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Abstract
It is well-known that in dimension 4 any framed link (L, c) uniquely represents the PL
4-manifold M4(L, c) obtained from D

4 by adding 2-handles along (L, c). Moreover,
if trivial dotted components are also allowed (i.e. in case of aKirby diagram (L(∗), d)),
the associated PL 4-manifold M4(L(∗), d) is obtained from D

4 by adding 1-handles
along the dotted components and 2-handles along the framed components. In this
paper we study the relationships between framed links and/or Kirby diagrams and the
representation theory of compact PL manifolds by edge-colored graphs: in particular,
we describe how to construct algorithmically a (regular) 5-colored graph representing
M4(L(∗), d), directly “drawn over” a planar diagram of (L(∗), d), or equivalently how
to algorithmically obtain a triangulation of M4(L(∗), d). As a consequence, the proce-
dure yields triangulations for any closed (simply-connected) PL 4-manifold admitting
handle decompositions without 3-handles. Furthermore, upper bounds for both the
invariants gem-complexity and regular genus of M4(L(∗), d) are obtained, in terms of
the combinatorial properties of the Kirby diagram.
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1 Introduction

Among combinatorial tools representing PL manifolds, framed links (and/or Kirby
diagrams) turn out to be a very synthetic one, both in the 3-dimensional setting and in
the 4-dimensional one, while edge-colored graphs have the advantage to represent all
compact PL manifolds and to allow the definition and computation of interesting PL
invariants in arbitrary dimension (such as the regular genus, which extends theHeegard
genus, and the gem-complexity, similar to Matveev’s complexity of a 3-manifold).

Previous works exist establishing a connection between the two theories, both in
the 3-dimensional and 4-dimensional setting [5, 7, 26]: they make use of the so called
edge-colored graphs with boundary, which are dual to colored triangulations of PL
manifolds with non-empty boundary, and fail to be regular. More recently, a unifying
method has been introduced and studied, so to represent by means of regular colored
graphs all compact PL manifolds, via the notion of singular manifold associated to a
PL manifold with non-empty boundary.

Purpose of the presentwork is to update the relationship between framed links/Kirby
diagrams and colored graphs (or, equivalently, colored triangulations) in dimension
4, by making use of regular 5-colored graphs representing compact PL 4-manifolds.
The new tool turns out to be significantly more efficient than the classic one, both with
regard to the simplicity and algorithmicity of the procedure and with regard to the
possibility of estimating graph-defined PL invariants directly from the Kirby diagram.

As it is well-known, a framed link is a pair (L, c), where L is a link in S3 with l ≥ 1
components and c = (c1, c2, . . . , cl), is an l-tuple of integers. (L, c) represents -
in dimension 3 - the 3-manifold M3(L, c) obtained from S

3 by Dehn surgery along
(L, c), as well as - in dimension 4 - the (simply-connected) PL 4-manifold M4(L, c),
whose boundary coincides with M3(L, c), obtained from D

4 by adding 2-handles
along (L, c).

Moreover, in virtue of a celebrated result by [25, 29], in case M3(L, c) = #r (S1 ×
S
2) (with r ≥ 0), then the framed link (L, c) represents also the closed PL 4-manifold
M4(L, c) obtained from M4(L, c) by adding - in a unique way -r 3-handles and a
4-handle.

However, while it is well-known that every 3-manifold M3 admits a framed link
(L, c) so that M3 = M3(L, c), it is an open question whether or not each closed
simply-connected PL 4-manifold M4 may be represented by a suitable framed link
(or, even more, if M4 admits a so called special handle decomposition, i.e. a handle
decomposition lacking in 1-handles and 3-handles: see [24, Problem 4.18], [10, 28]).

As far as general compact PL 4-manifolds (with empty or connected boundary) are
concerned, it is necessary to extend the notion of framed link, so to comprehend also
the case of trivial (i.e. unknotted and unlinked) dotted components, which represent
1-handles of the associated handle decomposition of the manifold: in this way, any
framed link (L(m), d) admitting m ≥ 1 trivial dotted components -which is properly
called a Kirby diagram - uniquely represents the compact PL 4-manifold M4(L(m), d)

obtained from D
4 by adding 1-handles according to the m trivial dotted components

and 2-handles along the framed components. Note that the boundary of M4(L(m), d)

coincideswithM3(L, c), (L, c)being the framed link obtained from theKirby diagram
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Kirby diagrams and 5-colored graphs representing compact… 901

(L(m), d) by substituting each dotted component with a 0-framed one; hence, in case
M3(L, c) = #r (S1×S

2) (with r ≥ 0), theKirby diagram (L(m), d)uniquely represents
also the closed PL 4-manifold M4(L(m), d) obtained from M4(L(m), d) by adding - in
a unique way -r 3-handles and a 4-handle.

In this paper we describe how to obtain algorithmically a regular 5-colored graph
representingM4(L, c) (resp. representingM4(L(m), d))directly “drawnover” a planar
diagram of (L, c) (resp. of (L(m), d)): see Procedure B and Theorem 7 in Sect. 3 (see
Procedure C and Theorem 12 in Sect. 5). Hence, the algorithms allow to construct
explicitly triangulations of the compact 4-manifolds associated to framed links and
Kirby diagrams.1

As a consequence, the procedures yield upper bounds for both the invariants regular
genus and gem-complexity of the represented 4-manifolds.

As regards framed links, the upper bounds -which significantly improve the ones
obtained in [5] - are summarized in the following statement where mα denotes the
number of α-colored regions in a chess-board coloration of L , by colors α and β say,
with the convention that the infinite region is α-colored; furthermore, if wi and ci
denote respectively the writhe and the framing of the i-th component of L (for each
i ∈ {1, . . . , l}, l being the number of components of L), we set:

t̄i =
{

|wi − ci | if wi �= ci
2 otherwise

Theorem 1 Let (L, c) be a framed link with l components and s crossings. Then, the
following estimation of the regular genus of M4(L, c) holds:

G(M4(L, c)) ≤ mα + l

Moreover, if L is not the trivial knot, then the gem-complexity of M4(L, c) satisfies
the following inequality:

k(M4(L, c)) ≤ 4s − l + 2
l∑

i=1

t̄i

As regards Kirby diagrams (L(m), d), the estimation for the gem-complexity
involves the quantity t̄i , defined exactly as in the case of framed links, but only for
the framed components, while the estimation for the regular genus involves a quantity
depending on the construction (i.e. the quantity u appearing in Theorem 12), which
can be increased by the number of undercrossings of the framed components.2

1 Indeed, both procedures are going to be implemented in a C++ program, connected to the topological
software package Regina [4]: see R.A. Burke, Triangulating Exotic 4-Manifolds, in preparation.
2 Note that previous work [7] didn’t yield upper bounds for gem-complexity or regular genus, since the
combinatorial properties of the obtained 5-colored graph with boundary representing M4(L(m), d) could
not be “a priori” determined.
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902 M. R. Casali, P. Cristofori

Theorem 2 Let (L(m), d) be a Kirby diagram with s crossings, l components, whose
first m ≥ 1 are dotted, and s̄ undercrossings of the framed components; then,

G(M4(L(m), d)) ≤ s + s̄ + (l − m) + 1

Moreover, if L is different from the trivial knot,

k(M4(L(m), d)) ≤ 2s + 2s̄ + 2m − 1 + 2
l∑

i=m+1

t̄i

Various examples are presented, including infinite families of framed links where
the above upper bound for the regular genus turns out to be sharp (Examples 1 and 2
in Sect. 3).

Moreover, the process is applied in order to obtain a pair of 5-colored graphs
representing an exotic pair of compact PL 4-manifolds (i.e. a pair of 4-manifolds
which are TOP-homeomorphic but not PL-homeomorphic), thus opening the search
for possibile graph-defined PL invariants distinguishing them (Example 4 in Sect. 3,
with related Figs. 8 and 9).

Note that, although for better understanding the procedure regarding framed links
is presented in a separate section of the paper, it is nothing but a particular case of the
one regarding Kirby diagrams with m ≥ 1 dotted components. Hence, if we denote
by (L(∗), d) an arbitrary Kirby diagram (possibly without dotted components), we can
concisely state that the paper shows how to obtain a 5-colored graph representing the
compact 4-manifold M4(L(∗), d), directly “drawn over” the Kirby diagram (L(∗), d).

Finally, we point out that, if the associated 3-manifold is the 3-sphere, then the
obtained 5-colored graph actually represents the closed 4-manifold M4(L(∗), d), too.
Hence, the procedure yields triangulations for any closed (simply-connected) PL 4-
manifold admitting handle decompositions without 3-handles.

In the general case of Kirby diagrams representing a closed 4-manifoldM4(L(∗), d)

(i.e., according to [29], in case ofHeegaard diagrams for closed 4-manifolds), we hope
soon to be able to extend the above procedure, in order to construct algorithmically - at
least in awide set of situations, when the boundary 3-manifoldmay be combinatorially
recognized as #r (S1 × S

2) (with r ≥ 1) - a 5-colored graph representing M4(L(∗), d).

2 Colored graphs representing PLmanifolds

In this section we will briefly recall some basic notions about the representation of
compact PL manifolds by regular colored graphs (crystallization theory). For more
details we refer to the survey papers [12, 19].

From now on, unless otherwise stated, all spaces and maps will be considered in
the PL category, and all manifolds will be assumed to be connected and orientable.3

3 Actually all concepts and results exist also, with suitable adaptations, for non-orientable manifolds;
however, since the present paper focuses on the relationship between Kirby diagrams and colored graphs,
we will restrict to the orientable case.
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Crystallization theory was first developed for closed manifolds; the extension to
the case of non-empty boundary, that is more recent, is performed by making use of
the wider class of singular manifolds.

Definition 1 A singular (PL) n-manifold is a closed connected n-dimensional poly-
hedron admitting a simplicial triangulation where the links of vertices are closed
connected (n − 1)-manifolds, while the links of all h-simplices of the triangulation
with h > 0 are (PL) (n−h−1)-spheres.Verticeswhose links are not PL (n−1)-spheres
are called singular.

Remark 1 If N is a singular n-manifold, then a compact n-manifold Ň is easily
obtained by deleting small open neighbourhoods of its singular vertices. Obviously
N = Ň iff N is a closed manifold, otherwise Ň has non-empty boundary (with-
out spherical components). Conversely, given a compact n-manifold M , a singular
n-manifold M̂ can be constructed by capping off each component of ∂M by a cone
over it.

Note that, by restricting ourselves to the class of compact n-manifolds with no
spherical boundary components, the above correspondence is bijective and so singular
n-manifolds and compact n-manifolds of this class can be associated to each other in
a well-defined way.

For this reason, throughout the present work, we will make a further restriction con-
sidering only compact manifolds without spherical boundary components. Obviously,
in this wider context, closed n-manifolds are characterized by M = M̂ .

Definition 2 An (n + 1)-colored graph (n ≥ 2) is a pair (�, γ ), where � =
(V (�), E(�)) is a multigraph (i.e. multiple edges are allowed, but no loops) which
is regular of degree n + 1 (i.e. each vertex has exactly n + 1 incident edges), and
γ : E(�) → �n = {0, . . . , n} is a map which is injective on adjacent edges (edge-
coloration).

In the following, for sake of concision, when the coloration is clearly understood,
we will drop it in the notation for a colored graph. As usual, we will call order of a
colored graph the number of its vertices.

For every {c1, . . . , ch} ⊆ �n let �{c1,...,ch} be the subgraph obtained from � by
deleting all the edges that are not colored by {c1, . . . , ch}. Furthermore, the comple-
mentary set of {c} (resp. {c1, . . . , ch}) in �n will be denoted by ĉ (resp. ĉ1 · · · ĉh).
The connected components of �{c1,...,ch} are called {c1, . . . , ch}-residues of �; their
number will be denoted by g{c1,...,ch} (or, for short, by gc1,c2 and gĉ if h = 2 and h = n
respectively).

For any (n + 1)-colored graph �, an n-dimensional simplicial cell-complex K (�)

can be constructed in the following way:

• the n-simplexes of K (�) are in bijective correspondence with the vertices of �

and each n-simplex has its vertices injectively labeled by the elements of �n ;
• if two vertices of � are c-adjacent (c ∈ �n), the (n−1)-dimensional faces of their
corresponding n-simplices that are opposite to the c-labeled vertices are identified,
so that equally labeled vertices coincide.
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904 M. R. Casali, P. Cristofori

|K (�)| turns out to be an n-pseudomanifold and � is said to represent it.
Note that, by construction, � can be seen as the 1-skeleton of the dual complex of

K (�). As a consequence there is a bijection between the {c1, . . . , ch}-residues of �

and the (n−h)-simplices of K (�)whose vertices are labeled by ĉ1 · · · ĉh . In particular,
given an (n + 1)-colored graph �, each connected component of �ĉ (c ∈ �n) is an
n-colored graph representing the disjoint link4 of a c-labeled vertex of K (�), that is
also (PL) homeomorphic to the link of this vertex in the first barycentric subdivision
of K .

Therefore, we can characterize (n + 1)-colored graphs representing singular (resp.
closed)n-manifolds as satisfying the condition that for each color c ∈ �n any ĉ-residue
represents a connected closed (n − 1)-manifold5 (resp. the (n − 1)-sphere).

Furthermore, in virtue of the bijection described in Remark 1, an (n + 1)-colored
graph � is said to represent a compact n-manifold M with no spherical boundary
components (or, equivalently, to be a gem of M , where gem means Graph Encoding
Manifold) if � represents its associated singular manifold, i.e. if |K (�)| = M̂ . Actu-
ally, if ∂M �= ∅, K (�) naturally gives rise to a “triangulation” of M consisting of
partially truncated n-simplexes obtained by removing small open neighbourhoods of
the singular vertices of M̂ . Therefore, in the present paper, by a little abuse of notation,
we will call K (�) a triangulation of M also in the case of a compact manifold with
non-empty boundary.

The following theorem extends to the boundary case awell-known result - originally
stated in [31] - founding the combinatorial representation theory for closed manifolds
of arbitrary dimension via regular colored graphs.

Theorem 3 [14] Any compact orientable (resp. non-orientable) n-manifold with no
spherical boundary components admits a bipartite (resp. non-bipartite) (n + 1)-
colored graph representing it.

If � is a gem of a compact n-manifold, an n-residue of � will be called singular if
it does not represent Sn−1. Similarly, a color c will be called singular if at least one
of the ĉ-residues of � is singular.

An advantage of colored graphs as representing tools for compact n-manifolds is
the possibility of combinatorially defining PL invariants.

One of the most important and studied among them is the (generalized) regular
genus extending to higher dimension the classical genus of a surface and the Hee-
gaard genus of a 3-manifold. Spheres are characterized by having null regular genus
[16], while classification results according to regular genus and concerning 4- and
5-manifolds can be found in [6, 11–13] both for the closed and for the non-empty
boundary case.

The definition of the invariant relies on the following result about the existence of
a particular type of embedding of colored graphs into closed surfaces.

4 Given a simplicial cell-complex K and an h-simplex σ h of K , the disjoint star of σ h in K is the simplicial
cell-complex obtained by taking all n-simplices of K having σ h as a face and identifying only their faces
that do not contain σ h . The disjoint link, lkd(σ h , K ), of σ h in K is the subcomplex of the disjoint star
formed by those simplices that do not intersect σ h .

5 In case of polyhedra arising from colored graphs, the condition about links of vertices obviously implies
the one about links of h-simplices, with h > 0.
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Proposition 4 [20] Let � be a bipartite6 (n + 1)-colored graph of order 2p. Then
for each cyclic permutation ε = (ε0, . . . , εn) of �n, up to inverse, there exists a
cellular embedding, called regular, of � into an orientable closed surface Fε(�)

whose regions are bounded by the images of the {ε j , ε j+1}-colored cycles, for each
j ∈ Zn+1. Moreover, the genus ρε(�) of Fε(�) satisfies

2 − 2ρε(�) =
∑

j∈Zn+1

gε j ,ε j+1 + (1 − n)p. (1)

Definition 3 The regular genus of an (n + 1)-colored graph � is defined as

ρ(�) = min{ρε(�) | ε cyclic permutation of �n};

the (generalized) regular genus of a compact n-manifold M is defined as

G(M) = min{ρ(�) | � gem of M}.

Within crystallization theory a notion of “complexity” of a compact n-manifold
arises naturally and, similarly to other concepts of complexity (for exampleMatveev’s
complexity for 3-manifolds), is related to the minimum number of n-simplexes in a
colored triangulation of the associated singular manifold:

Definition 4 The (generalized) gem-complexity of a compact n-manifold M is defined
as

k(M) = min{p − 1 | ∃ a gem of M with 2p vertices}

Important tools in crystallization theory are combinatorial moves transforming col-
ored graphs without affecting the represented manifolds (see for example [3, 17, 19,
26, 27]); we will recall here only the most important ones, while other moves will be
introduced in the following sections.

Definition 5 An r -dipole (1 ≤ r ≤ n) of colors c1, . . . , cr in an (n+1)-colored graph
� is a subgraph of� consisting in two vertices joined by r edges, colored by c1, . . . , cr ,
such that the vertices belong to different ĉ1 . . . ĉr -residues of �. An r -dipole can be
eliminated from � by deleting the subgraph and welding the remaining hanging edges
according to their colors; in this way another (n + 1)-colored graph �′ is obtained.
The addition of the dipole to �′ is the inverse operation.

The dipole is called proper if |K (�)| and |K (�′)| are (PL) homeomorphic.

Proposition 5 [21, Proposition 5.3] An r-dipole (1 ≤ r ≤ n) of colors c1, . . . , cr in
an (n + 1)-colored graph � is proper if and only if at least one of the two connected
components of �ĉ1...ĉr intersecting the dipole represents the (n − r)-sphere.

6 Since this paper concerns only orientable manifolds, we have restricted the statement only to the bipartite
case, although a similar result holds also for non-bipartite graphs.
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906 M. R. Casali, P. Cristofori

Without going into details, we point out that - as proved in the quoted paper - the elimi-
nation (or the addition) of a proper dipole corresponds to a re-triangulation of a suitable
ball embedded in the cell-complex associated to the colored graph.

Remark 2 Note that, if � represents a compact n-manifold M , then all r -dipoles with
1 < r ≤ n are proper; further, if M has either empty or connected boundary, then
1-dipoles are proper, too.

Given an arbitrary (n+1)-colored graph representing a compact n-manifoldM with
empty or connected boundary, then by eliminating all possible (proper) 1-dipoles, we
can always obtain an (n + 1)-colored graph � still representing M and such that, for
each color c ∈ �n , �ĉ is connected. Such a colored graph is called a crystallization of
M . Moreover, it is always possible to assume -up to permutation of the color set - that
any gem (and, in particular, any crystallization) of such a manifold has color n as its
(unique) possible singular color.

Finally, as already hinted to in the Introduction, we recall that a graph-based repre-
sentation for compact PL manifolds with non-empty boundary -different from the one
considered in this section -was already introduced by Gagliardi in the eighties (see
[19]) by means of colored graphs failing to be regular.

More precisely, any compact n-manifold can be represented by a pair (�, λ), where
λ is still an edge-coloration on E(�)bymeans of�n , but�maymiss some (or even all)
n-colored edges: such a (�, λ) is said to be an (n + 1)-colored graph with boundary,
regular with respect to color n, and vertices missing the n-colored edge are called
boundary vertices.

However, a connection between these different kinds of representation can be estab-
lished through an easy combinatorial procedure, called capping-off.

Proposition 6 [18] Let (�, λ) be an (n+1)-colored graphwith boundary, regularwith
respect to color n, representing the compact n-manifold M. Chosen a color c ∈ �n−1,
let (�, γ ) be the regular (n + 1)-colored graph obtained from � by capping-off with
respect to color c, i.e. by joining two boundary vertices by an n-colored edge, whenever
they belong to the same {c, n}-colored path in �. Then, (�, γ ) represents the singular
n-manifold M̂, and hence M, too.

3 From framed links to 5-colored graphs

In this section we will present a construction that enables to obtain 5-colored graphs
representing all compact (simply-connected) 4-manifolds associated to framed links,
i.e. Kirby diagrams without dotted components. Note that such a class of compact
4-manifolds contains also each closed (simply-connected) 4-manifold admitting a
special handle decomposition [28, Sect. 3.3], i.e. a handle decomposition containing
no 1- and 3-handles.

As already recalled in the Introduction, for each framed link (L, c) (c =
(c1, . . . , cl), with ci ∈ Z ∀i ∈ {1, . . . , l}, l being the number of components of L),
we denote by M4(L, c) the 4-manifold with boundary obtained from D

4 by adding l
2-handles according to the framed link (L, c). The boundary of M4(L, c) is the closed
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Fig. 1 Positive (left) and negative (right) curls

Fig. 2 4-Colored graph
corresponding to a crossing

0

3

1

2

orientable 3-manifold M3(L, c) obtained from S
3 by Dehn surgery along (L, c). In

case M3(L, c) ∼= S
3, we will consider, and still denote by M4(L, c), the closed 4-

manifold obtained by adding a further 4-handle.
Now, let us suppose that the link L is embedded in S3 = R

3 ∪{∞} so that it admits
a regular projection π : S3 → R

2 × {0}; in the following we will identify L with
its planar diagram π(L), thus referring to arcs, crossings and regions of L instead of
π(L).

Similarly, by the writhe of a component Li of L (denoted by w(Li )) we mean the
writhe of the corresponding component of π(L). For each i ∈ {1, . . . , l}, we say that
Li needs |ci − w(Li )| “additional curls”, which are positive or negative according to
whether ci is greater or less than w(Li ) (see Fig. 1).

In [5] a construction is described, yielding a 4-colored graph representing the 3-
manifold associated to a given framed link. The procedure consists of the following
steps.
PROCEDURE A- from (L, c) to �(L, c) representing M3(L, c)

1. Each crossing of L gives rise to the order eight graph in Fig. 2, while each possible
(whether already in L or additional) curl gives rise to one of the order four graphs
of Fig. 3-left or Fig. 3-right according to the curl being positive or negative.

2. The hanging 0- and 1-colored edges of the above graphs should be “pasted” together
so that every region of L , having r crossings on its boundary, gives rise to a {1, 2}-
colored cycle of length 2r (with each 1-colored edge corresponding to a part of
the boundary between two crossings) while each component Li (i ∈ {1, . . . , l}),
having si crossings and ti additional curls, gives rise to two {0, 3}-colored cycles
of length 2(si + ti ).

Remark 3 As pointed out in [5], �(L, c) can be directly “drawn over” L (see for
example Fig. 4, obtained by applying Procedure A to the trefoil knot, with framing
c = +1). In particular, if a is the part of an arc of L lying between two adjacent
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908 M. R. Casali, P. Cristofori

Fig. 3 4-colored graphs corresponding to a positive curl (left) and a negative curl (right)

0

3

1

2

P
0

P
1

P2P3

Fig. 4 The 4-colored graph �(L, c) representing M3(L, c), for c = +1 and L = trefoil

crossings, there are exactly two 1-colored edges of �(L, c) that are “parallel” to a,
one for each region of L having a on its boundary.

Moreover, note that - by possibly adding to L a trivial pair of opposite additional
curls - a particular subgraph Qi , called quadricolor, can be selected in �(L, c) for
each component Li of L (i ∈ {1, . . . , l}). A quadricolor consists of four vertices
{P0, P1, P2, P3} such that Ps, Ps+1 are connected by an s-colored edge (for each
s ∈ Z4) and Ps does not belong to the {s + 1, s + 2}-colored cycle shared by the other
three vertices. It is not difficult to see that - in virtue of the above described procedure
A- such a situation arises with {P0, P2, P3} belonging to the subgraph corresponding
to a curl and P1 to an adjacent undercrossing or curl of the same sign (see again Fig. 4,
where the vertices of the quadricolor are highlighted).

Let us now describe how to construct, starting from a given framed link, a 5-colored
graph which will be proved to represent the 4-manifold associated to the framed link
itself.
PROCEDURE B- from (L, c) to �(L, c) (representing M4(L, c))

1. Let�(L, c) be the 4-colored graph constructed from (L, c) according to Procedure
A.
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P
1

P2P3
P
4

P
5

P
0 P

5
P
0

P
1

P2
P3

P
4

Fig. 5 Main step yielding �(L, c)

0

3

1

2

4

Fig. 6 The 5-colored graph �(L, c), for c = +1 and L = trefoil

2. For each component Li of L (i ∈ {1, . . . , l}), choose a quadricolor Qi , according
to Remark 3. For each i ∈ {1, . . . , l}, add a triad of 4-colored edges between the
vertices P2r and P2r+1, ∀r ∈ {0, 1, 2}, involved in the quadricolor Qi (as shown
in Fig. 5).

3. Add 4-colored edges between the remaining vertices of �(L, c), so to “double”
the 1-colored ones.

Figure 6 shows the 5-colored graph �(L, c) in the case of the trefoil knot with
framing +1.

The following theorem states that - as already disclosed - the 5-colored graph
�(L, c) represents M4(L, c). Moreover, the theorem also states the existence of a
further 5-colored graph representing M4(L, c), with reduced regular genus, whose
estimation involves the number mα of α-colored regions in a chess-board coloration
of L , by colors α and β say, with the convention that the infinite region is α-colored.
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910 M. R. Casali, P. Cristofori

With this aim, if (L, c) is a framed link with l components and s crossings, let

us recall that, for each i ∈ {1, . . . , l}, we set t̄i =
{

|wi − ci | if wi �= ci
2 otherwise

where wi

denotes the writhe of the i-th component of L.

Theorem 7 (i) For each framed link (L, c), the 5-colored graph �(L, c) obtained via
Procedure B represents the compact 4-manifold M4(L, c); it has regular genus
less or equal to s + l + 1 and, if L is different from the trivial knot,7 its order is
8s + 4

∑l
i=1 t̄i ;

(ii) via a standard sequence of graph moves, a 5-colored graph, still representing
M4(L, c), can be obtained, whose regular genus is less or equal to mα + l, while
the regular genus of its 4̂-residue, representing ∂M4(L, c) = M3(L, c), is less or
equal to mα.

Theorem 7 will be proved in Sect. 4.
As a direct consequence of Theorem 7, upper bounds can be established for both

the invariants regular genus and gem-complexity of a compact 4-manifold represented
by a framed link (L, c), in terms of the combinatorial properties of the link itself, as
already stated in Theorem 1 in the Introduction.

Proof of Theorem 1 The upper bound for the regular genus of M4(L, c) trivially fol-
lows from Theorem 7(ii).

As regards the upper bound for the gem-complexity of M4(L, c), we have to make
use of the computation of the order of �(L, c) obtained in Theorem 7(i), but also
to note that - as already pointed out in [5] - the 4-colored graph �(L, c) has exactly l
2̂-residues, and that the same happens for �(L, c); hence, by deleting l − 1 (proper)
1-dipoles, a new 5-colored graph �′(L, c) representing M4(L, c) may be obtained,
with

#V (�′(L, c)) = #V (�(L, c)) − 2(l − 1) = 8s − 2l + 2 + 4
l∑

i=1

t̄i

��
The case of the trivial knot is discussed in the following example.

Example 1 Let (K0, c) be the trivial knot with framing c ∈ N∪ {0}; if c ≥ 2, then K0
requires c additional positive curls and the 5-colored graph �(K0, c), with 4c vertices,
which is obtained by applying Procedure B, turns out to coincide with the one that
in [13] is proved to represent exactly ξc, the D2-bundle over S2 with Euler number c,
as expected from Theorem 7. Furthermore, if c is even, it is known that k(L(c, 1)) =
2c − 1 (see [8, Remark 4.5]); hence �(K0, c) realizes the gem-complexity of ξc, and
therefore the second bound of Theorem 7 is sharp.

If c = 0 (resp. c = 1), then K0 requires two positive and two negative (resp. two
positive and one negative) additional curls in order to get a quadricolor; however in

7 More precisely we suppose the projection π(L) to be different from the standard diagram of the trivial
knot. This case, which is already well-known (see [13]), is nevertheless discussed in details in Example 1.

123



Kirby diagrams and 5-colored graphs representing compact… 911

Fig. 7 Framed links representing the exotic pair W1 and W2 (pictures from [30])

this case the resulting graph �(K0, c) admits a sequence of dipole moves consisting
in three 3-dipoles and one 2-dipole (resp. consisting in two 3-dipoles) cancellations
yielding a minimal order eight crystallization of S2 × D

2 (resp. the minimal order
eight crystallization of CP2) obtained in [13] (resp. in [22]).

Note that for each c ∈ N∪{0},�(K0, c) realizes the regular genus of the represented
4-manifold, which is equal to 2 (= mα + l), as proved in [13]. Hence, for this infinite
family of compact 4-manifolds, the first upper bound of Theorem 1 turns out to be
sharp.

We will end this section with further examples of the described construction.

Example 2 Let (LH , c) be the Hopf link and c = (c̄, 0) with c̄ even (resp. odd); then
Procedure B yields a 5-colored graph that, by Theorem 7, represents S2 × S

2 (resp.
CP

2#(−CP
2)) and realizes its regular genus (which is known to be equal to 4: see

[12] and references therein). In particular, if c̄ = 0, a sequence of dipole cancella-
tions and a ρ-pair switching (see Definition 6 in Sect. 5), applied to �(LH , (0, 0)),
yield a 5-colored graph which belongs to the existing catalogue8 of crystallizations of
4-manifolds up to gem-complexity 8 (see [9]).

Example 3 Let M4(L, c) be a linear plumbing of spheres, whose boundary is therefore
the lens space L(p, q) such that (c1, . . . , cl) is a continued fraction expansion of − p

q

[23]; then, by Theorem 1, the regular genus of M4(L, c) is less or equal to 2l.

Example 4 Procedure B, applied to the framed links description given in [30] of an
exotic pair (see Fig. 7), allows to obtain two regular 5-colored graphs representing
two compact simply-connected PL 4-manifoldsW1 andW2 with the same topological
structure that are not PL-homeomorphic: see Figs. 8 and 9, which obviously encode
two triangulations of W1 and W2 respectively.

Other applications of the procedures obtained in the present paper, in order to get
triangulations of exotic 4-manifolds, will appear in R.A. Burke, Triangulating Exotic
4-Manifolds (in preparation).

8 More details about such catalogue (together with other similar ones) can be found at https://cdm.unimore.
it/home/matematica/casali.mariarita/CATALOGUES.htm#dimension_4.
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Fig. 8 A 5-colored graph
representing the compact
simply-connected PL
4-manifold W1

Fig. 9 A 5-colored graph representing the compact simply-connected PL 4-manifold W2
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4 Proof of Theorem 7

Roughly speaking, the proof of the first statement of Theorem 7- i.e. the fact that
�(L, c) represents M4(L, c) -will be performed by means of the followings steps:

(i) starting from the 4-colored graph �(L, c) - already proved to represent M3(L, c)
in [5] -we obtain a 4-colored graph�smooth representing S3 by suitably exchanging
a triad of 1-colored edges for each component of L [Proposition 9(i)];

(ii) by capping-off with respect to color 1, we obtain a 5-colored graph representing
D
4;

(iii) by re-establishing the triads of 1-colored edges, the 5-colored graph �(L, c) is
obtained. Since the only singular 4-residue of �(L, c) is the 4̂-residue �(L, c),
�(L, c) represents a 4-manifold with connected boundary M3(L, c); moreover,
�(L, c) represents M4(L, c) since each triad exchanging is proved to correspond
to the addition of a 2-handle according to the related framed component [Propo-
sition 9(ii)].

Let us now go into details.
Given a framed link (L, c), we can always assume that, for each component Li

(i ∈ {1, . . . , l}), an additional curl is placed near an undercrossing; as observed in
Sect. 3 such a configuration gives rise, in the 4-colored graph�(L, c), to a quadricolor
that we denote by Qi .

By cancelling the quadricolor Qi and pasting the resulting hanging edges of the
same color, we obtain a new 4-colored graph �(ı̂)(L, c); we call this operation the
smoothing of the quadricolor Qi .

The following proposition shows that the smoothing of a quadricolor in a 4-colored
graph obtained from a framed link via Procedure B (see Sect. 3) turns out to be equiv-
alent to the Dehn surgery on the complementary knot of the involved link component.
More precisely, with the above notations, the result can be stated as follows:

Proposition 8 If�(ı̂)(L, c) is the 4-colored graph obtained from�(L, c) by smoothing
the quadricolor of the i-th framed component, then K (�(ı̂)(L, c)) is obtained from
K (�(L, c)) by Dehn surgery on the complementary knot of Li .

Hence, K (�(ı̂)(L, c)) represents the 3-manifold associated to the framed link
(Lı̂ , cı̂ ) obtained from (L, c) by deleting the i-th component.

Proof Let (L(ı̃), c(ı̃)) denote the l + 1 components link obtained from L by adding
the complementary knot of Li , i.e. a framed 0 trivial knot linking the component
Li geometrically once; moreover, let us suppose that the added trivial component is
inserted between the curl and the crossing corresponding to the quadricolorQi . Then,
let us consider the 4-colored graph �(L(ı̃), c(ı̃)) obtained by applying Procedure B of
Sect. 3 to the framed link (L(ı̃), c(ı̃)).

�(L(ı̃), c(ı̃)) is everywhere like �(L, c) except “near” the quadricolor Qi , where
it contains the subgraph in Fig. 10 (we denote by Pj , j ∈ {0, 1, 2, 3} the vertices of
Qi , even if they are no longer a quadricolor in �(L(ı̃), c(ı̃))). In the proof of Lemma 4
of [5] it is shown that the above subgraph yields, through a sequence of eliminations
of dipoles, the subgraph in Fig. 11.
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Fig. 10 The subgraph corresponding to the added complementary knot.

Fig. 11 The subgraph
corresponding to the added
complementary knot, after
dipole eliminations.
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By subsequently cancelling the 2-dipoles of vertices { ¯̄P0, R′
1}, {P̄0, P1}, {P̄2, P̄3},

{ ¯̄P3, R3}, all vertices of the quadricolorQi are eliminated and the obtained 4-colored
graph is precisely �(ı̂)(L, c).

Since the addition to (L, c) of the complementary knot of Li corresponds to the
Dehn surgery along it, the first part of the statement is proved. Moreover, the last
part follows directly by noting that the component Li and its complementary knot
constitute a pair of complementary handles, whose cancellation does not affect the
represented 3-manifold. ��

Remark 4 Quadricolors in 4-colored graphs were originally introduced by Lins. Note
that the transformation from �(L, c) to the 4-colored graph where the quadricolorQi

is replaced by the subgraph in Fig. 11 corresponds to the substitution, in the pseu-
docomplex K (�(L, c)), of a solid torus with another solid torus having the same
boundary. Hence, as already observed by Lins himself, the smoothing of a quadricolor
in any 4-colored graph is equivalent to perform aDehn surgery on the representedman-
ifold. The above proposition allows, when considering 4-colored graphs arising from
framed links, to identify this surgery precisely as the one along the complementary
knot of the component naturally associated to the quadricolor.

Proposition 9 (i) The 4-colored graph �
(ı̂)
smooth (resp. �smooth), obtained from�(L, c)

by exchanging the triad of 1-colored edges (according to Fig. 12) in a quadricolor
of the i-th component of (L, c) (resp. in a quadricolor for each framed component
of (L, c)), represents the 3-manifold associated to the framed link (Lı̂ , cı̂ ) obtained
from (L, c) by deleting the i-th component (resp. represents S3).

(ii) Let �̃smooth be the 5-colored graph obtained from �smooth by “capping off” with
respect to color 1. Then, the 5-colored graph �̃(i), obtained from �̃smooth by
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Fig. 12 Exchanging the triad of 1-colored edges in a quadricolor (I)
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Fig. 13 Exchanging the triad of 1-colored edges in a quadricolor (II)

exchanging the triad of 1-colored edges (according to Fig. 13) in a quadricolor
of the i-th component of (L, c), represents the 4-manifold obtained from D

4 by
adding a 2-handle according to the i-th component of (L, c)).

Proof (i) It is sufficient to make use of the Proof of Proposition 8 and to note that
�

(ı̂)
smooth is obtained (modulo the name exchange of Pj into P̄j , for j ∈ {0, 2, 3})

from the subgraph in Fig. 11 via cancellation of the two 2-dipoles of vertices

{ ¯̄P0, R′
1}, { ¯̄P3, R3} in the quadricolor of the i-th framed component, while �smooth

is obtained by performing the same procedure for each component of (L, c).
(ii) It is easy to check that, by a standard sequence of dipole addition, the 4-colored

graph �smooth may be transformed (modulo the name exchange of P2 into P̄2 and

Pj into
¯̄Pj , for j ∈ {0, 3}) in the 4-colored graph �̃4̂(L, c), already considered

both in [5] and in [7]: more precisely, for each component of the link, it is necessary

to add the 2-dipoles of vertices { ¯̄P0, R′
1} and { ¯̄P3, R3} shown in Fig. 11, and then

to add a 2-dipole of vertices {R′
2, R

′
3} within the 1-colored edge with endpoints

{R′
1, R3} and the 3-colored edge with endpoints { ¯̄P0, R′

1}. The 4-colored graph
�̃4̂(L, c) is deducible from Fig. 14, that illustrates the main step to obtain the 5-
colored graph with boundary �̃(L, c), representing M4(L, c), from the 4-colored
graph �(L, c).
Moreover, as explained in [7, pp. 442–443], the 1-skeleton of the associated colored

triangulation K (L, c) = K (�̃4̂) of S
3, contains two copies L ′ = L ′

1 ∪ · · · ∪ L ′
l and

L ′′ = L ′′
1 ∪ · · · ∪ L ′′

l of L , with linking number ci between L ′
i and L ′′

i , for each
i ∈ {1, . . . , l}, and the addition of the triad of 4-colored edgeswith endpoints {R1, R′

1},{R2, R′
2}, {R3, R′

3} corresponds - as proved in [5, Theorem 3] - to the attachment on
the boundary of D4 (i.e. the cone over K (L, c)) of a 2-handle whose attaching map
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P1

P2P3

P0

2RR RRRR

P1P2P3

P0

12RR RRR

' ''

3

3 1

Fig. 14 Main step from �(L, c) to �̃(L, c)

sends L ′
i into L ′′

i (see Fig. 14-right, and Fig. 15 for an example of the 5-colored graph
with boundary9 �̃(L, c), where (L, c) is the trefoil knot with framing +1).

Now, if the “capping off” procedure described in Proposition 6 is applied with
respect to color 1, the obtained regular 5-colored graph (which represents the compact
4-manifold obtained fromD

4 by adding a 2-handle along the i-th component of (L, c))
turns out to admit a sequence of three 2-dipoles involving only vertices of the quadri-
color and never involving color 4: in fact, they consist of the pairs of vertices {P3, R3},
{R′

3, R
′
2}, {P0, R′

1} in Fig. 14(right). It is not difficult to see that, after these cancel-
lations, we obtain exactly the (regular) 5-colored graph �̃(i), obtained from �̃smooth

(which obviously representsD4) by cyclically exchanging the triad of 1-colored edges
(according to Fig. 13) in the quadricolor Qi of the i-th component of (L, c). ��
Remark 5 Note that a standard sequence of dipole moves exists, transforming �

(ı̂)
smooth

into �(Lı̂ , cı̂ ): it follows Li starting from the quadricolor Qi , where the triad of 1-
colored edges have been cyclically exchanged as in Fig. 12 (right), by deleting first the
2-dipoles {P2, P3} and {P4, P5}, and then all subsequently generated 2-dipoles, among
pairs of vertices, belonging to different bipartition classes, which are either endpoints
of 1-colored edges “parallel” to adjacent segments of Li , or 0-adjacent vertices of the
subgraph associated to an undercrossing of Li , till to obtain an order two component
of the 4-colored graph consisting only of the vertex P0 and its 2-adjacent vertex.
Obviously, if the procedure is applied for each i ∈ {1, . . . , l}, a standard sequence
of dipole eliminations is obtained, transforming the 4-colored graphs �smooth into the
order two 4-colored graph representing S

3.

9 Recall that in this type of colored graphs, some vertices lack incident 4-colored edges.
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Fig. 15 The 5-colored graph
with boundary �̃(L, c)
representing M4(L, c), for
c = +1 and L = trefoil

P
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P
1

P2P3

Proof of Theorem 7 (i) In order to prove that �(L, c) represents M4(L, c), it is suf-
ficient to note that the main step yielding �(L, c), depicted in Fig. 5, exactly
coincides with the transformation from the 4-colored graph of Fig. 12-left (repre-
senting M3(L, c)) to the 5-colored graph of Fig. 13-right (representing M4(L, c),
if the procedure is applied to a quadricolor for each component of (L, c)). Hence,
Proposition 9(i) and (ii) ensure �(L, c) actually to represent the compact 4-manifold
obtained from D

4 by adding l 2-handles according to the l components of (L, c).
Now note that, by construction, the 4-colored graph �(L, c) has 8s + 4

∑l
i=1|wi − ci | vertices. As already observed, the presence of a curl near an undercrossing

in a component of L yields a quadricolor Qi . Therefore, for each i ∈ {1, . . . , l}, if
|wi −ci | �= 0, then the required addition of curls ensures the existence of a quadricolor
relative to Li , while if |wi −ci | = 0 a pair of opposite curls has to be added in order to
produce one (except in the case of the trivial knot which is discussed in Example 1).
Since each curl contributes with 4 vertices to the final 5-colored graph, the statement
concerning the order of �(L, c) is easily proved.

With regard to the regular genus of �(L, c), let us consider the cyclic permutations
ε̄ = (1, 0, 2, 3) of �3 and ε = (1, 0, 2, 3, 4) of �4.

As already pointed out in [5], the construction of �(L, c) directly yields
ρε̄(�(L, c)) = s + 1. On the other hand, it is easy to check -via formula (1) - that

2ρε(�(L, c)) − 2ρε̄(�(L, c)) = g1,3 − g3,4 − g1,4 + p,

where 2p is the order of �(L, c) (as well as of �(L, c)).
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Since, by construction, g3,4 = g1,3 and g1,4 = p − 2l, we obtain:

ρε(�(L, c)) = ρε̄(�(L, c)) + l. (2)

The result about the regular genus of �(L, c) now directly follows.
(ii) As proved in [5, Theorem 1], the 4-colored graph �(L, c) admits a finite

sequence of moves, called generalized dipole eliminations,10 which preserve the
represented manifold and do not affect the quadricolor structures, but reduce the reg-
ular genus. Hence, a new 4-colored graph �(L, c) representing M3(L, c) is obtained,
having regular genus mα with respect to the cyclic permutation ε̄ = (1, 0, 2, 3) of �3
(see [5] for details).�(L, c) contains a quadricolor for each component of L , too, and
the results of Proposition 9(i) and (ii) may be applied, exactly as previously done for
�(L, c), so to obtain -via the move depicted in Fig. 5 performed on a quadricolor for
each component of L - a new 5-colored graph �̃(L, c) representing M4(L, c).11

Now, it is not difficult to check that - in full analogy to Eq. (2) - the following relation
holds between the regular genera of �̃(L, c) and �(L, c), with respect to ε̄ and ε

respectively:

ρε(�̃(L, c)) = ρε̄(�(L, c)) + l.

Then, both statements of Theorem 7(ii) directly follow from ρε̄(�(L, c)) = mα:
ρε(�̃(L, c)) = mα + l, while ρε̄((�̃(L, c))4̂)) = mα (since the 4̂-residue of �̃(L, c)
is exactly �(L, c)). ��

See Figs. 16 and 17 for examples of graphs�(L, c) and �̃(L, c) respectively, where
(L, c) is the trefoil knot with framing +1.

5 From dotted links to 5-colored graphs

In this section we will take into account the more general case of Kirby diagrams
with dotted components, extending the procedure and the results of Sect. 3. Note
that, as a consequence, the class of manifolds involved in the construction includes
all closed (simply-connected) 4-manifolds admitting a handle decomposition without
3-handles ([24, Problem 4.18], which is of particular interest with regard to exotic PL
4-manifolds: see, for example, [1, 2]).

Let (L(m), d) be a Kirby diagram, where L is a link with l components, Li for
i ∈ {1, . . . ,m} (resp. i ∈ {m + 1, . . . , l}) being a dotted (resp. framed) component,

10 A generalized dipole in a 4-colored graph representing a closed 3-manifold is a particular subgraph,
whose cancellation factorizes into a sequence of proper dipole moves; from the topological point of view,
this move corresponds to a Singermove of type III’ involving a pair of curves in a suitable Heegaard diagram
which can be associated to the 4-colored graph (see [17] for details).
11 It is not difficult to check that �̃(L, c) could also be obtained through the 5-colored graph with boundary
�̃(L, c), constructed in [5] by applying the move depicted in Fig. 14 for each component of the link: in
fact, �̃(L, c) represents M4(L, c), too, and in order to obtain �̃(L, c) it is sufficient to make the capping
off with respect to color 1 and to delete three 2-dipoles for each quadricolor, exactly as done in the Proof
of Proposition 9 (ii) for �̃smooth.
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Fig. 16 The 4-colored graph �(L, c) representing M3(L, c), for c = +1 and L = trefoil

Fig. 17 The 5-colored graph �̃(L, c) representing M4(L, c), for c = +1 and L = trefoil
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and d = (d1, . . . , dl−m), where di ∈ Z ∀i ∈ {1, . . . , l − m} is the framing of the
(m + i)-th (framed) component.

As already recalled in the Introduction, we denote by M4(L(m), d) the 4-manifold
with boundary obtained from D

4 by adding m 1-handles according to the dotted
components and l − m 2-handles according to the framed components of (L(m), d).
The boundary of M4(L(m), d) is the closed orientable 3-manifold M3(L, c) obtained
from S

3 by Dehn surgery along the associated framed link (L, c), obtained by sub-
stituting each dotted component by a 0-framed one, i.e. c = (c1 . . . , cl), where

ci =
{
0 1 ≤ i ≤ m

di−m m + 1 ≤ i ≤ l
.

In case M3(L, c) ∼= S
3, we will consider, and still denote by M4(L(m), d), the

closed 4-manifold obtained by adding a further 4-handle.
Before describing the new procedure, the following preliminary notations are

needed:

– For each i ∈ {1, . . . ,m}, let us “mark” two points Hi and H ′
i on Li , such that

they divide Li into two parts, one containing only overcrossings and the other
containing only undercrossings of L .12

– For each j ∈ {m + 1, . . . , l}, let us fix on L j a point X j , between a curl and an
undercrossing, and let us consider the component L j in the diagram of L as the
union of consecutive segments obtained by cutting it not only at undercrossings,
but also at overcrossings and at the point X j .

– Then, for each j ∈ {m + 1, . . . , l} let us “highlight” on L j - starting from X j

and in the direction opposite to the undercrossing - a sequence Y j of consecutive
segments, so that, for each i ∈ {1, . . . ,m}, Hi and H ′

i belong to the boundary
of the same region Ri of the “diagram” obtained from L by deleting the points
Xm+1, . . . , Xl and the segments of the sequences Ym+1, . . . ,Yl (with a little abuse
of notation we will describe this new diagram as L − ∪l

j=m+1(X j ∪ Y j )). Note
that Y j can be empty, while it never comprehends all segments of L j .

Let us denote by Y = Ym+1 ∧ · · · ∧ Yl the sequence resulting from juxtaposition
of the sequences of highlighted segments.

– Finally, for each i ∈ {1, . . . ,m}, let ēi (resp. ē′
i ) be the 1-colored edge of �(L, c)

“parallel” to the part of arc of Li containing the point Hi (resp. H ′
i ) “on the side”

of the regions of L merging into Ri (see Remark 3), and let vi (resp. v′
i ) be

its endpoint belonging to the subgraph corresponding to an undercrossing of the
dotted component Li .

PROCEDURE C- from (L(m),d) to �(L(m),d) (representing M4(L(m),d))

(a) Let�(L, c) be the 4-colored graph constructed from (L, c) according to Procedure
A; in �(L, c), let us choose a quadricolor Q j for each (undotted) component
L j ( j ∈ {m + 1, . . . , l}) in the position corresponding to the point X j .

(b) Follow the sequence Y = Ym+1 ∧ · · · ∧ Yl , starting, for each j ∈ {m + 1, . . . , l}
with Y j �= ∅, from the segment corresponding to the pair of 1-colored edges
adjacent to vertices P4 and P5 identified by the quadricolor Q j ; at each step of

12 Note that 1-handles and 2-handles may always be re-arranged, so to respect this requirement: see for
example [23, Prop. 4.2.7] or [28, Chapter 1 - Principle 1].
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the sequence, if f , f ′ is the pair of 1-colored edges which are “parallel” to the
considered highlighted segment, then:

if no 4-colored edge has already been added to the endpoints of f and f ′, join, by 4-
colored edges, endpoints of f to endpoints of f ′ belonging to different bipartition
classes of �(L, c); otherwise connect only the endpoints of f and f ′ having no
already incident 4-colored edge.

Moreover, if two consecutive highlighted segments correspond to an undercross-
ing, whose overcrossing does not correspond to previous segments in Y , add
4-colored edges so to double the pairs of 0-colored edges within the subgraph
corresponding to that crossing.

(c) For each i ∈ {1, . . . ,m}, add a 4-colored edge, so to connect vi and v′
i .

(d) For each j ∈ {m + 1, . . . , l}, add a triad of 4-colored edges between the vertices
P2r and P2r+1, ∀r ∈ {0, 1, 2}, of the quadricolor Q j (as shown in Fig. 5).

(e) Add 4-colored edges between the remaining vertices of �(L, c), joining those
which belong to the same {1, 4}-residue.

Remark 6 We point out that a quadricolor always arises in a component L j ( j ∈
{m + 1, . . . , l}) of �(L, c) not only between a curl and an undercrossing but also
between two curls with the same sign. Actually in this last case two quadricolors
appear, one for each curl, and either of them can be indifferently chosen as Q j ;
therefore we put the point X j between the curls and the sequence Y j can start from
either “side” of it.Moreover, note that the position of points X j maybe suitably chosen,
so to minimize the length of the sequence Y , provided that the above conditions for
the existence of the quadricolor are satisfied.

Example 5 Figures 18 and 19 show the result of the above construction applied to the
depicted Kirby diagrams. In particular, note that step (b) of Procedure C is not required
for the graph of Fig. 18, since the highlighted sequence of segments is empty; on the
contrary, the case of Fig. 19 requires to highlight a suitable set of consecutive segments
in the Kirby diagram, as depicted in Fig. 20. Via Kirby calculus, it is easy to check
that the 5-colored graph in Fig. 18 represents the 4-sphere, while the 5-colored graph
in Fig. 19 represents S2 ×D

2; both facts can also be proved via suitable sequences of
dipole moves.

Example 6 Given a framed link (L(m), d), the above constructionmay be implemented
in different ways, depending on the choice of the points Xi (i = m + 1, . . . , l) on
the framed components [step (a) of Procedure C] and on the choice of the sequence
Y = Ym+1 ∧ · · · ∧ Yl of highlighted segments [step (b) of Procedure C]. Figures 21
and 22 show two possibile ways to perform the above choices on the same Kirby
diagram: in Fig. 21 (resp. Fig. 22) the yellow highlighted segments form the sequence
Y3, while the green highlighted segments form the sequence Y4 (resp. while Y4 = ∅).
Note that, in the case of Fig. 21, the regionsR1 andR2 of L−∪4

j=3(X j ∪Y j ) coincide:
they are obtained by merging the shaded regions, together with the infinite one. On
the other hand, in the case of Fig. 22, the regions R1 and R2 of L − ∪4

j=3(X j ∪ Y j )

are distinct.
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Fig. 18 A Kirby diagram and
the 5-colored graph representing
the associated (closed)
4-manifold (S4)

0

The proof that the graph obtained via Procedure C really represents M4(L(m), d)

is given in Theorem 12. In order to help the reader, we can anticipate that it will be
performed by means of the followings steps:

(i) starting from the 4-colored graph �(L, c) - already proved to represent M3(L, c)
in [5] -we obtain a 4-colored graph �smooth representing #m(S1 × S

2) by suitably
exchanging a triad of 1-colored edges for each framed component of (L(m), d)

[Proposition 11(i)];
(ii) by capping-off with respect to color 1, we obtain a 5-colored graph representing

[#m(S1 × S
2)] × I ;

(iii) this 5-colored graph is modified by a sequence of moves not affecting the repre-
sented 4-manifold (the so called ρ2-pairs switching), so to have on one boundary
component of [#m(S1 × S

2)] × I a particular structure (called ρ3-pair) for each
dotted component of (L(m), d);

(iv) a suitable move (ρ3-pair switching) is applied on each such structure, realizing -on
the considered boundary component - the attachment of 1-handles corresponding
to the m dotted components of (L(m), d) [Proposition 11(ii)];

(v) by re-establishing the triads of 1-colored edges of step (i), the 5-colored
graph �(L(m), d) is obtained. Since its only singular 4-residue is the 4̂-residue
�(L, c), it represents a 4-manifold with connected boundary M3(L, c); moreover,
�(L(m), d) represents M4(L(m), d) since - similarly as in Procedure B-each triad
re-exchanging is proved to correspond to the addition of a 2-handle according to
the framed component, on the remaining boundary component [Proposition 9(ii)].

In order to go into details, the notion of ρ-pair13 and some preliminary results are
needed.

13 ρ-pairs and their switching were introduced by Lins [26] and subsequently studied in [3, 9, 15].
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0

0

Fig. 19 AKirby diagram and the 5-colored graph representing the associated bounded 4-manifold (S2×D
2)

Fig. 20 The Kirby diagram of
Fig. 19, with points and
highlighted segments, according
to Procedure C. The yellow
highlighted segments form the
sequence Y2, while Y3 = ∅. The
shaded regions, together with the
infinite one, give rise to the
regionR1 of
L − ∪3

j=2(X j ∪ Y j ) containing

both points H1 and H ′
1

X
2

X
3

H
1

H
1

’

0

0

Definition 6 A ρh-pair (1 ≤ h ≤ n) of color c ∈ �n in a bipartite (n + 1)-colored
graph � is a pair of c-colored edges (e, f ) sharing the same {c, i}-colored cycle for
each i ∈ {c1, . . . , ch} ⊆ �n . Colors c1, . . . , ch are said to be involved, while the other
n − h colors are said to be not involved in the ρh-pair.
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H
1
’

X
3

X
4

H
1

H
2
’H

2

Fig. 21 A Kirby diagram, with a possible choice of points and highlighted segments of arcs.

H
1
’X

3

X
4H

1
H

2
’H

2

Fig. 22 Another possible choice of points and highlighted segments of arcs, on the same Kirby diagram of
Fig. 21.

The switching of (e, f ) consists in canceling e and f and establishing new c-colored
edges between their endpoints in such a way as to preserve the bipartition.

The topological consequences of the switching of ρn−1- and ρn-pairs have been
completely determined in the case of closed n-manifolds: see [3], where it is proved
that a ρn−1-pair (resp. ρn-pair) switching does not affect the represented n-manifold
(resp. either induce the splitting into two connected summands, or the “loss” of a
S
1 × S

n−1 summand in the represented n-manifold). In dimension three the study has
been performed also in the case of manifolds with boundary: see [15], where more
cases are proved to occur.

As we will see in the proof of the following Proposition 11, we are particularly
interested in the effect of switching ρ2- and ρ3-pairs in 5-colored graphs. A useful
result is the following.

Lemma 10 Let (e, f ) be a ρ2-pair in a 5-colored graph � representing a compact 4-
manifold M4 and let�′ be obtained from� by switching theρ2-pair. Then�′ represents
M4, too.

Moreover, for each cyclic permutation ε of �4, where εk is the color of (e, f ):

– if both εk−1 and εk+1 are involved, then ρε(�
′) = ρε(�) − 1

– if neither εk−1 nor εk+1 is involved, then ρε(�
′) = ρε(�) + 1
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fe

Fig. 23 Factorization of a ρ2-pair switching into two proper dipoles (not affecting the represented 4-
manifold)

– if exactly one between εk−1 and εk+1 is involved, then ρε(�
′) = ρε(�).

Proof In order to prove that �′ represents M4, too, it is sufficient to observe that the
switching of (e, f ) can be factorized by a sequence of dipolemoves as shown inFig. 23,
i.e. by the addition of a 2-dipole of the colors not involved in the ρ2-pair, followed
by the cancellation of a 2-dipole of the colors involved in the ρ2-pair. Note that any
2-dipole in a 5-colored graph is proper (see Proposition 5), and hence both moves
do not change the represented manifold, since - as already pointed out in Sect. 2 - they
correspond to re-triangulations of balls embedded in the cell-complexes associated to
the involved colored graphs.

With regard to the regular genus of �′ with respect to ε, note that the switching of
(e, f ) increases by one (resp. decreases by one) the number of {εk, i}-colored cycles
of � if i is an involved (resp. a not involved) color, while the number of {i, j}-colored
cycles with i, j �= εk is not changed. An easy calculation yields the statement. ��

Proposition 11 (i) The 4-colored graph �
(m)
smooth, obtained from �(L, c) by exchang-

ing the triad of 1-colored edges (according to Fig. 12) in a quadricolor for each
framed component of (L(m), d), represents #m(S1 × S

2).
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(ii) The 5-colored graph �̄
(m)
smooth, obtained by applying steps (b) and (c) of Procedure

C to �
(m)
smooth, and then by “capping off” with respect to color 1, represents the

genus m 4-dimensional handlebody Y4
m.

Proof Part (i) directly follows from Proposition 9(i), by noting that, if all framed
components of (L(m), d) are deleted, only the m dotted components remain, and the
associated framed link, consisting in m disjoint trivial 0-framed components, actually
represents the 3-manifold #m(S1 × S

2).
As regards part (ii), it is necessary to note that �(m)

smooth gives rise, by “capping off”
with respect to color 1, to a 5-colored graph representing [#m(S1 × S

2)] × I , whose
two boundary components - both homeomorphic to #m(S1 × S

2) - are represented by
the (color-isomorphic) subgraphs � and �′, obtained by deleting the 4−colored and
1−colored edges respectively. This 5-colored graph admits ρ2-pairs of color 4 in
a suitable sequence induced by the sequence of 2-dipoles whose cancellation from
�

(m)
smooth yields �(

⊔
m K0, 0), the 4-colored graph associated to the trivial link with m

0-framed components (see Remark 5, applied to all framed components of (L(m), d)).
The switching of these ρ2-pairs is equivalent (up to “capping off” with respect to color
1) to the addition of 4-colored edges according to step (b) in �(L, c).

More precisely, the pairs of 4-colored edges that have to be switched in the sequence
of ρ2-pairs are exactly the 4-colored edges adjacent to the pairs of vertices constituting
2-dipoles of the sequence of dipole eliminations (starting, for each j ∈ {m+1, . . . , l}
such that Y j �= ∅, with the dipole whose vertices are 2-adjacent to the vertices P4
and P5 identified by the quadricolorQ j ) from �

(m)
smooth to�(

⊔
m K0, 0); moreover, the

colors involved in each ρ2-pair are exactly those (never comprehending color 1) of the
corresponding 2-dipole.

Hence, the graph �̃
(m)
smooth, obtained after all ρ2-pairs switchings, still represents

[#m(S1 × S
2)] × I and one of its boundary component is represented by �, too, but

the other is represented by the 4-colored graph �′′ obtained from �′ by switching
ρ2-pairs induced by the above ones.

We point out that, for each i ∈ {1, . . . ,m}, the pair of 4-colored edges having an
endpoint in vi and v′

i respectively, turn out to formaρ3-pair of color 4 in �̃
(m)
smooth. In fact,

they double ēi and/or ē′
i , or they arise from the possible switching of 4-colored edges

doubling ēi and/or ē′
i by the above sequence of ρ2-pairs switchings; as a consequence,

they belong both to the same {0, 4}-residue and to the same {3, 4}-residue (since ēi and
ē′
i share both the same {0, 1}-residue and the same {1, 3}-residue in �(L, c)), and the
sequence of ρ2-pair switchings makes them to belong also to the same {2, 4}-residue
(which corresponds to the boundary of the region Ri of L − ∪l

j=m+1(X j ∪ Y j )).
It is known that the switching of a ρ3-pair in a 4-colored graph representing a closed

3-manifold has the effect of “subtracting” an S
1 × S

2 summand (see [3] for details);
hence the switching of the above m ρ3-pairs transforms �′′ into a 4-colored graph
representing S3, while the 4̂-residue� is unaltered and each ĉ-residue for c ∈ {0, 2, 3}
still represents the 3-sphere as in �̃

(m)
smooth (since a ρ2-pair switching has been performed

in each affected ĉ-residue, for c ∈ {0, 2, 3}).
Moreover, supposing (e, f ) to be one of the above ρ3-pairs in �̃

(m)
smooth, its switching

can be factorized as in Fig. 24 by inserting a 1-colored edge and subsequently canceling
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a 3-dipole. The insertion of the 1-colored edge in the colored triangulation associated
to �̃

(m)
smooth consists in “breaking” a tetrahedral face on the boundary of [#m(S1×S

2)]× I

corresponding to the 1̂-residue �′′, and inserting a new pair of 4-simplices sharing the
same 3-dimensional face opposite to the 1-labelled vertex; hence, it may be seen as the
attachment of a polyhedron homeomorphic toD3 ×D

1 to the considered boundary, so
to transform it into a triangulation of #m−1(S

1 × S
2), without affecting the interior of

[#m(S1 ×S
2)]× I , nor its boundary corresponding to the 4̂-residue.14 Whenever allm

ρ3-pairs are switched, the 1̂-residue of the obtained 5-colored graph comes to represent
the 3-sphere, i.e. the represented 4-manifold has a connected boundary, corresponding
to the (unaltered) 4̂-residue � = �

(m)
smooth.

On the other hand, the switching of these ρ3-pairs is equivalent (up to “capping
off” with respect to color 1) to the addition of 4-colored edges in �(L, c) according
to step (c); therefore, step (c) of Procedure C can be thought of as the identification φ

between the boundary of a genus m 4-dimensional handlebody Y4
m and the boundary

component represented by �′′ in the triangulation of [#m(S1 × S
2)] × I obtained in

step (b).
This proves statement (ii), since �̄

(m)
smooth -which admits 4 as its unique singular

color - turns out to represent Y4
m ∪φ ([#m(S1 × S

2)] × I ) ∼= Y
4
m . ��

We are now going to prove that the 5-colored graph �(L(m), d) obtained via Proce-
dure C [i.e. by applying to �(L, c) steps (b)–(e)] represents the compact 4-manifold
associated to the Kirby diagram; we will also give an estimation of its regular genus
and compute its order. With this aim, if (L(m), d) is a Kirby diagram with l compo-
nents where the firstm > 0 ones are dotted and s crossings, and (L, c) is its associated
framed link, let us set, for each i ∈ {m + 1, . . . , l},

t̄i =
{

|wi − ci | if wi �= ci
2 otherwise

where wi denotes the writhe of the i-th (framed) component of L; moreover, let
us denote by u the number of undercrossings which are passed when following the
sequence Y , with the condition that the associated overcrossing does not correspond
to previous segments in the sequence itself.

Theorem 12 For each Kirby diagram (L(m), d), the bipartite 5-colored graph
�(L(m), d) represents the compact 4-manifold M4(L(m), d).

Moreover, it has regular genus less or equal to s + (l − m) + u + 1 and, if L is
different from the trivial knot, its order is 8s + 4

∑l
i=m+1 t̄i .

Proof In order to prove the first statement, we point out that in the Proof of Proposi-
tion 11(ii) we have considered a suitable triangulation of [#m(S1 × S

2)] × I , and then
we have “closed” one of its boundary components by identifying it with the boundary
of the genusm 4-dimensional handlebody (via the addition of 4-colored edges accord-
ing to steps (b) and (c) of the Procedure C). Hence, the polyhedron represented by

14 Actually, the switching of each of the m ρ3-pairs corresponds to the attaching of a 3-handle to the

boundary corresponding to the 4̂-residue of �̃
(m)
smooth.
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fe

Fig. 24 Factorization of a ρ3-pair switching into two moves, the first (resp. second) one possibly affecting
(resp. always not affecting) the represented 4-manifold
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�̄
(m)
smooth may be seen as the union of 0- and 1-handles of M4(L(m), d), plus a “collar”

on its boundary. Moreover, the “free” boundary, homeomorphic to #m(S1 × S
2), is

represented by the 4-colored graph� = (�̄
(m)
smooth)4̂ = �

(m)
smooth. Then, in order to obtain

a 5-colored graph representing M4(L(m), d), it is sufficient to operate on this “free”
boundary, so to perform the addition of a 2-handle according to each framed compo-
nent of (L(m), d). Now, the Proof of Proposition 9(ii) shows that the goal is achieved
by exchanging the triad of 1-colored edges, according to Fig. 13, in the quadricolor
Q j of the j-th component of (L(m), d), for each j ∈ {m + 1, . . . , l}. Since all these
exchanging of 1-colored edges have the effect to transform �

(m)
smooth into �(L, c), and

step (d) applied to �(L, c) is equivalent to the exchanging of 1-colored edges accord-
ing to Fig. 13 applied to �̄

(m)
smooth, the final 5-colored graph representing the compact

4-manifold M4(L(m), d) turns out to be obtained by applying directly to�(L, c) steps
(b)–(d), and then by “capping off” with respect to color 1 [step (e)].

In order to give an estimation of the regular genus of �(L(m), d), we first recall
that ρε̄(�(L, c)) = s + 1 with ε̄ = (1, 0, 2, 3) [see also the Proof of Theorem 7(i)],
and hence that s + 1 is also the regular genus, with respect to the permutation ε =
(1, 0, 2, 3, 4), of the 5-colored graph obtained by doubling the 1-colored edges of
�(L, c) by color 4. Then, we have to analyze how the regular genus is affected by the
switchings of ρ2- and ρ3-pairs and the exchanging of triad of edges in the quadricolors
described in the Proofs of Proposition 11 and Theorem 7.

Now, let us point out that color 1 is never involved in the considered ρ2-pairs, while
color 3 is involved only in one of the two ρ2-pairs corresponding to an undercross-
ing whose associated overcrossing does not correspond to previous segments in the
sequence Y . Therefore, by Lemma 10, the regular genus with respect to ε increases
by u, when performing the sequence of ρ2-pairs corresponding to the sequence Y .

With regard to the ρ3-pairs, since they do not involve color 1, which is consecutive
in ε to color 4, the same argument used in the Proof of Lemma 10 shows that the
regular genus does not change after their switchings.

Finally, the exchanging of the triad of 4-colored edges in a quadricolor, producing
the attaching of a 2-handle, decreases by two the number of {1, 4}-colored cycles,
while the numbers of all other bicolored cycles remain unaltered (see Fig. 13). Hence,
the regular genus increases by one for each quadricolor. Since the quadricolors are
l − m, the statement is proved.

The proof of the theorem is completed by noting that �(L(m), d) has exactly the
same order as �(L, c) (and as �(L, c), too). Hence, its calculation directly follows
from Theorem 7(i). ��

We are now able to prove both upper bounds for the invariants of the 4-manifold
associated to a Kirby diagram, already stated in Theorem 2 in the Introduction.

Proof of Theorem 2 The upper bound for the regular genus of M4(L(m), d) directly
follows from the computation of ρε̄(�(L(m), d)) obtained in Theorem 12, together
with the trivial inequality u ≤ s̄.

As regards the upper bound for the gem-complexity, it is sufficient to make use of
the computation of the order of �(L(m), d) obtained in Theorem 12, by pointing out
that �(L(m), d) contains a pair of 3-dipoles of colors {0, 1, 4} for each pair of adjacent
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undercrossings of dotted components; hence, a new 5-colored graph �′(L(m), d))

representing M4(L(m), d) may be obtained, with

#V (�′(L(m), d)) = #V (�(L(m), d)) − 4[(s − s̄) − m] = 4s + 4s̄ + 4m + 4
l∑

i=m+1

t̄i .
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