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ABSTRACT

Band-tail states, i.e., charge-carrier energy states located in the bandgap at the valence and conduction band edges of amorphous materials,
even though not delocalized, exhibit nonzero mobility; thus, they are expected to contribute to the charge-conduction process. A micro-
scopic model based on hydrodynamic transport equations for unipolar conduction, including trap, band-tail, and band states, and coupled
to the Poisson equation is presented here. The equations are self-consistently solved by means of a numerical procedure, and the results
provide qualitative and quantitative estimates of the influence of band-tail states (namely, of their energy distribution, density, and mobility)
on the carrier heating, precursor of the Ovonic threshold switch.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0220117

I. INTRODUCTION

Amorphous semiconductors are variously employed in the
design of a wide range of nano-devices. Chalcogenide alloys, in par-
ticular, in their both crystalline and amorphous phase, are presently
used to design non-conventional electrical and optical memory
devices .1 Such alloys [e.g., GeTe, Ge2Sb2Te5, ZnTe, AgInSbTe
(AIST)], which exhibit semiconductor properties, are chemical
compounds consisting of at least one chalcogen atom (S, Se, or Te)
and one or more electropositive elements. Some of these alloys are
made appealing by the possibility to realize a fast and reversible
structural switch of the material between the amorphous and crys-
talline states upon the application of an electric pulse 2; in particu-
lar, a voltage pulse of suitable intensity and width of a few ns
produce an off-to-on threshold switching in the I(V) characteristic
of the amorphous state, precursor of the amorphous-to-crystalline
phase change. This effect is called Ovonic Threshold Switching
(OTS; so called because the first investigations were carried out in
1968 by S. Ovshinsky3). Due to this phenomenon, the resistivity of

the material changes by two orders of magnitude at least. The tran-
sition between the amorphous and crystalline phases can be con-
trolled by heating (laser irradiation or Joule effect); it is fast (down
to few ns4), reversible, stable, and has a large duty cycle.
Altogether, these properties yield a two-state system able to store
logic information.5

In amorphous, disordered semiconductors, the energy gap is
usually larger than that of crystals. Furthermore, optical-absorption
measurements evidence the presence of absorption tails near the
optical-band edge. Early measurements reported an exponential tail
in the density of states,6,7 originally called Urbach tail; since then,
the presence of weakly localized states in the energy gap has been
confirmed by many authors. The physical origin of these tails is
still controversial; some authors explain them with reference to the
spatial fluctuation of the bond energy, which leads to a broadening
of the edges of the conduction and valence bands and introduces
energy levels associated to partially localized states.1 However, no
matter what the description of their origin is, what makes these
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states relevant for transport analysis is the fact that, although not
totally delocalised as band states, they have a non-zero (hopping)
mobility and are expected to contribute to the transport process.

Besides the above, structural defects introduce energy levels
deep in the bandgap region associated with fully localized states,
usually referred to as trap states.

Due to the presence of band-tail states, the energy interval
that separates electron and hole conductive states is smaller than
the energy gap of the crystalline material. The effect is sketched in
Fig. 1. Carrier-energy spectrum and DOS of amorphous chalcogen-
ides are obviously relevant for charge-transport analysis.
Unfortunately, in many cases, experimental information and atom-
istic calculations are not accurate enough to provide reliable
grounds for a transport theory. Atomistic simulations are indeed
very challenging: they require large cells and a huge number of
atoms, resulting in heavy computational loads;8 although calcula-
tions exhibit a qualitative agreement with experiments, neither one
is able to provide reliable data for transport analysis. As a conse-
quence, some features must be modeled with the introduction of
parameters, to be determined by the comparison with transport
and optical data for the chalcogenide in hand.

The OTS effect has extensively been studied, both experimen-
tally and theoretically, by means of numerical simulations including
trap states and mobile band states with parabolic dispersion;9,10 uni-
polar conduction is usually assumed although, recently, impact ioni-
zation has been proposed as the responsible mechanism for negative
differential resistance in materials with bipolar conduction exhibiting
a strong unbalance between hole and electron mobilities.11

The approach adopted in the past by the authors of this paper
is based upon a unipolar conduction model. By numerically solving

the model, it has been proved that the electric switch is controlled
by the energy transfer from the external bias to the charge carriers,
which takes place when carriers occupy mobile states. Specifically,
the simulative approach shows that, near threshold, carrier heating
gives rise to a positive feedback: energy transfer from the field
favors the occupation of the mobile states, which, in turn, increases
the conduction of the material and, therefore, the energy transfer
from the field. This determines the OTS transition to the low-
resistivity, still-amorphous, phase.10 In view of these results, it is
expected that the inclusion of mobile band-tail states into the phys-
ical model can significantly contribute to the heating process, thus
influencing the electric switch.

In preliminary simulations of the amorphous phase,12 we
included the band-tail states as a single level EU .

In the present work, the band-tail states are modeled by
means of a more accurate energy spectrum, to obtain a quantitative
indication of their impact on OTS. The I(V) characteristic and the
dynamics of the heating process are studied for nanometer-size
structures, which is the present scientific and technological
challenge;13–15 the sensitivity of the results with respect to a
number of parameters, characteristic of the band-tail states
(namely, their energy distribution, density, and mobility), is also
investigated. The paper is organized as follows: Section II describes
the physical model and lists the parameters used in the simulations;
Sec. III shows the numerical scheme used to solve the model equa-
tions; Sec. IV illustrates the results and analyses the sensitivity of
the threshold voltage on the parameters describing the band-tail
states; finally, conclusions are drawn in Sec. V.

II. THE MODEL

The structure of the energy states of the material is sketched
in Fig. 2; the figure reports only the energies deriving from the
material structure: the calculation of the Fermi level, which is deter-
mined by the carrier population, is outlined later (Sec. II D). The
band structure of Fig. 2 refers to a test case, without considering
any specific chalcogenide. A unipolar conduction is assumed,
carried by electrons; a suitable reversal of the band structure makes
the modeling of a p-type material possible.

Considering the amorphous phase, we describe the trap states
as concentrated in a thin interval of energies centered on a value
ET (Fig. 2). The trap states have a vanishing mobility, μT ¼ 0, and
a volume concentration per unit energy gT (E).

The conduction band is modeled using a parabolic dispersion;
its lower edge is indicated with EC , and the distance of the latter
from the trap states is Δ ¼ EC � ET . The density of states per unit
energy and the mobility of the conduction band are gB(E) and
μB ¼ const, respectively.

Finally, let EU1 and EU2 be the lower and upper edges of the
band-tail states of the conduction band, with gU ¼ const and
μU ¼ const being the corresponding density of states per unit
energy and mobility, respectively. It must be noted that the actual
form of the density of states gU is such that the number of states is
larger near the edge of the conduction band and smaller away from
it. Approximating gU with a constant implies that the simulations
capture the average effect of the band-tail states; the calculations
have been repeated using different positions of the lower edge of

FIG. 1. Qualitative description of the band-tail states. Due to their presence, the
energy interval ΔE0G that separates electron and hole conductive states is
smaller than the energy gap ΔEG of the crystalline material (the actual band
structure of the material used in the simulations, including the zero-mobility trap
states, is shown in Fig. 2).
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the tail. The upper edge EU2 is fixed and is assumed to coincide
with the lower edge EC of the conduction band. As mentioned
above, the lower edge EU1 will take different values in the simula-
tions; in all cases, it fulfills the prescription EU1 . ET .

In the calculations carried out throughout this paper, the zero
of energy is taken at ET , so that EC ¼ EU2 ¼ Δ. The issue of the
constancy of μU is discussed in Sec. IV with reference to Fig. 4.

The concentrations of the carriers in the trap states, in the
band-tail states, and in the conduction band are nT , nU , and nB,
respectively; their sum at equilibrium is nT0 þ nU0 þ nB0 ¼ n0,
neutralized by an equal concentration of charges of the opposite
sign (the lists of symbols, units, and ranges of the parameters are
given in Tables I, II, and III). The transport model is of hydrody-
namic type, supplemented with a trap-limited transport, namely,
field-assisted (Poole) transitions between localized and mobile
states (the details of the model are given below). In contrast to the
Monte Carlo method, in which the individual flights of the carriers
are analyzed, the hydrodynamic model considers the behavior of
the carrier populations averaged by distribution functions; such
populations are influenced by carrier–carrier and carrier–phonon
interactions and by the absorption of energy from the applied
electric field. At equilibrium, the carriers are distributed over the
T , U , and B states according to the Fermi distribution. In a
non-equilibrium condition, the actual distributions are supposed to
tend to Fermi-like forms with a local temperature Te and
quasi-Fermi level EF ; these forms, here named tendential distribu-
tions, are determined in terms of Te and EF , which, in turn,
are self-consistently evaluated from the model equations (see

Secs. II A, II B, and II C). It must be specified that the tendential
distribution is not the actual state of the carrier distribution; the
individual concentrations and energies of the band, band-tail states,
and traps, are obtained by solving the model of Secs. II E and II F.
The tendential distribution is the Fermi distribution that the carriers
would assume with the quasi-Fermi level EF and non-equilibrium

FIG. 2. Band structure of the chalcogenide material adopted in the present sim-
ulations, with the band-tail states modeled as a band extending from EU1 to
EU2. The trap energies are centered on ET ¼ 0, and the conduction band is
modeled using a parabolic dispersion.

TABLE I. Parameter symbols.

Parameter Symbol

Fermi level EF0
Quasi-Fermi level EF
Energy level of the traps (fixed to zero) ET
Conduction-band edge EC
EC− ET Δ
Lower energy of the band-tail states EU1
Upper energy of the band-tail states EU2
Concentration of trap states GT

Concentration of trap states per unit energy gT
Concentration of band-tail states GU

Concentration of band-tail states per unit energy gU
Concentration of band states per unit energy gB
Carrier concentration of the trap states nT
Carrier concentration of the band-tail states nU
Carrier concentration of the band states nB
Total carrier concentration at equilibrium n0
Band-carrier effective mass relative to m0 m*
Energy density of the trap carriers εT
Energy density of the band-tail carriers εU
Energy density of the band carriers εB
Energy flux of the band-tail carriers σU
Energy flux of the band carriers σB
Mobility of the carriers in the band-tail states μU
Mobility of the band carriers μB
Poole coefficient γ
Relaxation time of the carrier concentration τn
Temperature-relaxation time of the trap carriers τTT
Temperature-relaxation time of the band-tail carriers τTU
Temperature-relaxation time of the band carriers τTB

TABLE II. Parameters kept fixed in the simulations.

Symbol Units Value

Δ eV 0.35
n0 m−3 6.8 × 1025

m* — 1
EU2 eV Δ
GT m−3 2 × n0
μB m2 V-1 s-1 4 × 10−4

γ C m 5 × 10−28

τn ps 0.5
τTT ps 100
τTU ps 1.8
τTB ps 1.0

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 136, 085701 (2024); doi: 10.1063/5.0220117 136, 085701-3

© Author(s) 2024

 20 Septem
ber 2024 09:29:02

https://pubs.aip.org/aip/jap


temperature Te compatible with their global concentration and
energy. Being it a collective phenomenon, the relaxation time of the
tendential distribution is the same for all populations.

A. Band states

Considering the band states first, from the definitions given in
Sec. II, it follows for the tendential band concentration

~nB ¼
ð1
Δ

gB(E) dE
1þ exp[(E � EF)=(kB Te)]

, (1)

with Te being the local temperature and EF being the local
quasi-Fermi level of the carriers. It is assumed that
Δ� EF � kB Te; in turn, a parabolic band is considered, with m*
being the effective mass. Equation (1) then becomes

~nB ≃ gB(Te) exp
EF � Δ

kB Te

� �
, gB ¼ m* kB Te

21=3 π �h2

� �3=2

: (2)

The tendential energy per unit volume of the band carriers, ~εB, is
found from (1) by the replacement gB(E)  E gB(E) in the inte-
grand; using the same approximation as above yields

~εB ≃ Δþ 3
2
kB Te

� �
gB(Te) exp

EF � Δ

kB Te

� �
: (3)

The equilibrium concentration nB0 and energy density εB0 of
the band carriers are described by expressions of the forms (1)
and (3) with replacements Te  T0 and EF  EF0, with T0 being
the equilibrium lattice temperature and EF0 being the Fermi level; it
is implied that the condition Δ� EF0 � kB T0 holds. Also, since
the Poole effect is considered in the simulation, one must replace Δ
with Δ0 ¼ Δ� γ jFj.

B. Band-tail carriers

Assuming EU1 � EF � kB Te and remembering that
gU ¼ const, the tendential concentration of the carriers in the
band-tail states is given by

~nU ¼
ðΔ
EU1

gU dE
1þ exp[(E � EF)=(kB Te)]

≃ gU kB Te exp � EU1 � EF
kB Te

� �
� exp �Δ� EF

kB Te

� �� �
: (4)

Similarly, the tendential energy per unit volume of the band-
tail carriers is expressed as

~εU ¼ gU kB Te
EU1 þ kB Te

exp[(EU1 � EF)=(kB Te)]
� Δþ kB Te

exp[(Δ� EF)=(kB Te)]

� �
:

(5)

In contrast to Sec. II A, in Eqs. (4) and (5), the replacement
Δ Δ0 ¼ Δ� γ jFj is not done because here the Poole effect is
assumed to be ineffective; in fact, when a carrier makes a transition
into a band-tail state it may move only through hopping and
cannot absorb from the electric field the energy necessary for the
transition.

The equilibrium values are obtained from Eqs. (4) and (5) by
letting Te  T0 and EF  EF0.

C. Trapped carriers

When the trap states are considered, the approximation of
neglecting the unity in the denominator of the Fermi statistics is
not applicable because the Fermi (or quasi-Fermi) level may be
close to the trap level. On the other hand, remembering that the
traps are concentrated in a thin interval of energies around ET ¼ 0,
to the purpose of calculating the tendential concentration and
energy, one approximates the density of states per unit volume as
gT (E) ≃ GT δ(E � ET), with GT ¼ const, to find

~nT ¼ GT

1þ exp[(ET � EF)=(kB Te)]
, ~εT ¼ 0: (6)

Again, the equilibrium concentration is found by letting Te  T0

and EF  EF0 in the first of Eq. (6).

D. Initial condition and Fermi level

As detailed in Sec. III, the numerical solution is carried out by
the forward Euler scheme, starting from equilibrium (no applied
voltage). The initial condition consists in prescribing the equilib-
rium temperature T0 and the equilibrium, spatially uniform total
carrier concentration nB0 þ nU0 þ nT0 ¼ n0, this leaving the Fermi
level EF0 as the only unknown; the latter equality provides an alge-
braic equation in the unknown exp[�EF0=(kB T0)]. From this, EF0
is readily found, and the individual summands nB0, nU0, and nT0
are calculated from the equilibrium form of Eqs. (2) and (4) and of
the first of Eq. (6), respectively. In turn, the total energy at equilib-
rium reads

εeqtot ¼ εB0 þ εU0 þ εT0, (7)

where the first two summands are obtained as the equilibrium
limits of Eqs. (3) and (5), respectively, and εT0 ¼ 0.

E. Continuity equations

Letting jB indicate the flux of the band carriers, it is expected
that @nB=@t þ @jB=@x = 0, because in a non-equilibrium condi-
tion, these carriers redistribute themselves among the band states,
band-tail states, and trap states. The reasoning applies also to the
nU and nT concentrations so that the continuity equations for nT ,

TABLE III. Parameters of the band-tail states changed during the simulations. The
minimum and maximum values are defined with respect to the standard values
listed in Eq. (16).

Symbol Units Min. Max.

EU1 eV 0.2 Δ 0.8 Δ
GU m−3 0.5 × 1025 1025

μU m2 V-1 s-1 2 × 10−5 6 × 10−5
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nU , and nB, in the relaxation-time approximation read

@nT ,U ,B

@t
þ @jT ,U ,B

@x
¼ � nT ,U ,B � ~nT ,U ,B

τn
, (8)

with ~nT ,U ,B being the tendential concentrations defined above and
τn being the relaxation time of the carrier concentrations. From
μT ¼ 0, it follows that one must let jT ¼ 0 when considering the
equation for the carriers in the traps. The relaxation time of the
recombination, τn, whose value is given in Table II, is the same in
the three equations (8); this is justified by observing that it must be
nT þ nU þ nB ¼ ~nT þ ~nU þ ~nB identically, and that, when the
three equations (8) are added up, the sum of the left hand sides
vanishes.

As for the continuity of energy, let εtot be the total energy per
unit volume of the carriers. The energy fluxes in the band-tail
states and band states are given by, respectively,

σU ¼ ~εU
~nU

jU , σB ¼ Δþ 3
2
kB Te

� �
jB, (9)

with ~nU given by (4) and ~εU given by (5). The above expressions
have been obtained assuming that the average carrier energy can be
approximated with the corresponding tendential values; this
approximation is applicable if the variation in the external voltage
is very slow with respect to the relaxation times of the system (see
below). The energy flux of the trap states is zero since jT ¼ 0. As
before, it is expected that @εtot=@t þ @(σU þ σB)=@x = 0 because
in a non-equilibrium condition the carriers exchange energy with
the electric field F and, at the same time, their energy relaxes to the
phonon bath; thus,

@εtot
@t
þ @(σU þ σB)

@x
¼ (jU þ jB) q F � @εtot

@t

� �
ph

: (10)

In Eq. (10), term

@εtot
@t

� �
ph

¼ @εT
@t

� �
ph

þ @εU
@t

� �
ph

þ @εB
@t

� �
ph

(11)

represents the time variation in the total energy density due to the
interaction with phonons, that is, the energy relaxation of T-, U-,
and B-carriers to the thermal bath (the latter is supposed to be at
equilibrium at every time). Furthermore, since the three types of
carriers share the same quasi-Fermi level EF and non-equilibrium
temperature Te, the latter is assumed to be representative of the
common average tendential energy; consequently, in the relaxation-
time approximation,

@εX
@t

� �
ph

≃ nX
kB (Te � T0)

τTX
, (12)

where X stands for T , U , or B.

F. Transport equations and Poisson equations

The transport equations for the band and the localized states
are of the drift-diffusion form,

jU ,B ¼ μU ,B nU ,B F � @(Dn)U ,B

@x
, jT ¼ 0, (13)

with

DB ¼ kB Te

q
μB, DU ¼ kB Te

q
μU : (14)

The model is completed by the Poisson equation

@F
@x
¼ q

εa
nT þ nU þ nB � n0ð Þ, (15)

with εa being the permittivity of the material. As mentioned
above, at equilibrium, the local charge neutrality is fulfilled,
nB0 þ nU0 þ nT0 � n0 ¼ 0, and the applied voltage V is zero so
that F ¼ 0 everywhere. In the non-equilibrium condition, neither
the local nor the global charge neutrality of the chalcogenide region
is fulfilled. The two metal contacts at the ends of the device are
assumed ideal so that the interior of each metal region is equipo-
tential. In the non-equilibrium condition, the contacts keep the
charge neutrality at x ¼ 0 and x ¼ L, and a charge layer forms at
each metal-chalcogenide interface on the metal side of the inter-
face; the two layers, together with the non-zero global charge inside
the chalcogenide, keep the global neutrality of the whole structure.

Equations (8), (10), (13), and (15) form a system of seven
equations. As shown in paragraphs II A, II B, and II C, the tenden-
tial concentrations and energy densities are expressible in terms of
the non-equilibrium temperature Te and quasi-Fermi energy EF ;
therefore, the unknowns of the system are also seven, specifically,
nT , nU , nB, εtot, F, Te, and EF .

III. NUMERICAL SOLUTION

Equations (8), (10), (13), and (15) were solved with the
forward Euler method, in which the complicacy of the model dic-
tated a small integration step (Δt ¼ 10�16 s).

The applied voltage V is updated at the end of each time step.
Like in the equilibrium case, from the last available value of Te, one
determines EF by solving an algebraic equation; then, from Te and
EF , one obtains the tendential concentrations and energies. Finally,
solving Eqs. (8), (10), (13), and (15) yields the updated values of
the unknowns.

No numerical instability was detected during the simulations;
an accuracy of about 10% is considered appropriate to compare the
simulations with the experimental data.

To identify the influence of the band-tail states, a number of
simulations have been carried out using the model described in
Sec. II. Apart from those describing the band-tail states, the model
parameters have been fixed to the values listed in Table II; as for
the band-tail states, their parameters have been given different
values inside the ranges specified in Table III: such values were
chosen as to keep the validity of Eqs. (4) and (5). As anticipated in
the caption of the same table, a set of standard values have also
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been identified for these parameters; they are

EU1 ¼ 0:4Δ eV
GU ¼ 1025 m�3

μU ¼ 4� 10�5 m2 V�1 s�1:

8<
: (16)

IV. RESULTS

A first batch of simulations have been carried out to check the
influence of the band-tail states: Fig. 3 shows the total carrier flux
as a function of the average electric field V=L (where V is the
applied voltage and L ¼ 20 nm is the device length), with and
without the presence of band-tail states (the standard parameters
were used in the former case). The main result to be noted is a
reduction of the threshold field, due to the contribution of the
band-tail states. The effect is detailed in Fig. 4, where the different
contributions to the total flux when the band-tail states are present
are shown. The figure shows that the carrier flux is dominated by
the band-tail states at low and intermediate fields: these states are
in fact characterized by energies easily accessible by carriers belong-
ing to the localized trap states of the gap. At high fields, the band
states are increasingly populated and produce the heating process
that eventually brings to the sudden increase in conduction that
sets in at the threshold field. The dominance of the band flux at
high fields justifies the approximation of considering a constant
mobility μU of the band-tail states. In fact, μU increases with Te; on
the other hand, below threshold, Te is close to the equilibrium
value T0 so that the influence of the carrier temperature on μU
takes place when the contribution of the band-tail states to the total
flux is not relevant any more.

Figure 5 shows the non-equilibrium carrier temperature Te vs.
the average electric field, again in the two cases where the band-tail
states are present or absent. The presence of band-tail states favors
the carrier-heating process determining the decrease of the thresh-
old field observed in Figs. 3 and 4.

Figure 6 shows the carrier concentrations of the traps, band-
tail states, and conduction band vs. the average electric field, still
using the standard parameters for the band-tail states. Consistently
with the outcome of Fig. 4, the carrier concentration of the band
states increases when the field increases; the carrier concentration

in the band-tail states, instead, is almost insensitive to the field
increase, being the band-tail states populated from trap states even
in near-equilibrium conditions.

The next batch of simulations analyze the effects of variations
in the band-tail parameters with respect to the standard values; the
effect of varying the energy range of the band-tail states is analyzed
in Figs. 7–11. Figures 7 and 8 refer to the carrier flux obtained by
varying the lower edge EU1 of the band-tail states. Besides the
standard value EU1 ¼ 0:4Δ, the values EU1 ¼ 0:2Δ (Fig. 7) and
EU1 ¼ 0:8Δ (Fig. 8) have been tested.

By the same token, the effects of a change in EU1 on the
carrier concentrations have been tested as well (Figs. 9 and 10).
Clearly, when the edge of the band-tail states gets closer to the trap
states (EU1 ¼ 0:2Δ), the population of the band-tail states domi-
nates the carrier flux in a larger range of electric fields.
Furthermore, the increased number of carriers in states with
nonzero mobility makes the carriers to populate the band states
with higher efficiency and triggers a substantial decrease in the
threshold field. The opposite effect is obtained by shrinking the
band tail toward the conduction-band edge (EU1 ¼ 0:8Δ): in this
case, the heating process is slowered by a less effective carrier trans-
fer from trap to band-tail states, with a consequent increase in the
threshold field with respect to the reference set of parameters.

FIG. 3. Total carrier flux jtot vs. the average electric field V=L, with and without
the presence of band-tail states (see text).

FIG. 4. Total carrier flux jtot , carrier flux jU of the band-tail states, and carrier
flux jB of the conduction band vs. the average electric field V=L (see text).

FIG. 5. Non-equilibrium carrier temperature Te vs. the average electric field
V=L, with and without the presence of band-tail states (see text).
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FIG. 7. Total carrier flux jtot , carrier flux jU of the band-tail states, and carrier
flux jB of the conduction band vs. the average electric field V=L. The continuous
lines are the same as in Fig. 4. The dashed lines show the variation in the cor-
responding fluxes when the lower edge EU1 of the band-tail states is brought
from 0:4 Δ to 0:2 Δ. The other parameters were left unchanged.

FIG. 6. Carrier concentration nT of the traps, carrier concentration nU of the
band-tail states, and carrier concentration nB of the conduction band vs. the
average electric field V=L (see text).

FIG. 8. Total carrier flux jtot , carrier flux jU of the band-tail states, and carrier
flux jB of the conduction band vs. the average electric field V=L. The continuous
lines are the same as in Fig. 4. The dashed lines show the variation in the cor-
responding fluxes when the lower edge EU1 of the band-tail states is brought
from 0:4 Δ to 0:8 Δ. The other parameters were left unchanged.

FIG. 9. Carrier concentration nT of the traps, carrier concentration nU of
the band-tail states, and carrier concentration nB of the conduction band vs. the
average electric field V=L. The continuous lines are the same as in Fig. 6.
The dashed lines show the variation in the corresponding concentrations when
the lower edge EU1 of the band-tail states is brought from 0:4 Δ to 0:2 Δ. The
other parameters were left unchanged.

FIG. 11. Non-equilibrium carrier temperature Te vs. the average electric field
V=L, corresponding to different values of the lower edge EU1 of the band-tail
states (see the inset).

FIG. 10. Carrier concentration nT of the traps, carrier concentration nU of
the band-tail states, and carrier concentration nB of the conduction band vs. the
average electric field V=L. The continuous lines are the same as in Fig. 6.
The dashed lines show the variation in the corresponding concentrations when
the lower edge EU1 of the band-tail states is brought from 0:4 Δ to 0:8 Δ. The
other parameters were left unchanged.
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The above interpretation is confirmed by analyzing the
dependence of the carrier temperature on the average electric
field, reported in Fig. 11 for the three values of EU1 considered
here. It is apparent that the stronger effect on the onset of the
OTS switch is obtained by reducing the gap between localized
and band-tail states: even if the latter have a reduced mobility,
nevertheless they contribute to carrier heating and, together,
bridge the carrier transfer to the band states. When EU1 is equal
to or above 0:4 Δ, a reduced effect of the threshold field is pre-
dicted by our model.

The variation in the concentration of the band-tail states per
unit energy (see Table III) brings a small effect on the threshold
field, as shown in Fig. 12; this indicates that the band-tail states
present in the gap play their bridging role even if their number is
low. The same result is obtained by varying the mobility of the
band-tail states up to two orders of magnitude (Figs. 13, 14, 15,
and 16). The increase in mobility accelerates the heating, but the
quantitative effect is not relevant; in turn, a decrease in mobility
makes the fluxes to decrease and the threshold field to increase
until, at very small mobilities, the threshold field tends to
saturate.

FIG. 12. Non-equilibrium carrier temperature Te vs. the average electric field
V=L, corresponding to different concentrations GU of the band-tail states (see
the inset).

FIG. 13. Total carrier flux jtot vs. the average electric field V=L, corresponding
to different mobilities μU of the band-tail carriers (see the inset).

FIG. 14. The carrier flux calculated using much smaller values of μU (see the
inset) with respect to the case of Fig. 13. As expected, the fluxes decrease and
the threshold field slightly increases.

FIG. 16. With reference to the vertical portions of the graph, the two leftmost
curves replicate those of Fig. 15 corresponding to μU ¼ 4� 10�5 and
μU ¼ 2� 10�5 m2 V�1 s�1. The other two curves are calculated using much
smaller values of μU (see the inset), showing that the threshold field tends to
saturate when μU decreases.

FIG. 15. Non-equilibrium carrier temperature Te vs. the average electric field
V=L, corresponding to different mobilities μU of the band-tail carriers (see the
inset).
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V. CONCLUSIONS

A hydrodynamic-like transport model for amorphous chalco-
genides has been used to test the effect of band-tail states on the
Ovonic switch of amorphous chalcogenides. The model has been
solved by means of a robust and computationally efficient numeri-
cal procedure, suitable for design purposes. A test case has been
considered in the calculations. The effects of the three relevant
parameters characterizing the band-tail states, namely, the position
of the lower edge of the tail, the density of states, and mobility,
have been analyzed in order to provide guidelines to benchmark
chalcogenide materials for specific applications. As a general trend,
the band-tail states are populated by the large number of carriers
transiting from the trap states; being mobile, they contribute to the
flux and increase the power transferred by the field. Therefore, they
favor the carrier transfer to the extended band states, thus antici-
pating the OTS switch.

As for their possible technological relevance, the effect on the
I(V) curves is weak as long as the lower edge of the band-tail states
is sufficiently distant from the trap states. When it gets closer,
instead, a significant lowering of the threshold field is detected: the
energy flux due to carriers populating the band-tail states is domi-
nant below, and up to, the OTS threshold and competes with the
contribution coming from band states. It is, therefore, of utmost
importance to pursue more detailed experimental or ab initio anal-
yses of the density of states in the region of the energy gap of chal-
cogenide materials, in order to allow for a careful modeling of the
OTS field.
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