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Abstract

The most accurate theoretical method to describe excitons is the solution of the Bethe-Salpeter

equation in the GW approximation (GW-BSE). However, because of its computation cost time-

dependent density functional theory (TDDFT) is becoming the alternative approach to GW-BSE

to describe excitons in solids. Nowadays, the most efficient strategy to describe optical spectra

of solids in TDDFT is to use long-range corrected exchange-correlation kernels on top of GW or

scissor-corrected energies. In recent years, a different strategy based on range-separated hybrid

functionals started to be developed in the framework of time-dependent generalised Kohn-Sham

density functional theory (TDGKSDFT). Here, we compare the performance of long-range cor-

rected kernels with range-separated hybrid functionals for the description of excitons in solids.

This comparison has the purpose to weight the pros and cons of using range-separated hybrid

functionals, giving new perspectives for theoretical developments of these functionals. We illus-

trate the comparison for the case of Si and LiF, representative of solid state excitons.
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I. INTRODUCTION

Excitons play a central role in the optical properties of materials for optoelectronics,

photovoltaics and photocatalysis applications. [1–5] Excitons are usually described as an

electron-hole pair and they are classified as Frenkel excitons (bound) localised at the atomic

sites and Mott-Wannier excitons (continuum) delocalised over the atomic unit cells. [6]

An accurate description of the excitonic effect in the optical properties of materials is still

very challenging, and nowadays the most accurate theoretical method to describe excitons

is the solution of the Bethe-Salpeter equation (BSE) in the GW approximation (GW-BSE).

However, the computational cost of GW-BSE can be very high. [6, 7]

Time-dependent density functional theory (TDDFT) is an alternative approach to BSE

to describe excitons. TDDFT is mathematically simpler than BSE which makes TDDFT

computationally more efficient. The key quantity of TDDFT is the exchange-correlation

kernel fxc which needs to be approximated. Nowadays, none of the proposed approximations

for fxc reaches the BSE accuracy with the only exception of the Nanoquanta exchange-

correlation kernel which, however, makes TDDFT as expensive as BSE. [8–10]

The most efficient strategy to describe optical spectra of solids in TDDFT is to use long-

range corrected exchange-correlation kernels (1/q2 in the long wavelength limit) on top of

GW or scissor-corrected energies. [11, 12] The first long-range corrected (LRC) kernel was

derived by Reining et al. [13] through a comparison with BSE. LRC is an empirical ker-

nel which requires a material-dependent parameter. For a large class of semiconductors,

the parameter depends on the inverse dielectric constant in a simple way. [14] This ker-

nel demonstrated to correctly describe only continuum excitons. Since then, a number of

nonempirical exchange-correlation kernels, corrected for the long-range interactions, have

been proposed in literature. [15–19] Different efficient bootstrap kernels have been devel-

oped, which describe both continuum and strong excitons in insulators and semiconductors.

[15, 16] A kernel based on the jellium-with-gap model (JGM) was proposed [17] to describe

both continuum and strong excitons in different materials. However, despite the success

of these kernels to describe optical properties, it has been found that they cannot predict

accurate exciton binding energies. [18] In order to recover both properties simultaneously

an empirically scaled bootstrap kernel has been proposed. [18]

In recent years, a different strategy based on range-separated hybrid functionals started
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to develop. [20–26] Range-separated hybrid functionals rely on the splitting of the Coulomb

electron-electron interaction wee = 1/r into a long-range (wlr) and a short-range (wsr)

contributions by a tunable parameter µ which controls the range separation. Starting from

this simple idea different schemes exist which simulate the wsr by nonlocal Hartree-Fock

(HF) exchange and the wlr by (semi-)local density-functional theory exchange functional

or vice versa. [20, 24, 27, 28] This methodology has been developed in the framework of

the time-dependent generalised Kohn-Sham density functional theory (TDGKSDFT). An

important property of TDGKSDFT is that the exchange-correlation potential and the kernel

are fully consistent with the choice of the exchange-correlation energy, being its first and

second functional derivative with respect to the density. This consistency is not provided

by TDDFT with long-range corrected kernels.

The Heyd-Scuseria-Ernzerhof (HSE) range-separated hybrid functional [20] was used to

reproduce optical spectra of semiconductors and insulators. The spectra improve with re-

spect to semilocal functionals for semiconductors showing a very good agreement with ex-

periments, except for large gap insulators. A Coulomb attenuating method (CAM) range-

separation was also proposed [21] showing excellent agreement with both semiconductors and

insulators. CAM belongs to range-separated hybrid (RSH) functionals. The main difficulty

of these range-separated approaches is to find a general criterium valid for different types

of materials for the range-separation parameter µ and for those parameters that control the

weight of nonlocal HF exchange and DFT exchange. To solve this problem, in Ref.([21]) the

authors optimally tuned the parameters in order to reproduce physical constraints.

Another promising approach is to screen a fraction of the nonlocal HF exchange with the

inverse dielectric constant and not to include semilocal exchange-correlation functional. [22]

In this case, however the calculation is not fully consistent as it is obtained from a scissor-

corrected local density approximation (LDA) calculation. The same approach was also

proposed combining the full range nonlocal HF exchange with a fraction of local exchange

functional and correlation. [23]

The use of range-separated hybrid functionals seems to be very promising and open

new perspectives for the calculation of optical spectra of solids. However, the calculation

of nonlocal HF exchange is computationally more demanding than the standard TDDFT

approach with long-range corrected kernels. Moreover, a general rule valid for any materials

concerning the choice of the parameters needed in the calculations with hybrid functionals
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has not been found yet.

In this paper, we compare the performance of long-range corrected kernels with range-

separated hybrid functionals for the description of excitons in solids. This comparison has

the purpose to weight the pros and cons of using range-separated hybrid functionals, giving

new perspectives for theoretical developments of these functionals. Concerning long-range

corrected kernels we studied the LRC [13], scalar RPA bootstrap (RPA-BO) [15] and JGM.

[17] Concerning hybrid functionals, we investigated the short-range nonlocal HF exchange

with and without semilocal exchange-correlation PBE functional [29]. We call this two

schemes respectively TDHFsr,µ;α and TDHFsr,µ;αXCPBE. Moreover, in the discussion we also

include the hybrid scheme presented in Refs. [21, 30] which has a long-range nonlocal HF

exchange component. We illustrate the comparison for the case of Si and LiF, representative

of solid state excitons.

In Section II we compare the kernels of BSE, TDDFT with long-range corrected and

TDGKSDFT with range-separated hybrid functionals. Section III is devoted to computa-

tional details, while in Section IV we present and discuss the results. Conclusions are in

Section V.

II. THEORY

The macroscopic dielectric tensor εM(ω) is

εM(ω) = lim
q→0

1

ε−1G1=0,G2=0,(q, ω)
(1)

where ε−1G1,G2
(q, ω) is the inverse microscopic dielectric matrix written in terms of the

reciprocal-space lattice vectors G1 and G2 for a given wave-vector q and frequency ω. The

case G1 = G2 = 0 indicates the head element of the inverse microscopic dielectric matrix.

Through the calculation of ε2(ω) = Im[εM(ω)] the absorption spectrum is obtained. [6]

There exist two different approaches which can be used in GW-BSE, TDDFT and

TDGKSDFT to obtain εM(ω). One approach is the solution of the Dyson equation and

the other approach is the solution of the Casida’s equations. Converged spectra are iden-

tical within the two approaches. [18] Within these approaches different kernels are used

depending on the level of theory.
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The kernel of the BSE in the GW approximation written in reciprocal space and expressed

in terms of the 4-space indices (vk, ck, v′k′ and c′k′) of the transition space is [6, 20]

ΞGW-BSE
cvk,c′v′k′ = wcvk,c′v′k′ −Wckc′k′,vkv′k′(ω). (2)

The first term is the Hartree contribution

wcvk,c′v′k′ = lim
q→0

∑
G1G2

4π

|q + G1|2
δG1G2〈ck|ei(q+G1)·r1|vk〉〈v′k′|e−i(q+G2)·r2|c′k′〉, (3)

and the second term is the screened Coulomb interaction

Wckc′k′,vkv′k′(ω) = 4π lim
q→0

∑
G1G2

ε−1G1G2
(q, ω)

|q + G1|2
〈ck|ei(q+G1)·r1|c′k′〉〈v′k′|e−i(q+G2)·r2 |vk〉. (4)

where q is a vector in the first Brillouin zone, G1 and G2 are vectors of the reciprocal lattice.

Most of the GW-BSE calculations neglect the frequency dependence of the inverse di-

electric function ε−1G2G1
(q, ω = 0) which cause the GW-BSE kernel to be static.

The screened interaction W has a long-range behaviour 1/q2 and is attractive, opposite

to the Hartree wee interaction which is repulsive. We observe that by neglecting W in the

kernel we recover the random-phase approximation (RPA).

The kernel of the TDDFT is

ΞTDDFT
cvk,c′v′k′ = wcvk,c′v′k′ + fxc

cvk,c′v′k′ , (5)

where the first term is still the Hartree contribution and the second term is the exchange-

correlation kernel in the reciprocal and transition space defined as

fxc
cvk,c′v′k′ = lim

q→0

∑
G1G2

fxc,G1G2(q)〈ck|ei(q+G1)·r1|vk〉〈v′k′|e−i(q+G2)·r2|c′k′〉. (6)

This quantity is expected to describe the electron correlations that in the BSE are described

by W . Therefore a good mathematical approximation for the fxc should include the 1/q2

long-range behaviour and the screening. Note also that, by comparing the matrix elements

of W in Eq.(4) and fxc in Eq.(6), there is an exchange between vk and c′k′ between W and

fxc. The structure of fxc is similar to the Hartree contribution. In the case of nonlocal HF
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exchange we obtain exactly the same structure of the matrix elements of W as it will be

shown later.

The correct long-range behaviour and screening are described by the long-range corrected

kernels. The first of this type of kernels presented in literature is the LRC kernel [13, 14]

defined as

fLRC
xc,GG′(q) = − αLRC

|q + G′|2
δ(G′,G). (7)

For materials with a small inverse dielectric constant ε−10 , the parameter αLRC can be ap-

proximated by αLRC = 4.651ε−10 − 0.213. [14] This kernel has demonstrated to be able to

simulate continuum excitons but not strong excitons [13, 14, 18].

Another long-range corrected kernel is the RPA-BO [31] which is defined as

fRPA-BO
xc (q) =

ε−1RPA,00w(q)

1− 1/ε−1RPA,00(q, 0)
. (8)

This kernel is scalar (G = 0 and G′ = 0) and the screening is given by the RPA inverse

dielectric constant ε−1RPA,00. The RPA-BO kernel gives good results for both continuum and

strong excitons in semiconductors and insulators. [31]

The JGM kernel [12, 17] based on the jellium-with-gap model is another kernel with the

correct 1/q2 behaviour and is defined as

fJGM
xc,GG′(q) = −4π

B′(G−G′)

|q + G′|2
+ 4π

H(G−G′,G′)

|q + G′|2
− D′(G−G′)

1 + 1/|q + G′|2
(9)

whereB′, H andD′ depend on the density and on the electronic gap. The precise definition of

the quantity is given in Ref.[17]. The JGM kernel gives also good results for both continuum

and strong excitons in semiconductors and insulators. [12, 17]

The TDHFsr,µ;α kernel is

ΞTDHFsr,µ;α

cvk,c′v′k′ = wcvk,c′v′k′ − αwHFsr,µ

ckc′k′,vkv′k′ (10)

and contains the Hartree term and the short-range nonlocal HF exchange

wHFsr,µ

ckc′k′,vkv′k′ = lim
q→0

∑
G1,G2

4π

|q + G1|2
δG1,G2〈ckv′k′|ei(q+G1)·(r1−r2)erfc((r1 − r2)µ)|vkc′k′〉.(11)
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screened by a parameter α. In the case µ = 0 we obtain that wHFsr,0 is equal to nonlocal

HF exchange wHF which is defined as

wHF
cvk,c′v′k′ = lim

q→0

∑
G1G2

4π

|q + G1|2
δG1,G2〈ck|ei(q+G1)·r1|c′k′〉〈v′k′|e−i(q+G2)·r2|vk〉, (12)

and which has the same matrix form of the unscreened W of the GW-BSE in Eq.(4). In

this case the kernel is ΞTDHFsr,0;α = w − αwHF. This kernel has been proposed in Refs. [22]

under the name of screened-exact exchange (SXX). In the case of µ → ∞ we obtain that

wsr,µHF is equal to zero and ΞTDHFsr,µ→∞;α
= w reduces to RPA.

The kernel TDHFsr,µ;αXCPBE is

ΞTDHFsr,µ;αXCPBE

cvk,c′v′k′ = wcvk,c′v′k′ − αwHFsr,µ

ckc′k′,vkv′k′ + (1− α)fx,PBE
cvk,c′v′k′ + f c,PBE

cvk,c′v′k′ . (13)

The same kernel is proposed in Ref.[23]. In the case µ = 0 we obtain ΞTDHFsr,0;αXCPBE
=

w − αwHF + (1− α)fx,PBE + f c,PBE. In the case of µ→∞ we obtain ΞTDHFsr,µ→∞;αXCPBE
=

w + (1− α)fx,PBE + f c,PBE.

In the discussion, we also show the comparison with the range-separated CAM proposed

in Refs. [21, 30] and which also includes a fraction of nonlocal long-range HF exchange. In

this case the CAM kernel is

ΞTDCAMsr,µ;α,β

cvk,c′v′k′ = wcvk,c′v′k′ − αwHFsr,µ

ckc′k′,vkv′k′ − (α + β)wHFlr,µ

ckc′k′,vkv′k′

+(1− α)fx,PBEsr,µ

cvk,c′v′k′ + (1− α− β)fx,PBElr,µ

cvk,c′v′k′ + f c,PBE
cvk,c′v′k′ . (14)

This approach requires an additional parameter β calculated as α + β = 1/ε0 where ε0

is the material’s dielectric constant. [21, 30] In the case µ = 0 we obtain ΞTDCAMsr,0;α,β
=

w − αwHF + (1 − α)fx,PBE + f c,PBE. In the case of µ → ∞ we obtain ΞTDCAMsr,µ→∞;α,β
=

w − (α + β)wHF + (1− α− β)fx,PBE + f c,PBE.

III. COMPUTATIONAL DETAILS

The TDDFT optical spectra with long-range corrected exchange-correlation kernels have

been calculated with DP [32] and 2light [33, 34] codes interfaced with the norm-conserving

(NC) pseudopotentials and plane-wave basis set ABINIT code. [35, 36]
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The optical spectra in GW-BSE and TDGKSDFT with range-separated hybrid function-

als have been calculated with the plane-wave based Vienna Ab initio Simulation Package

(VASP) with projector augmented-wave (PAW) pseudopotentials. [37, 38]

In the case of NC pseudopotentials we used an energy cutoff of 10 Ha for Si and 40 Ha

for LiF, while for PAW pseudopotentials we used an energy cutoff of 9 Ha for Si and 16 Ha

for LiF.

All the calculations have been performed using the experimental lattice parameter 5.430Å

for Si and 4.026Å for LiF. We used the experimental lattice parameter in order to be

consistent between the different theoretical methods for the spectra comparison.

The convergence parameters for the optical spectra are reported in Table I. Note that for

TDDFT calculations we used shifted k-points grids, while for GW-BSE and TDGKSDFT

we averaged the dielectric function over multiple k-points shifted grids.[20, 37, 38] [39]

A broadening of 0.05 eV for all optical spectra have been used.

TABLE I: Si and LiF convergence parameters.

Material k-points empty bands G-vectors
TDDFT (NC) Si 30×30×30 (shifted) 4 89

LiF 32×32×32 (shifted) 26 89
TDGKSDFT (PAW) Si 8×8×8 (29 shifted) 16 163

LiF 8×8×8 (29 shifted) 32 294
GW-BSE (PAW) Si 8×8×8 (29 shifted) 12/128 150

LiF 8×8×8 (29 shifted) 12/160 270

IV. RESULTS AND DISCUSSION

The goal of this work is to compare TDDFT and TDGKSDFT to describe optical spectra

of solids. As in our calculations we used both NC and PAW pseudopotentials, we have first

analysed the electronic structures of Si and LiF.

For TDGKSDFT, the electronic structure was calculated with the HSE exchange-

correlation functional EHSEµ;α

xc = αEHFsr,µ

x + (1 − α)EPBEsr,µ

x + EPBElr,µ

x + EPBE
c , where

the long-range PBE exchange functional is EPBElr,µ

x = EPBE
x - EPBEsr,µ

x . [27] Considering

µ → ∞ we have EHSEµ→∞;α

xc = EPBE
xc and, instead, considering µ = 0 we have EHSE0;α

xc =

αEHF
x + (1−α)EPBE

x +EPBE
c . Following the optimally tuned strategy, we chose the parame-
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ters µ and α in order to have a good agreement with the GW gaps. For Si we used as (µ;α)

: (0.2;0.25), (0.3;0.25), (0.3;0.3) and (0.0;0.125), while in the case of LiF we used (0.0;0.4),

(0.0;0.45) and (0.0;0.5).

In Table (II) we report the Si gaps calculated in PBE with NC and PAW, together with

GW, HSE0.2;0.25, HSE0.3;0.25, HSE0.3;0.3 and HSE0.0;0.125 gaps calculated with PAW pseudopo-

tentials. The HSE0.2;0.25 gives the closest agreement with the GW gaps. Increasing the value

of µ keeping the value of α constant, as in HSE0.3;0.25, has the effect to lower the values of the

gaps. This is due to a smaller percentage of nonlocal HF exchange included in the calcula-

tion. Instead, increasing the value of α keeping constant the value of µ, as in HSE0.3;0.3, has

the effect to increase the gap values. In this case a larger amount of nonlocal HF exchange is

considered. The HSE0.0;0.125 includes a full-range nonlocal HF exchange and the parameter

α acts as a screening. A value of α = 0.125 gives a good agreement with GW gaps.

In Table (III) we report LiF gaps calculated in PBE with NC and PAW, together with

GW and HSE0.0;0.4 gaps calculated with PAW pseudopotentials. LiF is a large gap insulator

and it requires the correct long-range behaviour of the nonlocal HF exchange. For this

reason the HSE performs well only for µ = 0. The value of α = 0.4 was found by imposing

the constraints to recover the GW gaps.

TABLE II: Si gaps (eV). The use of norm-conserving pseudopotentials is indicated with
the label NC, otherwise PAW pseudopotentials have been used.

Si PBENC PBE GW HSE0.2;0.25 HSE0.3;0.25 HSE0.3;0.3 HSE0.0;0.125 Exp
Γc - Γv 2.58 2.57 3.34 3.33 3.15 3.27 3.28 3.35a

Xc - Γv 0.58 0.66 1.28 1.29 1.13 1.22 1.33 1.17b

Lc - Γv 1.61 1.57 2.18 2.24 2.06 2.17 2.20 2.40c, 2.06d

a Reference [40].
b Reference [41].
c Reference [42].
d Reference [43].

On top of the electronic structure we calculated the optical spectra starting from the

lowest level of theory, i.e. the independent-particle approximation (IPA).

In Fig. (1) we show IPA-PBE for Si and LiF. We observe that the agreement is excellent

between NC and PAW pseudopotentials. [45] This implies that the differences we can observe

in the spectra calculated with an higher level of theory are only due to the relevance of the
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TABLE III: LiF gaps (eV). The use of norm-conserving pseudopotentials is indicated with
the label NC, otherwise PAW pseudopotentials have been used.

LiF PBENC PBE GW HSE0.0;0.4 Exp
Xc - Γv 9.21 9.12 14.21 13.99 14.20a

Xc - Γv 11.19 11.25 16.36 16.12
Lc - Γv 13.46 13.36 19.07 18.53

a Reference [44].

TDDFT and TDGKSDFT kernels for the description of the excitons.

In Fig. (2) and in Fig. (3) we compare IPA-GW and IPA-HSE which are IPA spectra

calculated respecitvely on top of GW electronic structure and HSEsr,µ;α electronic structure

where µ and α values are those that reproduce the GW gaps (see Table (II) and Table (III)).

For Si the calculations are consistent as shown in Fig. (2). The trend is the same we

observed for the electronic gaps of Table (II). In fact, IPA-HSEsr,0.3;0.25 is slightly lower

than IPA-HSEsr,0.2;0.25 due to a larger value of µ. Instead, using the same value of µ = 0.3

but an higher value of α = 0.3 as in IPA-HSEsr,0.3;0.3, the spectrum shifts at higher energy

due to a larger percentage of nonlocal HF exchange. Also in the case of LiF we found

a good agreement as shown in Fig. (3), where we compared the IPA-GW spectrum with

IPA-HSEsr,0.0;0.4.

The spectra of Fig. (2) and Fig. (3) do not include excitonic effects as IPA is the lowest level

of approximation for the calculation of optical spectra.

As already pointed out in [13], we show in Fig. (4) the excellent agreement of GW-BSE

with the experimental spectrum of Si. GW-TDPBE, as expected, is not able to reproduce

excitonic effects and it only slightly improves the spectrum with respect to GW-RPA (see

Refs. [8, 14, 17]). In fact, in TDPBE the exchange-correlation kernel is PBE which has not

the proper spatial nonlocality. [6] TDHFsr,µ;α optical spectra have a reasonable shape but

the intensity of the first peak around 3.5 eV is too low. In order to increase the intensity
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FIG. 1: ε2 for Si (top panel) and LiF (bottom panel) calculated in IPA using NC and PAW
pseudopotentials.
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FIG. 2: ε2 for Si calculated in IPA using GW, IPA-HSEsr,0.2;0.25, HSEsr,0.3;0.25, HSEsr,0.3;0.3

and HSEsr,0.0;0.125 and PAW pseudopotentials.

of this peak, we need to increase the percentage of the nonlocal HF exchange, as can be

seen by comparing TDHFsr,0.3;0.25 with TDHFsr,0.2;0.25. Otherwise, another strategy would

be to increase the value of the mixing parameter α as observed by comparing TDHFsr,0.3;0.25

with TDHFsr,0.3;0.3. However, we believe that the use of short-range HF exchange has not

the necessary flexibility to improve further the spectrum. In fact, increasing α or µ would

change also the energy position of the peaks.

TDHFsr,0.0;0.125 contains the full range nonlocal HF exchange. The α = 0.125 we have

chosen, permits to be consistent with the previous step, i.e. a correct electronic structure.

However, this value of α is still too small to correctly reproduce the experimental spectrum.

Similar results were also obtained by Yang et al. [22] using for α the value of the inverse

RPA dielectric constant (∼0.08). A better description of the first peak could be done by

increasing the α value, but also in this case this would cause a change in the position of the

energy peaks.
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FIG. 3: ε2 for LiF calculated in IPA using GW, IPA-HSEsr,0.0;0.4 with PAW
pseudopotentials.

In the case of LiF, the GW-BSE reproduces an excitonic peak of 12.2 eV, which is

slightly lower [23] than the experimental peak of 12.75 eV, as shown in Fig. (5). Instead,

as expected, GW-TDPBE can not reproduce the excitonic peak. TDHFsr,0.0;0.4 gives an

excellent agreement with the energy position of the experimental exciton. By increasing the

value of α we include more nonlocal HF exchange and therefore the exciton is more strongly

bound as we have shown for TDHFsr,0.0;0.45 and TDHFsr,0.0;0.5, see Fig. (5).

The comparison between TDHFsr,µ;α and TDHFsr,µ;αXCPBE is in Fig. (6) for Si and

in Fig. (7) for LiF. From Eq. (10) and Eq. (13) the difference between these kernels is

the addition to the nonlocal HF exchange of a fraction of the semilocal exchange PBE

(1−α)fx,PBE and the PBE correlation f c,PBE. In the case of Si, adding a fraction of semilocal

exchange increases the intensity of the first peak around 3.5 eV, therefore, improving the

agreement with the experiment. The energy position of the peak is not changed. Instead,

in the case of LiF the energy position of the peak is slightly shifted to lower energy and
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FIG. 4: Comparison of experimental ε2 for Si with GW-BSE, GW-TDPBE, TDHFsr,0.2;0.25,
TDHFsr,0.3;0.25, TDHFsr,0.3;0.3 and TDHFsr,0.0;0.125 and PAW pseudopotential. Experiment

is from Ref. [46].

the intensity of the peak changes. However, concerning the peak intensity we did not find a

clear trend.

In Fig. (8) and Fig. (9) we finally present the TDHFsr,µ;αXCPBE spectra which give the

best agreement with experiment and we compare them to the GW-BSE spectra.
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Finally, for Si, we compare in Fig. (10) the selected TDHFsr,0.3;0.25XCPBE spectrum to

TDDFT with long-range corrected kernels with a scissor shift of 0.7 eV (see Table (II)).

We show the results for LRC (αLRC = 0.20), RPA-BO (αRPA-BO = 0.13) and JGM

(αJGM = 0.12) kernels. [12] For the long-range corrected kernels a higher value of the

α parameter can be interpreted as if a higher nonlocal HF long-range contribution was

included. This contribution is higher in LRC than in RPA-BO and JGM kernels. This is

the reason for which LRC better describes the spectrum around 3.5 eV.

However, despite the better behaviour of LRC kernel, we want to point out that RPA-BO

and JGM kernels do not require any adjustable parameter, which is an enormous advantage

as they can be applied to any kind of materials.
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pseudopotential has been used. Experiment is from Ref. [46].

The TDHFsr,0.3;0.25XCPBE gives a reasonable Si spectrum, similar to the spectra from the

RPA-BO and the JGM kernels.

We add to the comparison the result from the range-separated CAM proposed by Rafaely-

Abramson et al. [21] which contains a fraction of long-range nonlocal HF exchange. The

approach of Rafaely-Abramson et al. [21] is in excellent agreement with experiment and

seems also to improve with respect to GW-BSE. However, this approach contains 3 pa-

rameters α, β and µ. The parameter α is the amount of short-range exact exchange, β is

calculated as α+β = 1/ε0 and µ is the range-separation parameter. To obtain this excellent

agreement, µ was optimally tuned in order to reproduce the electronic gap, and α and β are

obtained from the material’s dielectric constant ε0. They used µ = 0.11 Bohr−1, α = 0.2

and ε0 = 12.

Comparing the method with a fraction of short-range nonlocal HF exchange (µ = 0.3

Bohr−1 and α = 0.25) to the one with long-range nonlocal HF exchange (µ = 0.11 Bohr−1,
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α = 0.2), and considering that the mixing parameter α is of the same order of magnitude,

we observe that the range-separation parameter µ is larger when a fraction of short-range is

used. This is reasonable as the role of µ is opposite between short and long-range.

However, using TDHFsr,0.3;0.25XCPBE (short-range), it is not possible to obtain the same

agreement with experiment that is reproduced when a fraction of long-range nonlocal HF

exchange is included. To obtain the same performance of the long-range scheme, the value

of µ should be increased. However, this would cause a shift of the excitonic peaks to lower

energy and the spectrum will be wrong.

In Fig. (11), for LiF, we compare TDHFsr,0.0;0.4XCPBE with TDDFT with long-range

corrected kernels with a scissor shift of 5.0 eV (see Table (III)).

We used µ = 0.0 Bohr−1 and α = 0.4 as we need the full range nonlocal HF exchange to

reproduce the experimental spectrum. In fact, we did not find any finite values of µ different

from zero for which using only a fraction of short-range nonlocal HF exchange it would be
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FIG. 8: Comparison of experimental ε2 for Si with GW-BSE and TDHFsr,0.3;0.25XCPBE.
PAW pseudopotential has been used. Experiment is from Ref. [46].

possible to reproduce the experimental spectrum.

We show LRC (αLRC = 8.0), RPA-BO (αRPA-BO = 8.8) and JGM (αJGM = 7.93) ker-

nels. [12] The TDHFsr,0.0;0.4XCPBE and RPA-BO are in excellent agreement with the energy

position of the excitonic peak. However, RPA-BO, as well as LRC and JGM overestimate

the peak intensity, which in Fig. (11) has been multiplied by 0.1 in order to compare the

theoretical approaches. Furthermore, we observe that the energy of the JGM peak is around

1 eV higher than the result presented in the original work of Trevisanutto et al. [17]. This

is due to the different scissor value taken to correct the energies.

We add to this comparison also the result from the range-separated CAM proposed by

Rafaely-Abramson et al. [21] which is in excellent agreement with the experiment and also

improve with respect to the GW-BSE. They used µ = 0.58 Bohr−1, α = 0.2 and ε0 = 1.9.
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V. CONCLUSION

We compared the performance of TDGKSDT range-separated hybrid functionals and

TDDFT long-range corrected kernels for the description of excitons in solids. The com-

parison was illustrated for the case of Si and LiF, representative of continuum and strong

excitons.

We studied hybrid functionals with a fraction of short-range nonlocal HF exchange. For

Si, by optimally tuning µ and α, it is possible to reproduce the satisfactory experimental

spectrum. Instead, for LiF we did not find any finite values of µ, different from zero, for

which is possible to reproduce the experimental spectrum. In the case of LiF we need to

use the (full range) nonlocal HF exchange (µ = 0.0) in order to satisfactory reproduce the

experiment. Therefore, exchange is much more important for strong excitons than for weak

ones.
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We also studied the long-range corrected kernels: LRC [13], RPA-BO [15] and JGM

[17]. These kernels perform comparably to hybrid functionals with short-range nonlocal HF

exchange. Except that for LiF the intensity of the excitonic peak is strongly overestimated.

We included in our discussion the hybrid scheme of Refs. [21, 30] which has a long-

range nonlocal HF exchange component. This approach has an excellent agreement with

experiment for both Si and LiF and it also seems to improve with respect to GW-BSE. This

approach is the most flexible.

From this comparison it appears that the hybrid scheme with long-range nonlocal HF

exchange performs better than the hybrid scheme with short-range nonlocal HF exchange.

We believe that for Si, and therefore for weak excitons, it is the lack of long-range component

of the nonlocal HF exchange which causes a not yet excellent description of the exciton

around 3.4 eV. The situation is even worse for LiF, and therefore for strong excitons, where

the short-range separation demonstrated not to work.
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The main difficulty of using range-separated hybrid functionals is their dependence on

parameters that have to be chosen and which strongly depends on the material. A general

strategy to find these parameters is needed.

Moreover, despite the promising behaviour of range-separated schemes, long-range kernels

continue to be attractive. In fact, the computational cost is lower and a kernel such as RPA-

BO does not require any adjustable parameters.
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