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ABSTRACT

A previous paper by Cimarelli et al. [“General formalism for a reduced description and modelling of momentum and energy transfer in
turbulence,” J. Fluid Mech. 866, 865–896 (2019)] has shown that every decomposition of turbulent stresses is naturally approximated by a
general form of tensorial eddy viscosity based on velocity increments. The generality of the formalism is such that it can also be used to give
a reduced description of subgrid scalar fluxes. In the same work, this peculiar property of turbulent stresses and fluxes has been dynamically
exploited to produce tensorial eddy viscosity models based on the second-order inertial properties of the grid element. The basic idea is that
the anisotropic structure of the computational element directly impacts, although implicitly, the large resolved and small unresolved scale
decomposition. In the present work, this new class of turbulence models is extended to compressible turbulence. A posteriori analysis of flow
solutions in a compressible turbulent channel shows very promising results. The quality of the modeling approach is further assessed by
addressing complex flow geometries, where the use of unstructured grids is demanded as in real world problems. Also in this case, a posteri-
ori analysis of flow solutions in a periodic hill turbulent flow shows very good behavior. Overall, the generality of the formalism is found to
allow for an accurate description of subgrid quantities in compressible conditions and in complex flows, independent of the discretization
technique. Hence, we believe that the present class of turbulence closures is very promising for the applications typical of industry and
geophysics.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0076341

I. INTRODUCTION

The old idea of Boussinesq2 of representing turbulent stress and
turbulent dissipation by means of an eddy viscosity has been devel-
oped during the years following many distinct directions. The
Smagorinsky model,3 based on the assumptions of isotropic small-
scale turbulence in equilibrium with large scales, is the best known
example of scalar eddy viscosity. Its dynamic version4 is addressed to
overcome the equilibrium assumption and to better predict wall turbu-
lence, shear, and transitional flow. However, the isotropicity hypothe-
sis is violated not only by large scales, as is evident in complex flows of
engineering interest, but also by small scales, usually unresolved in the
large eddy simulation (LES) approach, that show strong anisotropicity.
Hence, anisotropic, tensorial eddy viscosities have been proposed,
mainly empirically, to overcome the isotropicity assumption, in order
to combine better with the disalignment of the stress tensor with the
Reynolds or the subfilter stress, and in many cases, theoretical

arguments have produced anisotropic eddy viscosities depending on
unknown constants that dynamically could be better guessed.5 In par-
ticular, we refer here to the approach originally developed by Abb�a
et al.6 with the goal of removing the limitations related to isotropic
eddy viscosity models. There, the subgrid stress tensor was assumed to
be proportional to the strain rate tensor through a fourth order sym-
metric tensor, and a dynamic procedure was developed in order to
adjust some undetermined constants with the particular flow.

Non-isotropic grids are usually used in simulations of non-
homogeneous flows with the aim to better represent large anisotropic
turbulent structures. Often anisotropic grids are imposed, in simula-
tions of turbulent flows of engineering application, by pure geometri-
cal reasons. The use of implicit filtering with anisotropic grids in LES
is directly associated with an anisotropic definition of large and small
scales. So, the anisotropy of the grid may also be used in turbulence
closures to take into account information about the induced
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anisotropy of subgrid turbulence structures. The first attempt to take
into account resolution anisotropy was proposed by Schumann7 and
Zahrai et al.,8 introducing different length scales associated with the
face element diagonal. Other proposals have followed, Bardina et al.9

and Abb�a et al.,10 based on empirical arguments, which introduced a
tensorial filter length.

An approach more fitted to represent the anisotropies induced
by the grid has been proposed in a previous paper by Cimarelli et al.,1

where this old problem has been explored in a new way. In the theo-
retical framework provided by an alternative decomposition of turbu-
lent stresses, a new formalism for their approximation and
understanding has been proposed that spontaneously directs to a ten-
sorial turbulent eddy viscosity based on the two-point velocity incre-
ments, dui ¼ uiðx þ dxÞ � uiðxÞ. The formalism strictly connects to
numerics, where derivatives are ratios du=ðdxÞ taken at the numerical
resolution scale. The derived closure of the tensorial viscosity is based
on filtered velocity gradients and on the second order inertial proper-
ties of the grid element. The basic idea is that the structure of the com-
putational element impacts the anisotropy of the filtered-out motions,
and hence, this information could be leveraged to improve the predic-
tion of subgrid stresses. It is worth noting that a similar idea has been
later exploited by Haering et al.11 to develop an anisotropic minimum-
dissipation model.

In the present work, we further assess the modeling approach
developed in Cimarelli et al.1 with two aims. The first is to extend the
modeling approach to compressible turbulence and to test its perfor-
mance in a turbulent channel. The second is to test the modeling
approach in complex flows where the use of unstructured grids is
demanded, thus exploiting all the potential of the proposed turbulence
closure. For this second purpose, the turbulent flow over periodic hills
is considered.

The paper is organized as follows. The filtered equations in the
compressible framework and the numerical code are shown in Sec. II,
while the closures for subgrid stresses and for subgrid enthalphy and
heat fluxes are shown in Sec. III. These turbulence closures are tested
and compared with direct numerical simulation (DNS) data in the
case of a compressible turbulent channel and of a channel with peri-
odic hills in Secs. IV and V, respectively. This work is closed by final
remarks in Sec. VI.

II. THE FILTERED EQUATIONS AND THE NUMERICAL
CODE

The filtered Navier–Stokes equations for compressible flows can
be written in a dimensionless form as

@tUþr � Fa � Fv þ Fsgsð Þ ¼ S; (1)

where U ¼ ½�q; �qeuT ; �qee�T are the resolved density of the fluid, the
resolved momentum, and the resolved volume specific total energy,
respectively. Here, � ande� represent the grid filter and the Favre filter
operators, respectively, as it will be better explained at the end of this
section. In Eq. (1), the advective fluxes are defined as

FaðUÞ ¼

�qeu
�qeu � eu þ 1

cMa2
�pI

�qeheu

2
6664

3
7775; (2)

where �p denotes the filtered pressure, �qeh ¼ �qee þ �p denotes the
resolved enthalpy, Ma is the Mach number, c ¼ cp=cv is the heat
capacity ratio, andI is the identity matrix. On the other hand, the vis-
cous fluxes are

FvðU;rUÞ ¼

0
1
Re
er

cMa2

Re
euTer � 1

jRePr
eq

2
66664

3
77775; (3)

where er and eq are the momentum and heat diffusive fluxes, respec-
tively, j ¼ R=cp, and Re and Pr are the Reynolds and Prandtl num-
bers, respectively. Finally, subgrid fluxes are

FsgsðU;rUÞ ¼

0

sþ esgs

ðqhuÞsgs � cMa2

Re
/sgs þ 1

jRePr
hsgs

2
6664

3
7775; (4)

where s is the subgrid stress tensor, ðqhuÞsgs ¼ qhu � �qeheu and

esgs ¼ �r � er; /sgs
j ¼ uirij � euierij; hsgsj ¼ qj � eqj: (5)

These latter contributions to subgrid fluxes will be discussed in
Sec. III. Equation (1) is completed by the dimensionless state equation
for a perfect gas,

�p ¼ �qeT ; (6)

where eT is the filtered temperature. The term S represents a source
term

S ¼
0

�qf

�qf � eu
2
64

3
75; (7)

where f is a specific, constant in space, driving force. The following
constitutive equations must be specified in order to close the
system:

erij ¼ lfSij
d
; eqi ¼ �l@ieT : (8)

The resolved strain rate tensor is defined as

fSij ¼ @jeui þ @ieuj; fSij
d
¼ fSij �

1
3
gSkkdij; (9)

where the dynamic viscosity, according to the Sutherland law, is

lðeT Þ ¼ eT 0:7
: (10)

The numerical code used in the present work solves the
compressible Navier–Stokes equations with the local discontinu-
ous Galerkin (LDG) approach. The code is based on the
FEMilaro finite element library, a FORTRAN/MPI library that is
publicly available under GPL license at the link https://bitbucke-
t.org/mrestelli/femilaro/wiki/Home. The main features of the
numerical method are here reviewed, but for more details, we
refer to Tugnoli et al.12
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A Discontinuous finite element spaceVh

Vh ¼ fvh 2 L2ðXÞ : vhjK 2 PpK ðKÞ; 8K 2Thg (11)

is defined over a tessellation Th composed of non-overlapping tetra-
hedral elements in the domain X. Here, PpK ðKÞ denotes the space of
polynomial functions of total degree pK. A modal local discontinuous
Galerkin approach13 is applied to discretize the equations. A hierarchi-
cal orthonormal polynomial basis functions wK

l defined on each ele-
ment K in the finite dimensional space Vh is used to represent the
numerical approximation of a generic variable a,

ahjK ¼
XnwðKÞ

l¼0
aðlÞwK

l : (12)

where aðlÞ is the modal coefficient of the basis functions and nwðKÞ
þ 1 is the number of basis functions required for the polynomial space
PpK ðKÞ of degree pK, defined in R3 as

nwðKÞ ¼
1
6
ðpK þ 1ÞðpK þ 2ÞðpK þ 3Þ � 1: (13)

In the LDG approach, as explained in van der Bos and Geurts14 and
Abb�a et al.,15 the LES filtering operator�� is equivalent to the projection
onto the finite dimensional solution subspace,

�a ¼ PVha; (14)

while the Favre filter operator is defined as

qa ¼ �qea: (15)

III. THE SUBGRID SCALE MODELS

In Eq. (4), the following terms appear: the subgrid stress tensor

sij ¼ quiuj � �qeuieuj ¼ �q guiuj � euieuj
� �

; (16)

the subgrid enthalpy flux

ðqhujÞsgs ¼ qhuj � �qeheuj ¼ �qfhuj � �qeheuj (17)

and

esgs ¼ �r � er; /sgs
j ¼ uirij � euierij; hsgsj ¼ qj � eqj: (18)

Based on the analysis presented in Pino Mart�ın et al.16 and Vreman
et al.,17 assuming �r ’ er and �q ’ eq, the terms /sgs, esgs, and hsgs are
neglected. Concerning the enthalpy

qh ¼ �qeh ¼ 1
k

�qeT þ cMa2

2
ð�qeukeuk þ skkÞ; (19)

introducing the subgrid heat flux

Qsgs
i ¼ quiT � �qeuieT ¼ �qðfuiT � euieT Þ (20)

and the turbulent diffusion flux

Jsgsi ¼ uiukuk � �qeuieukeuk ¼ �qðeuiukuk � euieukeukÞ; (21)

we obtain

ðqhuiÞsgs ¼
1
k
Qsgs

i þ
cMa2

2
ðJsgsi � euiskkÞ: (22)

Introducing the generalized central moment18

sðui; uj; ukÞ ¼ �qeuiujuk � euisjk � eujsik � euksij � �qeuieujeuk; (23)

the turbulent diffusion flux can be written as

Jsgsi ¼ sðui; uk; ukÞ þ 2euksik þ euiskk: (24)

By this way, subgrid fluxes are reduced to

Fsgs ¼

0

s
1
k
Qsgs � cMa2

2
ðJsgs � euskkÞ

2
6664

3
7775: (25)

Following Cimarelli et al.,1 we model subgrid stresses as

sij ¼ ��q �kj@keui þ �ki@keuj
� �

; (26)

where �ki represents the components of a tensorial subgrid viscosity

�ki ¼ �
1
2
sðxh; xkÞ@heui: (27)

The moment

sðxh; xkÞ ¼
1
Kf

ð
Kf

ðnk � xkÞðnh � xhÞdn (28)

is a tensor related to the inertial tensor of the filter volume, and it is
representative of the anisotropy of computational grid, see Cimarelli
et al.1 and Haering et al.11 Here, x is the position of the Gauss nodes
where the solution is located in space using quadrature formula, and
Kf is the portion of the element grid volume pertinent to each Gauss
node. This moment is here computed numerically by

sðxh; xkÞ ¼
1

Kn2wðKÞ
Xng
i¼1

xhxkwg ; (29)

where x is the coordinate in an element baricentric reference system
and wg is the weight of the Gauss nodes. Following Cimarelli et al.,1

the tensorial subgrid viscosity is used to model also the scalar
quantities,

Qsgs
i ¼ �

1
2

�q�ih@heT (30)

and

sðui; uk; ukÞ ’ sðui; ukukÞ ¼ �
1
2

�q�ih@hðeukeukÞ: (31)

Now a dynamic procedure is applied. Each subgrid term is modulated
by tensorial coefficient,1

sij ¼ �Cij �kj@keui þ �ki@keuj
� �

; (32)

Qsgs
i ¼ �

1
2
CQ
i �q�ih@heT ; (33)

sðui; ukukÞ ¼ �
1
2
CJ
i �q�ih@hðeukeukÞ: (34)
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A test filter operator b� is introduced
ba ¼ XnwðKÞ=2

l¼0
aðlÞwK

l (35)

and also a Favre test filter a
^ ¼cqa=bq. The Germano identity reads

Lij ¼Tij �bs ij ¼ d�qeuieuj � b�qeu^ieu^j (36)

and similarly

LQ
i ¼ Q

sgs
i � bQsgs

i ¼
d

�qeuieT � b�qeu^ieT^ ; (37)

LJ
i ¼Tðui; ukukÞ �bsðui; ukukÞ ¼b�qeuiðeukeukÞ � b�qeu^i�ðeukeukÞ; (38)

where

Tij ¼ dquiuj � b�qeu^ieu^j; (39)

Q
sgs
i ¼ dquiT � b�qeu^ieT^ ; (40)

Tðui; ukukÞ ¼bquiukuk � b�q eu^ i
�ðeukeukÞ: (41)

Applying the tensorial viscosity model to the test filtered terms

Tij ¼ �Cijb�q b�kj@keu^ i þ d�kieuj

� �
; (42)

Q
sgs
i ¼ �

1
2
CQ
i
b�qb� ih@heT^ ; (43)

Tðui; ukukÞ ¼ �
1
2
CJ
i
b�qb� ih@h�ðeukeukÞ (44)

and assuming that the tensorial coefficients are scale invariant, we get

Cij ¼
Lij

Nij
; CQ

i ¼
LQ

i

NQ
i

; CJ
i ¼

LJ
i

NJ
i

; (45)

where

b�ki ¼ � 1
2

dsðxh; xkÞ@heu^ i (46)

and

Nij ¼ d�q�kj@keui þ d�q�ki@keuj � b�qb�kj@k �eui � b�qb�ki@k �euj ; (47)

NQ
i ¼
b�q�ki@keT � b�qb�ki@keT^; (48)

NJ
i ¼
b�q�ki@kðeukeukÞ � b�qb�ki@k�ðeukeukÞ: (49)

The tensorial coefficients computed with the dynamic procedure are
averaged over the grid element, so that it can be considered indepen-
dent of the applied filter. Moreover, the coefficients are clipped to get
non-negative total dissipation. For a better comprehension of these
two sections, let us finally briefly review again the meaning of symbols
that, as usual in a dynamic procedure, could generate some confusion.
The overline �� stands for the LES filtering operator, the tildee� stands
for the associated Favre operator, while the b� and �^ represent the test
filter and the associated Favre test filter, respectively. We remark that
in our formalism, we do not explicitly introduce Favre fluctuations.
The variable-density SGS contributions to the momentum equation

are written explicitly in terms of the SGS central moments.19 For fur-
ther up to date reflections on that and more generally on the treatment
of variable density turbulent flows, see Saenz et al.20 and Livescu.21

A. Subgrid scale models selected for comparison

An attempt to take into account anisotropy of the grid element
using its inertial tensor has been made also in Abb�a et al.10 For this
reason, we refer as comparison also to the results obtained with
that model, in the following called A3. We briefly recall its formula-
tion here for completeness. In this model, a fourth order tensor Bijrs
is introduced,6 which links the subgrid stresses to the strain rate
tensor,

sij ¼ �2Bijrs
�D
2j eSj eSrs: (50)

In a locally rotated reference frame, the tensor Bijrs becomes diagonal
with respect to two indices. In the formulation proposed in Abb�a
et al.10 and used here, this local reference frame is aligned with the
eigenvector xi of the inertial tensor of the grid element. In this way,
the sgs stresses assume the following form:

sij ¼ ��qj eSjX3
a;b¼1

Cab
�Dabxiaxjbxraxsb

gSrs ; (51)

where the tensor �Dab ¼ ð
ffiffiffiffiffiffiffiffi
kikj

p
n2UðKÞÞ

�1 is the function of the eigen-
values ki of the inertial tensor of the mesh element, and the unknown
coefficients Cab are determined using the Germano identity and the
dynamic procedure. A similar approach is applied to the subgrid heat
flux Qsgs

i and to the kinetic energy flux sðui; ukukÞ, which, respectively,
read

Qsgs
i ¼ ��qj eSjX3

a¼1
CQ

a
�Daaxiaxra@reT ; (52)

sðui; ukukÞ ¼ ��qj eSjX3
a¼1

CJ
a
�Daaxiaxra@rðeukeuk=2Þ (53)

and where the unknown coefficients CQ
a and CJ

a are again computed
using the dynamic procedure and are averaged in the element.

As already mentioned, in tensorial eddy viscosity models, the
turbulent stress tensor is not forced to be aligned to the strain rate
tensor. To highlight how this property is important to well repro-
duce the anisotropy character of turbulence, a comparison with a
scalar eddy viscosity model is also presented in Sec. IV. To this aim,
a dynamic isotropic model based on Abb�a et al.15 is here presented.
In this model, the subgrid terms are modeled as

sij ¼ ��qj eSjCS
�D
2fSij ; (54)

Qsgs
i ¼ ��qj eSjCQ

�D
2
@ieT ; (55)

sðui; ukukÞ ¼ ��qj eSjCJ
�D
2
@iðeukeuk=2Þ: (56)

Here, �D represents the cubic root of the element volume divided by
the number of degrees of freedom nwðKÞ in the element. Again, the
unknown coefficients CS;CQ; andCJ are determined by the dynamic
procedure and are averaged in the element. This isotropic dynamic
model will be indicated in the following as ISO.
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IV. COMPRESSIBLE TURBULENT CHANNEL FLOW
SIMULATIONS

In order to compare the performances of the described
approaches, we have computed a typical LES benchmark, the com-
pressible turbulent channel flow. Although the simplicity of the
geometry of this classical test case, it represents a fundamental first
test for the present model in compressible conditions. The results
are compared with the data from the DNS of Wei and Pollard22

and from the LES with the anisotropic A3 and the isotropic ISO
models.

The computational domain X is a box of size Lx=h ¼ 4p;
Ly=h ¼ 2; andLz=h ¼ 4p=3 in dimensionless units, and it is aligned
with a reference frame, such that x represents the streamwise axis, y
the wall normal, and z the spanwise axis. The bulk Reynolds number
Reb ¼ 2795 and Mach numberMab ¼ 0:7, which are defined as

Reb ¼
qbUbh

lw
; Mab ¼

Ubffiffiffiffiffiffiffiffiffiffiffi
cRTw
p ;

are imposed. Here, h is the half height of the channel, qb and Ub are
the bulk density and the bulk velocity, respectively, Tw is the wall tem-
perature, and lw ¼ lðTwÞ is the viscosity of the fluid at the wall.

Isothermal, no-slip boundary conditions are imposed at the walls
for y=h ¼ 61, while periodic conditions are applied in the streamwise
and spanwise directions. The simulations are initialized with a random
noise superimposed to a logarithmic velocity profile in the streamwise
direction, and uniform density and temperature fields. A uniform in
the space body force is imposed along the streamwise direction in
order to guarantee the flow rate corresponding to the desired bulk
velocity. The wall shear stress sw, the friction Reynolds number Res,
and the skin friction velocity us, defined as

sw ¼ lwð@yhuxiÞw; Res ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qwReb

sw
lw

r
;

us ¼
Res

Rebqw
;

are computed a posteriori for each simulation, where h�i stands for the
Reynolds average operator.

The computational mesh is obtained by a structured mesh with
Nx, Ny, and Nz hexahedra in the x, y, and z directions, respectively,
each of which is then split into Nt ¼ 6 tetrahedral elements. A sketch
of the mesh with Nx ¼ Ny ¼ 16, Nz ¼ 12 is represented in Fig. 1.
While uniform in the x and z directions, the hexahedral mesh is
stretched in the y direction by a hyperbolic tangent law in order to
ensure a sufficient resolution of the near-wall regions. The polynomial
degree for Vh is pK ¼ 4, resulting in nw ¼ 35 degrees of freedom in
each element. Hence, we can define an equivalent grid spacing

Dx;z ¼
Lx;z

Nx;z
ffiffiffiffiffiffiffiffiffiffi
Ntnw

3
p ; Dyi ¼

yi � yi�1ffiffiffiffiffiffiffiffiffiffi
Ntnw

3
p

and, in wall units, Dþi ¼ ResDi, for i ¼ x; y; and z. Using the skin
friction Reynolds number of the corresponding DNS, we can now
determine Dy1 ¼ Dymin ¼ Re�1s Dþymin , requiring that several points are
located at a distance from the wall yþ < 5, so that the near-wall region
is well resolved. The grid parameters are summarized in Table I. Three
different resolutions have been used varying the values for Nx and Nz

as reported in Table I, while the resolution in the normal to the wall
direction remains unchanged. The grid corresponding to the higher
resolution is the same used in Abb�a et al.10 and Abb�a et al.15 with the
A3 and ISO models.

After the statistical steady state was reached, the simulations were
continued for a dimensionless time (defined using h and Ub as

FIG. 1. Representation of the mesh used for the plane channel flow simulation with Nx ¼ Ny ¼ 16, Nz ¼ 12.

TABLE I. Parameters of the present simulations: reference DNS,22 LES with the A310 and ISO15 models.

Lx � Lz Nx � Ny � Nz DoF Dþx Dþz Dþymin
=Dþymax

DNS A3, ISO 12� 6 3 456 0000 4.89 4.89 0.19/2.89

4p� 4
3
p

16� 16� 12 645 120 24 11 0.67/8.2

Present 4p� 4
3
p 16� 16� 12 645 120 24 11 0.67/8.2

4p� 4
3
p

12� 16� 10 403 200 32 13.5 0.67/8.2

4p� 4
3
p

8� 16� 8 215 040 48 22 0.67/8.2
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reference quantities) equal to 90 in order to verify time invariance of
the mean profiles and to compute all the statistics. In the following, h�i
means average in time and in the homogeneous directions. The
computational costs of performing the simulations have been found to
be substantially unaltered between the different turbulence closures
adopted. In particular, we measure a computational time of about
1090 core hours to simulate 60 non-dimensional times using the 96
CPUs Intel CascadeLake 8260, indifferently for all the considered
models.

In Table II, the mean flow quantities at the wall are compared
with the reference DNS results. The sensitivity of the results to the grid
resolution is evident. The low resolution in the spanwise direction
increases the size of the turbulent structures in the wall region reduc-
ing the shear wall stress. Despite this, the predicted values of wall stress
and friction Reynolds number are in close agreement with the DNS
results and show an improvement with respect to those obtained using
the A3 and ISO models. While the mean density is always underesti-
mated at the wall, the friction velocity is overestimated for the higher
resolution. In any case, the errors with respect to the reference DNS
are lower than 4% also for the lower resolution. Summarizing all the
mean flow quantities presents an improvement of the present model
with respect to the A3 and ISO closures.

We consider now the wall-normal profiles of the most relevant
flow statistics. Figure 2 shows the mean density profiles. The solution
of the present model at the high resolution is found to closely repro-
duce the DNS behavior. The main differences are observed for the A3
and ISO models and for the present model at a lower resolution, espe-
cially in the near-wall region where the effect of decreasing of the reso-
lution is more relevant. The mean streamwise velocity profile
expressed in wall unit is depicted in Fig. 3. Again, the mean flow solu-
tion predicted by the present model at the high resolution is found to
nicely recover the DNS profile. At the lower resolution and for the A3
and ISO models, the overestimated velocity value in the center of the
channel is related to the defect of the friction velocity. Overall, an
improvement of the present model with respect to the A3 and ISO
models is observed also in this plot.

The profiles of the mean total turbulent stresses
hriji ¼ hsiji þ hqihu0iu0ji, sum of the modeled hsiji plus the resolved
h�qihu0iu0ji contributions, normalized by the wall stress sw, are displayed
in Fig. 4. Here, u0i ¼ eui � heuii are the resolved velocity fluctuations.
As shown in the top left panel of Fig. 4, the present model at the higher
resolution is found to nicely reproduce the DNS behavior for the

streamwise component of the normal stress. For the other components
of the normal stresses shown in the top right and bottom left panels of
Fig. 4, the present model shows an improvement of the LES predic-
tion, especially in the wall region. Indeed, the results obtained with
present model at the middle resolution are very similar to those one of
the A3 model with higher resolution. The normal stresses profiles
recovered with the lower resolution overestimate the streamwise com-
ponent of the DNS, while in other directions, stresses are under esti-
mated. About the shear stress component, the present model shows a
complete recovery of the DNS solution, even if the middle resolution
is used.

To close the analysis of predicted turbulence fluctuations, profiles
of the root mean square of temperature fluctuations are reported in
Fig. 5. Again, the present model at the high resolution is found to
recover the DNS behavior. The quality of the proposed modeling
approach can be highlighted by noting that the present model at the
lower resolution level significantly improves the prediction of

TABLE II. Mean flow quantities obtained by the numerical simulations of the plane
channel flow at Reb ¼ 2795 and Mab ¼ 0:7. The present results are compared with
the reference DNS22 and with the results obtained with the A3 anisotropic model10

and the ISO model.15

sw Res us=Ub qw=qb

DNS 12.38 186 0.0618 1.107
ISO 16 � 16 � 12 10.73 178 0.0608 1.06
A3 16 � 16 � 12 11.16 177 0.0631 1.06
Present 16 � 16 � 12 11.94 187 0.0635 1.07
Present 12 � 16 � 10 10.74 177 0.0606 1.05
Present 8 � 16 � 8 10.11 172 0.0588 1.04

FIG. 2. Mean density profiles in the plane channel flow at Reb ¼ 2795 and
Mab ¼ 0:7.

FIG. 3. Mean velocity profiles in wall units for the plane channel flow at Reb
¼ 2795 and Mab ¼ 0:7.
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temperature fluctuations given by the A3 and ISO models at the high-
est resolution.

In order to have a more concise and quantitative view of the
results described so far, the reader is referred to Table III where the
average of the difference between the mean profiles obtained by LES

simulations and by the DNS is reported. This difference is averaged in
the y direction and is evaluated for a generic mean quantity h f i as

df ¼

X
j

ðhfLESiðyjÞ � hfDNSiðyjÞÞ2X
j

ðhfDNSiðyjÞÞ2
: (57)

In closing this section, let us analyze how the turbulence anisotropy is
reproduced by the present model. In Fig. 6, the turbulence barycentric
map of the eingenvalues of the total turbulent stress anisotropy
tensor23

aij ¼
hriji
hrkki

�
dij
3

(58)

is reported. The map provides the possibility of characterizing any
point inside it, in terms of limiting states of turbulence. In particular,
the corners represent the one-component, two-component, and three-
component limiting states of turbulence. The corners are joint by lines.
The lower side of the triangle visualizes the two component turbulence
state, while the other two sides represent the axy-symmetric contrac-
tion and expansion. The trajectories in the map move from the two
components limit at the wall toward the one component corner before
heading toward the isotropic three components corner in the channel

FIG. 4. Profiles of the mean total (resolved plus modeled) turbulent stresses in the plane channel flow at Reb ¼ 2795 and Ma¼ 0.7.

FIG. 5. Root mean square of temperature fluctuations profile, normalized by the
wall temperature, in the plane channel flow at Reb ¼ 2795 and Mab ¼ 0:7.
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core. Also in this case, the present model demonstrates the capability
to well reproduce the anisotropic features of the turbulent flow.
Indeed, the results obtained with the higher resolution approach the
DNS data better than the A3 and ISO models with the same resolu-
tion. Also in this case, the solution with the middle resolution presents
a behavior similar to the A3 model.

V. PERIODIC HILL SIMULATION

The flow over periodic hills is here considered. This is an internal
flow in an infinite channel constricted by a series of hills in the stream-
wise direction. The flow separates on the top of each hill, creating a
significant turbulent recirculation bubble, and then re-attaches before
the following hill, where the flow is accelerated on the forward side.
This test case was introduced by Almeida et al.,24 while the stretched
geometry introduced by Fr€ohlich et al.25 is used to ensure that the flow
reattaches before reaching the following hill. The height of the hill is
denoted by h, the total height of the channel is Ly ¼ 3:036h, while the
distance among the hills is Lx ¼ 9:0h, and the spanwise dimension of
the domain is Lz ¼ 4:5h.

The simulation is performed at a Reynolds number Reb ¼ 2800,
based on the bulk velocity in the channel section and on the height h
of the hill, and at a Mach numberMab ¼ 0:2 defined in a similar way.
The choice of a small but not negligible Mach number is justified with
the aim at comparing results with incompressible reference data. In
this case, DNS data of simulations performed at this exact Mach num-
ber are available from the recent work of Balakumar and Park;26 how-
ever, these show little or, in most cases, completely no discrepancies

with the incompressible results of Breuer et al.27 Since the latter are
more easily available, they are used as comparison. The results are also
compared with the data obtained with a LES performed employing the
dynamic anisotropic model (A3) presented in Abb�a et al.10 The mesh,
represented in the two-dimensional view in Fig. 7, is extruded in the
spanwise direction leading to a total of 23 528 tetrahedra.

The resolution of the lower structured region is equal to the one
already used in Abb�a et al.,15 with the following maximum wall equiv-
alent resolutions: Dy ¼ 0:003 25h in the wall normal direction,
Dz ¼ 0:062h in the spanwise direction, and Dx ¼ 0:023h in the
streamwise direction. The number of degrees of freedom, obtained
multiplying the total number of elements by nw ¼ 35, and the span-
wise resolution of the present simulation and of the DNS are reported
in Table IV.

Periodic boundary conditions are imposed in the spanwise direc-
tion and streamwise direction. On the top and bottom walls non-slip,
isothermal conditions are imposed. As done by other authors, e.g.,
Fr€ohlich et al.25 and You et al.,28 the mesh employed focused on the
lower wall resolution, where most of the complex flow features are
generated while leaving less refined the resolution at the upper wall.
Although a non-slip condition with a less refined resolution is applied
to the upper wall and the laminar sublayer is not well resolved there,
we consider the present LES as reliable results. Indeed, it has been veri-
fied in previous tests that the differences in using no-slip or free-slip
condition are significant only in a very thin layer close to the wall.

The simulation was started from a logarithmic profile with
superimposed a random disturbance and then let evolve for 60 non-
dimensional time units (defined using h and Ub as reference quanti-
ties) to reach statistically steady state. Subsequently, the simulations
were restarted for another 60 time units to accumulate the statistics.
The statistics were calculated along two different lines at x=h ¼ f2:0;
4:0g; highlighted in Fig. 7, by averaging in the spanwise direction and
in time. A simulation of 80 non-dimensional time units using 144
CPUs Intel CascadeLake 8260 required about 1500 core hours.

FIG. 6. Barycentric map: the anisotropy of the total, modeled plus resolved, turbu-
lent stress tensor from the present LES is compared with the Reynolds stress ten-
sor from the reference DNS and from LES using the A3 and ISO models.

FIG. 7. Two dimensional section of the grid for the flow over periodic hills. The loca-
tions at which statistics have been recorded are highlighted by red lines.

TABLE III. Mean differences between the profiles of the LES and of the reference DNS22 represented in Figs. 2–5.

dq� 102 dU � 102 drxx � 102 dryy � 102 drzz � 102 drxy � 102 drT � 102

ISO 1.02 1.71 14.1 5.56 14.2 11.7 54.9
A3 1.03 1.56 8.59 17.2 14.3 12.9 51.4
Present 16 � 16 � 12 0.475 1.16 5.41 12.1 11.1 4.51 14.9
Present 12 � 16 � 10 1.38 1.97 18.4 19.1 11.6 10.8 19.4
Present 8 � 16 � 8 1.41 2.23 35.4 28.0 14.9 16.5 46.2
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The profiles of mean streamwise and vertical velocity are repre-
sented in Figs. 8 and 9, respectively. The negative peak in the recircu-
lating region and the following accelerating trend are well reproduced
in the streamwise velocity profiles. Good results are observed also for
the vertical velocity component, the only relevant discrepancy being
given by the fact that the present model a bit overestimates the vertical
velocity in the shear above the recirculating bubble, while the A3 and
the ISO models underestimate it. Any other relevant differences are
not evident between the LES models in these plots.

While the isotropic character of the subgrid model does not seem
to affect significantly the mean velocity profiles, more relevant

discrepancies are visible from total turbulent stresses reported in
Figs. 10–12. Both the anisotropic models show general agreement with
the DNS profiles, contrary to the isotropic approach that is found to
show some limitations in reproducing the strongly inhomogeneous
and anisotropic features of the flow. In particular, the present model
reproduces the streamwise component of turbulent stresses better
than the other two models, not only in the recirculation bubble and in
the shear layer above it, but also especially in the upper half of the
channel where a very low mesh resolution is adopted, see Fig. 10. The
importance to take into account anisotropic character of subgrid scales
manifests in the vertical component of turbulent stresses where the
ISO model overpredicts the velocity fluctuations, especially in the
recirculating flow, see Fig. 11. Finally, the behavior of the anisotropic
models is essentially in good agreement with DNS also for the turbu-
lent shear stresses reported in Fig. 12.

In Fig. 13, the turbulence baricentric map is shown. The baricen-
tric map for x¼ 2 cuts through the mean flow recirculation region.
The trajectory starts from the two component limit close to the lower
wall where the turbulence structure is 2D axisymmetric. Then, moving
away and crossing the shear layer, the trajectory moves back and forth
near the 3D isotropic limit, with a small turn toward the one-
component state in the shear layer above the bubble. Finally, a near

TABLE IV. Total number of degree of freedom and grid resolution in the spanwise
direction for the periodic hill flow in the LES simulation (present, A3, and ISO) and in
the DNS from Balakumar and Park26 and Breuer et al.27

Degree of freedom Dz

DNS27 48� 106 0.0148
DNS26 38:1� 106 0.015
LES 8:2� 105 0.062

FIG. 8. Profiles of the mean longitudinal velocity component in the periodic hill flow
at x¼ 2 (top) and x¼ 4 (bottom).

FIG. 9. Profiles of the mean vertical velocity component in the periodic hill flow at
x¼ 2 (top) and x¼ 4 (bottom).
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axisymmetric-expansion is present close to the upper wall approaching
the one-component state. Also, the turbulence characteristic for x¼ 4,
still in the main recirculation, starts from the two-component limit in
the bottom wall boundary layer. Then, the trajectory progresses
through the axisymmetric expansion reaching the isotropic limit in
the center of the channel. Finally, an axisymmetric contraction carries
the turbulence toward the area of high anisotropy in the region of the
one component limit close to the upper wall. In both these baricentric
maps for x¼ 2 and x¼ 4, the two anisotropic models well reproduce
the behavior of the DNS trajectory, while the ISO model presents a
confused path where axy-symmetric expansions and contraction are
not recognizable. These baricentric maps confirm that the scalar eddy
viscosity model is not suitable to adequately represent the anisotropicity
of turbulence structures in such complex flows. Instead, the two
tensorial eddy viscosity models well reproduce the anisotropic character
of turbulence in good agreement with DNS results.

VI. CONCLUSION

Based on the formalism of the generalized central moments
introduced by Germano,18 algebraic rules that relate resolved quanti-
ties to turbulent stresses at different levels defined by a filtering proce-
dure can be derived. Such algebraic relations, together with exact

relations between generalized central moments and the two-point
velocity increment,29 have been employed in Cimarelli et al.1 to derive
a new class of turbulence closures in large eddy simulation. The for-
malism of the models is based on a tensorial turbulent viscosity, which
depends on the filtered velocity gradients and on the second-order
inertial properties of the grid element. The basic idea is that the aniso-
tropic structure of the computational element directly impacts,
although implicitly, the definition of large resolved and small unre-
solved scales. Hence, such information can be used in turbulence
closures to take into account the anisotropic structure of turbulent
stresses at the subgrid level. The degree of generality of the formalism
is such that it can also be used to give a reduced description of subgrid
scalar fluxes. This rigorous theoretical framework is finally coupled
with a dynamic tensorial procedure in order to obtain optimal results
also in the case of very complex flows.

In the present work, we have assessed this class of turbulence clo-
sures reported in Cimarelli et al.1 by addressing their performance
both in compressible conditions and in complex flows with curvature.
To this aim, a compressible turbulent channel at the bulk Reynolds
number Reb ¼ 2795 and Mach number Mab ¼ 0:7 and a turbulent
flow over periodic hills at Reb ¼ 2800 and Mab ¼ 0:2 has been

FIG. 10. Profiles of the mean total (resolved plus modeled) turbulent stresses in the
periodic hill flow. Normal component in the streamwise direction of turbulent
stresses, hrxxi=ðqbU

2
bÞ, at x¼ 2 (top) and x¼ 4 (bottom).

FIG. 11. Profiles of the mean total (resolved plus modeled) turbulent stresses in the
periodic hill flow. Normal component in the vertical direction of turbulent stresses,
hryyi=ðqbU

2
bÞ, at x¼ 2 (top) and x¼ 4 (bottom).
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considered. The comparison with DNS highlights how the present for-
mulation accurately captures the anisotropic physics of the two flows
considered also for the lower grid resolutions. Compared to the isotro-
pic approach provided by a scalar eddy viscosity, the present aniso-
tropic formulation based on tensorial eddy viscosity is found to
significantly improve the simulation results. The comparison of the
present formulation with an anisotropic model proposed by Abb�a
et al.10 reveals an improvement in the modeling approach. In particu-
lar, the present formulation at a lower resolution is shown to perform
similarly to the modeling approach proposed by Abb�a et al.10 at a
higher resolution.

In conclusion, the generality of the formalism allows for a uni-
fied description of both subgrid stresses and fluxes and for a rigor-
ous definition of subgrid quantities in complex flows independently
of the discretization technique. Accurate results have been mea-
sured in compressible conditions and in a complex flow geometry.
Hence, we believe that the present class of turbulence closures is
very promising for the application of the Large Eddy Simulation
technique to the solution of complex problems typical of industry
and geophysics.
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