This is the peer reviewd version of the followng article:

On the accuracy of near-optimal CPU-based path planning for UAVs / Palossi, Daniele; Marongiu, Andrea;
Benini, Luca. - ELETTRONICO. - (2017), pp. 85-88. (Intervento presentato al convegno 20th International

Workshop on Software and Compilers for Embedded Systems, SCOPES 2017 tenutosi a Schloss Rheinfels,
deu nel 2017) [10.1145/3078659.3079072].

Association for Computing Machinery, Inc
Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

09/04/2024 08:58

(Article begins on next page)




Final published version in ACM Digital Library available at https://dl.acm.org/citation.cfm?id=3079072
DOIL: http://dx.doi.org/10.1145/3078659.3079072

On the Accuracy of Near-Optimal GPU-Based Path Planning
for UAVs

Daniele Palossi®
dpalossi@iis.ee.ethz.ch

aIIS, ETH Ziirich
Gloriastrasse 35
Ziirich, Switzerland 8092

ABSTRACT

Path planning is one of the key functional blocks for any
autonomous aerial vehicle (UAV). The goal of a path planner
module is to constantly update the route of the vehicle based
on information sensed in real-time. Given the high computa-
tional requirements of this task, heterogeneous many-cores
are appealing candidates for its execution. Approximate path
computation has proven a promising approach to reduce total
execution time, at the cost of a slight loss in accuracy. In
this work we study performance and accuracy of state-of-
the-art, near-optimal parallel path planning in combination
with program transformations aimed at ensuring efficient
use of embedded GPU resources. We propose a profile-based
algorithmic variant which boosts GPU execution by up to
~ Tx, while maintaining the accuracy loss below 5%.

KEYWORDS

Path Planning, Embedded GPU, Parallel Graph Exploration,
UAVs

1 INTRODUCTION

The interest in autonomous vehicles is growing constantly,
with lots of practical applications appearing on the market-
place and many more being actively studied in academia,
industry and military research departments. Unmanned aerial
vehicles (UAVs) constitute a representative example of such
technology [6, 8], already widely used for tasks such as aerial
mapping, entertainment, surveillance, and rescue missions.
One of the key functional blocks for autonomous navigation
is the path planner [4, 9], that constantly updates the route of
the vehicle based on information sensed in real time. Besides
selecting the “best”! path to the desired destination, the path
planner is responsible for preventing collisions with dynamic,
unexpected obstacles, adjusting the current trajectory as soon
as on-board sensors detect them. Therefore, the reactivity of
the UAV depends on the path planner response time.
Planning the route through the surrounding environment
can be abstracted as the exploration of a large graph, which is
known to be a compute-intensive task. For this reason, many
techniques take advantage of parallel graph exploration on
embedded graphic processing units (GPUs) [4, 5]. In addition
to parallelism, to meet the application’s real-time require-
ments on top of low-end accelerator devices, researchers are
investigating near-optimal algorithms [3, 4, 7] to allow some

1According to specific metrics such as safety, distance, speed, energy
savings, etc.

Andrea Marongiu®?
a.marongiu@iis.ee.ethz.ch

Luca Benini?P

Ibenini@iis.ee.ethz.ch

PDEI, University of Bologna
Viale del Risorgimento 2
Bologna, Italy 40136

degree of accuracy loss in path optimality in exchange for
faster computation. A near-optimal path might be slightly
longer than the shortest path, but the safety of the vehicle op-
eration is not affected (on the contrary, a near-optimal path
planner reacts faster to dynamic obstacles, which ultimately
strengthens system safety).

In this paper we study the performance and accuracy of
a state-of-the-art, near-optimal parallel path planner and
propose an extension that enables more efficient utilization
of GPU resources. Specifically, we observed that the original
algorithm makes poor use of the GPU compute power due to a
“sparse” workload distribution. Here, each thread continuously
attempts to visit a node of the graph, but the operation is
blocked until at least one of the predecessors has been visited
and had its cost updated. This ultimately translates in limited
thread usage and highly divergent control flow within thread
warps. Moreover, it relies on a fine-grained synchronization
scheme, which further limits parallelism.

To overcome this limitation, we propose an extension of the
original algorithm that relies on a profile-based, offline stage
to increase thread usage. During this stage we compute ahead
of time exploration frontiers, which represent the set of nodes
that can be visited at the current iteration of the algorithm.
Frontiers introduce two important benefits: i) they expose
dense, parallel workloads (dependencies for their node-sets
are all resolved before computation starts); ii) they allow for
a coarser synchronization scheme.

Since frontiers are computed for a given static snapshot of
the map (e.g., an obstacle-free map), while obstacles appear
dynamically during vehicle operation, we introduce a two-
phase parallel exploration on the GPU. In the first phase
we explore the graph one frontier after the other, where the
nodes inside a frontier are visited in parallel. Since dynamic
obstacles might alter the required order of exploration defined
ahead of time in the frontier, we register the affected nodes in
a separate data structure. In the second phase we complete
the exploration of the deferred nodes by running a smaller
instance of the original algorithm.

We study path optimality focusing on two sources of ac-
curacy degradation: i) race conditions due to non-protected
parallel path cost updates (as discussed in the original work);
ii) dynamic obstacles that change the map on-line and al-
ter the order in which nodes are visited (compared to the
profile-based stage) during the parallel graph exploration.
Experimental results show that i) race conditions play a
very small role in the overall error; ii) the proposed method
can lead to an improvement in performance up to =~ 7x,
keeping the error in path optimality lower than 5%, always
guaranteeing the safety of the mission.



2 BACKGROUND

We start from a reference path planner implementation [4]
based on a two-step process. The first step is the automata
synchronous composition [1], where a graph representing a
discretized topology of the environment (i.e., the map) is
merged with a second graph representing the kinematics of
the robot. Thus, the path returned by the path planner is also
guaranteed to be compliant with maneuvers that the robot
is able to perform (i.e., no need for a posteriori validation
of kinematics). The price for this is an increased size of the
graph to be explored. In the reference implementation, the
composition automaton (i.e., the combined graph) is 21 times
larger than the map size.

The second step is the exploration of the composition au-
tomaton, which implies solving the single source shortest
path (SSSP) problem. Finding a feasible path on the com-
position automaton means finding a path that is feasible
both in term of obstacle-free locations and in term of maneu-
vers that the robot is able to perform. The SSSP problem
with non-negative weights can be stated as follows: given a
weighted graph G = (V, E, c), where V is the set of vertices or
nodes, E the set of edges (i.e., pairs of nodes) and ¢ the cost
(¢: E — Ry), find a minimal weight path from one chosen
node s € V| called the source node, to all other nodes in V.
We say that the nodes v, w € V are neighbors if (v,w) € E,
i.e., if there exists an edge between them. The core algorithm
to solve the SSSP problem is Dijkstra [2].

The main data structure used is a sparse state-transition
matriz used to represent both vertices and edges. This matrix
contains the information about which neighbors that can be
reached from any reference node. The transition matrix is
stored in the global memory, that is mapped in system DRAM.
The information about which nodes are “to be visited” is
kept in an auxiliary array called mask array. The information
regarding the cost (i.e., the weight, or distance) to reach
each node is stored in the cost array. While the mask array
indicates that there are still vertices to be explored, another
parallel iteration is performed. The vertices to be explored
in each iteration are referred to as reference nodes, and for
each reference node, all neighbors are explored by comparing
the current cost to reach that neighbor (stored in the cost
array) with the cost to reach the neighbor through the path
of the current reference node. If the new cost is lower than
the previous cost, the cost array is updated and the neighbor
is marked in the mask array.

The authors of the original paper showed that a non-
deterministic version of this algorithm, where parallel updates
to the cost array are not protected for mutually exclusive
operation, is 3.7 times faster than deterministic implemen-
tations, at the cost of a small error in the path optimality
(lower than 1.2% on average).

Our case study is based on this non-deterministic version,
which permits race conditions during the costs update of
the graph to increase the degree of parallelism, which is
particularly well suited for GPU execution. In the following,
we refer to this baseline approach as the Naive algorithm.

In practical applications (e.g., UAV), in order to deal
with dynamically changing environments, each time a new
obstacle is detected by on-board sensors the transition matrix
is updated, invalidating the vertices related to the occupied
locations on the map. A new parallel exploration is thus

performed, where all the nodes previously invalidated are
skipped. The overhead introduced for on-line updates to the
transaction matrix is negligible w.r.t. the time required by the
parallel exploration (i.e., respectively few ps and tens of ms).
Thus, without loss of generality our experiments focus on
exploration time and accuracy for a given transaction matrix
(i.e., a given map with a given percentage of obstacles).

3 PROFILE-BASED APPROACH

In the Naive parallel algorithm each thread is assigned a-
priori a (set of) node(s) from the transition matrix to be
visisted. However, this workload distribution criterium does
not take into account the dependencies created by the visit
order imposed by the Dijkstra algorithm. Thus, many threads
are blocked for several iterations, until such dependencies
are solved (i.e., at least one of the predecessors has had its
cost updated. Besides the inherent poor use of the GPU com-
putational resources implied by this parallelization scheme,
divergent control flow within the same warp further limits
the performance, as well as a fine-grained synchronization
scheme required to check visit order dependencies. Such a
scenario is depicted in Figure 1 (B).

To overcome the poor usage of the compute power of
the Naive implementation, we reorder the elements of the
transition matrix so as to ensure a “dense” workload. To do
this, we introduce a profiling stage which performs an offline
exploration of a static snapshot of the map, and we introduce
the concept of exploration frontiers. The exploration frontier
is an enumeration of sets of vertices F', where all vertices
in F, have been visited from at least one vertex in F;, for
any m : 0 > m < n. As shown in Figure 1 (A), the base
case is Fp which contains only the source vertex. The next
frontier is constructed by all the vertices that can be reached
from the source vertex, and then the remaining frontiers
are in turn populated by the vertices that can be reached
by the previous frontier. The exploration of the graph in a
“frontier-step” fashion, where all the nodes inside the same
frontier are explored in parallel, enables higher computational
parallelism.

The organization of the parallel work in frontiers permits
also the adoption of a coarser synchronization scheme w.r.t.
the Naive implementation. In fact, we can relay on the in-
sertion of breakpoints in the streaming transition matrix, at
which points all previous vertices must have been explored
before the exploration can continue beyond that point in the
stream, thus ensuring that nodes are not visited out of order.

The static map snapshot used to populate the frontiers in
this offline stage can be taken at the beginning of the vehicle’s
operation, or it could represent a predefined environment with
known, static obstacles, etc. Without loss of generality in
this work we consider as a static snapshot an empty map (i.e.
without any obstacles). As some vertices of the graph may be
explored multiple times, to keep the streaming property of
the transition matrix, these vertices must be added multiple
times (in Section 4 we will discuss on the resulting increase
in memory usage).

We refer to this new version of the near-optimal path
planning algorithm as Prof. A visual representation of its
execution model is presented in Figure 1 (C), which shows
that each warp now explores effectively multiple vertices,
delivering higher GPU utilization.



@ Starting node

3:-’3
\//

Naive Profiling
Iteration
0 ] 2 3 N

AR AR

1 AR AR

o e
7= [zl

AR AR

{1 Bl e | e
L T T T
1 I "~

] e e

1% frontier - 8 nodes
D—0©—@
N
3/l g
3 A

2™ frontier - 3 nodes

3" frontier - 17 nodes

Transition Matrix

Synch Synch Synch Synch Synch Transition Matrix Synch Synch Synch Synch Synch

s Working Thread

B 1l Stalled Thread C

Figure 1: A) An example on how the frontiers are derived in Prof. B-C) A visualization on the threads’
workload, respectively for the Naive (B) and the Prof (C) version.

Since dynamic obstacles might alter the visit order defined
ahead of time by the frontiers, we defer the exploration
of all the nodes scheduled for the exploration but not yet
reached to a second phase of the algorithm. This second
phase is implemented as a smaller instance of the original
algorithm, where we limit the exploration to the deferred
nodes, avoiding any further cost propagation. This mechanism
on one side limits the overhead introduced but on the other
side represents a new source for inaccuracy. This source of
non-optimality will be also considered in Section 4 in addition
to the classical race conditions [4].

There are obviously many ways to perform the exploration
during the offline profiling, with different resulting transition
matrices and frontiers. The proposed solution is based on
the classical sequential Dijkstra exploration, fetching at each
iteration the neighbor with the minimum cost first (namely
Prof-Min). For the sake of completeness we also evaluate a
different approach, where we revert the previous approach
fetching at each iteration the neighbor with the maximum
cost first (namely Prof-Maz). In this latter case, we penalize
performance in favor of accuracy due to the insertion of a
node multiple times in different frontiers. In Section 4 we
will investigate also the effect of both approaches and their
impact on performance and accuracy.

4 RESULTS & DISCUSSION

We conduct our experiments on the NVIDIA Tegra TX1,
a state-of-the-art heterogeneous, many-core SoC featuring
4-core ARM Cortex A57 and a Maxwell GPU?.

We compare the original Naive algorithm to the two vari-
ants of the proposed Prof algorithm, scaling the map sizes
up to 100 x 100 (the maximum size considered in the original
non-deterministic planner paper). For all the experiments

2 http: //www.nvidia.com /object /jetson-tx1-dev-kit.html

we run 1024 CUDA threads, the maximum we can sched-
ule within the same block and which makes best use of the
available cores and memory bandwidth.

Similar to the reference work [4], we consider a deadline
for computing a new path in presence of dynamic obstacles of
250ms. This has been chosen considering a vehicle speed of
4m/s and a minimum obstacle detection distance of 1 meter.
In addition to that, we consider a second, stricter deadline
of 50ms. This is representative of a cutting-edge commercial
quadcopter® with advanced autonomous navigation capabili-
ties, capable of moving at 20m/s.

Figure 2 shows execution time (left Y-axis, coloured bars)
and percent error (right Y-axis, coloured markers) for the
various algorithms. We show four different plots, for an in-
creasing obstacle rate. This obstacle rate refers to the (per-
cent) number of obstacles (dynamically appearing on the
map) as compared to the static map snapshot used for the
off-line profiling stage. In these experiments we consider the
zero-obstacle map as a reference snapshot, the results for
which are shown on the top-left plot (A).

Focusing on this plot, which represents a best case for the
proposed Prof approach (only the first stage of the algorithm
is executed), we observe up to & 7x faster execution than
Naive. In absence of dynamic obstacles, this approach ensures
optimal path calculation (zero error). In line with what is
published in [4], Naive shows an error that is below 1% (on
average around 0.27%). It has to be reminded that the error
to which we refer here never affects safety, only optimality of
the computed route (i.e., shortest path).

As the percentage of obstacles increases, the speedup of
Prof versus Naive diminishes as expected (as the second
stage of our algorithm has increasingly more work to do).
However, we still observe a net 2x speedup for 100x100
maps and 30% obstacles (Figure 2 (D)), which in practical

3https://www.dji.com/phantom-4/info



Performance vs. Optimality :: 0% Obstacles

Real-Time upper bound 4 m/s 2497 4701

290 S — e — e SR —an—an—ga—an-l 50 .,
- 3
E 20 40 5
E I:J
e 10 30 2
c H
g 20 £
2 &
$ g|FedTmespesrtomd20ms g g B e
3

o

o

A& A A a ANE AR |, o
2020 50450 080 1004100

Performance vs. Optimality :: 20% Obstacles

Real-Time upper bound 4 mis 3866
2530 e D G G 50 7 |
£ A A 405 i
@ w
£ A A A4 0 2
c A 4 =
g 10 20 £
g
- 8
PR N ——— e S
o
0 —fpyes A s AN A . 00 =
020 5050 060 1004100

Per vs. Optimality :- 109 Of

Real-Time upper bound 4 m/s 276
250 fon 0 — S 50 —
v = i 'S A £
E 20 40 8
] w
£ 10 A A 10 2
2 £

H
H 100 & & 20 2
§ wffetTmecprtendnk g L BN B L B g
o
8| v - N N 00
2020 5050 800 100100
Per vs. Optimality :: 30% O

Real-Time upper bound 4 m/s 6
1} e - DD — s —— 50
- £
£ Al At
g 'y A w
E 1 02
c 5
S m A A 20 £

S
- S
1 o{ R e e . 1,08
I
o
P I— Amm Al A -
2020 800 100100

Figure 2: Performance and path optimality for Naive and Prof algorithms, with 0% (A), 10% (B), 20% (C)

and 30% (D) of obstacles.

cases represents a very large value®. This is achieved at the
expense of a modest loss of accuracy in path optimality, as
the error is always below 5%. Note that while we show results
for only up to 30% obstacles, for higher rates the error tends
to diminish (with less feasible paths all methods increasingly
converge to the optimal one). For 50% obstacles we have
measured a worst-case error for Prof-Min of ~ 0.5% (map
size 100 x 100).

For all the considered map sizes and % obstacle rates, Prof-
Min is the only approach capable of meeting the deadlines
imposed by the two considered real-time constraints, while
Naive only meets the requirements of the slower vehicle use-
case (4m/s).

The Prof-Max variant, which is the only approach that
ensures optimal path calculation in any circumstance, is up
to 4x slower than Naive, which causes it to miss real-time
deadlines already for small-medium map sizes (50%50).

Frontiers Memory Footprint

8080 ——100x100

@ % i
e .

= 10 { —@— Prof-Min !}

S 7los . N 1 :

2 201{08 3 e _d7eve Prof-Max

S 0.4

& 1502 .

= 0.0

< 10 30x30 100x100 .

P

g 5 — -

3 0 - : s

= 20x20 5050

Figure 3: Frontiers memory usage for Prof-Min and

Prof-Mazx.

4Dynamic obstacles are expected to change the reference map layout
very slowly over time. The measured worst-case execution time for the
offline profiling stage on the ARM CPU is 896ms, which would allow
to recompute the reference snapshot roughly every second. During this
time frame, even considering the most advanced sensors, the number
of dynamic obstacles detected along the path would remain well below
30%. Note that recomputing the reference snapshot would happen fully
in parallel to GPU graph exploration.

Finally, Prof-Min Lock employs fine-grained locking to
protect the updates to the cost array. This variant of the al-
gorithm thus prevents the race conditions that in the original
Naive algorithm caused the non-optimality of the computed
path. The same race conditions are also present in all the
other approaches. The results in Figure 2 show that different
from the original Naive algorithm, race conditions contribute
to the error in a negligible manner in the Prof-Min algorithm.

For completeness, Figure 3 shows the frontiers’ memory
footprint for the Prof-Min and Prof-Mazx algorithms. It can
be seen that for the former the memory increase is a lin-
ear function of the map size, which practically introduces
negligible overhead for the considered problem instances.

5 CONCLUSION

Near-optimal parallel path planning is being investigated
by researchers as a technique to meet the real-time require-
ments on top of low-end accelerator. In this paper we have
discussed a novel approach that extends state-of-the-art al-
gorithms with the aim of ensuring efficient use of embedded
GPU resources. This leads to an improvement of the overall
performance of &~ 7z at the price of a loss in path optimality
of ~ 5% never affecting the safety of the mission.

ACKNOWLEDGMENTS

This work has been funded by projects EC H2020 HER-
CULES (688860) and Nano-Tera.ch YINS. The authors thank
Bjorn Forsberg for his support.

REFERENCES

[1] Christos G Cassandras and Stephane Lafortune. 2009. Intro-
duction to discrete event systems. Springer Science & Business
Media.

[2] E.W. Dijkstra. 1959. A Note on Two Problems in Connexion
With Graph. Numer. Math. 1 (1959), 269-271.

[3] Ulises Orozco-Rosas, Oscar Montiel, and Roberto Septlveda. 2017.
An Optimized GPU Implementation for a Path Planning Algo-
rithm Based on Parallel Pseudo-bacterial Potential Field. In
Nature-Inspired Design of Hybrid Intelligent Systems. Springer.



(4]

(5]

(6]

(7]

(8]
[9]

Daniele Palossi, Michele Furci, Roberto Naldi, Andrea Marongiu,
Lorenzo Marconi, and Luca Benini. 2016. An Energy-efficient Par-
allel Algorithm for Real-time Near-optimal UAV Path Planning.
In Proceedings of the ACM International Conference on Com-
puting Frontiers. ACM, 6. DOI:https://doi.org/10.1145/2903150.
2911712

Daniele Palossi and Andrea Marongiu. 2016. Exploring Single
Source Shortest Path Parallelization on Shared Memory Accel-
erators. In Proceedings of the 19th International Workshop on
Software and Compilers for Embedded Systems (SCOPES ’16).
ACM, New York, NY, USA, 197-200. DOI:https://doi.org/10.
1145/2906363.2915925

D. Palossi, A. Marongiu, and L. Benini. 2017. Ultra low-power
visual odometry for nano-scale unmanned aerial vehicles. In
2017 Design, Automation Test in Europe Conference Ezhibition
(DATE).

V. Roberge, M. Tarbouchi, and G. Labonte. 2013. Comparison of
Parallel Genetic Algorithm and Particle Swarm Optimization for
Real-Time UAV Path Planning. IEEE Transactions on Indus-
trial Informatics (2013). DOI:https://doi.org/10.1109/TI1.2012.
2198665

Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza.
2011. Introduction to autonomous mobile robots. MIT press.
Daniel Watzenig and Martin Horn. 2017. Introduction to Auto-
mated Driving. Springer International. DOI:https://doi.org/10.
1007/978-3-319-31895-0-1



