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A B S T R A C T   

Nanoplastic (<1 µm) pollution in the marine environment is a cause of growing concern due to the current 
difficulties in measuring their occurrence in abiotic and biotic matrices, with consequent uncertainties on their 
ecological risk for natural communities and associated ecosystem services. Most investigations dealing with 
marine nano-ecotoxicity have been conducted on a bench-scale by examining the effects on single model species 
under short-term exposure conditions and at high concentrations (>50 mgL− 1). Both negligible impacts and 
detrimental effects, although poorly descriptive of the real environmental exposure scenarios, have been 
documented on different trophic levels and ecological functionalities. Polystyrene nanospheres (<100 nm) are by 
far the most tested as a proxy for nanoplastics, even though the occurrence of nanoplastics composed by other 
polymers and shapes (i.e., irregular and fibers) has been reported in seawater column and sediments. Limited 
information on bioaccumulation in marine species hamper the selection of key bioindicator species following 
various criteria (i.e., target, highly sensitive, endangered, etc) for pollution monitoring and ecological risk 
assessment (ERA) purposes. A holistic approach is thus required starting from setting concentrations as envi
ronmentally relevant coupled with chronic exposure, and selecting bioindicators including those having a key 
role in marine ecosystem processes, functions and services, also relevant for human consumption (shellfish and 
seafood). The present mini-review aims to provide a framework for the selection of the best bioindicators for 
nanoplastic in the marine environment along with current knowledge on sources, circulation and behavior in 
temperate and polar environments and potential compartments/species more at risk of exposure, to support 
nanoplastic ERA. Less investigated ecological niches and habitats, which should deserve more attention in future 
studies, are also identified.   

1. Introduction 

In the last decade, the research on plastic pollution at sea has been 
massive and both occurrence and biological effects on marine species 
have been widely documented. Initially, upon the discovery of oceanic 
plastic gyres, major efforts have been made on the understanding of 
their origin and magnitude (Lebreton and Andrady, 2019). Primarily 
originating by sewage treatment plant effluents released in marine 
coastal waters as well as from rivers and land run-off, nanoplastics 
(<100 nm) can be considered contaminants of emerging concerns 
(CECs) along with pharmaceutical, personal care products and other 
commercial and industrial chemicals (Hernandez et al., 2017; Bund
schuh et al., 2018; Sun et al., 2019). Likewise, a secondary source of 

nanoplastics has been demonstrated from the breakdown of large plastic 
items into the sub-micron fraction <1 μm, although quantitatively un
known in terms of global mass balance reaching the marine environment 
and associated physical chemical properties (Gewert et al., 2015; 
Lambert and Wagner, 2016a; Lambert and Wagner, 2016b; Ter Halle 
et al., 2016; Ekvall et al., 2019; Sander et al., 2019; Singh et al., 2019; 
Enfrin et al., 2020). 

Local circulation, as well as global long-range transport of the 
smallest plastics by either air masses or oceanic current have been 
recently described, with evidence of micro- and nanoplastics occurrence 
even in the most remote and pristine environments such as the Arctic 
and Antarctica (Lusher et al., 2017; Horton and Barnes, 2020; Bergmann 
et al., 2022; Caruso et al., 2022; Rota et al., 2022). 
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Due to the initial paucity of field data on the environmental occur
rence of nanoplastics in seawater and sediments caused by analytical 
challenges due to the nanosize range (Gigault et al., 2016; Ter Halle 
et al., 2017; Nguyen et al., 2019; Caputo et al., 2021), the majority of 
ecotoxicity studies have been conducted at very high concentrations 
(>50 mgL− 1) poorly descriptive of real exposure scenarios, being far 
higher than those recently reported in marine coastal waters and sand 
water extracts (e.g., Dutch Wadden Sea, 1–3 m water depth range 1–15 
µgL− 1) (Siti et al., 2015; Al-Sid-Cheikh et al., 2018; Davranche et al., 
2020; Materić et al., 2022a). In addition, standardized short-term acute 
ecotoxicity tests have prevailed over chronic ones without taking into 
consideration transformations occurring with time upon nanoplastic 
release into the sea, which indeed affect their behavior and fate in 
seawater and sediments (Alimi et al., 2018; Corsi et al., 2020; Frehland 
et al., 2020). 

In terms of hazards, nanoplastics exposure, intended as those in the 
nanoscale range between 1 and –100 nm, raise major concerns due to 
their ability to pass through biological barriers and enter inside cells. 
Their colloidal properties and high surface area to volume ratio make 
them not only far easily bioavailable to marine species but able to 
interact with other compounds including existing toxic chemicals in 
seawater and sediments (Singh et al., 2019; Bhagat et al., 2021; Gigault 
et al., 2021; Venel et al., 2021). 

Polystyrene nanospheres (PS NPs, <50 nm) have been the most 
widely tested by far as a proxy for nanoplastics due to the paucity of 
commercially available polymeric nanoscale materials for ecotoxico
logical studies, though being only partially environmentally relevant. 
Most recent field monitoring surveys have shown the occurrence of a 
range of synthetic polymers (e.g., polypropylene-PP, polyethylene-PE, 
polyvinyl chloride-PVC, poly(methyl methacrylate)-PMMA)of various 
size and shape including microfibers as the most prevalent in either 
abiotic (sea spray, water column and sediment) and biotic matrices 
(marine species) (Schirinzi et al., 2019; Avio et al., 2020; Suaria et al., 
2020; Santini et al., 2022). 

While microplastic presence has been massively documented in 
marine biota, including potential biomagnification along food chains 
(Miller et al., 2020), nanoplastic occurrence (including the sub-micron 
fraction below 1 μm, Hartmann et al., 2019) has yet to be proven, 
mainly due to challenges associated with their extraction and quanti
tation from complex biological matrices (Valsesia et al., 2021). Syn
thetised metal-doped or radiolabelled nanoplastics have been used so far 
in laboratory-controlled studies, with the aim to understand fate and 
behavior in complex environmental matrices including marine organ
isms (Al-Sid-Cheikh et al., 2018; Mitrano et al., 2019). Such knowledge 
gaps still limit a proper ecological risk assessment (ERA) of nanoplastics 
in the marine environment and, more importantly, the recognition of 
best bioindicators to be selected for monitoring and risk assessment 
purposes. 

The present mini-review aims to provide a framework for the se
lection of the best bioindicators for nanoplastics in the marine envi
ronment along with current knowledge on sources, circulation and 
behavior of nanoscale particles (<100 nm) in temperate and polar en
vironments and potential compartments/species more at risk with the 
final aim to support nanoplastic ERA. We also highlight less investigated 
ecological niches (e.g., benthos) and habitats that should deserve more 
attention in future studies based on sources and circulation of nano
plastics in the marine environment at different spatial scales. 

2. Nanoplastic fate in seawater: How to set exposure conditions 

Up until a few years ago, the occurrence of nano-sized plastic frag
ments in the marine environment was considered plausible based on the 
million tonnes of plastic entering the oceans each year and based on 
laboratory evidence of the fragmentation, down to the nanoscale, of 
different types of plastic exposed to weathering (Gigault et al., 2016; 
Lambert and Wagner, 2016a; Lambert and Wagner, 2016b). In 2017, 

first evidence of sub-micron plastic fragments (1–999 nm) in water 
column from within the North Atlantic subtropical gyre was given by Ter 
Halle et al. (2017), later followed by others (Schirinzi et al., 2019; Llorca 
et al., 2021; Materić et al., 2022a). 

What emerges is that nanoplastic behavior in water can be associated 
to that of colloids, as the polymers (e.g., PVC and polyethylene 
terephthalate-PET) composing the nano-sized fraction were negatively 
buoyant compared to water and yet were sampled in the water column 
(Ter Halle et al., 2017). While the behavior and agglomeration/aggre
gation of microplastics is considered to be mainly dominated by buoy
ancy and shear flows, for nanoplastic objects, Brownian motion and 
water chemistry prevail in determining their behaviour and fate (Fig. 1) 
(Gigault et al., 2018; Sun et al., 2021). Hence, the reduction of size under 
a certain threshold corresponds to a change in the factors determining 
particle dispersion in water. For instance, not being affected by density 
may allow nanoplastics to stay longer in the euphotic zone, rich in 
biomass and biodiversity, resulting in higher possibility of encounters 
with marine biota (Gigault et al., 2016). 

Key factors ruling agglomeration/aggregation and fate of nano
plastics in natural waters are numerous: among those, surface properties 
and shape, as well as the concentration ratio between nanoplastics, 
electrolytes, organic matter and inorganic colloids (Oriekhova and Stoll, 
2018; Veclin et al., 2022). 

Since environmental conditions are subject to temporal and spatial 
variations, it becomes difficult to draw a general guideline on nano
plastic fate in the marine environment. For instance, Venel et al. (2021) 
observed that the variable conditions in the interface between land and 
sea, as in a mangrove swamp, would probably cause the aggregation and 
sedimentation of most of the nanoplastics flowing through, leaving just a 
few particles in suspension. Gondikas et al. (2020) wondered if it is 
correct to look for a final sink for colloids in the natural environment (e. 
g., sediment) or if it is better to consider it as a cyclical transformation 
process, involving resuspension and sinking phases. The cyclical nature 
is attributed to the fluctuation in the amount of extracellular polymeric 
substances (EPS) in seawater, due to the seasonality of algal blooms. For 
example, when EPS are more abundant, engineered nanoparticles are 
more stable, reducing the rapid aggregation induced by the high ionic 
strength of seawater, which would presumably result in the aggregate 
sinking and deposition to the seafloor (Gondikas et al., 2020). This was 
demonstrated under laboratory-controlled conditions for PS NPs incu
bated with diatom-secreted EPS, whose aggregation resulted less pro
nounced compared to the absence of EPS (Grassi et al., 2020). While EPS 
is known to modify nanoplastic behavior, the opposite is also true. PS 
NPs were observed to induce and accelerate the assembly of microgels 
from free EPS (Shiu et al., 2020a), while phytoplankton exposed to PS 
NPs produced EPS with a higher protein-to-carbohydrate ratio (P/C), 
which increased the matrix stickiness (Shiu et al., 2020b). This might 
result in the incorporation of nanoplastics inside biogenic aggregates (e. 
g., marine snow) with implications for the vertical transport in the water 
column of both nanoplastics and marine snow, and repercussions on 
carbon fluxes to the seafloor as well as on the bioavailability of nano
plastic for benthic filter feeders and dwellers (Ward and Kach, 2009; 
Long et al., 2015; Porter et al., 2018). Even if a general guideline on 
nanoplastic fate in the marine environment is far from being accom
plished, it appears clear that nanoplastics and microplastics behave 
differently in seawater and, as such, will have a different biological 
impact, especially when considering possible target organisms. 

3. Ecotoxicity testing of nanoplastics 

Concerning the ecotoxicological evaluation of nanoplastics, a major 
gap exists between experimental conditions and what could be consid
ered a realistic exposure scenario. First, tested nanoplastics are generally 
perfectly round spheres which hardly resemble nanometric irregular 
fragments resulting from the degradation of plastic waste (Gigault et al., 
2018). Moreover, the suspensions of these ad hoc synthetized proxies 
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usually contain surfactants and/or tracers, such as fluorophores, which 
may play a role in the observed behavior and ecotoxicological effects 
(Pikuda et al., 2018; Catarino et al., 2019). 

Another relevant gap is the one existing between tested polymers and 
polymers detected in the colloidal fraction of environmental sampling. 
As it comes up from the relative percentages of sub-micron polymers 
sampled in the North Atlantic subtropical gyre (Ter Halle et al., 2017), 
the prevalent one is PVC (70%), followed by PET (17%), PS (9%) and PE 
(4%) (Fig. 2a). Data reported by other studies about the composition of 
sub-micron plastic fragments sampled in the marine environment 
(Llorca et al., 2021; Materić et al., 2022a) do not allow a comparison of 
the relative percentages of the different polymers; however, the overall 
composition varied with sampling spots, with the main represented 
polymers being PP, polyisoprene (PI) and PS by llorca et al. (2021), 
while a prevalence of PS and PET was reported by Materic et al. (2022a). 
Such data hardly find correspondence with ecotoxicological studies 
conducted so far, in which PS is nearly the only tested polymer (Fig. 2b). 
By searching the words “nanoplastic” “toxicity/effects” and “marine 
organisms” on the online Scopus database, excluding reviews and non- 
pertinent results, a total of 125 research papers are found, the 87% 
percent of which is carried out on PS NPs (Fig. 2b, Table S1). Among 
those, only 2% of analyzed studies (Env NP) are performed on nano
plastics obtained from the fragmentation of micro- and macro-plastics 
sampled in the marine environment, mainly composed of PE and PP 

(Baudrimont et al., 2020; Arini et al., 2022; Roman et al., 2023). Species- 
sensitivity distribution (SSD) analysis has shown that the polymer core 
of model nanoplastics is crucial in driving their ecotoxicity towards 
marine species (Venâncio et al., 2019). Although scarce, available data 
do not show such a marked predominance of PS in the colloidal fraction 
of marine environmental samplings, hence ecotoxicological data should 
better reflect the possible composition of environmental nanoplastics. 

Together with the polymer core, surface charge also plays a crucial 
role in nanoplastic ecotoxicity. Model PS nanospheres with different 
surface charges (i.e., amino-modified, –NH2, or carboxyl-modified, 
–COOH) have been tested, with the aim to better understand the bio- 
nano-interactions in seawater media (Wheeler et al., 2021). Surface 
functionalization was recognized as an important driver of behavior and 
ecotoxicity in seawater, affecting uptake and ecotoxicological outcomes 
in marine model species (Bergami et al., 2016; Marques-Santos et al., 
2018; Grassi et al., 2019; Grassi et al., 2020; Murano et al., 2021). 
However, specific functionalization, such as –NH2 surface groups, are 
unlikely to be found in the marine environment unless occurring during 
ageing and/or transformations through interactions with other existing 
molecules present in seawater (i.e., dissolved organic matter, proteins) 
(Lehner et al., 2019). Instead, the use of surface functionalization/ 
charges resembling those of environmentally weathered plastics (e.g., 
carbonyl and carboxyl groups and negative surface charge) should be 
encouraged. 

Fig. 1. Difference in behavior and interactions of microplastics (left) and nanoplastics (right) in the marine environment: microplastic circulation in the water 
column is mainly dominated by density, plastisphere composition and characterized by physical interactions, while nanoplastic behavior is dominated by Brownian 
motion and chemical interactions, including strong adsorption of pollutants and eco-corona formation. 

Fig. 2. Relative percentages of polymer composition 
of sub-micron fragments sampled in the North 
Atlantic subtropical gyre (a) and relative percentages 
of polymers employed for marine ecotoxicological 
studies (b). Data obtained from Ter Halle et al. (2017) 
(a) and data obtained from Scopus (b), search queries: 
TITLE-ABS-KEY (nanoplastic OR plastic AND nano
particles AND effects OR toxicity AND marine AND 
organisms OR environment) AND (LIMIT-TO (DOC
TYPE, “ar”)). “Env NP” refers to plastics sampled in 
the marine environment as micro- and macro-plastics 
and fragmented to the nanosize for exposure.   
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As it should be encouraged the use of concentrations resembling 
those predicted for marine waters. Although relevant in terms of un
derstanding toxicological outcomes and, in some cases, mode of action 
of nanoplastics towards marine organisms, concentration tested in most 
studies are at least two orders of magnitude higher than those predicted 
in surface waters (i.e., >1 mgL− 1 vs 0.001–20 µgL− 1, (Lenz et al., 2016)). 
This questions their relevance towards real exposure scenarios, though 
such high concentrations may still represent hotspot regions for plastic 
pollution such as coastal areas of the Mediterranean Sea (Everaert et al., 
2020), in which nanoplastic abundance may approach toxicity 
thresholds. 

Besides the use of model nanoplastics, most marine environmental 
risk assessment studies have been performed using model organisms 
rather than bioindicators. This resulted in ecotoxicological outcomes 
which might be far from being realistic in terms of uptake and disposi
tion of nanoplastics, as well as their toxicodynamic and mode of action. 
Phyto- and zoo-plankton species have been the most investigated (52%) 
for nanoplastic ecotoxicity, while species belonging to the benthic flora 
and endobenthic fauna have been poorly studied (Fig. 3a) (Chae and An, 
2017). This could be explained by several factors, such as the reliability 
of standardized ecotoxicity assays based on ISO, OECD and/or ASTM 
protocols (e.g., ISO, 2006; OECD 201, 2011; OECD 317, 2021), which 
are easy to handle at bench-scale, quick and costly, and the assumption 
that the colloidal nature of nanoplastics makes them more bioavailable 
to marine planktonic species in surface waters. However, as recent 
models underline, nanoplastics fate in seawater is not straightforward 
and nanoplastics might be able to reach the sea floor due to agglomer
ation/aggregation phenomena, being thus bioavailable for endobenthic 
organisms, by far less investigated (Pradel et al., 2021a; Alimi et al., 
2022). Another relevant drawback in terms of representativeness of ERA 
scenarios, is the single-species toxicity test which not only relies on a 
very limited number of model organisms but, more importantly, does 
not take into consideration that marine phytoplankton is composed of 
highly diverse taxa (Caron et al., 2017) with different functional traits 
that define the fitness of planktonic communities and functioning of 
pelagic ecosystems (Otero et al., 2020). 

Therefore, is the limited number of species available for ecotoxicity 
testing enough to represent natural phytoplanktonic communities and 
assess ecological risk? And, which one could thus represent the best 
match in terms of reliability and feasibility at bench-scale test level and 
representativeness of impact of nanoplastics on natural communities 
and associated ecosystem functions and services? 

3.1. Selected models and their ecological relevance/representativeness 

Microalgae including diatoms have been vastly investigated (Fig. 3b) 

and alterations on photosynthetic efficiency, production of reactive 
oxygen species up to DNA and mitochondria damages with conse
quences on cell division and growth have been described (Sjollema et al., 
2016; Bergami et al., 2017; Sendra et al., 2019; Gomes et al., 2020; 
González-Fernández et al., 2020). We recently reported a reduction of 
chain length in marine diatom Skeletonema marinoi upon exposure to PS 
NPs suggesting that nanoplastics could limit their sinking on the sea 
floor with ecological implications for the marine biological carbon pump 
(Bellingeri et al., 2020). 

Zooplanktonic suspension feeders such as rotifers, copepods and 
brine shrimps (Bergami et al., 2017) as well as embryos/larvae stages of 
ascidians, microcrustaceans, bivalves and sea urchins have been widely 
represented in nanoplastic toxicity testing (Fig. 3b). Indeed, larval stages 
are the most sensitive since any effect has direct implications for pre
dicting recruitment and survival upon exposure to environmental 
stressors, including nanoplastics. Alteration in feeding behavior, delay 
in growth and gut retention of PS NPs have been reported in the copepod 
Paracyclopina nana (PS NPs of 50 nm, up to 10 µgmL− 1) (Jeong et al., 
2017), in Brachionus koreanus and Brachionus plicatilis regardless of 
surface charges (0.5–5 µgmL− 1), with PS-NH2 significantly reducing 
lifespan (LC50 = 2.75±0.67 μgmL− 1) (Jeong et al., 2016; Manfra et al., 
2017). 

Nanoplastics bearing positive surface charges (50 nm PS-NH22 up to 
20–25 µgmL− 1) have been shown to disrupt embryo development and 
biomineralization in mussels (Mytilus galloprovincialis) and oysters 
(Crassostrea gigas) (Balbi et al., 2017; Tallec et al., 2018) and cause 
several degrees of malformations in sea urchins and ascidian larvae 
(Ciona robusta) (Della Torre et al., 2014; Pinsino et al., 2017; Eliso et al., 
2020; Eliso et al., 2023). Long-term exposure studies (14 days) have 
revealed more severe outcomes in brine shrimp larvae (Artemia fran
ciscana), with delay in larvae development and mortality (50 nm PS- 
NH2, LC50 = 0.83 μgmL− 1) and significant gut retention of PS-COOH 
agglomerates (Bergami et al., 2017). Such a scenario could anticipate 
disruption in organism’ growth and potential food chain transfer of 
nanoplastics up to direct predators such as marine fish. 

As far as benthic invertebrates, nanoplastics have been shown to 
affect cell-mediated innate immune responses on sea urchin Para
centrotus lividus and bivalves (Mytilus spp.) with positive surface charged 
PS NPs (PS-NH2, 50 nm) inducing apoptotic-like nuclear alterations, 
impairing cell viability and phagocytosis (Marques-Santos et al., 2018; 
Murano et al., 2020; Murano et al., 2021). PS NPs can enter inside im
mune cells by endocytic pathways as shown in mussel hemocytes and 
sea urchin coelomocytes (Gaspar et al., 2018; Sendra et al., 2020). By far 
less investigated, nanoplastics (PS NPs, 0.0005–50 mg/L) affect 
keystone species of intertidal and marine coastal environment such as 
the polychaeta Hediste diversicolor by altering regeneration capacity, 

Fig. 3. Relative percentages of habitat (a) and feeding strategies (b) of marine organisms investigated in nanoplastic ecotoxicity studies.  
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neurotransmission and behaviour which may have consequences on 
sediment nutrient cycling and (endo-)benthic fauna (Silva et al., 2020a; 
Silva et al., 2020b). 

Regarding vertebrate species, fish and marine mammals have been so 
far overlooked in terms of nanoplastic effect assessment. Following the 
current EU regulation on animal testing (Directive 2010/63 EU), 
nanoplastics either tested on fish cell lines (PS NPs of 100 nm, 0.001–10 
mgL− 1) from seabass and seabream and adult of gilthead sea bream 
(PMMA NPs of 45 nm, 0–10 μgmL− 1) cause disruption in their immune 
system, lipid metabolism and cell viability (Almeida et al., 2019; Brandts 
et al., 2021) (Table S1). 

3.2. Overlooked taxa with high ecological values 

In comparison with other marine organisms, marine plants have 
been overlooked in terms of impact of nanoplastics, even though the 
seafloor is now considered the final sink for plastics coming from water 
column and land (Corsi et al., 2021). 

Seagrass meadows, for instance, have been recently shown to easily 
interact with plastic debris reaching the seafloor, playing a role in their 
removal and transfer to shorelines and along the marine food chain (e.i., 
herbivorous fishes). Plastics of various size and polymeric nature present 
on the shallow seafloor can thus be transported back into the shorelines 
with consequences on species living in them. Considering their impor
tant ecological role and associated ecosystem services as CO2 absorption 
and nutrient circulation, energy and carbon production, climate change 
mitigation and nursery and refuge areas for many species including 
supporting fishery production, any study assessing nanoplastics inter
ference on their health status is becoming mandatory (Duarte et al., 
2013). 

Root degeneration and impairment of photosynthetic machinery 
have been reported in seagrass Cymodocea nodosa (Ucria) upon acute 
exposure (12 days) to PS NPs (30 nm, 68 μgL− 1) with serious conse
quences on ecosystem services they provide on abiotic (water column 
oxygenation, water flow attenuation) and biotic parameters (maintain
ing biodiversity) (Menicagli et al., 2022). 

Recent findings revealed accumulation of microplastics in seagrass 
sediments and adhesion to seagrass blades and associated epiphyte as
semblages whose density strongly affect the retention ability of the 
blade itself (Jones et al., 2020; Gerstenbacher et al., 2022). Water col
umn and sediment microplastics are either intercepted by blades, with 
fibers and smaller fragments the most abundant among other shapes. 
Indeed, the ability of seagrass meadow to retain and act as sink for the 
sub-micron plastics cannot be ruled out with still unknown ecotoxico
logical outcomes so far. 

Evidence of large plastic fibers and fragments (average size of 1 cm) 
entrapped in the aegagropilae of the Mediterranean phanerogam Pos
idonia oceanica raised concerns on possible consequences on their 
ecological role supporting detritivorous trophic webs and providing a 
significant amount of carbon and nitrogen for beach biological assem
blages (Pietrelli et al., 2017; Sanchez-Vidal et al., 2021). P. oceanica high 
abundance, primary production and biomass make it the most produc
tive ecosystem in the Mediterranean. However, this major habitat- 
engineering species is currently under threat (13–50% reduction in 
areal extent, cover and shoot density) and was recently included in the 
list of endangered or threatened species of the Barcelona Convention 
(Annex II) and in the Annex I (Strictly Protected Flora Species) of the 
Convention on the Conservation of European Wildlife and Natural 
Habitats (Bern Convention) (de Los Santos et al., 2019). 

Vascular plants are known to significantly retain nanoplastics 
through surface foliar and root adsorption and even internalize and 
translocate them through the vascular system; phytotoxicity and effects 
on growth and photosynthesis have been reported with size and surface 
charges of the NP having a leading role (Sun et al., 2020; Yin et al., 
2021). 

Nanoplastic toxicity on aquatic macrophytes has been investigated 

only on freshwater species. For example, Lemnaceae and Poaceae have 
been shown to facilitate nanoplastic entrance in the food web, with 
consequences on a wide range of species, ecosystem functions and ser
vices (Mateos-Cárdenas et al., 2021; Gerstenbacher et al., 2022). 

Very limited studies have been conducted on brackish and marine 
species and only on microplastics. Recent findings reported the ability of 
mangrove leaves to capture microplastics from tidal waters and air and 
mangrove wetland acting as a sink (Li et al., 2022). 

Evidence of nanoplastic negative impact on terrestrial plants un
derlines the importance of focusing future studies on seagrass and ma
rine vascular plants as they represent important bioindicators of the 
marine environment given their precious role in numerous ecosystem 
services and marine goods (Cullen-Unsworth and Unsworth, 2013; 
Reynolds et al., 2016; Nordlund et al., 2018; Kalčíková, 2020). 

As far as other marine habitat-engineers, coral reefs have been barely 
investigated for nanoplastic impact despite their huge ecological role as 
hotspots of biodiversity and associated ecosystem goods and services 
and facing serious threats from other anthropogenic stressors (Hughes 
et al., 2018; Woodhead et al., 2019). Microplastic ingestion and toxi
cological outcomes on corals have been vastly documented, including 
the negative impact of plastisphere-associated microbes on coral dis
eases (Lamb et al., 2018; Reichert et al., 2018; Rezania et al., 2018). 
Only a couple of recent studies on symbiotic dinoflagellates and the 
coral host Stylophora pistillata reported how the impairment of photo
synthetic capacity in symbionts upon exposure to nanoplastics (PS NPs 
of 20–42 nm, 0.5–10 mgL− 1) can have a significant role in coral 
bleaching (Ripken et al., 2020; Marangoni et al., 2022). 

3.3. New frontiers: Nanoplastics impact in the Southern Ocean 

Although in the ERA of nanoplastics the choice of best bioindicators 
should not rely on peculiar properties of the marine ecosystem, high 
latitude oceans deserve a separate mention. The Arctic and Antarctica 
are characterized by extreme environmental conditions, which, through 
millions of years, have determined unique eco-physiological adaptations 
in the endemic species inhabiting these regions. Cold-adapted marine 
organisms are typically stenothermal, they display slow metabolism, 
development and growth rates (Peck, 2018) and they are characterized 
by low genetic variability (Rogers, 2007). As a result, polar marine 
ecosystems are considered less resilient to changes compared to tropical 
and temperate regions and the study of CECs such as nanoplastics allows 
us to understand how human-driven perturbations are affecting the most 
pristine environments. 

Polar regions are known to act as ‘cold trap’ for major chemical 
pollutants, which can reach remote regions through the movement of air 
masses and ocean currents at a global scale. Long-range transport 
pathways can be hypothesised also for nanoplastics, which have recently 
been found in remote settings such as Siberian Arctic surface waters far 
from potential emission sources (Obbard, 2018; Materić et al., 2022c). 
Nevertheless, while several studies have addressed the occurrence and 
distribution of microplastics in polar marine ecosystems (reviewed in 
Caruso et al. (2022) and Rota et al. (2022)), so far evidence of nano
plastic contamination in polar marine environments is confined to a 
single observation in the sea ice from McMurdo Sound (>77◦ S) in the 
Ross Sea, one of the most remote regions of Antarctica (Materić et al., 
2022b). Within sea ice, Materic and co-authors reported a prevalence of 
low-dense nano-sized polymers (i.e., PE and PP, with PE contributing to 
50% by mass) with average concentrations of 0.052 mgL− 1. The absence 
of other polymers, such as PS, which were previously found in the 
microplastic composition of the Eastern Antarctic Sea ice (Kelly et al., 
2020), was attributed to the complex sea ice dynamics regulating the 
incorporation/release processes of these anthropogenic particles. By 
mimicking sea ice growth-thawing on a bench-scale set up, Pradel et al. 
(2021b) have indeed demonstrated that, differently from microplastics 
that accumulate within sea ice, nanoplastics can be expelled from brine 
channels during sea ice growth. In polar waters, low temperatures 
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approaching the freezing point of seawater can be associated to lower 
reactivity of nanoplastics, which are likely to form large agglomerates 
(Bergami et al., 2019) but can be stabilised by NOM at the sea ice-water 
interface (Pradel et al., 2021b). However, passive entrainment of 
nanoplastics in sea ice might still occur as a result of changes in envi
ronmental conditions (e.g., increase in salinity) and interaction with EPS 
released by sea ice algae (Hoffmann et al., 2020). 

Sea ice is a highly productive habitat which supports diverse 
phytoplankton (both within or underneath the sea ice) as well as cry
opelagic communities, providing nutrients, food and shelter to polar 
marine wildlife (Peck, 2018). The accumulation of nanoplastics at the 
interface with sea ice indicates a high probability to encounter polar 
marine organisms at the base of the trophic web, such as phyto- and 
zooplankton. Hoffman et al. (2020) reported that large PS NPs (500 nm, 
at 90,000 nmL− 1) incubated with cells of the alga Fragillariopsis cylind
rus, which dominates Arctic and Antarctic Sea ice communities, reduced 
the number of algal cells within the sea ice, suggesting potential alter
ation on their annual recolonization of sea ice and changes in algae 
community structure. 

Nanoplastics have been shown to impact pigment and lipid compo
sition as well as assemblage structure in marine microalgae including 
diatoms (Bellingeri et al., 2020; González-Fernández et al., 2020), 
leading to potential disruption of biomass productivity implications at 
the ecosystem-scale (Casabianca et al., 2021). In polar marine ecosys
tems, sea ice algae should be considered as target organisms to study 
nano-biological interactions to predict cascading effects on higher tro
phic level species as well as effects on primary productivity. 

Ecotoxicological studies conducted so far on polar marine organisms 
have the same two main limitations as those on temperate ones: (i) they 
were conducted with commercially available PS nanospheres, thus not 
representing the different polymers and shapes (mainly irregular or 
fibrous) of the nanoplastics found in marine environments; (ii) nano-PS 
were tested at rather high concentrations (in the range of 1 – 2.5 mgL− 1), 
although predicted environmental concentrations for polar regions are 
still lacking. 

In the Southern Ocean, the Antarctic krill Euphausia superba, the 
keystone species of pelagic ecosystems, has recently been shown to 
internalise microplastics (mainly microfibers of polyamide-PA, PE and 
PET) (Wilkie Johnston et al., 2023; Zhu et al. 2023), with the ability to 
fragment them into nanoplastics, as demonstrated through a bench-scale 
experiment (Dawson et al., 2018). Nanoplastics generated by the Ant
arctic krill become readily available to enter Antarctic marine food 
webs. By understanding the impacts of nanoplastics on Antarctic krill, it 
is possible to shed light into the consequences at higher trophic levels. 
Antarctic krill has a circumpolar distribution, it reaches high biomass 
and it exerts a bottom-up control on the food webs, being the key trophic 
link between primary producers and higher predators (Atkinson et al., 
2012). PS NPs have been found to alter the physiology of Antarctic krill 
juveniles following short-term exposure, with PS-NH2 leading to 
decreased swimming and altered exuviae release (Bergami et al., 2020). 
Surface charged PS NPs were further found to be excreted and incor
porated in krill faecal pellets, altering their settling behavior in the 
water column. Considering the pivotal role of Antarctic krill in ensuring 
deep-sea carbon export (Manno et al., 2020) these results can be 
considered an early warning of the ecosystem-scale impact of nano
plastics on particulate organic carbon flux through the mesopelagic zone 
in the Southern Ocean. 

Other key sentinel zooplankton species of Arctic and Antarctic 
pelagic ecosystems to be considered in future studies should include 
other zooplanktonic taxa, such as copepods and amphipods, which play 
key roles in polar open ocean and sea ice food webs. In addition, salps 
(Salpa thompsoni) could be taken into account as target organisms in 
climate change scenarios in which the krill-based ecosystem model is 
expected to decline (Rowlands et al., 2021). Compared to pelagic eco
systems, our knowledge regarding the presence and impacts of nano
plastics on polar benthic communities remains unexplored. 

Microplastics accumulate in Arctic and Antarctic deep-sea sediments 
(Munari et al., 2017; Adams et al., 2021; Bergmann et al., 2022) and are 
found in polar benthic organisms (Sfriso et al., 2020; Deng et al., 2021; 
Bergami et al., 2023). However, no data are available on the occurrence 
of small microplastics (<10 µm, lower size limit reported in Fang et al., 
(2018)) and nanoplastics, limiting the impact assessment on benthos. 
Our study on the sea urchin Sterechinus neumayeri immune cells (Ber
gami et al., 2019) was the first attempt to evaluate nanoplastic toxicity 
on Antarctic benthos. We showed that both PS-COOH and PS-NH2 
(50–60 nm, at 1 and 5 mgL− 1) were able to impair phagocytic capacity 
and generated an inflammatory response in sea urchin cells following in 
vitro exposure. 

The Antarctic sea urchin S. neumayeri was chosen as a relevant target 
organism for nanoplastics due to its abundance in Antarctic shallow 
waters and its major role in trophic webs such as in the McMurdo Sound 
(Brey 1995). Furthermore, in phylogenetics, S. neumayeri is a sister 
species of the Mediterranean sea urchin P. lividus, in which the biological 
responses to model nanoplastics (PS) have been widely characterized 
(Pinsino et al., 2017; Marques-Santos et al., 2018; Murano et al., 2021), 
thus allowing for a close comparison upon the effects of nanoplastics at 
the molecular level. Other key taxa that need to be considered in future 
studies should include arthropods, bivalves, whelks and other echinoids 
to fully represent polar benthic community dynamics. Our understand
ing of nanoplastics pathways and impacts towards polar regions is still at 
an early stage. Unknowns currently range from lack of field monitoring 
observations to potential effects on the ecophysiology of polar endemic 
species. As emerging contaminants in polar environments, nanoplastics 
need to be addressed together with other anthropogenic and environ
mental stressors impacting polar marine ecosystems. 

Up to now few studies have investigated nanoplastic effects under 
future climate change conditions, e.g., increase in sea temperature and 
ocean acidification. Rowlands et al. (2021) showed that PS-NH2 (size of 
160 nm, at 2.5 mgL− 1) and reduced pH (7.7) significantly impacted the 
early development of Antarctic krill, while the single stressors (PS-NH2, 
low pH) did not cause any effect compared to the control group. 
Through an intergenerational study, Rowlands et al. (2023) further 
underlined the resilience of krill embryos to PS-NH2 as single stressor 
under short-term exposure conditions. 

Similarly, PS-NH2 (50 nm, at 1 mgL− 1) and reduced pH (7.8) 
significantly increased the mortality rate in the sub-Antarctic pteropod 
Limacina retroversa through an additive effect (Manno et al., 2022). 
These studies show the ability of nanoplastics to lower the biological 
thresholds of Antarctic marine ecosystems and underline the importance 
of multi-stressor experiments resembling natural scenarios or near 
future conditions. 

4. Models vs bioindicators and marine ecosystem services 

Along with the increase of field monitoring campaigns, several ma
rine species have been recognized as potential targets of plastic pollu
tion, from top predators such as marine mammals to less complex 
organisms such as microalgae (Casabianca et al., 2021; Fossi et al., 
2018), with consequences not only on survival of natural populations 
but also on their important ecological role. Marine model species have 
been selected by using the same criteria applied for chemical risk 
assessment in order to meet regulatory requirements and standard pa
rameters (i.e., easy to handle, knowledge on eco-physiology and 
responsive to external chemical stressors). On the other hand, by 
studying model organisms in laboratory settings and under standardised 
replicable conditions, we can scarcely infer conclusions about the real 
natural environment and ecosystem services and this is particularly true 
for nanoplastics. The demonstrated significant changes to which nano
plastics undergo when released in seawater (i.e., aggregation/agglom
eration, eco-corona formation) together with the paucity of data on the 
actual nanoplastic amount at sea, strongly limit ERA for the marine 
environment (Corsi et al., 2024; Corsi et al., 2021). 
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Plastic pollution has been recognized as a threat for ocean carbon 
sequestration, for the carbon pump and pool by affecting phytoplankton 
and zooplankton (Shen et al., 2020b; Galgani and Loiselle, 2021; Gal
gani et al., 2022). How nanoplastics could potentially act in this regard 
is still in infancy although their colloidal behavior and documented bio- 
nano-interactions with both phytoplanktonic and zooplanktonic species 
raise concerns (Sander et al., 2019; Bellingeri et al., 2020; Bergami et al., 
2020). 

First attempts to quantify the negative impact of plastic pollution 
estimated from 1 to 5% loss or reduction in marine ecosystem services, 
resulting in a calculated economic impact of US$ 2.5 trillion (Kumar 
2021). Tourism, fisheries with supply of seafood and cultural benefits 
are only some among those economic sectors which could face serious 
constraints due to plastic pollution, with loss of jobs and income being 
connected also to human welfare (Beaumont et al., 2019). Connections 
among plastic production, marine litter and global warming have been 
made both in terms of industrial emission (Shen et al., 2020a) and 
plastic-induced variations in the solar radiation along the water column; 
as such they can alter physical processes at the ocean surface and near- 
surface layers as well as trigger climate feedback mechanisms (Vish
nuRadhan et al., 2019; Cornejo-D’Ottone et al., 2020). 

Nanoplastics could thus amplify the impact of multi-stressors (i.e., 
either physical and chemical with climate-induced stressors), which 
could compromise population and ecosystem health and resilience. 

The selection of bioindicators as representative of marine ecosystem 
services is utmost important considering the increasing threats faced by 
marine coastal areas, whose habitats and their taxa account for 20% of 
ecosystem services, linking structures, processes and functions with the 
derived economic and social values and benefits (Scherber et al., 2016; 
Ferreira et al., 2017; Culhane et al., 2018). Coastal zones display unique 
marine ecosystems heavily exploited and polluted with various degree 
of degradation and loss in estuarine and coastal wetlands, as marshes 
and mangroves (35–50%), sand beaches and dunes, seagrass beds 
(29%), and coral reefs (30%) (Barbier, 2017; Carrasco De La Cruz, 
2021). According to the network model proposed by Culhane et al. 

(2018) >50% of ecosystem services are provided by biotic groups, with 
macroalgae and epifauna in the highest amount followed by macro
phytes and infauna while bacteria, whales and microphytobenthos in 
the lowest amount. A constant decrease in the number of services from 
coastal zones to the deep sea is recognized, underlining the importance 
of a higher degree of protection towards any source of anthropogenic 
impact including pollution (Culhane et al., 2018). 

Since the environmental fate of nanoplastics still relies on models 
and no field-data on most affected marine compartments are available, 
the ERA of nanoplastics should be conducted based on different re
quirements. Model species in short-term acute exposure scenarios are 
easy-to-handle, reliable and reproducible, but often far from relevant in 
terms of ecological exposure. Selecting representative bioindicators 
based on their ecological role and importance in ecosystem functioning 
and services could provide more useful data for the evaluation of the real 
threat posed by nanoplastics in specific ecological compartments. 
Furthermore, an ecosystem-oriented approach should be embraced 
based on multi-trophic micro- and mesocosm studies resembling envi
ronmentally relevant physical-chemical exposure conditions (i.e., light, 
temperature, pH, etc.) in long-term exposure scenarios. More ecological 
cascade effects should be investigated by widening marine taxa 
considered more at risk as well as marine biocenosis. A more grounded 
knowledge of mechanisms of ecological interactions will provide a more 
holistic view predictable of impact on ecosystem function and services 
(Fig. 4). 

With the aim of identifying a set of best bioindicators for nanoplastic 
contamination in the marine environment, a framework that takes into 
account multiple factors, from trophic position and ecological role with 
associated ecosystem services, to the protection of endangered species 
and the risk to humans following dietary transfer, is here proposed. 
There are already several examples of studies whose aim is to identify 
the best bioindicators for monitoring marine microplastics such as bio
accumulators (i.e., fish), representative of different components of ma
rine ecosystems and descriptive of a wide range of plastics (Savoca et al., 
2022), including iconic and/or endangered species (Fossi et al., 2018). 

Fig. 4. Models vs bioindicators: the importance of linking model organisms to bioindicators of pelagic and benthic realms and their related ecosystem services.  
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However, as such, this approach, even though can be applied also for the 
smaller fractions as nanoplastics, requires a more deep investigation to 
fulfill some major knowledge gaps. 

The risk associated with nanoplastic exposure, also and above all in 
function of the peculiar properties both in terms of behavior in the saline 
(i.e., transformations) and biological medium (i.e., easily uptaken), re
quires particular attention in relation to the risks for humans and the 
environment (Multisanti et al., 2022). 

A 4-tiered holistic approach is proposed here which takes into ac
count the specific needs relating to the choice of bioindicators, not only 
to the level of protection towards a particular natural resource or 
ecosystem and associated services, but also to the health of the entire 
marine ecosystem and consequently of human health (One Health). 

The four levels can be identified as such: target species, species most 
at risk, key species and species of interest for commercial purposes (i.e., 
seafood) (Fig. 5):  

1- target species as those more likely to be exposed to nanoplastics 
based on their patterns of dispersion and behavior in the marine 
environment and the position of the species in the food web, 
including feeding habits. In this case, filter-feeding molluscs could be 
considered among the best candidates together with other benthic 
species following processes such as aggregation/agglomeration of 
nanoplastics, which could lead to significant levels of accumulation 
within marine sediments. Top predators will be also on the list being 
potentially receiving high amounts through the biomagnification of 
nanoplastics along food webs, information which is still scarce or 
absent and merit more attention. The movement of marine currents 
and waves could also make the phenomenon of aggregation and 
precipitation less stable, with a fraction of the nanoplastics still 
floating and capable of interacting with phyto- and zooplankton, 
thus identifying another possible target. The lack of knowledge about 
how nanoplastics can be redistributed in the water column in con
ditions of realistic environmental concentrations and in the presence 
of natural factors such as organic matter, waves, light, etc. underlines 
the need to fill these knowledge gaps in order to identify which taxa 
could represent potential targets for these CECs. Biomagnification 
along with bioaccumulation are also relevant for adding species at 
the top of the food chain in the list.  

2- The definition of the endangered species is very close to that of the 
target species but with a more negative meaning in terms of potential 
harmful effects for individuals survival and recruitment. The species 
at risk are to be considered undoubtedly those already affected by 
other environmental and anthropogenic stressors and/or included in 
the IUCN list. Whether exposure to nanoplastics occurs, it could 
affect an already precarious state of health and lead to far more 
serious consequences on survival than in species in good health. 
Undoubtedly more studies need to be devoted to understanding the 
potential exposure of endangered species, both in terms of effect 
concentrations and ecotoxicological consequences that could lead to 
major health damages up to, and including, extinction of the species 
also taking into account synergisms with other stressors.  

3- Although key species have a pivotal role for natural ecosystems and 
some of them are already under stress also in the marine environ
ment (i.e., corals, seagrass meadows), they are often little studied 
from an ecotoxicological point of view and not at all in terms of 
nanoplastics. Numerous stress factors, also linked to global climate 
changes, are putting the survival of natural ecosystems at risk and 
key species are excellent candidates for plastic pollution monitoring 
and effects. The first studies conducted on microplastics reveal sig
nificant risks for corals and seagrass meadows, also in the Mediter
ranean area considered a hotspot for plastic pollution, and therefore 
research on these species is urgently needed for management and 
mitigation purposes of nanoplastics.  

4- With the increase in consumption and production of fishery products 
globally, microplastic contamination and the risk to human health 
due to consumption of contaminated food are one of the hot topics of 
scientific research. Although nanoplastics can have even more 
serious effects on human health than those of higher dimensions, the 
lack of accurate methods of size analysis in seafood still represent a 
knowledge gap on the choice of the best taxa to monitor. Nano
plastics in fishery products and the risk of transfer to humans should 
therefore receive greater attention in the future, also for regulatory 
purposes that ensure their safety for the groups most at risk (chil
dren, pregnant women, etc.), as is already the case for other marine 
contaminants (e.g., mercury). 

Fig. 5. Proposed framework for selecting bioindicators of nanoplastics in the marine environments: their relevance and interconnections.  
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5. Conclusions 

By coupling the benefits of using model organisms and biological 
indicators, we can compare marine environmental quality and nano
plastic ERA. To this aim, in future nanoplastic ecotoxicity studies it is 
crucial to select bioindicators based on specific goals, from those most 
(likely) encountering them (target) useful for monitoring purposes, to 
the most threatened and already at risk (endangered) for conservation 
and protection of marine biodiversity, to those less investigated but 
having a key ecological role (key species) allowing to predict higher risk 
of the ecological hierarchy up to ecosystem services (i.e., populations, 
communities and ecosystems), and to those more linked to human 
health due to their consumption (consumed seafood). Accordingly, the 
choice of the appropriate endpoint is of utmost importance, as this 
should consider the ecological functions played by the selected bio
indicator and the possible repercussions on the biotic compartment 
relying on it. As complex as the matter is, efforts are needed to further 
examine nanoplastics interactions and fate in the marine environment, 
in order to understand which are the most affected compartments and 
define the best practices for the evaluation of nanoplastics ecological 
impact. To this regard, comparative nano-ecotoxicity studies between 
temperate and polar species occupying the same ecological niche are 
encouraged to disclose the vulnerability of different marine ecosystems 
and the combined effects of multiple stressors scenarios including 
nanoplastics. 
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Bergami, E., Emerenciano, A.K., González-Aravena, M., Cárdenas, C., Hernández, P., 
Silva, J., Corsi, I., 2019. Polystyrene nanoparticles affect the innate immune system 
of the Antarctic sea urchin Sterechinus neumayeri. Polar Biology 42, 743–757. 

Bergami, E., Manno, C., Cappello, S., Vannuccini, M., Corsi, I., 2020. Nanoplastics affect 
moulting and faecal pellet sinking in Antarctic krill (Euphausia superba) juveniles. 
Environment International 143, 105999. 
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