedicated subsections.

Blocking

Blocking [Christen, 2012a; Papadakis et al., 2021b], which represents the first
step in the pipeline, has the goal to make the entity resolution process scale.
In fact, this phase determines the candidate pairs of records (i.e., candidates)
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Figure 2.2: The entity resolution pipeline: from a dirty dataset containing
duplicates to the clusters of matching records.

that need to be checked more carefully later in the entity matching step to
determine if they represent a match or not. The goal of blocking is therefore
to discard from this candidate set as many obvious non-matches as possible.
In particular, blocking builds clusters of similar records (i.e., blocks), accord-
ing to the similarity criteria defined by the blocking function. Comparisons
are then performed only among records appearing in the same block, avoid-
ing therefore to compare pairs of records that are too dissimilar to represent
a match. The blocking function is required to be computationally cheap and
to produce a candidate set with a very high recall (i.e., the ratio of matching
pairs included in the candidate set over all matching pairs present in the
dataset) to retain as many matches as possible and a good precision (i.e.,
the ratio of matching pairs over all pairs included in the candidate set) to
discard as many obvious non-matches as possible.

A classical example of blocking function is the widely adopted token block-
ing [Papadakis et al., 2011]. Token blocking takes into account all attributes
of the considered records or a specified subset of their attributes and gener-
ates a block for each token appearing there. Tokenization is generally per-
formed at word level, but many variants are possible, considering for instance
q-grams [Augsten and Böhlen, 2013]. Each block contains therefore the iden-
tifiers of the records in which the token appears. While most generic solu-
tions simply consider the distinct tokens (independently from the attribute in
which they appear) to generate the blocks, hence adopting a schema-agnostic
approach, some variants also differentiate among the appearances of the same
token depending on the attribute in which they occur, operating therefore in
a schema-aware or loosely schema-aware manner [Simonini et al., 2016].
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Token blocking produces overlapping blocks, since a record can appear
in multiple blocks (i.e., one for each of its distinct tokens). This may offer
advantages in guaranteeing higher recall compared to solutions that produce
disjoint blocks, since it enhances the probability that two matching records
co-occur in at least one block. Other popular blocking techniques include for
instance canopy clustering [McCallum et al., 2000], similarity joins [Barlaug,
2023b], and solutions based on TF/IDF [Paulsen et al., 2023] or even on deep
learning [Thirumuruganathan et al., 2021].

Block Processing

As illustrated in Figure 2.2, blocking (especially in presence of overlapping
blocks) can significantly benefit from a following block processing phase [Pa-
padakis et al., 2021b], which aims to further prune useless comparisons from
the produced candidate set, acting at the level of entire blocks or single pairs
of records. This allows to further enhance precision while retaining recall,
leading to relevant performance improvements.

In particular, block purging and block filtering operate at the block level
to filter out oversized blocks, for instance the ones generated from stopwords,
which determine many useless comparisons and do not add value to smaller
blocks generated from meaningful tokens. While the former technique oper-
ates on all generated blocks at once, setting an upper bound to their size or
cardinality (i.e., the number of produced comparisons), the latter considers
for each record the blocks in which it appears and only retains the smaller
ones, according to a specified percentage.

On the other hand, meta-blocking [Papadakis et al., 2014a; Papadakis
et al., 2014b; Simonini et al., 2016; Gagliardelli et al., 2019; Gagliardelli et
al., 2022a] performs pruning at comparison level, based on the construction
of a blocking graph that represents records as nodes and inserts an edge be-
tween two nodes if the corresponding pair of records appears in the candidate
set. Edges are then weighted to reflect the similarity of the two records, for
instance by tracking the number of blocks in which they co-occur. After con-
structing the blocking graph, weights are used to prune edges and/or nodes
to only retain most promising comparisons.

Entity Matching

While blocking aims to make entity resolution scale, reducing the Cartesian
product of the records to a much smaller subset of promising pairs, entity
matching has the goal to carefully evaluate through a matching function
(i.e., matcher) these candidate pairs of records to decide if they represent a
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match or not. In literature, an extremely wide range of solutions for entity
matching has been produced over years. For instance, the matching function
can be represented by a human acting as an oracle [Firmani et al., 2016], or
by several humans in the case of crowdsourcing [Gokhale et al., 2014; Das
et al., 2017]. Alternatively, as often happens in industrial scenarios, it can be
composed by a set of human-defined rules [Gagliardelli et al., 2020], relying
for instance on some relevant patterns present in the data and on the domain
knowledge to deal with homonymy and synonymy [Zecchini et al., 2020].

Solutions based on artificial intelligence proved to be very effective in
entity matching, recording state-of-the-art results in many scenarios. These
solutions can be based either on traditional machine learning models or on
deep learning models. For instance, Magellan [Konda et al., 2016; Doan et
al., 2020] implements matchers based on traditional machine learning models
(e.g., decision tree, random forest, SVM, etc.) and exploits as features several
similarity measures computed on a set of aligned attributes. On the other
hand, DeepER [Ebraheem et al., 2018] and DeepMatcher [Mudgal et al.,
2018] are notable examples of matchers based on neural networks [Barlaug
and Gulla, 2021].

Despite registering notable results, these models need a significant amount
of labeled data for their training and testing, which might require an over-
whelming human effort. To mitigate this problem, different research direc-
tions have been followed, including for instance active learning and transfer
learning. In particular, active learning [Settles, 2012] significantly reduces the
labeling effort by carefully selecting, in an iterative process, a small amount
of relevant pairs to be labeled by an oracle. This selection aims to capture
the pairs of records that maximize the matcher’s learning, for instance the
most uncertain ones [Meduri et al., 2020]. After being labeled by the oracle,
these pairs are then added to the current training set to retrain the matcher
at the end of the iteration.

Outstanding results have been achieved through the application to entity
matching of the pre-training/fine-tuning paradigm followed by BERT [De-
vlin et al., 2019] and its derivatives, such as DistilBERT [Sanh et al., 2019]
or RoBERTa [Liu et al., 2019]. Although initially designed in the context of
natural language processing, these models were then successfully exploited in
several areas of computer science. Fine-tuning these pre-trained deep learn-
ing models for entity matching usually requires a relatively small labeling
effort and can often lead to remarkable performance, as shown by BERT
itself [Paganelli et al., 2022] and by systems based on it or its derivatives,
such as Ditto [Y. Li et al., 2020], which can be identified as the current
state-of-the-art solution for entity matching.

More recently, the explosion of large language models led researchers to
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investigate their possible application as matchers. While many aspects still
need to be explored, for instance the impact of prompting [Sisaengsuwan-
chai et al., 2023], preliminary results presented in literature show enormous
potential in entity matching [Narayan et al., 2022; Peeters and Bizer, 2023],
often achieving notable results even in the zero-shot learning case.

Finally, together with the wide adoption of complex artificial intelligence
models for entity matching, the latest years saw the first research results
about the explainability of such matchers. Explainable entity matching aims
to understand the reasons behind the classifications performed by a matcher,
allowing to understand if it is considering relevant features for its decisions
or if it is driven by misleading aspects. At the same time, this allows to
debug the training data, in case of artificial intelligence models, spotting for
instance the presence of wrongly labeled pairs (or underrepresented cases)
that influence negatively the model decisions. Most of the proposed tech-
niques [Di Cicco et al., 2019; Baraldi et al., 2021; Barlaug, 2023a] are inspired
by LIME [Ribeiro et al., 2016], a solution for local explainability [Guidotti
et al., 2019] that relies on surrogate interpretable models (e.g., linear classi-
fiers) to understand the weight of different features behind a single decision
taken by a black box model. This research direction evolved by considering
counterfactual explanations [Teofili et al., 2022; Wang and Y. Li, 2022], i.e.,
the minimum change to a pair of records that would modify its classification.
Nevertheless, all these approaches present the problem of carefully selecting
representative pairs for a global overview of the matcher behavior [Laskowski
and Sold, 2023]. More recently, intrinsically interpretable entity matching
systems such as WYM [Baraldi et al., 2023] have been explored too.

Entity Clustering

Whatever the choice of the matching function, it presents a binary nature,
taking decisions on a single pair of records at a time. This approach can lead
to the insurgence of inconsistencies: for instance, considering the records A,
B, and C, it might be possible that the matcher classifies the pairs A-B and
A-C as matches, while B-C is denoted as a non-match. The goal of entity
clustering is exactly to solve these inconsistencies, producing from single
matches a set of consistent clusters of records that refer to the same entity,
which are then served to data fusion for generating the cleaned version of the
dataset. A typical solution is for instance transitive closure (i.e., considering
the connected components in a graph where nodes represent records and
edges denote pairs classified as matches), that would mark also the pair B-
C as a match. Nevertheless, transitive closure is a very simplistic solution
that might lead to the generation of heterogeneous clusters. Hence, several
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more sophisticated algorithms have been designed and evaluated over years
to produce clusters of matching records with a better accuracy [Hassanzadeh
et al., 2009].

End-to-End Entity Resolution Ecosystems

As illustrated above, entity resolution is composed of multiple subtasks with
dedicated roles: blocking, to make the problem scale; entity matching, to
determine if a pair of records represents a match or not; entity clustering,
to ensure the consistency of the decisions taken by the matcher. Since man-
aging each step independently using dedicated libraries may be tricky, some
end-to-end entity resolution ecosystems have been conceived to support the
entire entity resolution pipeline. For instance, Magellan [Konda et al.,
2016; Doan et al., 2020] not only supports machine learning models for entity
matching, but also simple techniques to perform blocking in advance, such as
overlap blocking. A prominent attention to the blocking phase is guaranteed
instead by JedAI [Papadakis et al., 2019; Papadakis et al., 2020], which
implements most of the state-of-the-art algorithms to perform blocking and
block processing, in particular meta-blocking. JedAI also supports a wide
range of entity clustering techniques and, especially in its recent Python
adaptation named pyJedAI [Nikoletos et al., 2022], several matchers of dif-
ferent types.

2.2 Beyond Batch Entity Resolution

Typically, entity resolution is employed as an expensive offline cleaning step
before using the data. Hence, the entire entity resolution pipeline has to be
applied on the entire data at hand to obtain the cleaned version of the data,
which can be later used in downstream tasks. We refer to this approach
as batch entity resolution, since the clean entities are made available to the
practitioner all at once after the entire dataset has been cleaned. Yet, in
many practical scenarios this might not be convenient. Let us consider for
instance the following real-world example.

Ellen is a data scientist building a machine learning model to predict the
price of SLR (Single-Lens Reflex) cameras. The scenario presents three rel-
evant features. (i) She has limited time to add more data to her dataset and
clean it; also, new data might be arriving periodically. (ii) The data might
contain duplicates. For performing entity resolution, she already has a match-
ing function to choose (or more than one to try) for the data at hand, for
instance a machine learning model trained on the data she already has and/or
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Figure 2.3: The traditional batch entity resolution pipeline: the data scientist
specifies how to clean the data with entity resolution; once cleaned, she issues
the query.

exploiting transfer learning and/or ad-hoc rules. Further, she expresses rules
for resolving the conflicts in the attribute values of the clusters of matching
records, e.g., AVG(price), MAX(resolution), etc. These rules allow to
perform data fusion to obtain the final clean entities. (iii) She has business
priorities: it is better to have clean data for expensive cameras than for inex-
pensive ones, and only modern cameras with a minimum resolution of 10 MP
have to be considered. She can express this with a query.

Figure 2.3 shows how Ellen specifies data extraction and cleaning, i.e.,
the SQL query Q1 that selects the entities she is interested in (priority on
expensive cameras given by the ordering predicate), the matching function,
and the resolution functions to be used in data fusion.

As depicted in this example, oftentimes practitioners (e.g., data scientists)
have a specific task at hand characterized by: (i) an information need : only
a portion of the entities is relevant to their task, hence to clean the entire
data just to run a selective query on it is a waste of resources; (ii) time
constraints : time can be limited and decisions based on the data have to be
made quickly; time can be limiting when new data arrives or changes with
high frequency and users want to quickly explore it with queries (e.g., top-k
queries). Let us therefore consider how the batch approach would perform
in such scenarios.

With a traditional framework, Ellen performs entity resolution on the
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entire data at her disposal by applying matching and resolution functions.
After the entire data is cleaned, she can issue the query and explore or query
the result (Figure 2.3). In such a scenario, entity resolution is the bottleneck
due to: (i) its inherently quadratic complexity, which blocking and filtering
techniques can only alleviate; (ii) the cost of matching functions, as state-
of-the-art matchers involve expensive operations based on string-similarity
measures computation or deep neural network models.

This approach is time-consuming. In fact, to check whether a new source
contains useful data for her analysis with a query, she has to first clean it
completely: all entities are resolved and then filtered to produce results emit-
ted in batch. Further, for debugging the entity resolution pipeline with the
data at hand (e.g., to check if the matcher she is employing is performing
well for expensive SLR cameras), she cannot stop the entity resolution pro-
cess after receiving a handful of the entities to inspect and then resume the
processing: those entities might not be relevant for the query or might be
partially resolved, hence yielding incorrect results. Alternatively, she would
have to manually select records from the dataset to test the entity resolution
pipeline, which is time-consuming as well.

Thus, it would be beneficial to prioritize the cleaning efforts on the en-
tities according to their relevance for the practitioner’s task. In the existing
literature, two main research directions have been explored to go beyond the
batch entity resolution pipeline: (i) progressive approaches, which aim to
perform entity resolution progressively by prioritizing candidates according
to their matching probability, but can guarantee neither the correctness of
the results in case of early termination nor support user-defined priorities;
(ii) query-driven approaches, which aim to perform entity resolution only on
the portion of the dirty data that might be useful to answer the issued query,
but are still designed to operate in a batch manner, hence do not support
progressiveness. The comparison with these approaches is explored in detail
in Section 2.3.

We propose therefore the BrewER framework, which evaluates SQL SP
(Selection and Projection) queries on dirty data, and returns results as if
they were issued on clean data (as shown in Figure 2.4). The main feature
of BrewER is to perform entity resolution progressively, guided by an OR-
DER BY clause, to incrementally return the most relevant results to the
data scientist. BrewER avoids as much as possible matching and resolv-
ing entities that are not part of the final result, and it inherently supports
top-k queries, as well as stop-and-resume execution. BrewER introduces a
special “GROUP BY ENTITY WITH MATCHER [matcher of choice]” op-
erator, which is interpreted as a “group by entity” statement, i.e., knowing
that matching records should be grouped according to the selected matcher.
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SELECT TOP 50 
  VOTE(model), MAX(mp),
  VOTE(type), MIN(price)
FROM products
GROUP BY ENTITY WITH MATCHER μ
HAVING MAX(mp) > 10
AND VOTE(type) LIKE `%slr%`
ORDER BY MIN(price) DESC

Figure 2.4: The entity resolution on-demand pipeline, implemented using
BrewER: the data scientist specifies how to clean the data within the query.

As shown in Figure 2.4, with BrewER Ellen just needs to rewrite her
query (Q1 in Figure 2.3) by employing a special GROUP BY statement and
moving the selection statements into the HAVING clause (predicating on each
group, i.e., each entity). She also specifies the conflict resolution functions
for data fusion within the SQL query, as aggregate functions. Note that
Qc

1 in Figure 2.4 and Q1 in Figure 2.3 are equivalent if issued on clean data.
Then, BrewER executes the query directly on the dirty data, applying entity
resolution progressively on the right portion of the data to yield correct results
incrementally.

Ellen receives the first entities in a fraction of the time required by exist-
ing entity resolution frameworks. This allows her to explore new data without
completely cleaning it, and to maximize the entity resolution efforts on the
entities she actually needs for her task. Furthermore, she can stop the ex-
ecution at any time with the guarantee that the results produced so far are
correct; then, she can resume the query evaluation at her need. Thus, she can
inspect the result of the entity resolution process for entities of interest and
debug it, if needed. Finally, BrewER keeps track of both executed compar-
isons and resolved entities, to avoid recomputing the same operations when
multiple queries are issued on the same data.

Another example is the stock market trading scenario, where an en-
tity matching algorithm on a high frequency financial news feed may have
very limited time to match companies’ records and yield useful informa-
tion [Whang et al., 2013]. Further, typically only a subset of the entities is
relevant for each operation and a priority may be defined, such as the trading
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volume or other financial metrics. Moreover, our proposed approach is suit-
able for tackling a major challenge for data lake management systems [Nar-
gesian et al., 2019]: to support on-demand extraction and cleaning as part
of the data integration pipeline and on-demand query answering. Similarly,
on-demand data transformation that returns results in a timely manner is a
fundamental requirement of ELT pipelines, especially when combined with
top-k queries to debug transformations [Cohen et al., 2009].

2.3 Comparison with Related Work

This section presents an extensive discussion about the major differences
between entity resolution on-demand and the two main approaches previously
designed to overcome the limitations of the traditional batch approach, i.e.,
progressive entity resolution and batch query-driven entity resolution.

Progressive Entity Resolution

Madhavan et al. firstly proposed a progressive (a.k.a. pay-as-you-go) data
integration system in 2007, implemented for Google Base, to progressively
integrate as much Web data as possible as it runs, given a limited amount
of time and resources [Madhavan et al., 2007]. The progressive approach
has been then employed for schema alignment [Das Sarma et al., 2008] and
entity resolution [Whang et al., 2013]. In particular, to perform entity res-
olution, oftentimes the resources are limited (e.g., computational power or
human time to debug the entity resolution pipeline), or the data has to be
elaborated within a certain time to be valuable for the downstream appli-
cation consuming it. To address this challenge, existing progressive entity
resolution methods [Whang et al., 2013; Papenbrock et al., 2015a; Firmani
et al., 2016; Simonini et al., 2018; Galhotra et al., 2021] try to evaluate candi-
date matches by their likelihood of being actual matches (typically estimated
through a proxy measure derived from a blocking strategy), so to discover
as many matches as possible, as quickly as possible. Thus, a progressive en-
tity resolution method incrementally adds records to an entity cluster, which
might remain incomplete until the entire data is processed. Hence, a SQL
SP query cannot be simply issued at any time on the output of a progressive
method. In fact, its result might be incorrect: the representative records
may have values derived applying resolution functions on a partially identi-
fied entity cluster, thus yielding possibly incorrect values. BrewER aims at
finding and resolving complete entity clusters, whose representative records
satisfy a SQL SP query; moreover, it does that progressively, while following
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an ORDER BY predicate. Both BrewER and existing progressive methods
deal with a single-type entity dataset at a time, i.e., a dataset with a unique
schema. In Section 2.7.2, we further discuss and experimentally compare the
progressive entity resolution methods and BrewER.

Batch Query-Driven Entity Resolution

To the best of our knowledge, the closest works to our own are QDA [Altwai-
jry et al., 2013] and QuERy [Altwaijry et al., 2015]. QDA takes as input
a single block B and a selection predicate P, then analyzes which record
pairs do not need to be compared to identify all entities in B that satisfy
P. QDA is not designed for a progressive execution and to support ORDER
BY clauses. Moreover, QDA requires to apply the resolution functions to
the output of each match, hence it cannot support some very common func-
tions that consider more than two values, such as AVG and VOTE (i.e.,
majority voting). BrewER is blocking-agnostic (i.e., it is not limited to one
block) and supports a wider class of resolution functions, including AVG and
VOTE. QuERy supports SQL SPJ queries by introducing two special selec-
tion and join operators, which are called polymorphic as they accept as input
not only records (as regular operators), but also objects representing blocks
(called sketches). A sketch is a concise representation of all the potential
representative records that a block may yield (i.e., all possible outcomes of
the cleaning of a block). For instance, a sketch employs a range data type
to represent numerical attributes and a set of hashed values to represent cat-
egorical attributes. To evaluate a query, QuERy builds a query tree (i.e.,
an execution plan) with the polymorphic operators for a dataset composed
of clean records and sketches. When the query tree is executed, if a sketch
reaches the topmost operator (i.e., passes all predicates), the corresponding
block has to be cleaned since it can contain useful entities, otherwise it is dis-
carded. The representative records (i.e., the cleaned entities) yielded from the
cleaned block are then pushed back into the query tree to be re-evaluated, to
check if they actually pass the predicates. QuERy’s main limitation is that
its polymorphic operators work at the block level and cannot define the pro-
gressiveness of the entity resolution execution within each block. BrewER
could be employed within each block to reduce the number of comparisons
that are evaluated and progressively pass resolved entities up to the query
tree. Then, for a complete integration of BrewER and ORDER BY clauses,
a polymorphic sort operator should be designed to compare and sort records
and sketches. We do not investigate further the integration of QuERy and
BrewER here. Finally, the idea of query-driven entity resolution has been
explored also for answering keyword queries [Sartori et al., 2016; L. Zhu et
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al., 2018]. A previous preliminary work [Pietrangelo et al., 2018] explored
how to yield an approximate progressive result to a keyword query over a
dirty dataset. BrewER guarantees an exact (i.e., not approximate) result
instead and supports SQL SP queries.

2.4 Preliminaries

This section introduces the formalism used in the detailed description of our
algorithm. In particular, Section 2.4.1 formalizes the general entity resolution
model, recalling many concepts introduced in Section 2.1, while Section 2.4.2
provides a formal definition to the entity resolution on-demand model imple-
mented by BrewER.

2.4.1 Entity Resolution Model

We consider a dirty dataset D with schema D[A1, ..., Am]. Each attribute Aj

has a domain (or type) TAj
of values that the records can assume. A record

r ∈ D is represented as a tuple r = (id, r[A1], ..., r[Am]), where id is a unique
identifier for each r, and r[Aj] ∈ {TAj

∪ ∅} is a projection to the value that
the record assumes for the j-th attribute (note that null values are admitted).
Different records in a dataset that belong (i.e., refer) to the same real-world
entity are called matching records (or simply matches). Entity Resolution
(ER) aims to identify the disjoint clusters of records representing the entities
of D and to synthesize a single representative record ε = (id, ε[A1], ..., ε[Am])
for each cluster, so to produce Dc, the cleaned version of D.

We adopt a standard entity resolution framework [Benjelloun et al., 2009;
D. Deng et al., 2019; Doan et al., 2020] employing a matching function for
determining the matching records that form entity clusters and conflict res-
olution functions for consolidating ambiguous attribute values within each
cluster (i.e., performing data fusion). We also support optional blocking,
which is often employed to scale entity resolution by avoiding comparing
obvious non-matching pairs of records [Papadakis et al., 2021b].

Matching Function

A matching function (a.k.a. matcher) is a binary function µ : D × D →
{True, False} that takes as input two records, compares them, and decides
whether they are matches or not. We do not assume the matching function
to be transitive, i.e., if µ(rx, ry) = True and µ(ry, rz) = True, it might be
that µ(rx, rz) = False. To design a transitive matching function is difficult
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in practice [Benjelloun et al., 2009]. Yet, we consider the matches to be
transitive, otherwise results would be inconsistent, e.g., declaring ⟨r1, r2⟩ and
⟨r2, r3⟩ as matching pairs while declaring ⟨r1, r3⟩ as non-matching.

Our framework is matcher-agnostic: it can support any kind of match-
ing function, such as a DNF of similarity join predicates on multiple at-
tributes [Gagliardelli et al., 2020], a human judging the pairs of records on a
crowdsourcing platform [Firmani et al., 2016; G. Li, 2017], an unsupervised
matcher based on generative models [Wu et al., 2020], or a complex deep
learning model exploiting pre-trained language models [Y. Li et al., 2020] or
transfer learning [Loster et al., 2021]. Our framework allows indicating the
matching function for a particular entity resolution task within a SQL query
denoted by µQ.

Conflict Resolution Functions

The conflict resolution functions (or simply resolution functions) transform
a cluster of records into a single record. Records belonging to the same
entity cluster often have inconsistent values for their attributes (e.g., camera
records referring to the same entity may have different prices, names, etc.).
Thus, for each attribute, a resolution function is applied to remove conflicts:
it takes as input a multiset of attribute values and returns a single value.

We declare a resolution function for an attribute Aj through a SQL ag-
gregate function αj. Given a cluster of records E = {r1, ..., rk} representing
a single entity, each αj takes as input the list of values that Aj assumes in
those records and returns a single value ε[Aj] ∈ TAj

. The aggregate func-
tions supported in our framework are: MIN (minimum), MAX (maximum),
AVG (average), and user-defined bounded aggregations (defined later in the
current section), such as MEDIAN and VOTE (a.k.a. majority voting). The
choice of this set of functions was driven by two considerations: (i) they
cover most real-world use cases; (ii) they can be naturally declared as part
of SQL queries.

Blocking

Comparing all pairs of records in D has a quadratic complexity and, typically,
the matching function is expensive to compute: state-of-the-art functions
involve either string-similarity computation [Doan et al., 2020] or deep neural
networks [Y. Li et al., 2020]. Blocking is employed to partition D in blocks,
i.e., partitions of records, and limits the all-pairs comparison to records within
each block [Christen, 2012a; Papadakis et al., 2021b]. Given a record r, we
call candidate set the set of records that appear together with it in blocks.
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Each record in it is called candidate match or simply candidate.
Our framework is blocking-agnostic, meaning that any blocking strategy

(or even no blocking strategy) can be employed, including unsupervised tech-
niques [O’Hare et al., 2019; Papadakis et al., 2020; Thirumuruganathan et
al., 2021], as experimentally shown in Section 2.7.5.

Query-Agnostic (Traditional) Entity Resolution Algorithms

We call traditional entity resolution algorithms those algorithms that em-
ploy matching and conflict resolution functions in a query-agnostic way, i.e.,
without filtering for a specific part of the data and without order preferences.
According to this definition, traditional algorithms may follow any match-
resolve strategy, such as batch entity resolution [Christen, 2012b], which per-
forms blocking, applies the matching function in random order, and finally
performs the conflict resolution, or progressive entity resolution [Whang et
al., 2013; Papenbrock et al., 2015a; Firmani et al., 2016; Simonini et al.,
2018; Galhotra et al., 2021], presented in Section 2.3.

Record Bounds and Bounded Aggregation

Given a record r, its candidate set, and an aggregate function αj for a nu-
meric attribute Aj, we call lower bound and upper bound of r the minimum
and maximum value that the entity to which r belongs can assume for the
attribute Aj, respectively.

When an aggregate function αj yields a consolidated value ε[Aj] for a
set of matches E that is always ε[Aj] ∈ [min(V E

Aj
),max(V E

Aj
)], we call it a

bounded aggregation; otherwise, we call it an unbounded aggregation (e.g.,
SUM, which can produce a final value ε[Aj] that is greater than the max-
imum value of V E

Aj
). We consider only MIN, MAX, AVG, MEDIAN, and

VOTE for our examples or experiments, but BrewER inherently supports
any user-defined bounded aggregation (UDF). We do not study unbounded
aggregation instead.

Further, we distinguish between fixed and free bounded aggregate func-
tions for numeric attributes. Given a numeric attribute Aj, a fixed aggregate
function can yield only values ε[Aj] ∈ V E

Aj
, i.e., the value that the resolved

entity ε assumes in Aj is among the values that its records assume for Aj. Ex-
amples of fixed aggregate functions are MIN, MAX, and VOTE. A free aggre-
gate function, on the other hand, can generate ε[Aj] ∈ [min(V E

Aj
),max(V E

Aj
)],

i.e., the value assumed by Aj in the resolved entity ε can be a new value not
among the values that its records assume in Aj, yet bounded from them. An
example of free aggregate function is AVG.
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SELECT [TOP k] ⟨αj(Aj)⟩
FROM D

[WHERE φ]
GROUP BY ENTITY WITH MATCHER µ

[HAVING ⟨αj(Aj) {LIKE|IN|<|≤|>|≥|=} const⟩]
[ORDER BY αj(Aj) [ASC|DESC]]

Figure 2.5: Query syntax in BrewER.

2.4.2 Entity Resolution On-Demand Model

This section first introduces the type of queries supported by our framework,
then describes the features of an entity resolution on-demand algorithm.

Supported Queries

BrewER supports SQL SP queries with an ordering predicate. Like ex-
isting progressive methods (Section 2.3) and most state-of-the-art entity
resolution frameworks, such as Magellan [Konda et al., 2016; Doan et
al., 2020], JedAI [Papadakis et al., 2019; Papadakis et al., 2020], Deep-
Matcher [Mudgal et al., 2018], Ditto [Y. Li et al., 2020], or Tamr [Stone-
braker et al., 2013], we focus only on single-type entity datasets (e.g., elec-
tronic goods), i.e., BrewER applies entity resolution on dirty datasets that
can be represented with a unique schema. In such a scenario, SP predicates
and ordering predicates are sufficient for users to express their information
needs and priorities, respectively. The JOIN operator would be useful when
dealing with multi-type entity datasets, i.e., when entity resolution is ap-
plied jointly on multiple dirty datasets with different schemata [Whang and
Garcia-Molina, 2012]. We aim at investigating this dimension in future work.

Figure 2.5 presents the syntax supported in BrewER. The GROUP BY
ENTITY clause declares that the query should return results aggregated by
entities. In BrewER, “ENTITY” is a reserved word and must be combined
with a matching function µ. The resolution functions are specified in the SE-
LECT clause as a list ⟨αj(Aj)⟩, where each element is an aggregate function
αj combined to an attribute Aj. The WHERE clause serves just as a filter
applied directly to the initial dirty data σφ(D), i.e., it filters records before
the cleaning. From now on, for simplicity, φ is omitted, being a filter applied
to the dirty data independently of the entity resolution process. The filtering
on the entities after the entity resolution process is defined in the HAVING
clause, which predicates over aggregate values of the groups (i.e., values of the
entities). In the HAVING clause, we currently support numeric comparisons



30 CHAPTER 2. BREWER

(<, ≤, >, ≥, =) for numeric attributes and dates, and string comparisons
(=, LIKE, IN) for textual attributes. Finally, we currently support ordering
for a single attribute.

In BrewER, a valid query Qc has the structure presented above in Fig-
ure 2.5. With Q we denote the corresponding query for cleaned data, where:
(i) the GROUP BY statement is removed; (ii) the HAVING predicates are
expressed as WHERE conditions; (iii) no aggregation is specified in the selec-
tion statement; (iv) there is an ORDER BY condition on the same attribute
of Qc. In practice, Qc issued on a dirty dataset D yields the same results
of Q issued on the cleaned dataset Dc (cleaned with the same matcher and
resolution functions of Qc). Examples of Q and Qc are shown in Figures 2.3
and 2.4, respectively.

The ORDER BY clause allows to benefit from the progressive emission
of the entities. Yet, a user can define a query without using it. In such a
case, BrewER chooses a random (even textual) attribute for the ordering.
Similarly, a user may express a query without a selection predicate. In this
case, all entities are emitted progressively, following the ORDER BY clause,
in a pay-as-you-go fashion.

Entity Resolution On-Demand Algorithm

Given a (dirty) dataset D and a BrewER SQL query Qc, we want an algo-
rithm to guarantee a correct partial result when the execution is terminated
early. That algorithm should perform entity resolution progressively, follow-
ing the query Qc and its ORDER BY clause, and not up-front on the entire
data (i.e., on-demand). In fact, traditional entity resolution algorithms do
not guarantee the correct result in case of early termination: some of the
emitted entities may not be completely resolved, thus possibly sorted in the
wrong order and/or erroneously retained/discarded due to unresolved incon-
sistencies of their values. Thus, an entity resolution on-demand algorithm al-
lows to significantly save computational resources and time if the user wants
to stop the execution after inspecting the first k emitted records. Hence,
top-k queries and stop-and-resume execution are inherently supported.

We now formally define an entity resolution on-demand algorithm. We
denote with Q(Dc) the results of a SQL SP query Q with an ORDER BY
clause issued on Dc, which is the cleaned version of the dirty dataset D ob-
tained by using a traditional entity resolution algorithm. The corresponding
valid version of the query Q in BrewER is Qc, i.e., a query written according
to the syntax shown in Figure 2.5.

Definition 2.4.1 (Entity Resolution On-Demand Algorithm). Given
a dirty dataset D and a SQL SP query Q with an ORDER BY clause, an
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entity resolution on-demand algorithm to evaluate Qc (i.e., the BrewER
version of Q) on D satisfies the following conditions:

1. Correctness : Let t be an arbitrary target time at which the results are
needed: Qc

t(D) ⊆ Q(Dc) and Qc
t(D) is correctly sorted according to the

ORDER BY condition. Typically, t is significantly smaller than the time
needed to produce Dc in its entirety.

2. Monotonicity : Qc
t1

(D) ⊆ Qc
t2

(D) for any t1 < t2.

3. Equivalence: If the traditional entity resolution algorithm and the entity
resolution on-demand algorithm both have enough time to terminate, they
produce the same results for the query, i.e., Qc

t∞(D) ≡ Q(Dc).

Notice that a traditional entity resolution algorithm does not satisfy Con-
ditions 1 and 2. Let us consider a progressive entity resolution algorithm, a
query Qc, and a dirty dataset D, and assume that the representative record
ε of a cluster of matching records {r1, r2, r3} does not satisfy Qc. Let us
further assume that if we resolve only {r1, r2} the resulting (incomplete) rep-
resentative record ε′ satisfies Qc (a common scenario with real-world data).
Now, say that after running for a time t1, the progressive algorithm identi-
fies only two matches: {r1, r2}. So, if we interrupt the execution at t1 and
issue Qc, εt1 ≡ ε′ satisfies Qc and is erroneously emitted as a result. Hence,
Qc

t1
(D) ̸⊆ Q(Dc) and thus correctness is not satisfied. Then, if we run the

progressive algorithm until the discovery of the remaining match r3 (i.e.,
at time t2 > t1) and issue again Qc, εt2 ≡ ε does not satisfy Qc. Hence,
Qc

t1
(D) ̸⊆ Qc

t2
(D) and thus monotonicity is not satisfied.

2.5 Entity Resolution On-Demand

The high-level design of BrewER is depicted in Figure 2.6. BrewER is
an extensible framework, enabling users to plug-in their favorite libraries
for binary matching functions, e.g., DeepMatcher [Mudgal et al., 2018] or
Ditto [Y. Li et al., 2020], and blocking, e.g., Magellan [Doan et al., 2020].
Then, BrewER takes care of the entity resolution on-demand execution of
the user’s query, as explained in the remainder of this section. To avoid
re-comparing candidate pairs with expensive matching functions, the lists of
matching and non-matching records are maintained in a database, for each
matching function employed by the users (if the matching function changes,
the matches change as well). Thus, BrewER can retrieve, exploit, and
update those lists when executing a new query. Users can also choose to
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Figure 2.6: An overview of BrewER.

store only final resolved entities to save space. In this case, the resolution
functions cannot change across queries.

At the core of BrewER lies our entity resolution on-demand algorithm,
introduced in Section 2.5.1, then formally presented in Section 2.5.2.

2.5.1 Algorithm Overview

The ideal entity resolution on-demand algorithm would start by cleaning the
first entity in D that should be emitted for the query Q issued on cleaned
data Dc, and emit that entity as its first result. Then, it would start over
with the next entity that should be cleaned and emitted for Q, and so forth.

To design a practical entity resolution on-demand algorithm, we first
define seed records, which are the records that guide our algorithm in seeking
the next entity that should be cleaned and emitted. We also define a seed
query, i.e., the query to extract the seed records. The general idea is to insert
the seed records and their candidate matches in a priority queue, which is
exploited for ordering the entities (to which the seed records belong) that
satisfy Qc, while cleaning them.

Seed Query

We first consider the case where fixed aggregate functions are employed, to
complete then the discussion with free aggregate functions.

Considering a valid BrewER query Qc employing only fixed aggregate
functions and its corresponding query Q for cleaned data, we observe that if
all records in a cluster of matches do not satisfy any of the selection conditions
of Q, then that cluster cannot yield an entity that is part of the result of
Qc. Thus, given a set of candidate matches, if none of the involved records
satisfies at least one of the selection conditions of Q, those comparisons can
be avoided. On the other hand, if there exists at least one record rs satisfying
one of the selection conditions of Q, those comparisons should be considered.
We call rs a seed record (or simply seed).
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SELECT TOP 50
  model,mp,type,price 
FROM products
WHERE mp > 10
AND type LIKE `%slr%`
ORDER BY price DESC

Q1

(a) Q1

SELECT TOP 50 
  VOTE(model), MAX(mp),
  VOTE(type), MIN(price)
FROM products
GROUP BY ENTITY WITH MATCHER μ
HAVING MAX(mp) > 10
AND VOTE(type) LIKE `%slr%`
ORDER BY MIN(price) DESC

Q1
c

(b) Qc
1

SELECT *
FROM products
WHERE mp > 10
OR type LIKE `%slr%`

Q1
seed

(c) Qseed
1

Figure 2.7: The query to be issued on clean data (a), a valid BrewER query
to be issued on dirty data (b) and its seed query (c).

Consider now a valid BrewER query Qc with only a free aggregate
function, e.g., a query with the condition “HAVING AVG(mp) = 10” issued
on the dataset of Figure 2.8a. It may occur that no record satisfies the
corresponding selection condition in Q, i.e., “WHERE mp = 10”, but a
cluster of matching records actually has an average of values for the attribute
mp equal to 10. The process for fixed aggregate functions would not identify
a seed and we would miss a correct result. Yet, a free aggregation is also
a bounded aggregation, so we can discard any record ri if θmp ̸∈ [min(V Ci

mp ),

max(V Ci
mp )], where V Ci

mp is the set of values assumed by the candidates Ci of ri
(with ri ∈ Ci) for the attribute mp, and θmp is the parameter of the selection
clause (i.e., θmp = 10). This is possible because the entity to which ri belongs
cannot assume a value for mp outside the range [min(V Ci

mp ),max(V Ci
mp )]. Thus,

for a free aggregate function on an attribute Aj, ri is a seed record if: (i)
for the equality operator, θAj

∈ [min(V Ci
Aj

),max(V Ci
Aj

)]; (ii) for > (or <)

inequality operator, ri[Aj] > θAj
(or ri[Aj] < θAj

).
The seed query Qseed from a BrewER query Qc yields the seed set, i.e.,

the set of all seed records. It is obtained with a projection of all attributes of
D and a selection composed of the logical disjunction of the set of basic pred-
icates P derived from the HAVING clause of Qc as follows. If the HAVING
clause of Qc involves a fixed aggregate function, its corresponding selection
predicate ϕ of Q is added to P . If the HAVING clause of Qc involves a free
aggregate function for the attribute Aj: (i) for the equality operator, we
add to P a predicate ϕ of the form θAj

BETWEEN(min(V Ci
Aj

),max(V Ci
Aj

));

(ii) for > (or <) inequality operator, we add to P a predicate ϕ of the form
Aj > θAj

(or Aj < θAj
). No ordering is needed for the seed query. We use

the logical disjunction, even for conjunctive queries (e.g., Figure 2.7), since
the seed records can match and yield any entity that satisfies Qc, although
each of them individually may not satisfy all predicates of Q. Hence, the
seed query is defined as Qseed = σ∨

ϕ∈P(D).
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r7

brand model type mp price
canon eos 400d dslr 10.1 185.00

eos canon rebel xti reflex 1.01 115.00

nikon d200 dslr 10.2 130.00
nikon coolpix compct 8.0 90.00

canon eos 400d dslr 10.1 165.00
nikon d-200 - - 150.00

id
r1
r2

r5
r6

r3
r4

Ɛ1

Ɛ2
Ɛ3

canon nikon olympus olypus-1 dslr - 90.00Ɛ4

(a) A dirty dataset.

model type mp price
eos 400d dslr 10.1 155.00
d-200 dslr 10.2 140.00

id
Ɛ1
Ɛ2

(VOTE) (VOTE) (MAX) (AVG)
ORDER BY

AVG(PRICE)
DESC

(b) The result for Qc
1 of Figure 2.7b, with α(price) ≡ AVG(price) instead of

MIN(price), issued on the dirty dataset.

model type mp price
d-200 dslr 10.2 130.00

eos 400d dslr 10.1 115.00

id

Ɛ1
Ɛ2

(VOTE) (VOTE) (MAX) (MIN)
ORDER BY

MIN(PRICE)
DESC

(c) The result for Qc
1 of Figure 2.7b issued on the dirty dataset.

Figure 2.8: A dirty dataset (a) and clean query results (b and c) for different
aggregate functions on the attribute price.

Seeds and Blocking

When blocking is employed2, BrewER computes the transitive closure of
all candidate pairs by merging blocks that overlap and stores the result-
ing connected components of records in an auxiliary data structure, called
component list. A block index is maintained as well: an index where each
connected component is a key that points to the lists of blocks that have
been merged to yield that component. Then, BrewER removes from the
component list all the components that do not contain any seed record, since
they cannot yield any result for Qc. Moreover, the set of basic predicates P
(defined above) can be exploited to filter out further components that do not
lead to any useful entity for answering Qc.

Consider for instance Qc
1 of Figure 2.7b: if a component does not contain

any record that has slr in its type attribute, then it cannot yield any entity

2If blocking is not employed, the entire dataset is still considered as a single block.
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satisfying Qc
1, even if the predicate on the mp attribute is satisfied. Hence,

for conjunctive queries, BrewER builds a query Qb
i for each i-th predicate

in P . So, if a query Qb
i applied to a component returns an empty set, that

component is discarded. Finally, the block index is employed to retrieve the
blocks that have been retained in the component list, which are the only
blocks considered by BrewER for the processing.

Ordering Entities while Resolving Them

The desired entity resolution on-demand algorithm is an iterative algorithm
capable of identifying the next entity that should be cleaned and emitted as
soon as possible, i.e., with the fewest calls to the matching function µQ. This
can be approximated by determining the lower/upper bound of the value
of the ORDER BY clause for the entity, so to define whether it should be
emitted before or after all other entities.

In fact, each entity has as ordering value the highest or lowest value of
its records (recall the definition of record bounds presented in Section 2.4.1).
For instance, consider the first entity that has to be emitted: its final value
might be determined by one or more records that are not in the seed set and
that are higher/lower than all values of the seeds. Hence, the comparisons
cannot involve only records in the seed set, but a broader set, composed
of both the seeds and their candidate matches, must be considered. Each
element of that set can be inserted in a priority queue (according to the value
of each record); then, the algorithm can iteratively evaluate the head (i.e.,
the record with the current highest/lowest value) and determine its bound.
Thus, as soon as a record has a lower/upper bound that is greater/lower than
or equal to the head of the queue, it can be emitted.

Figure 2.8a shows a dirty dataset that Ellen (the data scientist) wants
to query with the query Qc

1 of Figure 2.7. Figures 2.8b and 2.8c report the
results of the query employing AVG and MIN aggregate functions on price,
respectively. Ellen is employing AVG(price) and a blocking strategy that
inserts in the same block all the records that share at least one token in
brand (the blocks are at the top of Figure 2.9).

With a traditional entity resolution approach, 12 pairs of records are com-
pared (6 pairs from the block “ canon” and 6 from the block “ nikon”) to clean
the dataset and obtain the first results for the query Qc

1. Hence, Ellen has to
wait the time for the complete entity resolution for even just the first correct
result, namely ε1. Instead, if she employs BrewER, ε1 is returned after just
5 comparisons, as explained next.

First, the seed query of Qc
1 is generated (Figure 2.7c). The seed records

{r1, r3, r5, r7} are then extracted with Qseed
1 and processed by BrewER with
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Figure 2.9: Example of BrewER functioning in the AVG/DESC case.

their candidates r2, r4 and r6 (from the blocks). The process is depicted step
by step in Figure 2.9.

A priority queue is populated with the seeds and their candidates, ac-
cording to their ordering value (Step 0). We employ a max priority queue
because the required ordering is descending, otherwise it should be a min pri-
ority queue. The head of the queue potentially belongs to the entity with the
highest price, i.e., the first entity to be emitted.

All the records that match with the head have to be identified to compute
the average of the ordering values. Thus, as shown in Step 1, the head record
is compared to all its candidates. For each matching record, BrewER re-
cursively compares also its candidates (if not already compared), so to obtain
a final entity cluster, as the matching function might not be transitive.

At Step 2, the entity ε1 to which the head r1 belongs can be bounded, i.e.,
its ordering value is now known. At this stage, if the value of ε1 is greater
or equal than the new head record value of the queue (i.e., r4), ε1 can be
emitted, since no other entity can have a greater ordering value. Yet, we
need to check whether ε1 actually satisfies Qc

1. Hence, the filtering predicates
of Q1 are applied. A total of 5 comparisons have been executed to provide
Ellen the first correct result for her query, in its correct order. Then, in
Steps 3 and 4 the same process is repeated.
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2.5.2 The BrewER Algorithm

The BrewER algorithm can handle any combination of bounded aggrega-
tions (see Section 2.4.1) and ordering (ASC/DESC). Here, for ease of pre-
sentation, we consider the case of entities emitted in non-increasing order of
a given attribute, i.e., ORDER BY α(·) DESC, and α(·) ≡ MAX(·) as reso-
lution function of the ordering value. With other aggregate functions (AVG,
VOTE, etc.) the presented algorithm does not change. Also, when we refer
to the ordering value (or simply value) of a record or of an entity, we mean
the value assumed by the ORDER BY attribute. These are the only values
of the records that are relevant to the algorithm, i.e., the values that can
affect the order of emission of the entities.

Algorithm Description

As input, the BrewER algorithm (Algorithm 2.1) takes the dirty dataset D,
a query Qc, and the lists CandLists, MatchLists and NonMatchLists. Can-
dLists is a list whose i-th element is a list itself containing all candidate
matches of the i-th record in D generated with blocking. If blocking is not
employed, BrewER considers the all-pairs comparison scenario. With large
datasets, it is always preferable to employ blocking to avoid the quadratic
complexity. Thus, we assume that CandLists fits in memory (as it does for all
the experiments in Section 2.7). Alongside CandLists, the two complemen-
tary lists of lists MatchLists and NonMatchLists keep track of the matches
and non-matches that have already been compared with µQ, respectively.
They have the same size of CandLists, but they can be implemented with
lists of bit arrays, thus accounting for a low memory overhead. We use the
following notation: MatchLists [i][j] (or NonMatchLists [i][j]) is the flag indi-
cating the match (non-match) between ri and its candidate matching record
rj. Each element in the lists is initialized to zero, i.e., false. MatchLists and
NonMatchLists keep track of matching/non-matching pairs among multiple
query executions, avoiding redundant comparisons. As output, Algorithm 2.1
emits the resolved entities incrementally, according to the ORDER BY clause
of Qc. In the following, we describe the details of the algorithm.

First, the seed query Qseed is derived from Qc (Line 1), as defined in
Section 2.5.1, and issued on D to obtain the seed records and to initialize
the set of seed identifiers Seeds (Line 2). This set is then merged with all
candidate matches of the seeds in Line 3. MatchSet (Line 4) is an empty set
used to keep track of the records that have already been positively matched.
EntityMap (Line 5) is a map data structure (e.g., a hash table) that stores
key-value pairs: the key is the id of a representative record of an entity, and
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Algorithm 2.1: BrewER algorithm with α(·) ≡ MAX(·) and
DESC ordering.
Input: D; Qc; CandLists; MatchLists; NonMatchLists.
Output: The incremental emission of the resolved entities.

1 Qseed ← get the seed query for Qc

2 Seeds← Πid Qseed(D) // seed record ids

3 I ← Seeds
⋃
{j ∈ CandLists[i] | i ∈ Seeds}

4 MatchSet← ∅ // empty set

5 EntityMap←Map(∅) // empty hash table

6 PQueue← maxHeap(∅) // priority queue

7 forall i ∈ I do
8 ri ← σid=i(D)
9 val← ri[Q

c.orderByAttribute]
10 PQueue.insert(i, val)

11 while PQueue ̸= ∅ do
12 i← PQueue.extractHeadElement()
13 if EntityMap.hasKey(i) then
14 emit EntityMap.get(i)
15 continue // go to Line 11

16 if i ∈ MatchSet then
17 continue // go to Line 11

18 E ← ∅ // initialize the entity cluster set

19 R ← ∅ // initialize the records to check

20 onlySeeds ← True // consider seeds only

21 recordID← i
22 matchingProcedure()
23 if E ≡ ∅ and i ̸∈ Seeds then
24 continue // no matching seeds: go to Line 11

25 E ← E
⋃
{i}

26 onlySeeds ← False // consider also non-seeds

27 while R ̸≡ ∅ do
28 recordID← extract an id from R
29 matchingProcedure()

30 εi ← Q̃c(σid∈E(D)) // a resolved entity

31 if εi ̸= ∅ then
32 EntityMap.add(i, εi)
33 PQueue.insert(i, εi.val)
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Algorithm 2.2: matchingProcedure
Input: Procedure 2.2 has visibility of all variables in Algorithm 2.1.

1 Candidates← CandLists[recordID]
2 for (p = 0; p++; p < len(Candidates)) do

/* p is the position of the current candidate in the

candidate list of recordID */

3 candidateID ← Candidates[p]
4 if onlySeeds == True ∧ candidateID ̸∈ Seeds then
5 break // continue only for non-seeds

6 else if candidateID ∈ E then
7 continue // go to Line 2

8 else if MatchLists[recordID][p] then
9 R ← R

⋃
{candidateID}

10 E ← E
⋃
{candidateID}

11 else if NonMatchLists[recordID][p] then
12 continue // go to Line 2

13 else if µQ(D[i],D[candidateID]) then
14 R ← R

⋃
{candidateID}

15 E ← E
⋃
{candidateID}

16 MatchLists[recordID][p]← True
17 p′ ← get position of recordID in CandLists[candidateID]
18 MatchLists[candidateID][p′]← True

19 else
20 NonMatchLists[recordID][p]← True
21 p′ ← get position of recordID in CandLists[candidateID]
22 NonMatchLists[candidateID][p′]← True

23 MatchSet← MatchSet
⋃
{recordID}
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the value is the resolved entity satisfying Qc. In practice, EntityMap stores
the entities that have been resolved and are therefore ready to be emitted
when their turn comes.

A max heap (or min heap in the case of ASC ordering) is initialized in
Line 6 and populated with the seeds and their candidates, serving as priority
queue (Lines 7-10). The basic idea is to iteratively extract the head element
from the priority queue, resolve its corresponding entity ε, and insert ε into
the priority queue with its consolidated ordering value. Thus, every time
that the head of the priority queue is a resolved entity, it can be emitted: all
other records and entities in the queue have an equal or lower value.

The iteration on the priority queue starts in Line 11. Notice that the
priority queue stores only record ids associated to their ordering values. The
head element i of the priority queue is extracted in Line 12 and then:
– (Line 13) If i is the representative id of an entity that was completely

resolved in a previous iteration, that entity has the highest value of all
possible remaining entities/records in the priority queue. Thus, it is emit-
ted in Line 14.

– (Line 16) If i is not a representative record, but has already been matched
in a previous iteration with at least one other record, the iteration continues
and the next element in the priority queue is considered (Line 17).

– (Lines 18-33) Otherwise, the record ri corresponding to i is compared to
its candidates to completely resolve its entity or discarded, as explained in
the following.
An entity should be emitted only if it is derived from at least one seed

record (otherwise it does not satisfy Qc); so, the first comparisons to be
performed are those to ensure that ri matches a seed record (if it is not a
seed record itself). This is checked in Lines 20-24. If ri matches a seed (or it
is a seed itself), then all remaining candidates of ri are considered, and the
entity εi is completely resolved (Lines 26-30). BrewER tries to find also the
matches of each match recursively, starting from ri. To do so, it recursively
inserts the ids of matches in R.

The actual comparisons are verified by calling the matchingProcedure
(Procedure 2.2), which also updates R with newly discovered matches. In
the first call to the matchingProcedure (Line 22), the flag onlySeeds is set
to true, so to check only seed records. The set E collects the ids of the
matches of ri. After the first call to Procedure 2.2, if E is empty, then no
seed matches ri and the execution is interrupted (Line 24). The other calls
to the matchingProcedure have the onlySeeds flag equal to false instead.

So, at the end of the while loop on R of Line 27 of Algorithm 2.1, all
matching records of ri are in E. The resolution functions can now be applied
to that cluster of records. To do so, Algorithm 2.1 issues the query Q̃c on
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the set of identified matching records, i.e., σid∈E(D) (Line 30). Q̃c denotes
the query Qc without the matching function (µQ) invocations: at this stage
of the algorithm the query is performed against a cluster of known matching
records E, i.e., it can assume that the GROUP BY ENTITY yields only one
group. Thus, by issuing Q̃c on the set of matching records, all aggregations
are applied and all clauses of the query are verified in order to yield a single
representative record εi. Depending on the clauses of Q̃c, εi can also be an
empty set.

Finally, if not an empty set, εi is added to the map data structure as a
value for the key i, and i is added back to the priority queue associated with
the value of εi. The loop ends when the priority queue is empty, i.e., when
all entities satisfying the query have been emitted.

We now describe the matchingProcedure (Procedure 2.2) in detail. Given
a record (recordID), it seeks for its matches iterating among its candidates.
Lines 4-5 are needed to manage the first calls of Algorithm 2.1 mentioned
above, which compare only the seed records (note that the following calls
do not need this check). Firstly, for each candidate, the matchingProcedure
checks if it has already been assigned to the current entity cluster E (Line 6).
This may happen when “following” the match: we do not want to execute a
comparison with a record already assigned to the entity cluster of recordID.
For example, in Figure 2.9, we want to avoid comparing r2 and r3 and vice
versa, since they already are in the entity cluster of r1. Then, the matching-
Procedure checks whether the candidate pairs involving ri have already been
compared, in Lines 8 and 11, by exploiting MatchLists and NonMatchLists.
If both MatchLists[recordID ][p] and NonMatchLists[recordID ][p] are equal to
zero (i.e., false), this means that the comparison has not been executed yet.
Hence, the matchingProcedure invokes the matching function in Line 13 (de-
noted with the notation µQ). If the candidate record is a match, then it
is inserted into R (Line 14). Finally, the candidate is added to E to avoid
checking it again in further calls (Line 15), and the current recordID to the
MatchSet (Line 23).

Special Case: Discordant Ordering Queries

We present a variation of the BrewER algorithm called Discordant
BrewER, which introduces an optimization for a special yet frequent
case of queries, namely queries that order the entities with the following
predicates: (i) ORDER BY MIN(·) DESC and (ii) ORDER BY MAX(·)
ASC (here only the former case is discussed; it is trivial to adapt for the
latter). We call this case discordant ordering because the first entity to be
emitted is the one with the maximum value, which is in turn the minimum
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value among the records that compose that entity.
Discordant BrewER is based on the observation that if a seed record

matches with a non-seed record with a higher value, the value of the latter is
not for certain the value of the final entity. Thus, the values of seed records
belonging to an entity ε determine the maximum value that ε can assume:
non-seed records can only lower that value, if they match. Hence, the heap
in Algorithm 2.1 can be initialized by considering only seed records, i.e., by
omitting the union with the candidates in Line 3. This significantly reduces
the searching space and allows to achieve correct results with a fraction
of the comparisons needed by the general algorithm, as we show with the
experiments of Section 2.7.3.

2.6 Use Case Examples

This section reports two relevant use case examples, presented in our demon-
stration [Zecchini et al., 2023], which show how data practitioners can benefit
from BrewER for their real-world tasks, especially from its seamless inte-
gration in Python workflows in Jupyter notebooks (where it can be easily
combined with blocking and matching functions from their favorite libraries).
In particular, the two use cases aim to show through example stories: (i) how
BrewER can by used by practitioners to run queries on dirty data, e.g., for
quick data exploration (Section 2.6.1); (ii) how BrewER can be used by
practitioners for debugging their entity resolution pipelines (Section 2.6.2).

2.6.1 Querying Dirty Datasets

Mary is a data analyst who needs to build a BI dashboard to analyze the
price and the characteristics of cameras sold on several popular e-commerce
stores. She has been asked to consider only SLR cameras, with a minimum
resolution of 10 MP, and to focus on those with the lowest price among them.
Further, she has been asked to extract the data with short notice and with a
strict deadline for a company business meeting.

Fortunately, it is very simple for Mary, who knows SQL, to come up with
a query to find the cheapest SLR cameras with at least 10 MP in resolution.
Unfortunately, by issuing the SQL query on the dirty data, she obtains in-
consistent results. In fact, considering the results depicted in Figure 2.10a,
she notices the presence of duplicate records (e.g., the two records describing
the Sony A5000 camera) and other data quality issues.

Mary already has some pre-trained matchers from previous projects on
dirty product datasets that she can try on this new data, or she can exploit
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(a) SQL on dirty data (b) SQL with BrewER on dirty data

Figure 2.10: Querying dirty datasets with BrewER.

a pay-as-you-go LLM-based service (e.g., GPT-3) as a binary matcher. She
also knows that she can employ some unsupervised blocking techniques to
accelerate the entity resolution process, but it would still take hours and a
significant amount of resources to clean the entire dataset.

BrewER allows Mary to overcome this situation and quickly obtain a
consistent result. As depicted in Figure 2.10b, she can write the query in a
dedicated text area of the notebook, generated using a simple Jupyter widget.
Within the query, she declares the matcher to be used in the specific GROUP
BY ENTITY clause and the aggregation functions for the attributes of inter-
est (e.g., the minimum value for the price). Then, after clicking on the green
Run button, the resulting cleaned entities will start to appear in the area below
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as soon as they are obtained, one by one in a progressive fashion, correctly
sorted by ascending price. The execution will automatically stop after the
emission of the number of entities required by Mary.

As we can see in Figure 2.10b, the top cleaned entities are significantly
different from the results obtained on the dirty data shown in Figure 2.10a.
BrewER allows Mary to analyze the produced entities through the UI, to
better understand what happened during the entity resolution process. In
fact, by simply clicking on the row representing the entity, she can expand
the table and visualize the matching records that were aggregated to produce
it, understanding why an attribute presents a certain value. Through this
feature, Mary can discover the reasons behind the inconsistencies of the dirty
results: for instance, the record determining the price of the cheapest model
did not fulfil the condition defined on the type in the WHERE clause, thus
was erroneously discarded.

2.6.2 Entity Resolution Pipeline Debugging

BrewER can significantly speed up not only the access to the cleaned results
of queries issued on dirty datasets, but also the design of entity resolution
pipelines. As shown in the previous section, the choice of different aggre-
gation functions, as well as different combinations of blocking and matching
functions, can indeed determine significantly different results.

Anna is a data engineer that employs BrewER to get quick insights into
the goodness of the entity resolution pipeline she is designing at a negligible
cost compared to existing solutions. In fact, BrewER automatically and
dynamically selects a portion of the data to be cleaned relevant for the task
at hand, expressed through a query.

By assessing the quality of the entity resolution pipeline on that portion,
Anna is more confident that it will be suited for the task compared to a pipeline
tuned on a random sample of the data. Further, by having access to the
entities in the result progressively as soon as they are produced, Anna can
quickly interrupt the entity resolution process as soon as she spots an issue,
saving a significant amount of time and resources. In fact, with a batch
approach she would have to wait until the end of the processing of the entire
batch of data to spot the same issue.

BrewER perfectly supports exploratory top-k queries, allowing to debug
the designed entity resolution pipeline during the cleaning process in a stop-
and-resume fashion. For instance, if a top-10 query produces the results in
Figure 2.11a, Anna understands from the presence of duplicates the inaccu-
racy of her pipeline and she can immediately stop the cleaning process to solve
the problem. The designed blocking technique was too aggressive and pruned
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(a) BrewER with blocker1 (b) BrewER with blocker2

Figure 2.11: Entity resolution pipeline debugging with BrewER.

some matches from the candidate set, preventing the complete resolution of
some entities. After changing the blocking settings, Anna can run her query
again: Figure 2.11b shows how the new setting solved the issue.

Since BrewER allows saving the status of the cleaning process in case
of early termination, this time Anna can simply click on the Resume button
to continue the cleaning process, running for instance a further top-k query
for inspecting more entities, then resuming the process again for the complete
emission of the results.
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2.7 Experimental Evaluation

This section aims to answer the following questions:

Q1. What is the performance of BrewER when executing entity resolution
on-demand? (Section 2.7.1)

Q2. How do entity resolution on-demand baselines derived from traditional
batch and progressive entity resolution methods perform? (Section 2.7.2)

Q3. What is the improvement in the case of discordant ordering queries,
introduced at the end of Section 2.5.2? (Section 2.7.3)

Q4. How well does BrewER perform with different aggregate functions?
(Section 2.7.4)

Q5. How does BrewER perform with blocking? (Section 2.7.5)

Q6. How does BrewER perform with missing values? (Section 2.7.6)

Q7. How fast is BrewER and how much time does it save without cleaning
the entire dataset? (Section 2.7.7)

Datasets

We employ four real-world datasets from multiple domains with different
sizes and characteristics, summarized in Table 2.1. For all of them the ground
truth is known. The first dataset, SIGMOD20 [Crescenzi et al., 2021; Zec-
chini et al., 2020], is composed of camera specifications extracted from 24
e-commerce websites and has been employed for the SIGMOD 2020 Program-
ming Contest3. The second dataset is SIGMOD21, provided by Altosight4 for
the SIGMOD 2021 Programming Contest5, which contains well-curated spec-
ifications of electronic products (mainly USB pen drives) scraped from more
than 20 websites. The third dataset, Altosight, is a superset of SIGMOD21,
but differently from it, this larger set of entities is not well-curated and
presents many noisy records with redundant values, missing values, and/or
HTML tags. The last dataset is Funding6, which reports financing requests
addressed to the NYC Council Discretionary Funding. Entity resolution can

3http://www.inf.uniroma3.it/db/sigmod2020contest/
4https://altosight.com/
5https://dbgroup.ing.unimo.it/sigmod21contest/
6https://raw.githubusercontent.com/qcri/data_civilizer_system/master/

grecord_service/gr/data/address/address.csv

http://www.inf.uniroma3.it/db/sigmod2020contest/
https://altosight.com/
https://dbgroup.ing.unimo.it/sigmod21contest/
https://raw.githubusercontent.com/qcri/data_civilizer_system/master/grecord_service/gr/data/address/address.csv
https://raw.githubusercontent.com/qcri/data_civilizer_system/master/grecord_service/gr/data/address/address.csv
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Table 2.1: Characteristics of the selected datasets. For each dataset are
reported the number of records (#D), the number of matches (#M), the
number of entities (#E) with their average size (AVG Size), the number of
attributes (#A), and finally the ordering attribute (OA).

Dataset #D #M #E (AVG Size) #A OA

SIGMOD20 13.58k 12.01k 3.06k (4.4) 4 megapixels

SIGMOD21 1.12k 1.08k 190 (5.9) 4 price

Altosight 12.47k 12.44k 453 (27.534) 4 price

Funding 17.46k 16.70k 3.11k (5.6) 17 amount

be performed on it to identify the organizations presenting these requests, as
done by Deng et al. [D. Deng et al., 2019].

We preprocess all datasets by casting the ordering values to floats, low-
ercasing all attributes, and filtering out records with a null value in the
ordering attribute. The null values do not affect the final ordering of the
entities (i.e., they are not considered by the aggregate functions), but slow
down the computation for those entities that present a lot of them.

Experimental Setup

BrewER has been implemented in Python 3.7. Our experiments were per-
formed on a server machine equipped with an Intel Xeon Silver 4116 CPU @
2.10 GHz, a Nvidia Tesla T4 GPU, and 100 GB of RAM.

2.7.1 Performance of the BrewER Algorithm

Here, we want to assess how BrewER performs in terms of comparisons
required to progressively return the result sets of queries. As a baseline we
employ QDA [Altwaijry et al., 2013], which applies conflict resolution func-
tion directly to each comparison; thus, it can work only with MIN and MAX
aggregate functions. For this reason, we consider only these two aggregate
functions in this section. The following Section 2.7.4 shows the performance
of BrewER with other aggregate functions.

Since the goal of this experiment is to evaluate the BrewER algorithm
(i.e., Algorithm 2.1), we do not employ any blocking strategy, which would
influence the overall performance. We study how BrewER performs with
blocking in Section 2.7.5. Finally, we are not interested in neither designing
nor discovering the best matching functions for the task; hence, as a matcher,
we employ an oracle that correctly labels all the comparisons (remember that
the ground truth is known and BrewER is matcher-agnostic).
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Table 2.2: Minimum, maximum, and average cardinality of the result sets of
the considered batches of queries.

Conjunctive Queries Disjunctive Queries

Dataset #MIN #MAX #AVG #MIN #MAX #AVG

SIGMOD20 27 172 55.63 368 567 440.55

SIGMOD21 5 15 7.43 28 85 55.45

Altosight 9 32 18.40 87 193 139.08

Funding 8 212 42.13 336 2297 1259.05

Query Generation

We generate two basic types of synthetic queries for our experiments. Firstly,
conjunctive queries, i.e., queries with two selection predicates employing the
LIKE operator in AND to express queries on related attributes (e.g., to select
the prices of a series of specific models produced by a brand). Secondly,
disjunctive queries, i.e., queries with two selection predicates in OR referring
to the same attribute (e.g., to select all models produced by two brands).

The column OA of Table 2.1 indicates the ordering attribute employed
for each dataset. For the AND queries on SIGMOD20, the selection is based
on a random value among the ten most frequent brands and on a random
model series associated with the selected brand; for the OR queries, on two
random values chosen from the ten most frequent brands. For the AND
queries on SIGMOD21 and Altosight, the selection is based on the list of all
nine brands in the dataset and a list of the most common USB stick sizes;
for the OR queries, on two random brands. Finally, for the AND queries on
Funding, the selection is based on a list of the most common areas in which
the organizations are active and on a frequent substring of their names (e.g.,
association, inc, etc.); for the OR queries, on two random areas.

For each dataset, we consider two batches of 20 queries: one for the
conjunctive and one for the disjunctive case. Since the goal is to study the
progressive emission of the resulting entities, each set is composed of the 20
queries emitting the highest number of entities out of a set of at least 50
randomly generated queries. Their characteristics are described in Table 2.2.

Measures

For each batch of conjunctive/disjunctive queries executed on a certain
dataset, we compute the progressive average macro-recall (progressive recall
for simplicity), as follows. The recall for a query Qi is defined as:
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recallQi
=

#{emitted entities}
#Qc

i(D)

where #Qc
i(D) is the cardinality of the result set for the query Qi. For each

query Qi in a batch of 20, we track the recall by steps of 5% of the total
number of comparisons entailed by Qi (i.e., a total of 20 steps). Thus, 20
values of recallQi

are collected for each Qi in the batch. For instance, if Q1

entails one million of comparisons, we record the recall of its execution in
BrewER every 50,000 comparisons (5% of one million). Then, to obtain
aggregate values for each batch of queries:

(i) we compute the average number of comparisons for each step among
the queries:

avg. num. comp. =

∑
Qi∈[Q1,..,QN ] #executed comparisons for Qi

N

(ii) we compute the average value of recall corresponding at that step,
i.e., the macro-recall for a batch of queries (or simply query recall):

query recall =

∑
Qi∈[Q1,..,QN ] recallQi

N

In our experiments, N = 20; thus, for each batch of queries, the progres-
sive recall is represented by 20 points (one for each step) that can be reported
in a single plot to summarize the performance of an entity resolution algo-
rithm on that batch.

Baseline

We adapted QDA [Altwaijry et al., 2013] to process queries that contain
predicates on categorical attributes. QDA does not provide any mechanism
to handle ORDER BY clauses, thus the result of its execution is a batch
version of each query, i.e., performing the sorting of the entities at the end
of the resolution process. Also, it supports only MIN and MAX as aggregate
functions, since it merges (i.e., resolves) pairs of records as soon as they are
found to be matching (this is not compatible with aggregate functions like
VOTE and AVG, which take as input more than two values). In a nutshell,
QDA tries to discard the entities that are not part of the result as soon
as possible, by incrementally matching pairs of records that belong to those
entities. In practice, by using our terminology, QDA tries to match all the
seed records first, as in our Algorithm 2.1 we do by checking the match with
the seed records. Hence, BrewER and QDA perform the same number of
comparisons if enough time is given.
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Figure 2.12: Progressive recall with BrewER.

Results

Figure 2.12 shows the average progressive recall obtained through the execu-
tion of the described randomly generated batches of queries, for each dataset
and type of query.

QDA shows a typical step curve for this task due to the fact that it
has to compare all candidate pairs before starting emitting results. On the
other hand, BrewER exhibits a progressively increasing recall for all four
datasets as a function of the executed comparisons. We do not observe partic-
ular differences in performance among the datasets. Also, the kind of query
(AND/OR) does not affect the performance. On SIGMOD20 (Figure 2.12a)
and Funding (Figure 2.12d), disjunctive queries entail a higher number of
comparisons than the conjunctive queries, on average (at most 15% more);
vice versa, for SIGMOD21 (Figure 2.12b) and Altosight (Figure 2.12c), con-
junctive queries need more comparisons (at most 10% more).

This is due to the generation of the seed records: as explained in Sec-
tion 2.5.1, the seed records of a query are extracted with a disjunctive query
and employed in Algorithm 2.1. Thus, the final number of comparisons de-
pends on the selectivity of each predicate, and not on the result size.

2.7.2 Shortcomings of the Traditional Baselines

We compare BrewER against two baselines that we derived from: (i) a
traditional batch entity resolution workflow; (ii) an existing progressive en-
tity resolution method. We call the former Batch-Query-Baseline and the
latter Progressive-Query-Baseline. Our goal is to show that adapting exist-
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Table 2.3: BrewER vs. Batch-Query-Baseline.

BrewER Batch-Query-Baseline

Dataset R,P, F1 Err@x R P F1 Err@1 Err@5 Err@20

SIGMOD20 1.00 0% 0.89 0.99 0.92 30% 13% 9%

SIGMOD21 1.00 0% 0.91 0.50 0.60 30% 40% 42%

Altosight 1.00 0% 0.89 0.20 0.31 60% 45% 57%

Funding 1.00 0% 0.71 0.86 0.77 100% 50% 70%

ing entity resolution methods to produce correct results for a query without
cleaning the entire data or without designing a specific progressive algorithm
is not trivial.

Batch-Query-Baseline

Algorithm 2.1 guarantees that the results of a query issued on top of a dirty
dataset are emitted as if the query was issued on the cleaned version of the
dataset, i.e., Qc(D) ≡ Q(Dc). Yet, how good would the results be if we
simply issue the query directly on the dirty dataset (i.e., Q(D)) and then
perform entity resolution on just that portion of the data?

This question arises from observing that Q(D) ̸≡ Q(Dc). In fact, by
issuing the query Q (e.g., Q1 in Figure 2.7a) directly on the dirty data,
relevant records might be filtered out (e.g., records r2 and r4 in the example
of Figure 2.8a).

To investigate this effect, Batch-Query-Baseline first filters the dirty data
D with Q and then performs entity resolution on the result Q(D). We com-
pare it against BrewER by executing a batch of ten randomly generated
AND queries for each dataset. For each query q, we consider the set of match-
ing pairs Mq needed to identify the entity set that satisfies q (we know Mq

from the ground truth of each dataset) and the set of matches Mε that the
considered method identifies for producing the results. Then, we compute
recall Rq, precision Pq, and F1-score F1q as follows:

Rq =
|Mq

⋂
Mε|

|Mq|
Pq =

|Mq

⋂
Mε|

|Mε|
F1q =

2 ·Rq · Pq

Rq + Pq

The results of the comparison are shown in Table 2.3, where we report the
average of recall, precision, and F1-score for each batch of queries. BrewER
always returns the correct answer, and thus recall, precision, and F1-score
are always 1.00. We also report the error rate (Err@k) of a method, which is
the percentage of erroneously yielded entities in the first k emitted entities.
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Figure 2.13: Progressive-Query-Baseline error rate.

For instance, Err@20 = 42% means that among the first 20 entities emit-
ted according to the ORDER BY clause, 42% are incorrect according to the
ground truth. These errors are introduced by filtering the dirty data with
Q. For example, applying Q1 directly to the dirty dataset of Figure 2.8a and
considering AVG as resolution function for price, ε1 ends up with a price of
$175 (since r2 is filtered out), instead of $155, which is ε1 price value in the
ground truth (Figure 2.8b).

Table 2.3 shows how the error rate is significant for all the datasets and for
different values of k. On the other hand, BrewER (being an exact method)
always has an error rate of 0%.

Progressive-Query-Baseline

A common approach employed in state-of-the-art progressive entity resolu-
tion methods [Whang et al., 2013; Papenbrock et al., 2015a; Simonini et
al., 2018] is based on the sorted neighborhood. The basic idea is to sort all
records according to an attribute that can capture their similarity (e.g., price
of products), then to slide a window from the head to the tail of the sorted
list, and to progressively compare all the pairs of records that fall within that
window, i.e., the neighborhood.

The method as originally proposed [Whang et al., 2013] starts with a
window of size w = 2 and then, after each iteration over the entire list,
increases the size of the window (to w = 3, w = 4, etc.). The main problem
with this method is that it does not satisfy the correctness and monotonicity
conditions of Definition 2.4.1: each time that w increases, new matches can
be found for an entity, hence the final aggregate value may change. Yet, we
can choose to set a value for w, performing a single iteration over the sorted
list of records and avoiding this problem (the disadvantage is that we need
to pre-specify w).
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To measure the quality of the progressive entity emission in an entity
resolution on-demand setting of the sorted neighborhood method, we sort
all records by the attribute employed in the ordering clause (megapixels
for SIGMOD20, price for Altosight, and amount for Funding). Then, we
employ w = 10 and w = 100 to represent two opposite scenarios [Papadakis
et al., 2016]: the former setting favors efficiency over recall, while the latter
does the opposite.

Regarding the queries, we consider only the basic query with the GROUP
BY ENTITY and ORDER BY predicates: queries with selection predicates
could be simply applied to the progressively generated entities, but they
would not affect the entity emission order, which is what we want to assess
here. As resolution functions for the ordering attribute, we consider both
AVG and VOTE.

As in the previous experiment, we report the error rate (Err@k) of
Progressive-Query-Baseline measured on the first k emitted entities. We
mark an entity as erroneous only if the value of the ordering attribute is
different from the ground truth; thus, if errors affect other attributes, we
do not consider them. We did not notice any significant difference between
ascending and descending ordering and report only the former. The results
are shown in Figure 2.13; note that BrewER is an exact method, hence its
error rate is always 0%.

In SIGMOD20, the intra-cluster variance for the ordering attribute
(megapixels) is very low, hence the error rate with AVG (VOTE) is under
4% (1%) for the first 100 emitted entities, rising up to 8% (2.5%) for the
first 1000 emitted entities. On Altosight, Progressive-Query-Baseline always
fails to emit the first entity correctly (Err@1 = 100%); with VOTE on the
first 100 (1000) entities, the error rate is at least 60% (75%); with AVG,
near to 100% for k ∈ (80, 1000). On Funding, Progressive-Query-Baseline is
correct only for k ≤ 10 with VOTE, with high error rates (at least 50%) for
all the other settings.

All these errors occur because Progressive-Query-Baseline (as all the pro-
gressive entity resolution methods) does not keep track of the value of a
resolved entity while resolving it (e.g., as BrewER does through the prior-
ity queue). Hence, Progressive-Query-Baseline is not a reliable technique for
entity resolution on-demand.

2.7.3 Discordant Ordering Queries

Algorithm 2.1 presents an optimized version to manage the special yet fre-
quent case of discordant ordering (described at the end of Section 2.5.2). To
evaluate its performance, we employ the same settings of Section 2.7.1, with
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Figure 2.14: Progressive recall with discordant ordering queries.

one major difference: the randomly generated queries have MAX/ASC or
MIN/DESC as combinations of the aggregate function for the ordering value
(i.e., MAX or MIN) and ordering mode (i.e., ASC or DESC).

Figure 2.14 compares the progressive recall of both the standard Algo-
rithm 2.1 and the optimized version for discordant ordering. On all datasets,
the optimized version terminates the queries by saving a significant amount
of comparisons, up to four times compared to the standard Algorithm 2.1 on
Altosight (Figure 2.14c).

We observe that for SIGMOD21 (Figure 2.14b), Altosight (Figure 2.14c),
and Funding (Figure 2.14d), the recall curve is much more flat at the be-
ginning of the plot and much steeper at the end, compared to the non-
discordant-ordering case of the previous experiment (Figure 2.12). This is
because with MAX/ASC and MIN/DESC queries (i.e., discordant ordering
queries), when considering the head element of the priority queue, if a match
is found it determines the re-insertion of the element in a lower position in
the queue. This entails a higher average delay in the emission of the entities
for SIGMOD21, Altosight, and Funding (Figures 2.14b, 2.14c, and 2.14d,
respectively).

Differently, SIGMOD20 is only marginally affected by that phenomenon.
This can be explained by the fact that in SIGMOD20 the variance of the
values for the megapixels attribute is very low within each cluster of entity
records (i.e., most of the entities have records with similar ordering values).
On the other hand, the price values within a single entity in Altosight may
have a high variance (e.g., due to special offers).

Finally, no significant differences can be found between conjunctive (in
Figure 2.14) and disjunctive queries, as when employing the standard Algo-
rithm 2.1.
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Figure 2.15: Progressive recall varying aggregate functions.

2.7.4 Experiments with Aggregate Functions

In Section 2.7.1 and Section 2.7.3, only MIN and MAX have been consid-
ered. The goal of this experiment is to evaluate BrewER with a set of
different aggregate functions. We set ASC as ordering mode and we run
each query of the batch with the following aggregate functions: MAX, MIN,
AVG, and VOTE. The batch of 20 AND queries is generated as explained in
Section 2.7.1. In this experiment, MAX represents the discordant case and
the optimized version is not employed.

The plots are in line with the previously observed results in Figures 2.12
and 2.14. SIGMOD20 does not present relevant variations: the performance
by changing aggregate functions is almost unaltered (Figure 2.15a). Again,
this can be explained by the little variance that the ordering attribute as-
sumes among records belonging to the same entity. On the other hand,
when the variance is high a significant difference in the behavior of the ag-
gregate function is observed, as shown for the other datasets in Figures 2.15b
and 2.15c.

2.7.5 Performance with Blocking

With this experiment, we want to evaluate if and how the performance of
BrewER changes by employing blocking. Due to its small size, SIGMOD21
is not considered for this experiment. We employ JedAI [Papadakis et al.,
2019; Papadakis et al., 2020], which is based on a completely unsupervised
blocking approach. We use its standard configuration based on token blocking
and meta-blocking [Papadakis et al., 2020].

Table 2.4 reports recall, precision, and F1-score of the produced candi-
date pairs. The goal of blocking is to reduce superfluous comparisons, while
preserving as many true positives as possible; hence, it is typical to have
high recall and low precision in this phase [Christen, 2012a]. The final recall
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Table 2.4: Characteristics of the unsupervised blocking.

Dataset Recall Precision F1

SIGMOD20 0.933 0.407 0.567

Altosight 0.999 0.056 0.107

Funding 0.966 0.014 0.028
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Figure 2.16: Progressive recall with unsupervised blocking.

and precision of the entity resolution process is determined ultimately by the
quality of the matching function adopted, which is not evaluated here.

The queries have been synthesized as explained in Section 2.7.1 and the
results are presented in Figure 2.16. By employing blocking we see a huge
reduction of required comparisons for all datasets compared to the all-pairs
solutions of Figure 2.12 (up to 200 times for Altosight). As for the progres-
sive recall, with SIGMOD20 and Altosight the curve for the AND queries
is much steeper than the one for the OR queries. This happens because
conjunctive queries allow to filter out blocks appearing in connected compo-
nents whose records do not satisfy every predicate of the query, as explained
in Section 2.5.1.

Differently, with Funding, the difference between conjunctive and disjunc-
tive queries is less evident. This is due to to the high intra-block variance
of the selection attribute values, which limits the efficacy of the preliminary
block filtering.

In addition to unsupervised blocking, we also want to evaluate manually-
devised blocking strategies (for simplicity, manual blocking). We report in
Table 2.5 the characteristics of the best configuration we could find for each
dataset. Yet, for Funding, the blocking strategy yields a low recall. However,
it represents a plausible real-world scenario, which gives the opportunity to
study whether BrewER is affected by an aggressive blocking strategy.

As depicted in Figure 2.17, no significant differences in performance can
be detected, apart from the number of comparisons depending on the preci-
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Table 2.5: Characteristics of the manual blocking.

Dataset Recall Precision F1

SIGMOD20 0.993 0.014 0.028

Altosight 0.999 0.086 0.158

Funding 0.586 0.023 0.044
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Figure 2.17: Progressive recall with manual blocking.

sion of the blocking function. Details about the adopted blocking strategies
are illustrated below.

For SIGMOD20, for each record two keys are extracted from brand and
model attribute values as follows. The first key is extracted by removing
punctuation marks and numeric characters from the two attributes and con-
catenating the remaining strings. The second key is generated with the
numerical characters of model. Then, these two keys are employed to build
an inverted index of the records: each key corresponds to a block and two
records are indexed together in the same block if they share at least one key.

For Altosight, for each record a key is generated by concatenating brand

and size values (if both attribute values are different from null) and removing
white spaces. The key is then used for creating the blocks as for SIGMOD20.
The same criterion could be applied to its subset SIGMOD21.

For Funding, two keys are considered for each record. Firstly, if the name

value is not null, up to two tokens before the first comma are extracted (this
is done to remove organization suffixes); then, punctuation marks, numeric
characters and white spaces are removed to yield the final key. A second key
is extracted from the address value (if not null) by removing punctuation
marks, numeric characters and white spaces. As for the other datasets, these
keys are employed for creating the blocks.
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Figure 2.18: Progressive recall with missing values.

2.7.6 Performance with Missing Values

With this experiment, we want to evaluate the impact of null values in the
ordering attribute. We consider only SIGMOD20 (with blocking) and Al-
tosight, since SIGMOD21 and Funding do not present null values in their
ordering attribute.

Thus, 16.2k and 1.5k additional records with null values have been added
to SIGMOD20 and Altosight, respectively, for this experiment. In SIG-
MOD20, the new records are scattered among around 6k entities, while in
Altosight only on 30 entities.

The experiment results are reported in Figure 2.18. For Altosight (Fig-
ure 2.18b), the progressive recall of the queries executed on the dataset with
null values has a curve similar in shape to the one generated without consid-
ering the null values. As a matter of fact, only 30 entities have records with
null values, but none of them has a final resolved ordering value equal to null:
their priorities in the priority queue do not change. The only difference is
the slightly higher number of comparisons needed for the additional records
with null values.

Differently, Figure 2.18a showcases the negative effect of the high number
of entities with null ordering value of SIGMOD20. Besides the higher num-
ber of comparisons needed for resolving the entire dataset (which has 16.2k
records more than the dataset without null values), the progressive recall
curve is more flattened in presence of null values for the first circa 90% of
the comparisons, and steeper at the end.

This is due to the fact that many entities have an ordering value equal to
null (i.e., all ordering values of their records are null): they have the lowest
priority in the priority queue, so they are compared, resolved and emitted
only at the end of the processing.
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Figure 2.19: Query execution runtime in BrewER.

2.7.7 Runtime Evaluation

We finally want to assess the runtime performance of BrewER in a real-
world scenario, by employing a state-of-the-art matching function and mea-
suring the progressive recall as a function of the actual time needed for an-
swering a query.

We design the experiment as follows. We consider a large dataset with
blocking and a small one without blocking: the former is SIGMOD20, the
latter is SIGMOD21. Then, from the batch of disjunctive queries of Sec-
tion 2.7.1, we select for each dataset two queries: one yielding the largest
result set, the other yielding the smallest result set (see Table 2.2 for the size
of the query results). Thus, a total of four queries are considered: QS20

max and
QS20

min for SIGMOD20, and QS21
max and QS21

min for SIGMOD21. As a matching
function we employ a pre-trained deep learning classifier built with Deep-
Matcher [Mudgal et al., 2018] by exploiting its hybrid model, which we
found to achieve good performances on our datasets.

The results are shown in Figure 2.19, which reports for each query the
average runtime of ten executions. The plots also report the runtime re-
quired for cleaning the entire dataset with a traditional batch entity reso-
lution method (blue line). For all datasets, the correct results start to be
emitted after the first few minutes of execution.

For instance, on SIGMOD20 (Figure 2.19a), with BrewER users receive
22 and 31 entities after only two minutes for QS20

max and QS20
min, respectively.

Instead, with the complete entity resolution process with a batch method
users would wait 8 hours, even if the dataset has “only” thirteen thousand
records and blocking is employed. A similar behavior is observable also on
SIGMOD21 (Figure 2.19b).

Finally, the overhead time required by BrewER (i.e., for generating and
executing the seed query and to initialize the priority queue) is negligible
compared to the overall execution time of the query. In particular: (i) the
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startup time for BrewER is circa 4 and circa 0.1 seconds for SIGMOD20 and
SIGMOD21, respectively; (ii) the average overhead introduced by BrewER
for each comparison is 0.01 milliseconds, while the average runtime for com-
parison of the matching function is 2.7 milliseconds.



Chapter 3

Sloth

This chapter provides an extensive description of Sloth, a novel solution
designed to efficiently detect the largest overlap between two tables. Sloth
has been presented and described in a dedicated research paper, to be pre-
sented at SIGMOD 2024 [Zecchini et al., 2024]. The code for Sloth is openly
available on GitHub1.

First, Section 3.1 provides an overview of the dataset discovery task,
which plays a fundamental role for data integration in the ELT scenario,
quickly illustrating some relevant research directions in this field and the re-
lated state-of-the-art solutions. Then, Section 3.2 describes the phenomenon
of overlapping tables, introducing the idea of the largest overlap between two
tables adopted by Sloth. After discussing why existing techniques cannot
provide a solution for determining the largest overlap (Section 3.3), the prob-
lem is formalized in Section 3.4. Section 3.5 describes in detail the algorithms
for the detection of the largest overlap between two tables implemented by
Sloth and the overall functioning of the system, while Section 3.6 reports
the results and the outcomes of its experimental evaluation.

3.1 Dataset Discovery

Dataset discovery [Paton et al., 2023] is the task of detecting datasets in a
corpus related to a dataset at hand, according to specified relatedness criteria.
Dataset discovery has become extremely important as a preliminary step to
data integration with the rise of very large table corpora, such as tables on the
Web or in data lakes. Indeed, the Web contains a huge amount of structured
data in tabular form. In 2008, Cafarella et al. were already able to retrieve
more than 14 billion HTML tables from the Web, of which more than 150

1https://github.com/dbmodena/sloth
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million contained high-quality relational data [Cafarella et al., 2008]. For
instance, the English version of Wikipedia alone contained over 2 million
tables as of September 2019 [Bleifuß et al., 2021b], and more than 10 million
tables have been made available on GitHub over years [Hulsebos et al., 2023].
A similar situation occurs in data lakes, which can contain many tables and
pose serious scalability concerns [Srinivas et al., 2023]. In these scenarios,
data scientists and practitioners usually have a table and require efficient
solutions to retrieve in an automated way tables from the corpus related to
it, so that they can enrich its information value, e.g., inserting in the table
additional entities or further attributes about the existing ones.

The first formal definition in literature of related tables for dataset discov-
ery was provided by Das Sarma et al. in 2012. According to this definition,
two tables are considered to be related if they can be seen as the result of
applying two different queries on the same virtual table [Das Sarma et al.,
2012]. Such queries can be selections, projections, or combinations of the
two. The authors also provide definitions for two particularly relevant types
of related tables, i.e., unionable tables and joinable tables, relying on the
concepts of entity complement and schema complement, respectively. Two
unionable tables are therefore seen as the result of applying two selection
predicates on the virtual table, hence producing two complementary sets of
entities with a similar schema. Similarly, two joinable tables are considered
to be the result of applying two projection predicates on the virtual table,
obtaining therefore two complementary sets of attributes describing the same
entities.

The discovery of these two types of related tables in large Web table cor-
pora or in data lakes represents the main research direction in this field, with
a plethora of efficient solutions proposed for detecting unionable tables [Ca-
farella et al., 2009; Lehmberg and Bizer, 2017; Nargesian et al., 2018], join-
able tables, such as LSH Ensemble [E. Zhu et al., 2016], Aurum [Castro
Fernandez et al., 2018], JOSIE [E. Zhu et al., 2019], Pexeso [Y. Dong et
al., 2021], MATE [Esmailoghli et al., 2022], and DeepJoin [Y. Dong et al.,
2023], or both, such as D3L [Bogatu et al., 2020] and Juneau [Zhang and
Ives, 2020], also providing insights about their subsequent integration, as
done by ALITE [Khatiwada et al., 2022].

For instance, JOSIE [E. Zhu et al., 2019] is one of the most influential
solutions for the detection of the top-k table columns in a large table corpus
that can be joined with a given query table TQ on a specified column Q. In
particular, JOSIE represents both Q and all columns from the tables in the
corpus as sets of cell values, then retrieves the k columns with the largest
overlap set similarity [D. Deng et al., 2018] to Q. The overlap set similarity is
simply computed as the size of the intersection of the two sets (i.e., the result
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is composed of the k columns with the most distinct cell values in common
with Q). As previously done by LSH Ensemble [E. Zhu et al., 2016],
this measure is adopted since it is not biased against sets of different sizes,
differently from the widely used Jaccard similarity [Jaccard, 1912], which is
instead computed as the size of the intersection over the size of the union of
the two sets. Nevertheless, while LSH Ensemble produces an approximate
solution, JOSIE relies on the exact computation of the overlap set similarity
to measure joinability. JOSIE operates using an inverted index, which for
each distinct cell value builds a posting list composed of pointers to the sets
(i.e., columns) in which it appears. To efficiently retrieve the top-k joinable
columns, JOSIE estimates the set intersection size and uses this estimation
to prioritize the reading of sets or posting lists, favoring at every step the
operation that produces the greatest benefit (hence minimizing the number
of computed set intersections).

MATE [Esmailoghli et al., 2022] represents instead the state-of-the-art
solution for detecting multi-column joins, retrieving the top-k tables with
the greatest joinability (i.e., equi-join cardinality) given a query table TQ

and a set of columns Q out of it. MATE uses a novel hash function, named
Xash, to produce a fixed-sized hash value called super key for each table
row in the corpus. Since the combination of |Q| columns that maximizes the
joinability of a table with TQ on Q is not known a priori (in particular, it
is needed to detect the one-to-one attribute mappings), the super key masks
all possible combinations of cell values present in a row, acting similarly to
a Bloom filter [Bloom, 1970] to quickly discard useless candidates. Each cell
value in the row is encoded into a distinguishable fixed-sized hash value by
encoding its syntactic features using a minimal number of bits set to one, to
avoid collisions as much as possible. In particular, for each cell value Xash
encodes its least frequent characters, together with their location inside the
cell value itself, and its length, performing a final bit rotation step to further
reduce the probability of false positives. The obtained hash values are then
aggregated into the super key through bit-wise OR, making it possible to
quickly check if a row may contain the combination of cell values present in
a row of the join columns Q by a simple comparison to its super key.

A related research direction which is gaining more and more popularity
and achieving notable results in the latest years is representation learning
for tabular data. In particular, a wide range of solutions [Badaro et al.,
2023] is based on the transformer architecture [Vaswani et al., 2017], such as
TURL [X. Deng et al., 2020], TaPas [Herzig et al., 2020], TaBERT [Yin
et al., 2020], and TABBIE [Iida et al., 2021]. These solutions rely on the
pre-training/fine-tuning approach and, differently from other table represen-
tation learning techniques such as Table2Vec [L. Deng et al., 2019], learn
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deep contextualized representations for different table components (e.g., cap-
tion, headers, cell entities, etc.). One of the main challenges to overcome is
to capture the structured format of the table, for which different techniques
have been designed. For instance, TURL [X. Deng et al., 2020] does this
through a visibility matrix that acts as an attention mask, ensuring that
each component can only aggregate information from other structurally re-
lated components of the table during the self-attention calculation. Thus,
while the caption tokens are visible to all components, only cell entities in
the same row or the same columns are visible to each other.

Finally, it is worth mentioning the key role played in dataset discovery
research by several widely adopted large table corpora generated over years,
such as WikiTables [Bhagavatula et al., 2015], the Dresden Web Table Cor-
pus [Eberius et al., 2015], WDC Web Table Corpora [Lehmberg et al., 2016],
GitTables [Hulsebos et al., 2023], or the more recent WikiDBs [Vogel and
Binnig, 2023].

Despite dataset discovery research has produced many notable results and
is gaining more and more attention in the latest years, some relevant issues
still need to be explored. Indeed, while a significant effort was put into
the design of efficient techniques for the discovery of unionable and joinable
tables, other possible definitions of relatedness have barely been touched by
the existing literature. This is for instance the case of duplicate tables. We
decided therefore to look at this problem from a novel perspective, delving
deeper into the phenomenon of overlapping tables.

3.2 Overlapping Tables

Both on the Web and in data lakes, it is possible to detect much redundant
data in the form of largely overlapping pairs of tables. In particular, we
focus on the largest overlap between the two tables, i.e., their largest common
rectangular subtable, as depicted in Figure 3.1. Detecting the largest overlap
is not trivial: the nature of tabular data allows changing the order of columns
and rows (Figure 3.1b), making this task computationally challenging.

In many cases, the largest overlap between two tables is not acciden-
tal, but gives significant insights about the relatedness of the tables and the
quality of the conveyed information. Let us consider a real example from
Wikipedia. The tables presented in Figure 3.2, reporting the players of a
US college football team selected in the 1955 NFL draft, appear in a page
describing the previous season of the team2 and in a page collecting the infor-

2https://en.wikipedia.org/?oldid=1153086262

https://en.wikipedia.org/?oldid=1153086262
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(a) A pair of tables about football teams and stadiums.

(b) The largest overlap between the two tables.

Figure 3.1: Example of largest overlap between tables.

mation about all draft picks during the team history3, respectively. As can
be noticed from the headers, the order of the columns is different and the
two tables, which in principle should convey the same information, present
some inconsistencies. In particular, different conventions for the player po-
sitions and a conflict on the surname of a player (Meyer vs. Myers) cause
the removal of an entire column and an entire row from the largest overlap
(since in this case forcing the inclusion of their common elements would lead
to a smaller overlap size).

As made evident by this real-world example, the ability to detect the over-
lap between two tables, and in particular to retrieve pairs of highly similar
tables, defined as matching or duplicate tables, can lead to several benefits.
First, it allows checking the consistency of the information conveyed by the
tables, pointing out cases of incompleteness or inconsistencies to be fixed
by the editors. This aspect has a paramount importance in the context of
an encyclopedia, such as Wikipedia, where the information contained in the
tables should always be correct, complete, and updated.

In fact, tables on Wikipedia have a very dynamic existence [Bleifuß et al.,
2021b]: they are frequently edited or updated, moved within their page or

3https://en.wikipedia.org/?oldid=1160019836

https://en.wikipedia.org/?oldid=1160019836
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(a) 1954 Ohio State Buckeyes football team/1955 NFL draftees.

(b) List of Ohio State Buckeyes in the NFL draft/1955 NFL draft selections.

Figure 3.2: Example of coexisting matching tables in related Wikipedia
pages, presenting a different column order, a different convention for the
Position column, and an inconsistency on the name of a player (Bob Meyer
vs. Bob Myers). The cells included in the largest overlap are highlighted by
green squares.

to another page, copied to related pages (e.g., when a topic is analyzed at
different levels of detail, a table often appears both in the most generic page
and in more specific ones) or somewhere else (even just to use them as a tem-
plate), with frequent episodes of carelessness, conflicts among editors [Bykau
et al., 2015], or vandalism [Potthast et al., 2008]. Considering this dynamism
and the heterogeneity of the community of Wikipedia editors (which is com-
posed of a huge number of people from all over the world), despite various
attempts to automate the detection and the resolution of some kinds of in-
consistencies [Sottovia et al., 2019; Barth et al., 2023], it can be very difficult
to assess the quality of the tabular data appearing there, especially on less
popular pages.

The tabular form is widely used in Wikipedia to represent data. In fact,
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limited to its English version, more than 60 million tables have appeared
there throughout its history up to September 1, 2019 [Bleifuß et al., 2021b].
Among the 2.13 million tables existing at the time of the latest snapshot,
we surprisingly discover that about 6.5 million table pairs present an over-
lap equal to at least half of the area of the smaller table, for an estimated
redundancy of 63.49 MB. Even more surprisingly, we found that Wikipedia
contains a huge amount of 5.9 million pairs of coexisting tables with identi-
cal content, highlighting the diffusion of copy-and-paste practices in such a
scenario and the potential of centrally serving data for Wikipedia4.

More generally, a scenario where a table can be duplicated at a certain
point in time, with an independent development for the different copies,
represents one of the main factors for the generation of inconsistencies. This
is a common scenario that often occurs with enterprise data as well. For
instance, when data scientists retrieve datasets from the enterprise’s data
lake, perform transformations (e.g., join, wrangling, etc.) for their analysis,
then store back the new datasets into the data lake.

Depending on the context, a user might desire to leverage on the detected
largest overlap to ensure the consistency of the information present in du-
plicate tables through operations of data cleaning [Ilyas and Chu, 2019] and
change propagation [Bleifuß et al., 2018], or it might be more convenient to
directly prevent the rise of inconsistencies by eliminating this redundancy.
In fact, avoiding redundancy not only allows to save disk space in the case
of data lakes, where this phenomenon is quite frequent, but also to lighten
the workload for website editors, who would just have to focus on a single
consistent table instead of performing every editing multiple times, exposing
to the risks shown by the example above. Whatever the purpose among those
mentioned, one must first detect such duplicate tables.

Therefore, we designed Sloth, a novel method to determine the largest
overlap between a given pair of tables, i.e., the maximal contiguous rectan-
gular area of identical cells that can be achieved by reordering columns and
rows of both tables. Sloth introduces the first algorithm designed for this
task. First, our algorithm detects the pairs of attributes across the two ta-
bles that share some cell values. By combining these pairs of attributes, it is
possible to obtain a complete overview of all potentially non-empty overlaps
existing between the tables (i.e., the candidates to be the largest one) in the
form of a lattice [Birkhoff, 1940]. The combined pairs determine an upper
bound for the area of the candidates. Thus, our algorithm aims to exploit
this bounding mechanism to prioritize candidates and detect the largest over-
lap as soon as possible, minimizing the number of candidates for which we

4All details about this analysis are presented in Section 3.6.3.
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need to compute the actual area.

This task is computationally challenging, so we also propose a greedy
variant for the algorithm based on beam search [Lowerre, 1976] to deal with
critical pairs, when the exact algorithm struggles to produce a result in a
reasonable time for the user.

Our experimental evaluation on real-world datasets assesses the efficiency
of Sloth and the quality of the results produced by the greedy algorithm.
Moreover, it highlights some relevant real-world use cases for Sloth, such
as the detection of highly overlapping tables in a very popular context like
Wikipedia, the recognition of potential copying between tables from different
sources [X. Li et al., 2012], and the discovery of candidate multi-column joins
in a corpus of relational tables.

3.3 Comparison with Related Work

This section discusses why existing techniques cannot provide a solution to
the largest overlap detection problem, hence the necessity of Sloth. This
analysis moves in four main directions: (i) the previously described algo-
rithms for the efficient discovery of joinable, unionable, and related tables;
(ii) the existing solutions facing the problem of detecting duplicate tables;
(iii) the case of partial n-ary inclusion dependencies from data profiling re-
search [Abedjan et al., 2018]; (iv) the use of similarity measures based on
the overlap between two matrices in different scientific domains.

Dataset Discovery

As stated in Section 3.1, a plethora of algorithms has been designed for the
efficient discovery of related tables, with a special attention to the cases for
unionability and joinability. These solutions cannot compute the actual value
of the largest overlap, but in some cases they can produce an upper bound
for it. Thus, some of them might be exploited to scale to large table corpora,
passing to Sloth only the most promising pairs to evaluate.

For example, JOSIE computes joinability on a single column using the
set semantics, hence it is impossible to use it for obtaining the actual size of
the largest overlap. Nevertheless, if we consider the entire tables under the
bag semantics instead of the single columns, the similarity would reflect the
number of common cells between the two tables, which represents an upper
bound for the size of the largest overlap. Thus, such an adapted version of
JOSIE might be used to detect for a query table the top-k tables that are
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most promising to present the maximum largest overlap, then pass them to
Sloth to compute the actual values.

MATE requires the user to provide a set of columns as input; then, it
retrieves all possible tables with a set of columns that might join with the
user-provided set. Thus, MATE cannot be easily employed to detect the
largest overlap, since the set of columns that yields the largest overlap is not
known by the users up-front.

Duplicate Table Detection

While the existing literature put much effort on the efficient detection of
joinable or unionable tables, the task of detecting duplicate tables has been
mostly overlooked by the existing research, where it was presented only in
some specific or limited scenarios.

In particular, Koch et al. provide the first definition to this problem and
propose to use Xash to detect duplicate tables in data lakes, designing a
pipeline for both query table and data lake deduplication scenarios [Koch
et al., 2023]. The authors define two tables as duplicates if they contain the
same sets of tuples, possibly after permuting the columns of one table. Thus,
they only tackle the basic cases of perfect duplicates or row containment,
ignoring both column containment and mostly those cases where the overlap
misses cells from both tables, which pose the most significant challenges and
usually provide the most meaningful insights.

A similar task is performed by Bleifuß et al. to detect matching tables
across subsequent versions of a Wikipedia page [Bleifuß et al., 2021a]. How-
ever, the proposed approach, relying on a multi-stage matching based on
Jaccard similarity (also in a relaxed form), is specifically designed for one-
to-one matches among a limited number of tables sharing the same context,
also exploiting specific aspects such as the position of the tables inside the
page, hence not generalizable.

It is worth noting that in the literature the expression table matching
has also been employed to refer to the task of matching Web tables with
knowledge bases [Limaye et al., 2010; J. Fan et al., 2014; Ritze et al., 2015],
i.e., to annotate their cells, rows, and columns with entities and properties
from a knowledge base, such as YAGO [Pellissier Tanon et al., 2020] or
DBpedia [Bizer et al., 2009]. By identifying a common link through the
knowledge base, these methods could be adapted to detect overlaps among
tables. The major drawback of this approach would be that all the cells
that are not linked with an entity in the knowledge base (e.g., YAGO) would
not be considered for computing the table overlaps, hence making it highly
inaccurate in many scenarios.
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Partial n-ary Inclusion Dependencies

Inclusion dependencies (INDs) are a kind of data dependency expressing that
the set of tuples of one column combination is contained in the set of tuples of
another column combination, hence allowing to discover foreign keys among
relational tables. INDs are a prominent topic in data profiling research and
many approaches have been proposed to detect them efficiently [De Marchi
et al., 2002; Tschirschnitz et al., 2017; Kaminsky et al., 2023]. In particular,
our definition of largest overlap shows affinity with the case for partial n-ary
INDs. Partial INDs [Lopes et al., 2002] allow a defined amount of tuples to
violate the containment constraint (since the largest overlap does not need
to cover all rows), while n-ary INDs [De Marchi and Petit, 2003; De Marchi
et al., 2009; Papenbrock et al., 2015b] consider combinations covering more
than one column (as usually happens for the largest overlap). Therefore, an
algorithm for detecting partial n-ary INDs should return the largest overlap
among the detected dependencies. Unfortunately, even if some algorithms
for detecting INDs have been extended to separately deal with both partial
and n-ary INDs [Dürsch et al., 2019], no solution has been proposed yet to
find INDs presenting both of these features. Note that the algorithms for
discovering INDs adopt the set semantics, while our problem would require
the bag semantics to correctly evaluate the overlap area.

Overlap-Based Similarity Measures

While Sloth is the first solution to detect the largest overlap between tables,
some related approaches in different research areas use the largest common
submatrix to estimate the similarity between two matrices, e.g., as a distance
measure between images [Amelio and Pizzuti, 2013] or for determining co-
evolving proteins [Tillier and Charlebois, 2009]. Despite their affinity, the
case of tables remains unique due to the possibility of changing the order of
columns and rows, making this problem significantly more complex.

3.4 Largest Overlap Definition

This section aims at laying the theoretical foundations for the detection of
the largest overlap between two tables, presenting a formal definition of what
we mean by table overlap (or simply overlap when evident from the context),
describing how to compute its area, and evaluating the computational com-
plexity of the problem.

The definition of table overlap relies on the concept of attribute mapping,
which is defined as follows.
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Definition 3.4.1 (Attribute Mapping). Given two tables R(X) and
S(Y ), where X and Y denote their schemas (i.e., their attribute sets), an
attribute mapping (or simply mapping) between R(X) and S(Y ) is defined
as a bijective function M that maps a subset of X to a subset of Y :

M : XM ⊆ X → YM ⊆ Y

Due to the bijectivity of the mapping, the attribute sets have the same
size (|XM | = |YM |), no attribute in X is mapped to more than one attribute
in Y , and no attribute in Y is mapped from more than one attribute in X.
Each mapping determines a table overlap. Using +∩ to denote the intersection
under the bag semantics (which allows duplicates), we can define the table
overlap and its area as follows.

Definition 3.4.2 (Table Overlap). Given a mapping M , defined between
tables R(X) and S(Y ) considering the attribute subsets XM ⊆ X and YM ⊆
Y , the table overlap OM is the bag intersection between the bags of the tuples
obtained through the projection of R(X) on XM and S(Y ) on YM :

OM = R[XM ] +∩ S[YM ]

Definition 3.4.3 (Overlap Area). We define the overlap area AM as the
number of cells contained in the overlap OM :

AM = |XM | · |OM |

where |XM | and |OM | represent the width and the height of the rectangle of
overlapping cells between the two tables, respectively. We also refer to AM

as the area of mapping M .

Definition 3.4.4 (Largest Overlap). Let O be the set of overlaps deter-
mined by all possible mappings between R(X) and S(Y ). We define the set
of the largest overlaps O∗ ⊆ O as those overlaps that have the maximum
area:

O∗ = {OM∗ ∈ O | AM∗ ≥ AM , ∀OM ∈ O}

We refer to the mappings of O∗ as top mappings, denoted as M∗. Note
that the number of top mappings (in most cases just one) is equal to the
number of largest overlaps. Figure 3.3 shows an example of two tables and
the effects of different mappings.
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Figure 3.3: Example to demonstrate the overlap between two tables deter-
mined by different mappings.

Computational Complexity

Let us consider the OVERLAP decision problem, whose instance is com-
posed of two tables R and S and a positive integer K. OVERLAP raises an
affirmative answer if there exists a subtable O common to both R and S with
area AO ≥ K. Note that the problem considers all overlaps between R and
S, not only the largest ones. It is easy to see that OVERLAP ∈ NP, since a
nondeterministic algorithm only needs to guess a subset of row and column
pairs from R and S and check in polynomial time that the two obtained
subtables are equal and their area AO ≥ K.

The classical NP-complete CLIQUE decision problem [Garey and John-
son, 1979], raising an affirmative answer if a graph G = (V,E) contains
a clique of at least C vertices, where C ≤ |V | is a positive integer, can
be transformed into OVERLAP. In fact, considering the adjacency matrix
M : |V | × |V | of the graph G, where Mi,j = 1 if (Vi, Vj) ∈ E or i = j,
G contains a clique of at least C vertices if and only if between M and
I : |V | × |V |, Ii,j = 1,∀i,∀j, there exists a (square) overlap O with area
AO ≥ C2 and the sets of indices for the columns and for the rows mapped
from M are equal. The constraint on the indices discriminates between a
clique and other structures determining square overlaps in M , such as bi-
cliques. The transformation is polynomial (quadratic in the number of ver-
tices). Hence, the OVERLAP decision problem is NP-complete.

Search Space

Every possible mapping M among the attributes of a table pair defines a table
overlap. To obtain the size of the search space, we determine the number
of such mappings. We can model this problem as a bipartite graph, where
the attributes of each table represent one of the two nonadjacent vertex sets.
For a worst-case analysis, let us assume that this bipartite graph is complete,
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Figure 3.4: An overview of the Sloth workflow (logo by Giacomo Pirani),
from a pair of tables (a) to their largest overlap (d) through our detection
algorithm (b) and its greedy variant for critical cases (c).

i.e., we can consider mapping every attribute of one table to any attribute
of the other table. Each mapping now corresponds to an independent edge
set, i.e., a subset of the edges so that none of these are adjacent (i.e., share a
common vertex). For a complete bipartite graph with vertex sets of size |X|
and |Y |, the number of independent edge sets (a.k.a. Hosoya index 5) follows
the formula6:

min(|X|,|Y |)∑
k=0

k! ∗
(
|X|
k

)
∗
(
|Y |
k

)
Note that according to our definition a mapping does not need to cover all
attributes of either table. The number corresponds to choosing two k -sized
subsets out of X and Y and then permuting one side while keeping the other
side fixed. This grows super-exponentially in the number of attributes of the
table with fewer attributes.

3.5 Largest Overlap Detection

Figure 3.4 represents the high-level design of Sloth. Implemented in
Python, Sloth considers as input a pair of tables (Figure 3.4a) and returns
the largest overlap detected between them (Figure 3.4d). In addition to
this, Sloth can also return some additional insights on the original tables,

5https://mathworld.wolfram.com/HosoyaIndex.html
6https://oeis.org/A086885

https://mathworld.wolfram.com/HosoyaIndex.html
https://oeis.org/A086885


74 CHAPTER 3. SLOTH

such as the visualization for each table of the cells excluded from the
result, making it easier for the user to point out the differences and the
inconsistencies between the two tables.

To detect the largest overlap, Sloth implements our novel algorithm
designed for this task (described in detail in Section 3.5.1) and its greedy
variant inspired by the beam search technique for the most challenging pairs
of tables (illustrated in Section 3.5.2). In particular, the exact algorithm
is our default choice (Figure 3.4b), with a timeout mechanism defined to
spot critical cases that would not provide a result in a reasonable time,
activating the greedy algorithm (Figure 3.4c). This choice is discussed in
more depth in Section 3.5.2. The timeout is set by the user and is aimed
at the early detection of the described critical cases. The parameter for the
greedy algorithm (i.e., the beam width β, clarified in Section 3.5.2) is set to
a default value selected based on our experimental evaluation (Section 3.6.2)
and can be edited according to the user’s needs (e.g., a faster computation
or a better accuracy).

3.5.1 Exact Algorithm

This section presents our algorithm for the detection of the largest overlap(s)
between two tables (Algorithm 3.1). The algorithm considers as input two
tables (e.g., the two tables about football teams in Figure 3.5), denoted as
R(X) and S(Y ), and returns the set of their largest overlaps O∗. If the two
tables have no cells in common, the area of the largest overlap is equal to
zero and an empty set is returned. The optional argument ∆ represents the
minimum area to consider the overlap as relevant and therefore to include
it in the result. For instance, the user might consider the largest overlap
as relevant if its area is at least equal to a certain percentage of the area
of the smallest table. The definition of minimum/maximum thresholds for
the width/height of the overlap is also supported, leading to the detection
of the largest overlap among those complying with the defined boundaries.
Since implementing this feature is straightforward, details are overlooked to
avoid overloading the formalization of the algorithm. Some examples of its
application to real-world use cases are provided in Sections 3.6.4 and 3.6.5.

Our algorithm needs to consider all mappings that can potentially deter-
mine the largest overlap between the two tables. These mappings are denoted
as candidates, since they are candidates to be the top mapping. To identify
the candidates, our algorithm first considers all possible single-attribute map-
pings, i.e., those mappings for which XM is represented by a single attribute
x, checking the area of the overlap between R[x] and S[M(x)]. We call seeds
those single-attribute mappings whose area is greater than zero, and we col-
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Algorithm 3.1: Largest overlap detection algorithm

Input: Two tables R(X) and S(Y ); minimum area ∆ (default 0)
Output: The set of the largest overlaps O∗

1 O∗ ← ∅ // largest overlaps

2 Seeds← findSeeds(R,S)
3 θ ← max(∆, Seeds[0].A) // pruning threshold

4 Levels← initLevels(Seeds) // pq to generate candidates

5 Candidates← maxHeap(∅, key = A) // pq to verify candidates

6 while Candidates ̸= ∅ or Levels ̸= ∅ do
7 while Candidates.head().A < Levels.head().A do
8 Levels, Candidates← genCand(Levels, Candidates, Seeds)

// generate more candidates

9 if Candidates ̸= ∅ then
10 topC ← Candidates.pop() // top candidate

11 if topC.O ̸= ∅ then
12 O∗ ← O∗ ∪ topC.O // largest overlap found!

13 else
14 Levels, Candidates←

verCand(R,S, topC,Levels, Candidates)
// verify top candidate

15 return O∗

lect them in a dedicated list (Line 2), represented in Figure 3.6, where they
are sorted by descending area.

Since every multi-attribute mapping is a combination of some single-
attribute mappings, the candidates can be considered as the combinations of
the seeds and modeled as the nodes of a lattice, as depicted in Figure 3.6,
where every level n contains the combinations of n seeds. Moving up within
the lattice increases the width of the overlap, but not necessarily its area,
as its height may decrease as new columns are added. In particular, the
seed with the minimum area (equal to its height) in the combination defines
an upper bound for the height of the candidate, and therefore for its area.
This bounding mechanism can be exploited both to prune the lattice and to
prioritize the candidates based on their potential area. We define therefore
the pruning threshold θ (Line 3), which always contains the maximum of ∆
and the maximum actual area of a candidate that we know so far, which is
initially the area of the first seed in the list and can be possibly updated
every time we verify a new candidate, discovering its actual area.

Our algorithm leverages on the upper bound defined by the seeds to
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Figure 3.5: Two input tables R(X) and S(Y ) describing football teams.

manage two priority queues, aiming to minimize both the number of candi-
dates that need to be materialized and those among them whose actual area
needs to be computed: (i) Levels (Line 4), containing the representations
of the levels of the lattice, used to generate the candidates incrementally;
(ii) Candidates (Line 5), containing the generated candidates, used to pro-
gressively verify their actual area and detect the largest overlap.

In particular, we iterate on the priority queues until both of them are
emptied (Line 6), terminating early as soon as all largest overlaps are detected
(or only the first one, if we are only interested in their area with no need to
consider their content). At each iteration, first we need to ensure that at least
one of the candidates with the potential largest overlap has been generated
and inserted into Candidates (Lines 7-8), as depicted in Figure 3.7. Next,
we can check the candidate at the top of Candidates (Lines 9-10). If it has
already been verified (i.e., its actual overlap has already been computed),
none of the other candidates (among both the ones already generated and
the ones yet to generate) can present a greater area, hence it is one of the
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Figure 3.6: The sorted list of detected seeds and the valid candidates in the
lattice generated from the seeds. For every node in the lattice we report the
upper bounds for its area and its height (between brackets).

largest overlaps, and we can add it to the result set (Lines 11-12); otherwise,
we need to compute its overlap (and therefore its actual area) and reinsert it
into the priority queue if it can still be part of the result set (Lines 13-14).

The next sections go into the details of the different steps composing
the algorithm, providing their formal representation and using the example
introduced in Figures 3.5, 3.6, and 3.7 to help their understanding.

Detecting the Seeds

First, we need to detect the seeds. As stated in Line 2, this operation is del-
egated to the findSeeds() function (Function 3.2). Here the seeds, stored in
a dedicated eponymous list (Line 1), are detected by verifying the area of all
possible single-attribute mappings defined between the two tables (Lines 2-
7). If its area is greater than zero, then a mapping is inserted into Seeds
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Algorithm 3.2: findSeeds() function

Input: The two tables R(X) and S(Y )
Output: The sorted list of the detected seeds

1 Seeds← ∅
2 forall x in X do
3 forall y in Y do
4 seed.M ←M : x→ y // mapping

5 seed.A← |R[x] +∩ S[y]| // area

6 if seed.A > 0 then
7 Seeds.append(seed)

8 return Seeds.sort(A, desc) // sort by increasing dominance

(Lines 6-7), keeping track of its area. We denote the number of detected
seeds as s, i.e., s = |Seeds|. If an attribute from one table has cells in com-
mon with multiple attributes from the other table, that attribute appears in
multiple seeds. Since a mapping has been defined as a bijective function, a
valid multi-attribute mapping can include only one seed out of each cluster
of seeds with a common attribute. We implicitly denote as mappings only
the valid ones, while the invalid ones are automatically filtered out.

Considering the example tables R(X) and S(Y ) in Figure 3.5, the map-
pings inserted into Seeds are the ones depicted in Figure 3.6. Here the map-
pings are represented by the attribute M (in this example we use the headers
instead of the indices to enhance readability) and their area by the attribute
A. Thus, the first seed, which maps the City attribute in R to the City at-
tribute in S, has an area of 8 cells, since all cells from the first attribute find
a match in the second one. The mappings involving the Team and Stadium
pairs have smaller overlaps instead, due to the absence of Arsenal and its
stadium from S and the use of two distinct denominations for the stadium of
Inter Milan. Note that three teams (Milan, Liverpool, and Barcelona) carry
the name of their city, causing the mappings from Team to City and from
City to Team to be detected as seeds (denoted in Figure 3.6 as S3 and S4,
respectively). By definition, S1 and S3 cannot occur together, since Team
cannot be mapped to both Team and City (same for S0 and S3, S0 and S4,
S1 and S4).

As stated above, the candidates can be seen as the nodes of the lattice
representing the combinations of the seeds (depicted in Figure 3.6), where
every level n contains the mappings obtained by combining n seeds. Since the
lattice includes only the valid mappings, it is allowed to present an incomplete
shape (hence we can define it as a semilattice in case an attribute appears
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Figure 3.7: Levels as initialized (a) and after the update (b), Candidates
(c), and the detected largest overlap (d).

in more than one seed). The highest level containing at least one valid map-
ping can be identified considering the minimum number of distinct attributes
from a table covered by the seeds, i.e., min(|XSeeds|, |YSeeds|). When every
attribute appears in at most one seed, the complete lattice is composed of a
number of nodes equal to:

s∑
n=1

(
s

n

)
= 2s − 1

In the lattice, for every node are reported the upper bounds for the
height (between round brackets) and the area, where the latter is obtained
as the product between the bounded height and the number of seeds com-
bined to generate the candidate (i.e., |XM |), representing the width of the
overlap. These values are determined by the seeds. In fact, considering
a candidate M , the maximum possible value for its height is determined
by the seed with the smallest area appearing in the combination, since
|R[XM ] +∩ S[M(XM)]| ≤ min({|R[x] +∩ S[M(x)]|,∀x ∈ XM}). Therefore, we
can say that a seed dominates the seeds with a greater area when they appear
together in a candidate. Before being returned, the seed list is sorted by in-
creasing dominance (Line 8), i.e., Seeds[i].A ≥ Seeds[i+ 1].A, 0 ≤ i < s− 1.
In the last position we find the seed with the minimum area, which domi-
nates all other seeds. Note that the nodes in the bottom level of the lattice
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Algorithm 3.3: initLevels() function

Input: The sorted list of the detected seeds
Output: The priority queue for the lattice levels

1 Levels← maxHeap(∅, key = A)
2 for n← 1 to min(|XSeeds|, |YSeeds|) do
3 level.w ← n // width

4 level.i← n− 1 // seed pointer

5 level.A← level.w · Seeds[level.i].A // max area

6 if level.A ≥ θ then
7 Levels.push(level)

8 return Levels

(n = 1), representing the seeds themselves, already report the actual values
for the height and the area.

In the example, the seeds cover three distinct attributes from both tables,
hence the top level of the lattice in Figure 3.6 is the one containing the com-
binations of three seeds. Let us consider the candidate combining S0 and S1

(i.e., the first node of level 2), with an area of 8 and 7 cells, respectively.
While the width of its overlap is equal to 2, its height can be at most equal to
7, hence its area to 14.

Prioritizing the Levels

Based on the number of detected seeds, the lattice can become significantly
large. The possibility to define for every level an upper bound for the area
of its candidates allows to generate the candidates incrementally according
to their potential area, avoiding the materialization of the entire lattice. In
fact, all candidates in a level n have a fixed width of n, and their height is
bounded by the area of the seed in the position n − 1 of the sorted Seeds
list (i.e., the first when n = 1, the second when n = 2, etc.), since in a level
the first n − 1 seeds are always dominated by other seeds if they occur in a
candidate. Thus, we can insert representations of the levels into Levels, the
first of the two priority queues introduced above, to determine which level
can produce the candidate with the maximum potential area and which seeds
have to be combined for generating it (i.e., the seed bounding the height and
the ones that precede it in the list).

The initialization of Levels is delegated to the initLevels() function
(Function 3.3). This function initializes the Levels priority queue as an
empty max heap structure (Line 1), then iterates over all possible levels the
lattice may contain, starting from the bottom (i.e., level 1 that contains the
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Algorithm 3.4: genCand() function

Input: The priority queues for the lattice levels and for the candidates,
the sorted list of the detected seeds

Output: The updated priority queues
1 topL← Levels.pop() // top level

2 forall comb in combs(Seeds[: topL.i], topL.w) do
3 cand.M = comb // mapping

4 cand.w = topL.w // width

5 cand.h = Seeds[topL.i].A // max height

6 cand.A = cand.w · cand.h // max area

7 cand.O ← ∅ // overlap

8 if cand.A ≥ θ then
9 Candidates.push(cand)

10 if topL.i < len(Seeds)− 1 then
11 topL.i← topL.i+ 1 // next seed

12 topL.A = topL.w · Seeds[topL.i].A
13 if topL.A ≥ θ then
14 Levels.push(topL) // reinsert level

15 return Levels, Candidates

seeds), until it reaches the top of the lattice, which is limited by the minimum
number of attributes covered by the seeds of either table, as stated above.
For every level, the queue maintains the width of the candidates in that level
(w) and a pointer i to the seed bounding their height, which consequently
determines the upper bound for their area A (Lines 3-5). If this upper bound
is equal to or greater than the pruning threshold θ, the level is inserted into
Levels (Lines 6-7). Then, we can proceed with the upper levels.

In the example, the Levels priority queue is initialized with three elements
(Figure 3.7a), one for each level of the lattice.

Generating the Candidates

The Candidates priority queue is initialized as an empty max heap structure
in Line 5 of Algorithm 3.1 to be filled incrementally with the generated candi-
dates. At the beginning of an iteration, we might need to materialize further
candidates to ensure that at least one of the candidates with the maximum
potential area has been generated and inserted there. The process for gener-
ating the candidates is described by the genCand() function (Function 3.4)
and is depicted in Figure 3.7.

Considering the level n located at the top of Levels (Line 1), we generate
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the candidates corresponding to all combinations of n seeds composed of the
seed pointed by the level and n−1 seeds selected among the ones preceding it
in the list (Line 2). Note that this incremental process covers all candidates
in the level, since:

s−1∑
i=n−1

(
i

n− 1

)
=

(
s

n

)
, n ̸= 0

and generates them in the correct ordering based on their potential area,
since Seeds[i].A · n ≥ Seeds[i + 1].A · n, n− 1 ≤ i < s− 1.

In the example, the candidate with the maximum potential area is gener-
ated from level 3, located at the top of Levels. This level is currently pointing
to the seed S2, which occupies the third position in the seed list, preceded by
S0 and S1. Since only three seeds are considered, only the first node of the
third level of the lattice in Figure 3.6 needs to be materialized.

For every generated candidate, we keep track of its width w (equal to n)
and the upper bound for its height h, which determines its potential area A
(Lines 4-6). The attribute O is initialized to be empty (Line 7) and is updated
with the actual overlap when it is computed. Thus, when a candidate has the
maximum priority, if its overlap is empty, we can infer that its attribute A
describes its potential area, hence we still need to detect the overlap to verify
its actual value. If the candidate is a seed, it is possible to directly initialize
O with its actual overlap, which has already been computed. Finally, the
candidate is inserted into the Candidates priority queue if its area is at least
equal to θ or exceeds it (Lines 8-9).

In the example, θ is still equal to 8, reflecting the maximum area among
the seeds; thus, the generated candidate is inserted into Candidates, which
was previously empty.

After the new candidates have been generated, the considered level has
to be updated, pointing now to the next seed in the list (unless we were
already pointing to the last one) and updating the upper bound for the
area of the candidates yet to be generated consequently (Lines 10-12). If
the updated upper bound is greater than θ, then the level is reinserted into
Levels (Lines 13-14).

This update step is represented for the example in Figure 3.7b; from S2,
level 3 points now to S3, which sets the upper bound for the height to 3
and for the potential area to 9 (which is greater than θ, so the level can be
reinserted, but now level 2 can produce candidates with a greater potential
area). If the reinserted level was located at the top of Levels in one of the
next iterations, it would have to generate the candidates corresponding to all
combinations containing S3 (the pointed seed) and two seeds among S0, S1,
and S2, producing in principle three new candidates (in this case, they would
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Algorithm 3.5: verCand() function

Input: The two tables R(X) and S(Y ), the top candidate, the priority
queues for the lattice levels and for the candidates

Output: The updated priority queues
1 topC.O ← R[XtopC.M ] +∩ S[YtopC.M ] // overlap

2 topC.h← |topC.O| // actual height

3 topC.A← topC.w · topC.h // actual area

4 if topC.A ≥ θ then
5 θ ← topC.A
6 Candidates.push(topC) // reinsert candidate

7 forall cand in Candidates do
8 if cand.A < θ then
9 Candidates.delete(cand) // prune candidate

10 forall level in Levels do
11 if level.A < θ then
12 Levels.delete(level) // prune level

13 return Levels, Candidates

be automatically filtered out, since they would all contain at least one seed
between S0 and S1, not compatible with S3).

Verifying the Candidates

If the actual overlap of the candidate located at the top of Candidates has
not been verified yet, we need to call the verCand() function (Function 3.5).

First, we need to compute the overlap according to the definitions pro-
vided in Section 3.4 to obtain the actual values for its height and its area
(Lines 1-3). If the actual area is at least equal to the pruning threshold θ,
the candidate is reinserted into Candidates with the updated values, since it
might be the largest overlap. Moreover, we update θ to ensure it reflects the
value of the maximum actual area that we know at the moment (Lines 4-6).
This dynamic updating allows to prune the lattice in a more efficient way.
In particular, when θ is updated, we can scan both priority queues to delete
the elements that cannot reach its new value (Lines 7-12).

In the example, verifying the top candidate (Figure 3.7c) produces the
overlap depicted in Figure 3.7d, presenting an area of 18 cells. Since its area
is greater than θ, the candidate is reinserted into Candidates and θ is set to
18, causing the pruning of all elements in Levels (Figure 3.7b), since they
cannot produce candidates whose area can reach this threshold. At the next
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iteration, the top candidate has already been verified and is therefore added
to the result set, completing the task after one single verification.

Coherently with the concept of dominance among seeds, since the height
of a mapping is bounded by the seed with the smallest area appearing in the
combination, adding further seeds to a mapping cannot increase this bound.
Thus, we can state that the height of a node in the level n of the lattice is
bounded by the height of the nodes from the level n − 1 that are combined
to generate it (we can equivalently say that they are covered by that node).

As a further optimization, when we compute the overlap of a candi-
date we can check if some elements in Candidates cover it and in this
case bound their height based on the one of the verified candidate, i.e.,
cand.h = min(topC.h, cand.h). Similarly, if we cache all verified heights
with the related mappings, when we generate a candidate we can check if it
covers some of those mappings and update its potential height consequently.
These optimizations, overlooked in Algorithm 3.1 to improve readability but
included in its implementation, make the potential area of the candidates
closer to the actual one, enhancing the effectiveness of the pruning and the
definition of the top candidate in the priority queue.

Computational Complexity

Let us consider tables T1 and T2, with r1 and r2 rows and c1 and c2 columns,
respectively. For detecting the seeds, we need to consider all column com-
binations and compute their bag intersection. Using a hashmap, the cost
is in O(r1 ∗ c1 + r2 ∗ c2 + c1 ∗ c2 ∗ min(r1, r2)): min(r1, r2) for the intersec-
tion itself and r1(2) ∗ c1(2) for the hashmap generation. The s detected seeds,
0 ≤ s ≤ min(c1, c2), generate a lattice composed of 2s − 1 candidates, net of
invalid mappings. In principle, considering the actual area A∗ of the largest
overlap, not known a priori, our algorithm needs to generate and verify all g
candidates with a potential area A ≥ A∗ (note that the additional optimiza-
tions introduced at the end of the previous section can significantly reduce
the number of candidates to verify). These candidates are generated from Σ
generating seeds, i.e., the total number of seeds pointed by the items of the
Levels priority queue, at most s− l+ 1 for each level l. Hence, Σ generating
seeds produce a number of candidates g equal to:

g =
∑
σ∈Σ

(
iσ

lσ − 1

)
where lσ denotes the level pointing the seed and iσ its index in Seeds, 0 ≤
iσ ≤ s − 1. In the worst case (i.e., if all seeds have the same area but no
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cell alignment), our algorithm might need to generate and verify through the
bag intersection all candidates in the lattice (apart from the s seeds, whose
actual area is already known), for a cost of:

O(
s∑

l=2

(
s

l

)
∗ l ∗ (r1 + r2)) = O(2s ∗ s ∗ (r1 + r2))

Hence, the computational complexity of the algorithm is in practice domi-
nated by the exponential complexity in the number of seeds.

3.5.2 Greedy Algorithm

Algorithm 3.1 for the detection of the largest overlap between two tables,
described in Section 3.5.1, generates the candidates by combining the seeds.
If we need to apply the algorithm to a pair of wide tables with some values
repeated across several columns in both (e.g., multiple columns containing
Boolean values), it is possible that a significant number of seeds is detected,
producing a huge lattice mostly composed of invalid nodes. In some cases,
this situation can lead to the impossibility of generating the combinations
for the new candidates in a reasonable amount of time.

While in principle it would be possible to reduce the number of seeds by
post-processing them (e.g., to make an attribute appear in at most k seeds
or reducing this situation to the stable matching problem [Gale and Shapley,
1962], with the area of a seed determining its weight), pruning them a priori
without knowing the actual area of any of the candidates in the upper levels
can have a negative impact on the correct detection of the largest overlap.

For a result as close as possible to the exact largest overlap, we designed
a greedy variant for our algorithm inspired by beam search, a heuristic search
algorithm widely applied in the speech recognition area [Huang et al., 2014]
that performs a breadth-first search in a tree by only expanding the β most
promising nodes at each level. The parameter β, denoted as beam width, is
defined by the user based on the trade-off between efficiency (a smaller value
for β requires to evaluate fewer candidates) and completeness (the case for
β =∞ would evaluate all candidates, producing the exact result).

Our greedy algorithm is designed to bottom-up traverse the lattice gen-
erated from the seeds. The set of the largest overlaps is initialized using
the seeds with the maximum area (if it is greater than the minimum area
∆ defined by the user). This value is used to initialize the pruning thresh-
old θ, which can be updated (as well as the result set) every time we verify
a new candidate. Before moving to the upper levels, we check if it is still
possible for any remaining candidate to reach (or even surpass) θ. This is
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possible because the combination of bounded heights and width determines
a bound for the area of their overlaps. If the current θ is larger than all such
upper bounds of candidate areas, the algorithm saves on further exact area
computations and terminates.

At the beginning, we consider the detected seeds and select a maximum of
β candidates with the greatest area. To find candidates for the second level,
we combine each of them with every other seed and drop repeated and invalid
combinations. After this generating step, we verify all new candidates and
again select only the β candidates with the greatest actual area among them.
For the third and every further level, we combine the selected candidates of
the previous level with every seed that is not already part of the candidate
and then again verify their area and limit their number to β. Note that the
selection of the best β candidates may affect the produced results; thus, it
is important to rely on some tiebreaker strategies for the candidates that
present the same actual area (e.g., favoring the ones whose seeds present the
greatest total area).

To determine the computational complexity, let us again consider tables
T1 and T2, with r1 and r2 rows and c1 and c2 columns, respectively. Since
from level 2 up we generate the candidates to verify by combining the top
β ones from the previous level with all s seeds (net of generated duplicate
candidates and seeds that would raise invalid ones), the cost of our greedy
algorithm can be quantified as:

O(
s∑

l=2

β ∗ s ∗ l ∗ (r1 + r2)) = O(s3 ∗ β ∗ (r1 + r2))

Combined with the (unchanged) initial seed detection, this leads to an over-
all computational complexity of O(r1 ∗ c1 + r2 ∗ c2 + c1 ∗ c2 ∗ min(r1, r2) +
s3 ∗ β ∗ (r1 + r2)), i.e., polynomial in the number of seeds. Our experimental
evaluation (Section 3.6.2) demonstrates that, even in absence of approxima-
tion guarantees on the quality of its result, the greedy algorithm is generally
able to detect largest overlaps of the same area as those discovered by the
exact algorithm.

Coordinating the Algorithms

As described at the beginning of Section 3.5, Sloth adopts a trial-and-error
approach to evaluate a pair of tables, favoring the exact algorithm whenever
possible. The main reasons behind this choice are: (i) the guarantees of
correctness and completeness of the result given by the exact algorithm (not
guaranteed by its greedy variant, despite the empirical demonstration of its
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good accuracy); (ii) the minimal impact of timeouts on our experiments on
coexisting tables from real-world scenarios (Sections 3.6.3 to 3.6.5), where
only around 1.6% of all table pairs need to revert to the greedy algorithm.
Further, Sloth can be seen as a unique best-effort solution, since several
findings by the exact algorithm, such as the detected seeds and the computed
actual heights and overlaps, can be reused by its greedy variant.

The main factor leading to timeouts is the number of seeds, which di-
rectly affects the size of the lattice, hence the number of candidates that
potentially need to be generated. This aspect is strictly correlated to the
width of the tables and the amount of repeated cell values across them (Fig-
ures 3.8a and 3.8b). Nevertheless, as depicted in Figures 3.8c and 3.8d, none
of these factors defines a clear threshold to distinguish between successes and
timeouts. The definition of rules for the automatic selection of the algorithm
is therefore not trivial, while a classifier-based approach, able to detect more
complex patterns among the described features, might seem more promising.
However, to pursue such an approach, several factors need to be taken into
account. First, training data is needed, and, as stated above, in several ta-
ble corpora timeouts are rather rare. Further, tables from different corpora
might have very dissimilar features, as shown in Table 3.1, hence training the
classifier on one dataset (e.g., the sample of wiki history described in Sec-
tion 3.6.1, where timeouts are quite frequent) might not cover many patterns
occurring in other datasets, causing a poor accuracy. False positives might
not only miss the possibility of detecting the exact result, but also impact
negatively on the performance. As shown in Figure 3.8i, in many cases the
exact algorithm can be faster than its greedy variant, since it can directly
prioritize the evaluation of the most promising candidates from the lattice,
while the latter proceeds level by level from bottom to top.

3.6 Experimental Evaluation

This section reports the experimental evaluation of Sloth, aiming to assess:
(i) what is the performance of Sloth at detecting the largest overlap between
two tables based on the size and the features of those tables (Section 3.6.1);
(ii) what is the accuracy of the results obtained using the greedy algorithm
(Section 3.6.2); (iii) how many highly overlapping tables are present in a
real-world relevant scenario such as Wikipedia and what we can learn from
their analysis (Section 3.6.3); (iv) how Sloth can be applied to real-world
use cases such as the detection of potential copying between tables from
different sources (Section 3.6.4) or the detection of composite foreign keys in
the relational context (Section 3.6.5).
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Table 3.1: Statistics about the number and the size of the tables appearing
in the used datasets.

Dataset #D
Width (#columns) Height (#rows)

MIN MAX AVG MIN MAX AVG

wiki history 55.97M 1 5694 5.92 1 17.38k 26.63

wiki latest 2.13M 1 883 5.23 1 4670 11.47

uni dwh 158 1 55 9.48 2 151.78k 5604.79

stock raw 1.15k 4 69 16.18 221 1000 987.58

stock clean 1.15k 3 17 12.49 221 1000 987.58

flight clean 1.17k 3 7 5.75 6 1309 662.17

Datasets

Table 3.1 presents the datasets used in our experimental evaluation. We de-
note as wiki history the Wikipedia table matching dataset from the IANVS
project7. Differently from other corpora of Wikipedia tables, such as Wik-
iTables8 [Bhagavatula et al., 2015], composed of 1.6M high-quality relational
tables, this dataset captures the evolution of all 3.5M tables present in the
English Wikipedia throughout its entire history (until September 1, 2019),
for a total amount of 55.97M different table versions stored in the JSON Lines
text format [Bleifuß et al., 2021b]. The composition of the table lineages (i.e.,
the collections of the subsequent versions of a table) was performed by Blei-
fuß et al. in their structured object matching project [Bleifuß et al., 2021a].
We separately consider the most recent snapshot of Wikipedia tables from
this dataset, denoted as wiki latest.

Beyond the Wikipedia scenario, we also employ uni dwh [Castro Fernan-
dez et al., 2018], a real-world university data warehouse, composed of rela-
tional tables with a significantly higher number of rows, and two datasets9 [X.
Li et al., 2012] reporting the information about stock symbols and flights cap-
tured from different sources across multiple days (55 sources over 21 days and
38 over 31, respectively); thus, on every day there is a table for each source.
For the stock dataset both the original tables (stock raw) and their versions
obtained through schema alignment (stock clean) are available, while only
the latter is provided for the flight dataset.

7https://hpi.de/naumann/projects/data-profiling-and-analytics/

change-exploration.html
8http://websail-fe.cs.northwestern.edu/TabEL/
9https://lunadong.com/fusionDataSets.htm

https://hpi.de/naumann/projects/data-profiling-and-analytics/change-exploration.html
https://hpi.de/naumann/projects/data-profiling-and-analytics/change-exploration.html
http://websail-fe.cs.northwestern.edu/TabEL/
https://lunadong.com/fusionDataSets.htm
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Setup

Sloth has been implemented in Python 3.7. We used a MongoDB instance
to store the tables and their metadata. Our experiments were performed
on a server machine equipped with 4 Intel Xeon E5-2697 @ 2.40 GHz (72
cores) processors and 216 GB of RAM, running Ubuntu 18.04. The default
configuration for Sloth adopts a timeout of 3 seconds for the exact algorithm
and 60 seconds for the greedy algorithm (with a default beam width equal
to 32).

3.6.1 Performance of the Algorithms

The performance of Sloth has been evaluated on two of the datasets pre-
sented above: a representative subset of the wiki history dataset and the
uni dwh dataset, chosen to cover both the case of Web tables and the one
of relational tables collected from a database in our analysis. In particular,
the subset was created by randomly picking from wiki history at most 5 ta-
bles from each table lineage (to include in the evaluation also these cases of
highly related tables) and filtering out the ones with less than 10 rows, for a
total of 4.1M tables. We then produced 19.1M pairs of tables through LSH
banding [Leskovec et al., 2020], using 16 bands and a minhash of 128 bits,
and randomly selected 1M of these pairs to be used in our evaluation. Our
results are reported in Figure 3.8, explained in detail in the following.

First, we examine the factors that determine the number of seeds and thus
the size of the lattice. Figure 3.8a shows how the number of seeds increases
with the number of columns, as expected. For table pairs with different
number of columns, we consider the smaller number, which also bounds the
height of the lattice. We plot the average number of seeds for 10 quantiles,
positioning the values at the beginning of the interval covered by the quantile
on the x -axis. A second dimension that has a high impact on the number
of seeds is the percentage of distinct cell values in the two tables. Given a
pair of tables, we consider the two sets of cell values, then divide the sum
of their sizes by the total number of cells of the two tables. In Figure 3.8b,
aggregating this value into 10% buckets, we show that the number of seeds
tends to significantly increase when the tables contain many repeated values.
These are also the most challenging pairs for Sloth, as the distribution of the
cases for which the exact algorithm exceeds the timeout shows in Figure 3.8c.
In fact, these 291k pairs fall almost entirely in the initial half of the graph
and mostly reflect the scenario in which two tables contain the repetition
of few distinct cell values in several different alignments, producing many
seeds and requiring our exact algorithm to generate many candidates before
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(a) Seeds per minimum
table width (wiki).

(b) Seeds per distinct
cell values (wiki, exact).

(c) Timeouts per distinct
cell values (wiki, exact).

(d) Timeouts per
number of seeds (wiki,

exact).

(e) Total time per
beam width (wiki,

greedy).

(f) Materialized
candidates per beam

width (wiki).

(g) Separated time for
each task (wiki,

exact).

(h) Separated time for
each task (wiki,
greedy, β = 32).

(i) Candidates where
exact is faster than

greedy (wiki).

(j) Time for seed
detection per maximum

table height (dwh).

(k) Largest overlap vs.
Jaccard similarity

(wiki).

(l) Largest overlap vs.
overlap set similarity

(wiki).

Figure 3.8: Performance of Sloth evaluated on the wiki history dataset (a-i,
k-l) and the uni dwh dataset (j).
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discovering the largest overlap. In Figure 3.8d, we equivalently show how
the percentage of timeouts increases with the average number of seeds per
column (computed on the table with the smaller width, always considering
10 quantiles).

In case of timeout, Sloth activates the greedy algorithm based on beam
search. The impact of the beam width is illustrated for 10 quantiles in
Figure 3.8e. Using a larger beam width tends to produce more reliable results
(see Section 3.6.2), but it also implies materializing more candidates, whose
area needs to be verified to select the most promising ones, as highlighted
by Figure 3.8f, hence requiring more time. Thus, the candidate verification
represents by far the most expensive operation for the greedy algorithm, as
illustrated in Figure 3.8h, which analyzes the time (once again as the average
value for 10 quantiles) required by the three main tasks performed by Sloth
(the other two being seed detection and candidate generation). For our
exact algorithm, the most critical task is the candidate generation instead,
as highlighted by the last column of Figure 3.8f and by Figure 3.8g, while the
use of the priority queues allows minimizing the number of candidates whose
actual area needs to be verified out of the generated ones. In Figure 3.8i,
the bars show for each beam width the percentage of candidates for which
the exact algorithm (when it does not exceed the timeout) is faster than its
greedy variant. The lines show for each algorithm the average time gain on
the candidates for which it is the fastest.

Finally, the number of rows can affect those tasks that require to perform
the bag intersection, in particular the seed detection. While the effect is
very limited in the case of Wikipedia, it becomes much more evident when
moving to the relational tables of uni dwh, as presented in Figure 3.8j, where
the average number of rows is significantly larger (see Table 3.1) and the time
required for detecting the seeds can exceed 5 minutes in some extreme cases.

3.6.2 Accuracy of the Greedy Algorithm

Table 3.2 reports the accuracy of the largest overlaps detected by the
greedy algorithm, computed on the 1M random table pairs introduced in
Section 3.6.1. In particular, we consider five different values for the beam
width (β) and we report for each of them: (i) the percentage of pairs for
which the computation exceeds the timeout; (ii) the percentage of pairs
for which the ratio between the area of their largest overlap and the one
obtained by the exact algorithm is equal to 1 (i.e., same area) or at least
0.75 (i.e., close to the exact area), computed on the pairs where the exact
algorithm provides a solution (708.2k) and its greedy variant does not
exceed the timeout; (iii) the same percentage considering the ratio w.r.t.
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Table 3.2: Accuracy of the greedy algorithm results with different beam
width (β) values, compared to the exact result and the largest greedy result
as the ratio between their areas.

β Timeout
Accuracy (exact) Accuracy (greedy)

1 ≥ 0.75 1 ≥ 0.75

2 0.040% 98.612% 99.668% 72.988% 96.707%

4 0.041% 99.351% 99.857% 80.940% 98.718%

8 0.042% 99.835% 99.992% 87.326% 99.392%

16 0.046% 99.917% 99.998% 92.025% 99.700%

32 0.127% 99.940% 99.999% 96.311% 99.915%

the largest overlap with the maximum area among those produced by the
different beam width values (also considering the case with β = 64), to
study the accuracy of the greedy algorithm on the pairs where the exact
algorithm exceeds the timeout.

As depicted in Table 3.2, in the first case (third and fourth columns) even
smaller values for the beam width lead to a very high accuracy. Differently,
in the second one (last two columns), they struggle to reproduce the exact
result (despite producing a good approximation); hence, values such as 16
or 32 appears to be a more reliable choice (note that these values reach a
very high accuracy of at least 0.9 on 97.148% and 99.013% of the pairs,
respectively), even if these configurations require more computational time,
as highlighted by their increasing (yet marginal) timeout rate.

3.6.3 Overlapping Tables in Wikipedia

With Sloth, we are able to detect overlapping tables coexisting in the latest
snapshot of the Wikipedia table matching dataset, composed of 2.13M tables
(see Table 3.1). To avoid comparing all pairs, we first performed LSH banding
on the dataset, using 8 bands and a minhash of 128 bits10. This operation
reduced the candidate set to 6.91M pairs of tables (we ignored the trivial
tables with only one distinct cell value).

Among the remaining candidates, the greedy algorithm was required only
for 110.88k of them (1.605% of the cases), and for only 4 the timeout of
60 seconds was exceeded. The average time for evaluating a candidate was
153.7 ms, and the process could be easily parallelized, distributing the can-
didates over several workers.

10This approximates a Jaccard similarity threshold of about 0.8; we observed in prelimi-
nary experiments, by manually inspecting samples of candidates, that under that threshold
the table overlap occurs mostly by chance in this dataset.
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Table 3.3: Types of overlapping tables in Wikipedia.

Type #Table Pairs Estimated Size

Perfect duplicates 5.91M (85.521%) 39.55 MB

Inclusions 351.24k (5.085%) 6.05 MB

Additional rows 59.75k (0.865%) 4.35 MB

Additional columns 289.97k (4.198%) 1.91 MB

Additional rows and columns 1.53k (0.022%) 0.56 MB

Partial overlaps 648.91k (9.394%) 39.16 MB

≥ 50% of the smallest table 252.80k (3.660%) 35.52 MB

< 50% of the smallest table 396.12k (5.735%) 6.60 MB

Total (≥ 50%) 6.51M (94.265%) 63.49 MB

Table 3.3 reports the results of our analysis, categorizing the evaluated
candidates according to the following types of overlap: (i) perfect dupli-
cates, if the two tables have identical content (with the possible reordering
of columns and rows); (ii) inclusions, if the smaller table is contained in the
larger one, which presents some additional rows and/or columns; (iii) partial
overlaps, if both tables present some cells that are excluded from the largest
overlap. For the estimated memory occupation, we rely on the average size
of the cells in this snapshot, equal to 14.53 bytes.

The number of pairs with an overlap of at least 50% of the smaller table is
surprisingly high. In particular, Wikipedia contains a huge amount of perfect
duplicates; this situation denotes a wide diffusion of the copy-and-paste prac-
tice across multiple pages, which can foster inconsistencies, as highlighted by
the relevant presence of inclusions and partial overlaps (e.g., we notice how
even the frequent and apparently trivial case of the legend tables defined for
a certain category of pages can lead to the rise of differences during the evo-
lution of these tables), and requires a consistent editing effort by the users
to achieve coherency in the encyclopedia.

Finally, we show how the area of the largest overlap detected by Sloth,
normalized by the area of the smaller table, differs from traditional metrics
based on set semantics, such as Jaccard similarity [Jaccard, 1912] and over-
lap set similarity [D. Deng et al., 2018; E. Zhu et al., 2019]. Set semantics
cannot consider the repetition of cell values and their alignment in the table;
moreover, Jaccard similarity presents a bias against sets of different sizes.
Figures 3.8k and 3.8l show on a random sample of 10k pairs (from the 1M
random table pairs introduced in Section 3.6.1) how these substantial differ-
ences can lead Jaccard and overlap set similarity (normalized by the size of
the smaller set) to very dissimilar results from Sloth. For instance, with
a 0.8 threshold Sloth would detect 321k pairs out of 1M, while Jaccard
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Table 3.4: Size of the clusters of sources with potential copying.

Dataset Sloth (min height) Jaccard (threshold) Li et al.

stock raw 13, 2 (0.85) 12, 2 (0.80)
11, 2

stock clean 13, 2 (0.95) 12, 2 (0.85)

flight clean 5, 4, 3, 3, 3 (0.95) 5, 4, 3, 2, 2 (0.80) 5, 4, 3, 2, 2

and overlap set similarity 339k and 557k (268k and 318k in common with
Sloth). For 365k and 601k pairs, Sloth’s result differs by at least 0.2 from
Jaccard and overlap set similarity, while the unnormalized value for the latter
is more than double or less than half the largest overlap area in 334k cases.
We collected in our GitHub11 repository 50 representative example pairs from
the wiki history dataset depicting typical cases where the analyzed metrics
differ significantly.

3.6.4 Potential Copying Detection

As a further real-world use case, in this section we focus on the detection of
potential copying across different sources. In their work on truth finding [X.
Li et al., 2012], Li et al. detect clusters of sources with potential copying
on the datasets about stocks and flights introduced in Table 3.1, relying on
criteria such as claimed dependencies or query redirections, and computing
several measures on them. The right column of Table 3.4 shows the size of
those clusters.

To perform potential copying detection with Sloth, we configured the
algorithm with a high threshold for the minimum height of the largest over-
lap to be detected (e.g., 0.9 of the table with fewer rows in the pair) and a
minimum width of 2 (since all tables share the column with the object identi-
fiers). This way, the algorithm finds pairs of tables with a very large overlap
on a subset of columns. Note that we consider the stock dataset both in
the raw and in the clean version that is obtained through schema alignment.
Due to the limited size of the datasets and the early stopping introduced
by the defined bounds, we simply consider for each day all the pairs of ta-
bles obtained through the Cartesian product, net of identity and reflexivity.
Sloth finishes all computations for each single day in less than one minute.
Finally, we consider those pairs of tables with an overlap width of at least 0.8
of the table with fewer columns (considering the lower bound for the schema
similarity of the clusters detected by Li et al.) during the whole period, with
a tolerance of 3 days, to be potential copies. As a baseline, we adopt Jaccard

11https://github.com/dbmodena/sloth/tree/main/examples

https://github.com/dbmodena/sloth/tree/main/examples
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similarity (on which Li et al. rely for multiple measures), computed between
the sets of cell values of the tables.

As depicted in Table 3.4, both solutions are not only able to detect all
clusters found by Li et al., but also to retrieve some additional sources with
potential copying in both domains. While a source with almost exactly the
same schema and content is easily detected even by Jaccard similarity as
a part of the larger cluster of the stock domain, Sloth can retrieve three
more additional sources: first, a second source for the same cluster with a
significantly wider schema and different labels (which can be retrieved by
Jaccard similarity only when dropping its additional columns in the aligned
version, with a threshold of 0.75); second, two more sources in the flight
domain, composed of a limited amount of copied rows. Indeed, Jaccard
similarity struggles with sets of different sizes; its set semantics, ignoring the
repetition and the alignment of cell values, might even lead to the detection
of false positives. Thus, using Sloth we were able to detect all clusters
of sources with potential copying with a minimum effort, even without the
need of performing schema alignment (as highlighted through the stock raw
dataset), also leading to the discovery of meaningful additional sources.

3.6.5 Discovery of Candidate Multi-Column Joins

Sloth can support practitioners in the fundamental yet challenging task
of automatically discovering candidate multi-column joins in a corpus of ta-
bles. To demonstrate it, we employ the real-world uni dwh dataset, which is
composed of 158 tables, making 12.4k table pairs. The average time for com-
puting the largest overlap for each table pair is about 9.6 seconds (mainly due
to the seed detection, as pointed out in Section 3.6.1, not counted towards
the timeout) and the process could be easily parallelized.

To detect reasonable multi-column joins, we limit the largest overlap to
between 2 and 5 columns. We also require the height of the overlap to be
at least 90% of the table with fewer rows: this ensures high coverage of its
values, while not looking for a perfect containment, which would be limiting
for the join discovery scenario. For instance, say we find that two tables have
a largest overlap involving 90% of the rows of one table and three attributes
FirstName, LastName, and Position; then, we might use these attributes
for joining the two tables.

A largest overlap that complies with the defined settings is detected for
only 243 pairs (out of 5.6k pairs that would be obtained without defining
restrictions on the overlap size). It is easy to determine the cardinality of
the join by counting the duplicates in the original tables of the attributes
that participate in the overlap: for each table in the pair, if there are no
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duplicates in the projection on those attributes, then the table participates
in the join with cardinality one. Thus, among the detected overlaps, we find
that 48, 64, 131 correspond to one-to-one, one-to-many, many-to-many joins,
respectively. For 34 out of these pairs, the overlap detects a composite key
(primary or alternate) for at least one table.

None of the existing solutions supports the automatic discovery of candi-
date multi-column joins. As a baseline, we can therefore adapt JOSIE, which
uses the overlap set similarity to detect single-column joins, to consider as a
set the entire tables instead of the single columns. Differently from Sloth,
such a baseline cannot take into account the structure of the table (including
the repetition and the alignment of cell values), preventing the definition of
the bounds that ensure the detection of multi-column joins. In fact, only 106
of the candidate multi-column joins discovered by Sloth (48, 37, and 21 for
each join type, 27 covering a composite key) are present among the top 243
table pairs according to their overlap set similarity (normalized by the size
of the smaller set) retrieved by the baseline. Instead, the baseline detects
several single-column joins and many invalid candidates, such as pairs with a
low row coverage or where the values from a column are matched by multiple
columns on the other side.
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Conclusion and Future Work

Data integration is the process of combining data acquired from multiple
autonomous sources to provide users with a unified consistent view on this
data. Together with data preparation and cleaning, it enables to guarantee
the quality and enhance the value of the data at hand for its use in down-
stream tasks (e.g., to perform data analysis or to train artificial intelligence
models). Data integration represents therefore one of the longstanding chal-
lenges in data management.

While in the past data integration had to deal with a relatively limited
number of sources, the scenario has drastically changed with the explosion
of big data. Nowadays, data integration is often required to work efficiently
over millions of heterogeneous sources, such as databases, Web tables, open
data, and data collected from sensors or IoT devices. This novel scenario
poses several challenges to the historical data integration techniques and
approaches, which have been significantly revised to comply with the features
of big data.

In particular, the paradigm for data integration moved more and more
from ETL (Extract, Transform, Load) towards ELT (Extract, Load, Trans-
form). Indeed, cleaning the entire data to load it into a data warehouse would
be prohibitively expensive and often technically unfeasible when dealing with
big data. Thus, in ELT a huge amount of raw data is collected and directly
stored as it is, for instance in a data lake, so that practitioners can transform
and integrate useful portions of this large data corpus according to the task
at hand.

Novel solutions are therefore required to handle only the portion of the
data that is effectively needed for the task at hand, returning results in a
timely manner, often in a pay-as-you-go fashion. This is what we denote as
data integration on-demand.

97
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Main Contributions

This thesis presented two main contributions that enrich the range of solu-
tions to support data practitioners in the ELT paradigm. In particular, their
focus is on two fundamental steps of the big data integration process: entity
resolution (which aims to detect the records, inside a dataset or across multi-
ple datasets, that refer to the same real-world entity, producing a consistent
representation for it) and dataset discovery (whose goal is to retrieve related
tables from large table corpora, e.g., to join them).

The first presented contribution is BrewER [Simonini et al., 2022; Zec-
chini et al., 2023; Simonini et al., 2023], a novel solution designed to perform
entity resolution on-demand. BrewER enables data scientists and practi-
tioners to run SQL SP queries directly on dirty data, obtaining the progres-
sive emission of consistent results as if they were issued on the cleaned version
of such data, according to a defined priority. BrewER is implemented as
an open-source Python library, so that it can be seamlessly integrated by
practitioners into their entity resolution workflows in Jupyter notebooks. As
clarified through its experimental evaluation, BrewER can save a significant
amount of time and resources in multiple relevant real-world scenarios.

The second contribution presented in this thesis is Sloth [Zecchini et al.,
2024], a novel solution conceived to efficiently determine the largest overlap
between two tables. Sloth aims to answer an open challenge in data discov-
ery, the detection of duplicate tables, leading to several benefits both on the
Web and in data lakes. For instance, it allows spotting and solving common
data quality issues, such as inconsistent or incomplete information. Also, it
helps eliminate redundancy to free up storage space or to save additional
work for the editors, preventing the insurgence of data quality problems.

The experimental evaluation assesses the performance of Sloth in real-
world scenarios, considering Web tables from Wikipedia and relational tables
from a data warehouse, up to use cases such as the detection of potential
copying between different sources and the automatic discovery of candidate
multi-column joins in a corpus of relational tables.

Future Work

As well as being relevant contributions to the research about the respective
big data integration steps, BrewER and Sloth also present interesting
prospects for further developments.
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Future Directions for BrewER

In the case of BrewER, one of the most impactful research contributions
would be moving from SP to SPJ SQL queries, i.e., providing also support
to join operations. As shown by some related previous work [Whang and
Garcia-Molina, 2012], dealing for instance with progressive relational entity
resolution [Altowim et al., 2014], this appears to be a challenging task. Nev-
ertheless, proposing a solution to this problem would clearly represent a
major advancement in the field.

Another relevant integration to the current implementation would be sup-
porting unbounded aggregate functions, such as SUM. Enabling the applica-
tion of this kind of functions to the attribute defining the emission priority
(i.e., the one used in the ORDER BY clause) would require to revise the cur-
rent algorithm, keeping track at each iteration of the maximum or minimum
value (depending on the type of ordering, i.e., ASC/DESC) for each block
of records, then using these block bounds to prioritize the evaluations of the
records from the block that may obtain the best aggregate value in that mo-
ment. Similarly, the introduction of this additional block level can favor the
parallelization of the computation, aimed to evaluate multiple blocks among
the most promising ones at the same time, relying for instance on Apache
Spark1, as done for related techniques such as meta-blocking [Simonini et al.,
2019; Gagliardelli et al., 2019].

Finally, an aspect closely related to the explainability of entity match-
ing, described in Section 2.1, is the fairness of such matchers. Even if the
research on fair entity resolution is still in its early stages, with only a few
recent papers dealing with it [Shahbazi et al., 2023], it represents a significant
and challenging direction to be explored [Azzalini et al., 2023]. An exam-
ple of fair entity resolution approach is FairER [Efthymiou et al., 2021],
a solution designed to guarantee the representativeness of a declared pro-
tected class when prioritizing comparisons in progressive entity resolution.
BrewER may therefore be adapted to go significantly beyond this first ap-
proach, defining a protected class (or possibly even multiple classes) through
a further additional clause in its SQL query, then guaranteeing the repre-
sentativeness of this class among the top-k resulting entities. The usefulness
of such a solution would go beyond strict fairness issues, guaranteeing for
instance that a certain class of entities is represented in the obtained set of
clean entities to be used in data analysis or for training a machine learning
model on it.

1https://spark.apache.org/

https://spark.apache.org/
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Future Directions for Sloth

Moving instead to Sloth, we plan to broaden our current research in multi-
ple main directions. Firstly, we want to study the design of updatable indexes
to enable table-overlap-based discovery at scale, i.e., to allow users to pro-
vide a table as a query and to retrieve the top-k tables presenting a large
overlap with it. As stated in Section 3.3, some of the related solutions may
be adapted for this task, for instance JOSIE [E. Zhu et al., 2019], consider-
ing a variant taking into account all table cells under the bag semantics to
return the top-k most promising table pairs to evaluate. Beyond this oppor-
tunity, we plan to explore multiple alternative solutions, such as the use of
Xash [Esmailoghli et al., 2022] or even novel indexing techniques specifically
designed for this problem.

Another approach that would favor scalability is the generation of embed-
dings for the table cells, similarly to the approach adopted by EmbDI [Cap-
puzzo et al., 2020]. This would also allow to relax the cell matching operation,
including in the overlap not only identical cells but also highly similar ones,
based on the closeness of their embeddings.

A further relevant advancement would be the possibility to detect not
only the largest, but also the best overlap between two tables, defining quality
metrics to capture the meaningfulness of an overlap based for instance on its
width and height or on the entropy of its content. This would also enable
to mask inconsistencies with null values to avoid losing partially matching
information, hence introducing a related penalty in the overlap quality [Batini
et al., 2009].

Finally, considering the usefulness of Sloth in the case of Wikipedia
(as proven through our experimental evaluation), it would be worth creating
a solution specialized to this scenario, reducing the search space and the
number of accidental matches by further differentiating columns annotating
them based on their type [Hulsebos et al., 2019] and considering even the
context, expressed for instance by the page title (always available for every
table), the section title, and the table description.
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Marco Túlio Ribeiro, Sameer Singh, Carlos Guestrin (2016). ”Why
Should I Trust You?”: Explaining the Predictions of Any Classifier.
Proceedings of the ACM International Conference on Knowledge Discov-
ery and Data Mining (KDD), pp. 1135–1144. doi: 10.1145/2939672.
2939778.

Dominique Ritze, Oliver Lehmberg, Christian Bizer (2015). Matching
HTML Tables to DBpedia. Proceedings of the ACM International Con-
ference on Web Intelligence, Mining and Semantics (WIMS), art. 10. doi:
10.1145/2797115.2797118.

Betsy Rolland, Suzanna Reid, Deanna Stelling, Greg Warnick, Mark
Thornquist, Ziding Feng, John D. Potter (2015). Toward Rigorous
Data Harmonization in Cancer Epidemiology Research: One Approach.
American Journal of Epidemiology, vol. 182, no. 12, pp. 1033–1038. doi:
10.1093/aje/kwv133.

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong,
Praveen Paritosh, Lora Aroyo (2021). ”Everyone wants to do the
model work, not the data work”: Data Cascades in High-Stakes AI. Pro-
ceedings of the ACM Conference on Human Factors in Computing Sys-
tems (CHI), art. 39. doi: 10.1145/3411764.3445518.

Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf (2019).
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter. arXiv, art. 1910.01108. doi: 10.48550/arXiv.1910.01108.

Enrico Sartori, Yannis Velegrakis, Francesco Guerra (2016). Entity-
Based Keyword Search in Web Documents. Transactions on Computa-
tional Collective Intelligence, vol. 21, pp. 21–49. doi: 10.1007/978-3-
662-49521-6_2.

Burr Settles (2012). Active Learning. Synthesis Lectures on Artificial In-
telligence and Machine Learning, doi: 10.1007/978-3-031-01560-1.

Nima Shahbazi, Nikola Danevski, Fatemeh Nargesian, Abolfazl
Asudeh, Divesh Srivastava (2023). Through the Fairness Lens:
Experimental Analysis and Evaluation of Entity Matching. Proceedings
of the VLDB Endowment (PVLDB), vol. 16, no. 11, pp. 3279–3292. doi:
10.14778/3611479.3611525.

Giovanni Simonini, Sonia Bergamaschi, H. V. Jagadish (2016). BLAST:
a Loosely Schema-aware Meta-blocking Approach for Entity Resolution.
Proceedings of the VLDB Endowment (PVLDB), vol. 9, no. 12, pp. 1173–
1184. doi: 10.14778/2994509.2994533.

Giovanni Simonini, Luca Gagliardelli, Sonia Bergamaschi, H. V. Ja-
gadish (2019). Scaling entity resolution: A loosely schema-aware ap-
proach. Information Systems, vol. 83, pp. 145–165. doi: 10.1016/j.

is.2019.03.006.

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2797115.2797118
https://doi.org/10.1093/aje/kwv133
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.1007/978-3-662-49521-6_2
https://doi.org/10.1007/978-3-662-49521-6_2
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.14778/3611479.3611525
https://doi.org/10.14778/2994509.2994533
https://doi.org/10.1016/j.is.2019.03.006
https://doi.org/10.1016/j.is.2019.03.006


122 BIBLIOGRAPHY

Giovanni Simonini, George Papadakis, Themis Palpanas, Sonia Berga-
maschi (2018). Schema-agnostic Progressive Entity Resolution. Proceed-
ings of the IEEE International Conference on Data Engineering (ICDE),
pp. 53–64. doi: 10.1109/ICDE.2018.00015.

Giovanni Simonini, Luca Zecchini, Sonia Bergamaschi, Felix Naumann
(2022). Entity Resolution On-Demand. Proceedings of the VLDB Endow-
ment (PVLDB), vol. 15, no. 7, pp. 1506–1518. doi: 10.14778/3523210.
3523226.

Giovanni Simonini, Luca Zecchini, Felix Naumann, Sonia Bergamaschi
(2023). Entity Resolution On-Demand for Querying Dirty Datasets.
Proceedings of the Italian Symposium on Advanced Database Systems
(SEBD). CEUR Workshop Proceedings, vol. 3478, pp. 410–419. url:
https://ceur-ws.org/Vol-3478/paper70.pdf.

Khanin Sisaengsuwanchai, Navapat Nananukul, Mayank Kejriwal
(2023). How does prompt engineering affect ChatGPT performance on
unsupervised entity resolution? arXiv, art. 2310.06174. doi: 10.48550/
arXiv.2310.06174.

Paolo Sottovia, Matteo Paganelli, Francesco Guerra, Yannis Vele-
grakis (2019). Finding Synonymous Attributes in Evolving Wikipedia
Infoboxes. Proceedings of the European Conference on Advances in
Databases and Information Systems (ADBIS). Lecture Notes in Com-
puter Science, vol. 11695, pp. 169–185. doi: 10 . 1007 / 978 - 3 - 030 -

28730-6_11.
Kavitha Srinivas, Julian Dolby, Ibrahim Abdelaziz, Oktie Hassan-

zadeh, Harsha Kokel, Aamod Khatiwada, Tejaswini Pedapati, Sub-
hajit Chaudhury, Horst Samulowitz (2023). LakeBench: Benchmarks
for Data Discovery over Data Lakes. arXiv, art. 2307.04217. doi: 10.

48550/arXiv.2307.04217.
Michael Stonebraker, Daniel Bruckner, Ihab F. Ilyas, George

Beskales, Mitch Cherniack, Stan Zdonik, Alexander Pagan, Shan
Xu (2013). Data Curation at Scale: The Data Tamer System. Proceedings
of the Biennial Conference on Innovative Data Systems Research (CIDR).
url: http://cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf.

Nesime Tatbul (2010). Streaming Data Integration: Challenges and Op-
portunities. Proceedings of the ICDE Workshops, pp. 155–158. doi: 10.
1109/ICDEW.2010.5452751.

Tommaso Teofili, Donatella Firmani, Nick Koudas, Vincenzo
Martello, Paolo Merialdo, Divesh Srivastava (2022). Effec-
tive Explanations for Entity Resolution Models. Proceedings of the IEEE
International Conference on Data Engineering (ICDE), pp. 2709–2721.
doi: 10.1109/ICDE53745.2022.00248.

https://doi.org/10.1109/ICDE.2018.00015
https://doi.org/10.14778/3523210.3523226
https://doi.org/10.14778/3523210.3523226
https://ceur-ws.org/Vol-3478/paper70.pdf
https://doi.org/10.48550/arXiv.2310.06174
https://doi.org/10.48550/arXiv.2310.06174
https://doi.org/10.1007/978-3-030-28730-6_11
https://doi.org/10.1007/978-3-030-28730-6_11
https://doi.org/10.48550/arXiv.2307.04217
https://doi.org/10.48550/arXiv.2307.04217
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
https://doi.org/10.1109/ICDEW.2010.5452751
https://doi.org/10.1109/ICDEW.2010.5452751
https://doi.org/10.1109/ICDE53745.2022.00248


BIBLIOGRAPHY 123

Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani,
Yash Govind, Derek Paulsen, Glenn Fung, AnHai Doan (2021). Deep
Learning for Blocking in Entity Matching: A Design Space Exploration.
Proceedings of the VLDB Endowment (PVLDB), vol. 14, no. 11, pp. 2459–
2472. doi: 10.14778/3476249.3476294.

Elisabeth R. M. Tillier, Robert L. Charlebois (2009). The human protein
coevolution network. Genome Research, vol. 19, no. 10, pp. 1861–1871.
doi: 10.1101/gr.092452.109.

Fabian Tschirschnitz, Thorsten Papenbrock, Felix Naumann (2017).
Detecting Inclusion Dependencies on Very Many Tables. ACM Transac-
tions on Database Systems (TODS), vol. 42, no. 3, art. 18. doi: 10.1145/
3105959.

Panos Vassiliadis, Alkis Simitsis, Spiros Skiadopoulos (2002). Concep-
tual Modeling for ETL Processes. Proceedings of the ACM International
Workshop on Data Warehousing and OLAP (DOLAP), pp. 14–21. doi:
10.1145/583890.583893.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez,  Lukasz Kaiser, Illia Polosukhin (2017). At-
tention Is All You Need. Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS). Advances in Neural Information
Processing Systems, vol. 30, pp. 5998–6008. url: http://papers.nips.
cc/paper/7181-attention-is-all-you-need.

Liane Vogel, Carsten Binnig (2023). WikiDBs: A Corpus Of Relational
Databases From Wikidata. Proceedings of the VLDB Workshops. CEUR
Workshop Proceedings, vol. 3462. url: https://ceur-ws.org/Vol-
3462/TADA3.pdf.

Jin Wang, Yuliang Li (2022). Minun: Evaluating Counterfactual Explana-
tions for Entity Matching. Proceedings of the Workshop on Data Man-
agement for End-To-End Machine Learning (DEEM @ SIGMOD), art. 7.
doi: 10.1145/3533028.3533304.

Steven Euijong Whang, Hector Garcia-Molina (2012). Joint Entity Res-
olution. Proceedings of the IEEE International Conference on Data En-
gineering (ICDE), pp. 294–305. doi: 10.1109/ICDE.2012.119.

Steven Euijong Whang, David Marmaros, Hector Garcia-Molina
(2013). Pay-As-You-Go Entity Resolution. IEEE Transactions on
Knowledge and Data Engineering (TKDE), vol. 25, no. 5, pp. 1111–1124.
doi: 10.1109/TKDE.2012.43.

Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, Saravanan Thiru-
muruganathan (2020). ZeroER: Entity Resolution using Zero Labeled
Examples. Proceedings of the ACM International Conference on Man-

https://doi.org/10.14778/3476249.3476294
https://doi.org/10.1101/gr.092452.109
https://doi.org/10.1145/3105959
https://doi.org/10.1145/3105959
https://doi.org/10.1145/583890.583893
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://ceur-ws.org/Vol-3462/TADA3.pdf
https://ceur-ws.org/Vol-3462/TADA3.pdf
https://doi.org/10.1145/3533028.3533304
https://doi.org/10.1109/ICDE.2012.119
https://doi.org/10.1109/TKDE.2012.43


124 BIBLIOGRAPHY

agement of Data (SIGMOD), pp. 1149–1164. doi: 10.1145/3318464.
3389743.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, Sebastian Riedel (2020).
TaBERT: Pretraining for Joint Understanding of Textual and Tabular
Data. Proceedings of the Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pp. 8413–8426. doi: 10.18653/v1/2020.acl-
main.745.

Luca Zecchini, Tobias Bleifuß, Giovanni Simonini, Sonia Berga-
maschi, Felix Naumann (2024). Determining the Largest Overlap
between Tables. Proceedings of the ACM on Management of Data
(PACMMOD), vol. 2, no. 1, art. 48. doi: 10.1145/3639303.

Luca Zecchini, Giovanni Simonini, Sonia Bergamaschi (2020). Entity
Resolution on Camera Records without Machine Learning. Proceedings
of the International Workshop on Challenges and Experiences from Data
Integration to Knowledge Graphs (DI2KG @ VLDB). CEUR Workshop
Proceedings, vol. 2726. url: https://ceur-ws.org/Vol-2726/paper3.
pdf.

Luca Zecchini, Giovanni Simonini, Sonia Bergamaschi, Felix Naumann
(2023). BrewER: Entity Resolution On-Demand. Proceedings of the
VLDB Endowment (PVLDB), vol. 16, no. 12, pp. 4026–4029. doi:
10.14778/3611540.3611612.

Yi Zhang, Zachary G. Ives (2020). Finding Related Tables in Data Lakes
for Interactive Data Science. Proceedings of the ACM International Con-
ference on Management of Data (SIGMOD), pp. 1951–1966. doi: 10.

1145/3318464.3389726.
Erkang Zhu, Dong Deng, Fatemeh Nargesian, Renée J. Miller (2019).

JOSIE: Overlap Set Similarity Search for Finding Joinable Tables in Data
Lakes. Proceedings of the ACM International Conference on Management
of Data (SIGMOD), pp. 847–864. doi: 10.1145/3299869.3300065.

Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, Renée J. Miller (2016).
LSH Ensemble: Internet-Scale Domain Search. Proceedings of the VLDB
Endowment (PVLDB), vol. 9, no. 12, pp. 1185–1196. doi: 10.14778/
2994509.2994534.

Liang Zhu, Xu Du, Qin Ma, Weiyi Meng, Haibo Liu (2018). Keyword
Search with Real-time Entity Resolution in Relational Databases. Pro-
ceedings of the International Conference on Machine Learning and Com-
puting (ICMLC), pp. 134–139. doi: 10.1145/3195106.3195171.

https://doi.org/10.1145/3318464.3389743
https://doi.org/10.1145/3318464.3389743
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.1145/3639303
https://ceur-ws.org/Vol-2726/paper3.pdf
https://ceur-ws.org/Vol-2726/paper3.pdf
https://doi.org/10.14778/3611540.3611612
https://doi.org/10.1145/3318464.3389726
https://doi.org/10.1145/3318464.3389726
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.14778/2994509.2994534
https://doi.org/10.14778/2994509.2994534
https://doi.org/10.1145/3195106.3195171

	Introduction
	Data Integration
	From ETL to ELT
	Data Integration On-Demand
	Contributions

	BrewER
	Entity Resolution
	Beyond Batch Entity Resolution
	Comparison with Related Work
	Preliminaries
	Entity Resolution Model
	Entity Resolution On-Demand Model

	Entity Resolution On-Demand
	Algorithm Overview
	The BrewER Algorithm

	Use Case Examples
	Querying Dirty Datasets
	Entity Resolution Pipeline Debugging

	Experimental Evaluation
	Performance of the BrewER Algorithm
	Shortcomings of the Traditional Baselines
	Discordant Ordering Queries
	Experiments with Aggregate Functions
	Performance with Blocking
	Performance with Missing Values
	Runtime Evaluation


	Sloth
	Dataset Discovery
	Overlapping Tables
	Comparison with Related Work
	Largest Overlap Definition
	Largest Overlap Detection
	Exact Algorithm
	Greedy Algorithm

	Experimental Evaluation
	Performance of the Algorithms
	Accuracy of the Greedy Algorithm
	Overlapping Tables in Wikipedia
	Potential Copying Detection
	Discovery of Candidate Multi-Column Joins


	Conclusion and Future Work
	List of Publications
	Bibliography

