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Abstract. Engine research community interest in the Radio-Frequency 
corona-based ignition systems is currently gaining in importance mainly 
due to their capability to ensure robust combustion at challenging operating 
conditions such as very lean mixture and/or high EGR dilution. The 
benefits of Corona low-temperature plasma foster the early flame 
development thanks to combustion precursors production and to a more 
energetic and volumetric discharge, resulting in a larger amount of 
involved mixture. The corona discharge generates ionizing waves, named 
streamers, whose temporal and spatial variability in orientation, length and 
branching can affect the combustion onset and, therefore, the engine cycle-
to-cycle variability. 
In this work, the discharge natural luminosity of a RF corona igniter, 
characterized by four tips electrodes, was recorded in an optically 
accessible engine via high-speed camera detection. A preliminary 
statistical analysis of the spatial and temporal streamer variability was 
performed by operating in motored conditions. Four different engine 
speeds and two different loads were explored in order to deeply investigate 
the streamer behaviour at diverse engine operating conditions. 
A comparison between a motored and a lean operating condition is also 
proposed to analyse, at a specific engine speed, the mixture influence on 
the streamers propagation before the start of the combustion. 

1 Introduction  
Currently, Internal Combustion Engines (ICEs) are forced to decrease the amount of 

pollutant emissions and fuel consumption while maintaining high performance [1,2]. Spark 
ignition (SI) engines actual trends to obtain a cleaner and more efficient combustion are 
focusing on innovative strategies such as water injection, turbocharging, high exhaust gas 
recirculation (EGR) dilution, and/or lean combustion [3,4,5]. At these operating conditions, 
where high released energy is required for mixture ignition, conventional spark plugs have 
shown its limits in obtaining robust combustion onsets with low cycle-to-cycle variability 
[6]. To improve ignition capability, spark-based solutions like multiple strikes discharge [7] 
or high-energy discharge [8] have shown issues due to reduced sparkplug lifetime. 
Automotive research has currently found in low-temperature plasma (LTP)-based ignition 
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systems a valid solution to improve ignition capability especially in lean and/or diluted 
conditions [9,10]. LTP igniters enhance the combustion not only via thermal effect but also 
via kinetic and transport effects [11]. Among LTP technologies, one of the most promising 
solution is represented by radio-frequency (RF) corona streamer-type igniter (CSI) [12,13]. 
CSI discharge is based on the production of a strong electric field amplified through 
needles/ tips to generate filaments, named streamers [14]. These ionization waves propagate 
from the device-tips to the counter-electrode represented by the engine walls or by piston 
head, thus resulting in a larger amount of involved mixture [15]. Calorimetry tests also 
showed CSI capability to release into the medium higher thermal energy with respect to the 
one released by a conventional spark igniter [16].  
Streamers behaviour is quite different depending on pressure level, mixture composition 
and igniter setting parameters (mainly electrode voltage [16,17]); these features make the 
corona discharge a highly random phenomenon [18].  
Therefore, temporal and spatial variability of the streamer in orientation, branching and 
length can affect the combustion onset and, consequently, the engine cycle-to-cycle 
variability [19]. 
Within this context, the present work aims at investigating the steamers length evolution 
during a CSI discharge in an optical access engine at different testing conditions. Evidences 
link the streamers penetration to the thermal energy released into the medium and to the 
production of radicals and excited species via ionization and excitation of the mixture [18]. 
The larger the amount of charge involved the higher the combustion robustness and the 
lower the cycle-to-cycle variability. 
Preliminary analysis of the spatial and temporal streamer variability was performed at 
motored conditions, by using different engine speeds and loads. 
A comparison between motored and lean operating conditions is also provided to analyse, 
before the combustion onset, the influence of the mixture on the streamers propagation. 

2 Experimental setup 

2.1 RF corona igniter 

In this work, a Tenneco ACIS (Advanced Corona Ignition System) streamer-type igniter 
(CSI) was used to carry out the experimental campaign (Fig.1). A dedicated control unit 
powers the igniter assembly with an alternating RF current at about 1.04 MHz, 
corresponding to the resonance frequency of the equivalent RLC circuit [20].  

The main control parameters of the discharge are the driving voltage Vd and the 
activation time ton [34], which are respectively correlated to the peak electrode voltage (Ve) 
and to the discharge duration [16].  

In the CSI configuration the streamers start from four-tip electrode and propagate into 
the medium towards the counter-electrode (Fig.1). 

 
Fig.1. Representation of the streamers development produced by the corona-streamer type igniter 
(1=inductor, 2=connection, 3=firing-end) 
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2.2 Optical Access Engine 

Measurements were carried out on a 500cc single-cylinder engine (Fig.2, (a)) with four 
valves, pent-roof combustion chamber, and a reverse tumble intake port system which is 
designed to operate in Direct Injection (DI) or Port Fuel Injection (PFI). The tests were 
conducted in Port Fuel Injection (PFI) mode with the igniter centrally located. A prolonged 
piston was used to locate a 45-degree mirror to allow the optical access from the bottom. A 
60 mm diameter quartz was mounted on the piston-head. Conventional rings have been 
replaced by Teflon graphite rings, as lubrification would hinder high-quality visualization. 

A Vision Research Phantom V710 high-speed CMOS camera was used to record the 
streamers evolution inside the chamber.  

A piezoresistive transducer (Kistler 4075A5) on the intake measures the intake port 
pressure and a piezoelectric transducer (Kistler 6061 B) on one side of the chamber 
measures the in-cylinder pressure. The engine speed control both at motored and firing 
condition was ensured by an AVL 5700 dynamic brake. The energizing time of the injector 
and the ignition timing was controlled by a research ECU (Athena GET HPUH4) that sends 
a trigger signal to the igniter control unit.  

In firing mode, the air-fuel ratio (λ) was set by reducing or increasing the fuel with fixed 
throttle position, in order to maintain the same turbulence level inside the combustion 
chamber. Standard European market gasoline (E5, with RON = 95 and MON = 85) was 
injected at a fixed absolute pressure of 5 bar by means of a port fuel injector (Weber 
IWP092). 

A Kistler Kibox (Fig.2, (b)) combustion analysis system (temporal resolution of 0.1 
CAD) acquired the pressure signals, the absolute crank angular position (measured by an 
optical encoder (AVL 365C)), the λ (measured by a fast lambda probe at the exhaust 
(Horiba MEXA- 720, accuracy of ±2.5%)), the ignition signal (from ECU), and the trigger 
signal used for synchronization purposes. A total of 63 consecutive events were recorded 
for each operating point tested. 

 
                             (a)                                                                       (b) 

Fig.2. (a) Optical access engine in firing condition and (b) experimental apparatus to perform the optical access 
engine tests. 
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2.3 Imaging System 

The Vision Research Phantom V710 high-speed CMOS camera used to record the 
natural luminosity of the streamers was coupled with a Nikon 55 mm f/2.8 lens (Table1). 
The synchronization between imaging data and indicating ones was ensured by a common 
trigger signal derived from an automotive camshaft position sensor (Bosch 0232103052). 
The high-speed camera starts recording when the rising edge of the trigger signal is 
detected. A tuneable pre-trigger length allowed to set a number of frames to be acquired 
even before the rising edge.  Each frame was composed of 256x256 pixel to magnify the 
acquisition around the igniter main electrode. Maximum allowable sampling rate of 79 kHz 
and minimum exposure time of 12.16 μs were chosen for the herein analysis. A total of 63 
consecutive events were recorded for each operating point tested. 

                             Table1. High-speed camera settings. 
Feature Unit Value 

Image Resolution pixel 256x256 

Spatial Resolution μm/pixel 107 

Bit Depth bit 8 

Exposure Time μs 12.16 

Sampling Rate fps 79,000 

Number of consecutive events recorded - 63 

3. Methods 
Image processing was carried out by means of in-house MATLAB scripts, together with 

the use of MATLAB built-in functions. All the procedures needed to evaluate the streamer 
luminosity and variability can be found in our previous work [18]. For sake of 
completeness, here are presented the main steps of the analysis. 

 

3.1 Preliminary Operations 

• Average Background Computation and Removal: the mean grey level of the 20 
frames before the start of discharge were computed and subtracted from each 
frames of the recorded series (Fig.3 (a)).  

• Equalization: grey levels were no longer displayed from 0–255 (maximum grey 
level with 8-bit resolution), but only up to 20 to highlight both bright frames 
and dark (Fig.3 (b)). 

• Filtering: the noise reduction was performed by using two-dimensional (2D) 
Gaussian filter with a standard deviation of 1.5 because it was considered a 
good compromise between boundary conservation and noise reduction (Fig.3 
(c)). 

• Thresholding and Binarization: for all test cases a fixed threshold (6 out of 255) 
was chosen to distinguish the level above which a pixel is actually considered 
as streamers and below which it is background. After that, each image was 
converted into black (no streamer-area detected) and white (streamer-area 
detected) (Fig.3 (d)).  
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Fig.3. Preliminary pre-processing procedure for streamers analysis. 

3.2 Streamer Penetration Determination 

After the binarization process, the algorithm determined, for each frame, the streamer 
penetration P defined as the maximum distance between the streamers head and the 
corresponding tip from which it was generated (Fig.4). Fig.4 shows the temporal evolution 
of the penetration P (4th quadrant), for all the 63 events acquired (grey lines) and the 
corresponding mean value (red line).  

 
                                      (a)                                                                         (b) 

Fig.4. (a) Streamer penetration P detection. The red asterisk represents the igniter tip position, while the green 
cross represents the streamer’s head point. (b) Temporal evolution of the penetration P for a certain number of 
streamers (black lines). Circular red marker indicates the max streamer penetration of the mean discharge event 
(red lines). 
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Note that the uncertainty in identifying the streamer penetration for each frame 
corresponded to ±1 pixel, i.e., 0.107 mm (according to Table1), which is negligible if 
compared to the maximum penetration values. 

4. Test Campaign 
All the tests were performed with the ignition timing set to obtain, at discharge onset, a 

fixed in-cylinder pressure of 6 bar. 

Tests were carried out at four different speeds and two different loads, with the engine 
operating in motored conditions (Table2).  At 1000 rpm, low load (from now on LL) 
condition was characterized by IMEP=4.5 bar @ λ=1 while the medium load (from now on 
ML) one by IMEP = 5.9 bar @ λ=1 [15].  

                                          Table2. Tests carried out with the engine in motored condition. 

Engine Speed, [rpm] Engine Load 

Low Medium 

500   
800   

1000   
1200   

 
Fired condition was also analysed to investigate the mixture influence on the CSI 

discharge evolution before the start of the combustion. 
 According to the optical engine operating stable limit, an ultra-lean condition was 

chosen (i.e. λ=1.6 [12]) to offer a comparison with a motored condition, at the same engine 
speed and load (Table3). 

                Table3. Comparison between an ultra-lean fired condition and motored one 
Engine Speed, [rpm] Engine Load Condition 

Motored Fired (λ=1.6) 
1000 Low   

In each test, maximum allowed corona duration ton=1500 μs [12,15] was used in order 
to deeply investigate the corona streamer evolution as pressure increases. For instance, at 
1000rpm, ton=1500 μs corresponds to 9 CAD. 

5. Results and Discussion 

5.1 Motored Condition 

The in-cylinder pressure value Pcyl is a function of both engine speed and load. 
According to the operating conditions (Table2), it was necessary to determine, case by case, 
the right IT value in order to maintain the start of discharge as fixed around pch=6bar. The 
results of preliminary tests are reported in Table4. For each case is shown the corona 
duration in Crank Angle Degree (CAD), according to the speed engine reference, and the 
corresponding internal pressure interval under which the igniter operated.  
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Table4. Ignition timing for each case analysed and corresponding working pressure interval 

Engine Load Engine Speed, 
[rpm] 

IT, 
[CAD aTDC] 

ton, 
[CAD] Pcyl (from-to), [bar] 

Low 

500 -43 4.5 6.00 - 6.83 
800 -39 7.2 6.08 - 7.43 
1000 -38 9 5.97 - 7.66 
1200 -36 10.5 5.99 - 7.93 

Medium  

500 -49 4.5 5.96 - 6.68 
800 -47 7.2 6.01 - 7.81 
1000 -47 9 6.10 - 8.28 
1200 -47 10.5 6.00 - 8.65 

 

The higher the engine speed the wider the in-cylinder pressure range under which the 
igniter is forced to work. Moreover, at the same Pcyl @ IT, the greater the load the larger the 
growth rate of the Pcyl curve (an example is reported in Fig.5). Consequently, the igniter has 
to deal with higher pressure levels at ML with respect to the LL because of the larger 
amount of air trapped inside the cylinder during the engine intake phase. 

 
Fig.5. In-cylinder pressure evolution for ML case (black curve) and LL one (grey curve) at 1200 rpm. The 

corresponding ignition timings are respectively indicated through black triangle and grey one. 

Other preliminary tests were deemed necessary in order to determine a Vd common to 
all operating conditions which allows to avoid the streamer to arc transition [16]. The 
general aim is to maintain same discharge characteristics by fixing Vd, ton and Pcyl @ IT in 
order to investigate the streamer evolution under varying conditions. With safety margin to 
avoid desultory arcs, Vd=24V was chosen to execute the experimental campaign.  

Fig.6 shows, for each CSI tip, the mean qualitative trend of the streamer penetration P 
during the igniter activation time, at 500 rpm at LL. As it can be noticed, the 4th quadrant is 
characterized by the longest penetration while the 3rd presents the shortest one. It can be 
noted that the 1st and 4th tips, which featured the highest penetration on average, were the 
closest to the engine intake valves, while the 2nd and 3rd tips were the closest to the exhaust 
side. It is worth mentioning that the igniter orientation could affect such variability. In 
general, this kind of observation can be extended to the other engine speeds and loads 
analysed (Table2). 
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Fig.6. Mean streamer penetration evolution in the four quadrants at 500 rpm and low load. 

Since higher penetration results in a higher radical insemination and greater released 
thermal energy [18], it is possible to expect higher probability to ignite a mixture from 1st 
and 4th tips.  

Fig.7 (a) shows the streamer evolution on the 1st quadrant, at each tested condition, 
focusing on the activation time (limited by black dotted lines, excluding the rising and 
falling transients) to highlight the penetration variation. In Fig.7 are reported the angular 
coefficients of the linear trend through which is possible to approximate the curve of Fig.7 
(b) in the discharge interval. For sake of clarity, only the linear trend of the 1200 rpm-ML 
case is presented in Fig.7 (a). For both load cases, the streamer penetration progressively 
decreases as engine speed increases due to the higher-pressure levels in which the igniter is 
forced to work (see Table4). Moreover, at the same engine speed, the greater the load the 
higher the angular coefficient of the linear fit approximating the trends of Fig.7 (a). This 
behavior is probably related to the higher pressure characterizing the medium load due to 
the higher amount of air trapped inside the chamber. 

 
Fig.7. (a) Streamer penetration at the different cases analysed. For sake of clarity only the linear fit approximating 
the 1200 rpm-ML trend is presented. (b) Angular coefficients of the linear trend approximating the cases reported 
in (a) plotted against the engine speed (black markers for the Medium Load and grey for the Low Load). 

Generally speaking, the previous observation can be extended to the other quadrants 
analysed. For what concerns the maximum penetration  [18] there is no evidences of a 
direct relationship connecting  to the engine speed or to the load. Moreover, the highest 
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Generally speaking, the previous observation can be extended to the other quadrants 
analysed. For what concerns the maximum penetration  [18] there is no evidences of a 
direct relationship connecting  to the engine speed or to the load. Moreover, the highest 

penetrations were found at the start of the discharge, i.e. at the lowest in-cylinder pressures. 
It is worth highlighting that this method did not take into account the angular position of the 
maximum penetration. Despite that, the effect of orientation on radical insemination and 
thermal energy release can be considered of second order with respect to streamer 
penetration length. Indeed, the latter results to be the key parameter affecting radical 
production and deposited thermal energy [21], and as a consequence, an effective 
combustion onset [22]. 

5.2 Fired Condition 

A comparison between a motored and a lean operating condition is below proposed to 
analyse the mixture (air + gasoline) influence on the streamer evolution before ignition. 
The low load motored-case at 1000 rpm (Table 2) is compared to a lean-case [12] operating 
at the same speed with an air/fuel ratio equal to 1.6 (λ=1.6) (Table5). It was found [12] that 
the operating point λ=1.6 represents the leanest stable condition characterizing the optical 
access engine of this work when operating with corona streamer-type igniter at 1000 rpm.  
 
      Table5. Technical characteristics of the compared motored and lean cases at 1000 rpm. 

Case Engine Speed, 
[rpm] 

IT, 
[CAD aTDC] 

Vd, 
[CAD] Pcyl (from-to), [bar] 

Motored 
1000 

-38 24 5.97 - 7.66 

Lean (λ=1.6) -49 19 4.41 - 5.80 

 
In the lean-case, it was necessary to advance the ignition timing to guarantee a stable 
combustion. With respect to the motored-case, the lower Pcyl at the ignition timing 
requested lower Vd to prevent streamer-to-arc transition. The differences in terms of 
streamer penetration P reported in Fig.8 between the motored (red curve) and lean case 
(black curve) are due to different Vd and Pcyl conditions [12,15]. 
 

 
Fig.8. Streamer penetration for the motored-case (red curve) and lean one (black curve). For clarity, only the P of 
the 1st quadrant is reported. Despite the differences in terms of streamer length found in the 4 quadrants (see 
Paragraph 5.1), the observations about the differences in the streamer evolution reported in this figure for the 1st 
quadrant can be extended to the other tips. 

Nevertheless, it could be interesting to focus the attention on the streamer evolution. At 
first, in the lean-case, the presence of gasoline emphasizes the local ionization of the 
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mixture more than in the motored-case, thus damping the recorded brightness of the 
streamers [23]. In addition to that, in the motored-case the penetration progressively 
decreases as engine speed increases due to the higher-pressure levels, while in presence of 
gasoline (lean-operation) streamers penetration rises along the activation time. This effect 
could be linked to the chemical reactions that gradually reduce the hydrocarbons quenching 
effect [24], consequently promoting the streamer propagation. 

Among all the streamer features, the penetration P parameter was chosen to investigate the 
behaviour of the CSI discharge inside the combustion chamber of an optical access engine. 
There is evidence that links the streamer penetration to the thermal energy released inside 
the combustion chamber [18,25] and to the production of radicals and excited species [26]. 
Therefore, since involving high amount of mixture during the discharge process is crucial 
to ensure robust combustions, the knowledge of streamers penetration gives the opportunity 
to evaluate the igniter capability to operate under critical operating conditions, as required 
by the increasingly stringent regulations on pollutant emissions.  
At motored condition, the obtained results show that the maximum penetration does not 
seem be influenced by engine speed or load, which makes the igniter extremely suitable for 
different operating conditions. The influence of pressure, charge motion and temperature 
result to be more evident. As a matter of fact, higher penetrations were recorded @ the IT 
(lowest pressure) and in the coldest area of the chamber (tips 1st and 4th).  
The fired tests show that the mixture quality influence the streamer penetration much more 
than the other features. However, long activation times allow to progressively increase the 
streamers length, and with it, to enhance both volumetric and thermal effects. It is worth 
highlighting that, to make the most of these two effects, each engine operating point must 
be preliminarily optimized in terms of corona setting (Vd,Ton) and pressure @ the IT to 
avoid the streamer-to-arc transition phenomenon.  

6 Conclusions 
This work reports an analysis of the discharge natural luminosity of a RF corona igniter 
characterized by four tips electrodes in an optically accessible engine via high-speed 
camera detection. In the first part of the work, an investigation of the streamers evolution 
and penetration during the igniter activation time was performed in motored condition at 
four different engine speeds and two different loads, by setting the ignition timing at the 
same in-cylinder pressure value. The main results are listed below: 

• For both load cases, the streamer penetration progressively decreases as engine speed 
increases due to the higher-pressure levels at which the igniter is forced to work. 

• At the same engine speed, the higher the load the more pronounced the decreasing of 
the streamer penetration along the discharge, probably due to the higher pressure 
characterizing the medium load.  

• In all cases analyzed, the tips featured with the highest penetration were the closest to 
the engine intake valves. The igniter orientation, together with the charge motion 
characterizing the optical engine and the higher local temperature close to the exhaust 
side, could affect such variability. 

• There is no evidence of a direct relationship linking the maximum streamer 
penetration to the engine speed and/or to the load. 

In the second part of the work, the low load motored case at 1000 rpm was compared to a 
lean-case operating at the same speed with an air/fuel ratio equal to 1.6 to analyze the 
mixture influence on the streamer evolution before the ignition. 

• Despite the differences in terms of streamer penetration length between the two 
analyzed cases, in the motored one the streamer penetration progressively decreases as 
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mixture more than in the motored-case, thus damping the recorded brightness of the 
streamers [23]. In addition to that, in the motored-case the penetration progressively 
decreases as engine speed increases due to the higher-pressure levels, while in presence of 
gasoline (lean-operation) streamers penetration rises along the activation time. This effect 
could be linked to the chemical reactions that gradually reduce the hydrocarbons quenching 
effect [24], consequently promoting the streamer propagation. 

Among all the streamer features, the penetration P parameter was chosen to investigate the 
behaviour of the CSI discharge inside the combustion chamber of an optical access engine. 
There is evidence that links the streamer penetration to the thermal energy released inside 
the combustion chamber [18,25] and to the production of radicals and excited species [26]. 
Therefore, since involving high amount of mixture during the discharge process is crucial 
to ensure robust combustions, the knowledge of streamers penetration gives the opportunity 
to evaluate the igniter capability to operate under critical operating conditions, as required 
by the increasingly stringent regulations on pollutant emissions.  
At motored condition, the obtained results show that the maximum penetration does not 
seem be influenced by engine speed or load, which makes the igniter extremely suitable for 
different operating conditions. The influence of pressure, charge motion and temperature 
result to be more evident. As a matter of fact, higher penetrations were recorded @ the IT 
(lowest pressure) and in the coldest area of the chamber (tips 1st and 4th).  
The fired tests show that the mixture quality influence the streamer penetration much more 
than the other features. However, long activation times allow to progressively increase the 
streamers length, and with it, to enhance both volumetric and thermal effects. It is worth 
highlighting that, to make the most of these two effects, each engine operating point must 
be preliminarily optimized in terms of corona setting (Vd,Ton) and pressure @ the IT to 
avoid the streamer-to-arc transition phenomenon.  

6 Conclusions 
This work reports an analysis of the discharge natural luminosity of a RF corona igniter 
characterized by four tips electrodes in an optically accessible engine via high-speed 
camera detection. In the first part of the work, an investigation of the streamers evolution 
and penetration during the igniter activation time was performed in motored condition at 
four different engine speeds and two different loads, by setting the ignition timing at the 
same in-cylinder pressure value. The main results are listed below: 

• For both load cases, the streamer penetration progressively decreases as engine speed 
increases due to the higher-pressure levels at which the igniter is forced to work. 

• At the same engine speed, the higher the load the more pronounced the decreasing of 
the streamer penetration along the discharge, probably due to the higher pressure 
characterizing the medium load.  

• In all cases analyzed, the tips featured with the highest penetration were the closest to 
the engine intake valves. The igniter orientation, together with the charge motion 
characterizing the optical engine and the higher local temperature close to the exhaust 
side, could affect such variability. 

• There is no evidence of a direct relationship linking the maximum streamer 
penetration to the engine speed and/or to the load. 

In the second part of the work, the low load motored case at 1000 rpm was compared to a 
lean-case operating at the same speed with an air/fuel ratio equal to 1.6 to analyze the 
mixture influence on the streamer evolution before the ignition. 

• Despite the differences in terms of streamer penetration length between the two 
analyzed cases, in the motored one the streamer penetration progressively decreases as 

engine speed increases, due to the higher-pressure levels, while in the lean-case the 
penetration rises along with the activation time. This effect could be linked to the 
chemical reactions that gradually reduce the hydrocarbons quenching effect, 
consequently promoting the streamer propagation. 

Glossary and nomenclature 
ACIS  advanced corona ignition system 
ICE   internal combustion engine 
IT              ignition timing 
LTP   low temperature plasma 
λ                air-fuel ratio 
ton   corona discharge duration 
vch   vessel inner volume 
Vd   corona driving voltage 
Ve   peak electrode voltage 
P                streamer penetration 
Pcyl                   in-cylinder pressure 
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