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The estimation of the magnetic field generated at a given point by magnetic dipoles is an undergrad-
uate exercise. However, under certain approximation, this is all that is needed to evaluate the local
field at the muon site once the interstitial position of the muon in the unit cell is known. The develop-
ment of an application to specifically solve this problem may therefore seem an excessive effort. At
the same time, the lack of a general solution leads to the development of small ad hoc codes that are
generally rewritten or re-adapted for different experiments and are poorly optimized. This and other
motivations led to the development of MuESR, a python+C tool to perform dipolar field simulations.
In this manuscript we will describe the tool, its features and its development strategies.
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Introduction

With the advent of accurate and affordable electronic structure simulation methods, a new ap-
proach has emerged to solve the task of identifying the interstitial positive muon site in crystalline
systems [1-8]. This information is particularly important for muon spin rotation and relaxation spec-
troscopy (1SR ) experiments performed on magnetic materials since it allows to unveil quantitative
information on the magnetic order under the study. Once the muon site is known, the evaluation of
the local field at the muon site given a specific long range magnetic order is a trivial task. However
one may be interested in evaluating the local field on a grid of muons sites or, like in the case of
the Bayesian approach [9], on a large set of random interstitial points. Moreover, if the long range
magnetic order is not known yet, one can possibly be interested in checking a set of allowed mag-
netic structures (obtained, for example, from representation theory or from maximal magnetic space
groups) for a given propagation vector. And finally this test should be done considering all the crys-
tallographically equivalent interstitial sites. This and other similar tasks make the trivial problem of
evaluating the local field at the muon site quite time consuming, since, at the end of the day, the less
time is dedicated to the development of a general purpose computer program by using ad hoc solu-
tions, the more time will be required to adapt or rewrite the code for the future experiments. Moreover,
this type of calculation is generally CPU bound and the development of sufficiently optimized codes
can lead to spectacular algorithmic efficiencies. This however requires the use of more sophisticated
coding strategies.

For this reason we started the development of a new program, called MuESR, for Magnetic
structure and mUon Embedding Site Refinement, a Python based library with a self consistent C
kernel that is responsible for the number crunching. The application has been designed and developed
by uSR users for uSR users, thus keeping particular attention to some key points that will be discussed
in the following sections: generality, efficiency and simplicity of use.
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Implementation details

MuESR is a computer program written in the form of a C library and a python package that
performs dipole-field and dipole-tensor sums using real space algorithms. While Ewald summation
would provide an even more efficient method to perform the evaluation of the magnetic field generated
by an infinite lattice of magnetic dipoles, its implementation is still missing in MuESR since the
performances of modern laptops provide enough computational power to obtain results with better
than 1% accuracy in generally less than a ms time per muon site. The time required to perform the
simulations is therefore negligible on the scale of the full data analysis.
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Fig. 1. Convergence against the supercell size for the components of Eq. 1 in the case of BCC Iron for the
known muon site. The x axis reports the number of unit cells in the three lattice directions. The largest Lorentz
sphere contained in the supercell is always considered.

The current implementation performs a dipolar field sum using the Lorentz method, which is
briefly described in the following and is instead discussed in details, for example, in Ref. [10].
The total field at the muon site B, in a zero-field experiment can be split for convenience in the

following terms:
By = Bdip + B¢ + Bgem (D

where Bgip, Be and Bgey, are the dipolar field, the Fermi contact field and the demagnetization
field, respectively. In magnetic materials, the first two terms originates from the interaction between
the muon and spin polarized electronic wavefunctions while the last term also depends on the sample
geometry.

The dipolar field can be approximated with good accuracy, assuming a classical moment m cen-
tered at the atomic positions of the magnetic atoms, and evaluating the total contribution stemming
from the electrons of the system as

Ho J 3rim; -rj) m;
Byip(r) = 7 Z =—-3 )

I
i

where m; is the magnetic moment of atom i, r; is the distance between atom i and the muon site
and N is the total number of magnetic moments in the system under study.

To improve the convergence of this sum, the Lorentz method is generally adopted. In this ap-
proach, only the moments that reside inside a sphere of radius Ry from the muon position are ac-
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tually summed as in Eq. 2, while the moments outside the so called Lorentz sphere are treated as a
continuum. This last contribution is obtained, in MuESR, as

/,l I‘,'<RL
0
B =— m;(r; 3
L 3VL i l( 1) ( )
where V. is the volume of the Lorentz sphere. In MuESR, the dipolar field is therefore reported as
two separate components: Bp, stemming from the direct sum of the atoms inside the Lorentz sphere,
and B;..

The Fermi contact field contribution is instead of purely quantum origin. In MuESR, this term
is evaluated assuming a scalar interaction between the muon and the spin polarized electron wave-
function y:

Nu o Nu o
Beon = . oW m; = 3 ZlwiAcm] 0
4 4

where r;, is the muon position, N, is a cut-off provided by a maximum distance from the muon,
wi(r;, 1) is a scaling factor and A, is a scalar coupling factor. There are two strong assumptions' in
the above formula that are not guarantied to be valid in general. The first one is the assumption that
the interaction is isotropic and can therefore be described with a scalar coupling term. The second one
is the definition of the w; term. In principle its value should be obtained from a quantum mechanical
treatment of the electrons in the system. However, in lack of this sophisticate treatment, a possible
approximation that can be introduced is to make it proportional to the distance r;, i.e. the distance
between the muon position and the atom having spin polarized orbitals. In the current implementation
of MuESR this term is actually proportional to 1/ rl.3. This setting can be modified, but requires the
recompilation of the C source code. This is because, in the current classical approximation, a simple
geometrical dependent description of this quantity is by definition arbitrary. Attention should be paid
to this term to check if it matches the expected behavior since, especially in antiferromagnets, results
can depend on the number of nearest neighbors N, selected.

Finally, in MuESR the description of the magnetic structures is provided by means of the propa-
gation vector formalism, requiring the definition of the magnetic moments in terms of Fourier com-
ponents (FC), in a similar fashion to the FullProf [11], the neutron scattering analysis suite.

The general expression for the magnetic moment of a given atom j in the unit cell at R; is

my; = > Skexp(-2ri(kR, + ¢i)) )
k

where K is the propagation vector, defined in reciprocal space, while Si; are the complex Fourier
coefficients.

The vast majority of the magnetic orders can be described as the sum over just a few k wavevector
components. At the time of writing, MuESR only implements single k orders, without real loss of
generality, since the local field at the muon site generated by multiple k is just the sum of the local
fields generated by each individual k. This has the advantage of leaving the possibility of distinguish-
ing the contributions given by the various Kk to the terms of Eq. 1.

The main reason for choosing the propagation vector formalism, instead of the alternative de-
scription in terms of magnetic space groups, is the possibility of using the representation analysis of
magnetic structure as provided by the tools of the FullProf suite [11].

'Eq. 4 is actually obtained starting from the quantum Hamiltonian describing the interaction between an electron and a
muon and using a series of approximations. The reader is referred to Ref. [10] for a detailed description of the origin and
the validity of the above result.
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Fig. 2. The list of commands, in the form of a Python notebook, that are required to evaluate the local field
in LiFePOy at the four muon sites proposed by Ref. [19]. Without comments, it’s 25 lines of code (20 lines if
print functions are neglected). Time to solutions is just a couple of seconds.

Description of the tool

The MuESR library is written in Python and C. It is compatible with both Python2 and Python3
and it can also be used in C or C++ programs, but in this latter case only the functions performing
the dipole field sums and the dipolar tensor evaluation are available. The C code is self contained and
has no dependencies, even if a computationally optimized set of routines (under development) will
depend on external libraries. The python based part only depends on NumPy [12, 13], but some more
packages are required to exploit all the functionalities provided by the code.

The simplest user experience can be obtained with interactive Python shells like IPython of
Jupyter notebooks, as shown, for example, in Fig. 2. This approach also allows the production of
simple and easily shareable documents and guarantees reproducible data.

The code itself is available on a GitHub repository (see Ref. [14]). A rather complete documenta-
tion, starting from installation instructions, including a tutorial and a number of guided examples, is
available on the web [15]. The very simple examples include the case of an antiferromagnet, LiFePOy,
shown in Fig. 2, and a further example including the contact field is that of BCC Fe. As it may be seen,
the python exploitation code reduces to twenty lines and produces its result on a standard personal
computer in the order of a second.

The definition of a new crystalline structure, the starting point of all types of analyses, can be
obtained by using the widespread functions provided by the ASE suite [16] (which has been slightly
adapted in MuESR but preserve compatibility with the functions of the main project) or by loading
CIF or XCrysDen [17] files. The code can use and collect symmetry information directly from the CIF
files or using the Spglib [18] to inspect the symmetries starting from the lattice and atomic positions
definition. This information can later be used to reduce the computational load or to explore all the
possible symmetry equivalent sites of dipolar sum calculations. The core includes routines to obtain
local fields as a function of the rotation of the local moments around a given axis and an optimized
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Fig. 3. Distribution of the local field at the muon sites in MnSi for a perfect left handed helical magnetic
structure (right) and for the experimental magnetic structure described in Ref. [20] (left). For the sake of
clarity, the single peak and the Overhauser distribution are depicted with different colors. The effect of a phase
shift between the magnetic moments of the Mn inside the unit cell is evident from the zoomed inset panels.

algorithm for non-commensurate magnetic orders (see Ref. [4], appendix).

The current fully portable routines running on a single Core 2 Duo processor (2.5 GHz) require
about 15 ms per muon site to achieve better than 2 parts per thousand accuracy. Nonetheless, since
most of the time is spent in python function calls overhead in such a small case, the time to collect
the results for 1000 sites with the same accuracy is just about 2.5 seconds .

Key studies

Let us now discuss the effectiveness of MuESR by introducing two representative studies. The
first one is the interesting case of the helimagnet MnSi, which is also treated in the examples reported
in Ref. [15].

There are four equivalent muon sites in the MnSi cell, made inequivalent by the choice of the
direction of k in a single crystal [4,21]. They give rise to a double peak spectrum, plus a sharp
line shown in Fig. 3 [21]. It was pointed out by a recent experiment [20] that magnetic Mn ions are
distinguished in orbits (in principle four, as many as the ions in the unit cell, experimentally only
two), where the helix is realized by the same wave vector, but may be distinguished by a different
relative phase. Neutron diffraction is insensitive to this detail, but uSR is not: the phase produces a
relative shift between the double peak spectrum and the sharp line, shown in the insets of Fig. 3, that
originate from the contribution of the four muon sites in the unit cell. It is very quick to reproduce this
subtle difference with MuESR, as it is shown in the example reported in Ref. [15], thus determining
the relative phase between the two orbits that reproduces the experimental result [20,21].

Whenever the presence of a large contact field can be ruled out and the muon position is known,
either from DFT simulations or from single crystal experiments, representation analysis for a given
set of propagation vectors may be used to identify the long range magnetic order by comparing
experimental and calculated dipolar fields at the muon sites.

Let’s consider, as an example, CuSe;Os, a compound that has been thoroughly investigated in
Ref. [22] with both uSR and Neutron scattering measurements. This material crystallizes in a mon-

%In addition, two experimental branches introduce OpenMP parallel execution that show very good scaling up to 4 cores
and an interface to optimized BLAS functions which provide an order of magnitude better performances with respect to
the trivial implementation, at the expenses of full code portability.

)
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Table I. The combinations of Fourier amplitudes u, v, w in the irreducible representations of the little groups
of k = (1,0,0) for CuSe,Os, which has a monoclinic cell with C2/c symmetry and Cu atoms in (0,0,0).

oclinic lattice structure [23] characterized by the presence of four magnetic Cu atoms per unit cell
having a reduced moment of about half Bohr magneton. The lattice structure is depicted in Fig. 4
where the refined magnetic order is also represented.

From pSR data, the presence of four muon site can be guessed. The positions identified by Herak
and co-workers are all close to oxygen atoms and are located in the 8 f Wyckoff sites: (0.19,0.01,0.23),
(0.33,0.40,0.06), (0.32,0.44,0.02) and (0.35,0.49,0.32). The dipolar magnetic fields at these sites are
19 mT, 31 mT, 32 mT and 54 mT respectively. These embedding positions were found with a dipolar
field analysis described in detail in Ref. [22] but it will be assumed here that they are known from a
transverse field experiment performed on a single crystal sample® or from a detailed DFT analysis*.

From neutron scattering data analysis, the k=(1,0,0) propagation vector is identified and the little
group of the propagation vector can be decomposed into two irreducible representations reported in
the header of Tab. I. The values for the local moments of the Cu atoms can therefore be expressed as
a linear combination of the FC factors as reported in Tab. I. This reduces the number of degrees of
freedom in the definition of the magnetic order from 6 to 3, thus making it fairly easy to explore this
phase space with the constraint of a fixed absolute value for the local moment per Cu atom.

After 10000 uniform random samples of the u, v and w parameters varying on a sphere, a set of
compatible magnetic moment directions, belonging to I'*, can reproduce the absolute value of the
experimental magnetic fields at the muon sites (with better than 5 mT accuracy on each site) while no
compatible configurations are found for I'; under the same conditions. This result agrees well with the
neutron scattering magnetic refinement discussed in Ref. [22] which reports that the best agreement
with the experimental data is obtained with I'>.

The local moment directions on the Cu atoms obtained from the «, v and w parameters exploration
are shown in Figure 4b. With the given threshold of 5 mT for the comparison with the modulus of the
experimental fields, two set of vectors are obtained and one of them share the same direction of the
Cu moments provided by the Rietveld refinement, although with lower accuracy. This is partially due
to the fact that the propagation vector is at the border of the Brillouin zone thus making the norm of
local field at the muon sites the same for all the equivalent positions in the unit cell. Nonetheless, it
is possible to rule out the irreducible representation I'' and to confirm that Cu moments almost lie in
the b — ¢ plane. The use of MuESR makes this result readily obtainable.

Conclusions

The MuESR tool presented in this article represents a simple but complete and optimized method
to evaluate the local field at the muon site. It can be used from within a scripting language thus
providing enough flexibility to the user and to allow the implementation of a variety of approaches
for the muon embedding site identification and/or for long range magnetic order investigations.

The tool is opensource, documented and freely available under GPLv3.

3A single crystal sample is actually available for this compound.
“The authors of Ref [22] tried to identify the muon site by inspecting the minima of the unperturbed electrostatic
potential. This approach is however inaccurate in insulators as they point out.
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Fig. 4. Results of the dipolar field based investigation of the magnetic order of CuSe,Os. The atoms of the
hosting system have labels reporting the element name while the (coloured) dots with grey thin links show
the muon sites and their distance from Oxygen atoms. The yellow (long) arrows show the zero field long
range magnetic order, obtained with neutron scattering magnetic refinement, which belongs to the irreducible
representation I'*. The smaller red arrows, also shown in the zoomed panel b), indicate the compatible magnetic
orders (see main text) obtained by varying the u, v and w parameters. Only 10% of the full set is shown. This
subset share the same characteristics of the whole set of the compatible parameters, i.e. the local moments on
Cu atoms have small a component and two definite values for the ¢ component. The direction of the moments
on the other Cu atoms is not reproduced for the sake of clarity since it is fixed by symmetry. Produced with
VESTA [24].
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