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Abstract— In this manuscript, an innovative method for the
detection and the estimation of multiple targets in a radar
system employing orthogonal frequency division multiplexing
is illustrated. The core of this method is represented by
a novel algorithm for detecting multiple superimposed two-
dimensional complex tones in the presence of noise and estimating
their parameters. This algorithm is based on a maximum
likelihood approach and combines a single tone estimator with
a serial cancellation procedure. Our numerical results lead
to the conclusion that the developed method can achieve a
substantially better accuracy-complexity trade-off than various
related techniques in the presence of closely spaced targets.

Index Terms— Dual-function radar-communication, frequency
estimation, harmonic retrieval, maximum likelihood estimation,
orthogonal frequency division multiplexing, radar processing.

I. INTRODUCTION

WIRELESS communication and radar sensing have
been advancing independently for many years, even

though they share various similarities in terms of both signal
processing and system architecture. In the last few years,
substantial research efforts have been devoted to the design
of wireless systems able to perform communication and radar
functions jointly. The interest in this class of systems, that
accomplish joint communication and sensing (JCAS), has been
motivated by the advantages they offer in terms of device
size, power consumption, cost and efficiency radio spectrum
usage with respect to traditional wireless systems in various
applications [1].

In this manuscript we focus on a communication-centric
JCAS approach, where the radar sensing function can be

Manuscript received 19 July 2022; revised 2 December 2022 and 31 March
2023; accepted 19 May 2023. Date of publication 29 May 2023; date of
current version 16 August 2023. The associate editor coordinating the review
of this article and approving it for publication was R. Tandon. (Corresponding
author: Giorgio M. Vitetta.)

The authors are with the Department of Engineering “Enzo Ferrari”,
University of Modena and Reggio Emilia, 41125 Modena, Italy, and also
with Consorzio Nazionale Interuniversitario per le Telecomunicazioni
(CNIT), 43124 Parma, Italy (e-mail: michele.mirabella@unimore.it;
pasquale.diviesti@unimore.it; alessandro.davoli@unimore.it; giorgio.vitetta@
unimore.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2023.3280562.

Digital Object Identifier 10.1109/TCOMM.2023.3280562

considered as an add-on to the given communication system.
More specifically, we take into consideration a single-input
single-output (SISO) JCAS system employing orthogonal
frequency division multiplexing (OFDM); this modulation
format has been adopted in various wireless communication
standards, thanks to its robustness to multipath fading and to
its relatively simple synchronization [2].

In the technical literature, direct and indirect sensing
methods for target detection and estimation are available
for OFDM-based JCAS systems. Generally speaking, direct
sensing methods extract target information from the received
signal without compensating for the effect of the data payload
it conveys [1], [3] and typically exploit computationally
intensive compressed sensing (CS) techniques. Indirect estima-
tion methods, instead, require estimating the communication
channel and, consequently, compensating for the contribution
due to channel symbols (e.g., see [4, eq. (20)]). Indirect
sensing methods can be divided in: 1) discrete Fourier
transform (DFT)-based or correlation-based methods (i.e.,
methods based on the matched filter, MF, concept) [5], [6],
[7]; 2) subspace methods [3], [8], [9]; 3) maximum likelihood
(ML) based methods [10], [11], [12], [13].

Correlation-based and DFT-based methods for joint range-
velocity estimation exploit prior knowledge of the received
signal and, even if conceptually simple and computationally
efficient, may generate poor radar images in the presence of
closely spaced targets or strong clutter around them [14]. Such
methods can be outperformed by subspace methods, like the
well known multiple signal classification (MUSIC) algorithm
and the estimation of signal parameters via rotational
invariant technique (ESPRIT) at the price, however, of a
significantly larger computational complexity [8]. An accuracy
comparable to that of subspace methods can be achieved
through various ML-based algorithms, which also require
a significant computational effort. Relevant contributions to
this field concern: 1) the use of the amplitude weighted
linearly constrained minimum variance (AW-LCMV) method
for estimating the parameters of multiple targets [10]; 2) the
adoption of an alternating maximization approach to mitigate
the computational complexity of ML estimation [11]; 3) the
development of an iterative non-linear kernel least mean
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square (KLMS) based technique for the estimation of target
range [12]; 4) the derivation of a ML method, based on
a kinematic model of detected targets, for estimating target
speed [13].

The work illustrated in this manuscript has been motivated
by our interest in extending our ML-based estimator of
multiple overlapped complex exponentials developed in [15]
to a two-dimensional (2D) scenario, and to investigate the
application of the resulting algorithm to the detection of
multiple targets and the estimation of their range and Doppler
in an OFDM-based JCAS system. The contribution provided
by this manuscript is threefold and can be summarised as
follows:

1) A novel iterative DFT-based algorithm, called complex
single frequency-delay estimation (CSFDE), is developed for
the ML estimation of a single 2D complex tone. This
estimator is based on the periodogram method for coarse
frequency estimation and on a new iterative algorithm
for the estimation of frequency residuals and complex
amplitude. The last algorithm requires the evaluation of
multiple symplectic Fourier transforms (SFTs), but, unlike
other estimation techniques, does not need a prior knowledge
of the overall number of targets. Moreover, its derivation
is based on: a) a new approximate expression of the ML
metric; b) the exploitation of the alternating minimization
technique.

2) A novel recursive algorithm, called complex single
frequency-delay estimation and cancellation (CSFDEC), for
the estimation of the parameters of multiple superimposed 2D
tones is derived. This algorithm, that combines the CSFDE
algorithm with a serial cancellation & refinement procedure,
is applied to target range and Doppler estimation in the
considered JCAS system.

3) The accuracy of the CSFDEC algorithm is assessed
by extensive computer simulations and compared with that
achieved by various related algorithms available in the
technical literature.

Our numerical results lead to the conclusion that the
CSFDEC algorithm outperforms all the other related esti-
mators in terms of probability of convergence, and achieves
similar or better accuracy in all the considered scenarios;
in particular, it is able to reliably operate in the presence
of multiple closely-spaced targets in scenarios in which
DFT-based methods, subspace methods and other ML-based
methods fail. In addition, the computational requirements
of the CSFDEC algorithm are quite limited; this is due
to the fact that it exploits a DFT-based method (namely,
the CSFDE algorithm) and a mathematically simple serial
cancellation & refinement procedure, that unlike ML-based
and subspace methods, does not require matrix inversions
and eigendecompositions. Moreover, the CSFDEC algorithm
is an off-grid algorithm since, unlike most of the ML-based
methods available in the technical literature, does not
make use of a search grid in frequency estimation; this
makes its application substantially easier than on-grid
algorithms.

The remaining part of this manuscript is organized as
follows. In Section II, the processing accomplished in an

OFDM-based radar system is summarised and the model of
the signal feeding the CSFDEC algorithm is briefly derived.
Section III is devoted to the derivation of the CSFDE
and CSFDEC algorithms, and to the assessment of their
computational complexity. The CSFDEC algorithm is then
compared, in terms of accuracy and complexity, with other
estimation algorithms in Section IV. Finally, some conclusions
are offered in Section V.

Notation: Throughout this paper, (·)T denotes matrix
transposition, whereas (·)∗ and (·)H denote complex conjugate
and complex conjugate transpose (Hermitian operator),
respectively. Moreover, ℜ{x} and ℑ{x} indicate the real and
imaginary part, respectively, of the complex variable x.

II. SYSTEM AND SIGNAL MODELS

This section focuses on the processing accomplished at the
receive side of a SISO OFDM-based JCAS system; our main
objectives are deriving the mathematical model of the received
signal in the presence of multiple targets and illustrating some
essential assumptions on which it relies. In the following,
we take into consideration the transmission of a single frame,
consisting of M consecutive OFDM symbols; such symbols
can convey both pilot tones (for channel estimation and
synchronization) and information data to be sent to a single
or multiple receivers at different locations. However, what
is relevant in our study is that the considered frame is sent
over a wireless channel by a transmitter which is colocated
with the considered receiver; consequently, the receiver has
a full knowledge of the structure and content of the whole
frame and of the transmission frequency, and exploits these
information for sensing purposes only. The complex envelope
of the transmitted signal conveying the mth OFDM symbol
(with m = 0, 1, . . . ,M − 1) of the considered frame can be
expressed as (e.g., see [11, eq. (3)])

xm (t) ≜ x (t−mTs)

= q (t−mTs)
N−1∑
n=0

sm (n) exp (j2πn∆f (t−mTs)) ,

(1)

where q(t) is a windowing function, sm(n) is the channel
symbol carried by the nth subcarrier of the mth OFDM symbol
(with n = 0, 1, . . . , N − 1), N is the overall number of
subcarriers, ∆f = 1/T is the subcarrier spacing, T is the
OFDM symbol interval, Ts ≜ T + TG is the overall duration
of the OFDM symbol and TG is the cyclic prefix duration
(also known as guard time [4]). Following [11], a rectangular
windowing function is assumed in this manuscript, so that
q(t) = 1 for t ∈ [−TG, T ] and q(t) = 0 elsewhere.

Given the complex envelope (1), the radio frequency (RF)
waveform radiated by the radar transmitter can be expressed
as

xRF (t) = ℜ{exp(j2πfct)
M−1∑
m=0

xm (t)}, (2)

where fc denotes the frequency of the local oscillator
employed in the up-conversion at the transmit side. Let assume
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now that the last waveform is reflected by a single scatterer
(i.e., by a single point target), located at the (initial) distance R
from the transmitter and moving at the radial velocity1 v with
respect to it. It is not difficult to show that, in this case, the
complex envelope of the signal received by the JCAS system
(i.e., by the colocated receiver) is (e.g., see [11, eq. (6)])

r(t) = exp (−j2πfcτ) exp (j2πfDt)

·
M−1∑
m=0

x

(
t−mTs − τ +

fD

fc
t

)
+ w (t) , (3)

where τ ≜ 2R/c is the overall propagation delay, fD = 2v/λ
is the Doppler shift due to target motion, λ = c/fc is the
wavelength of the radiated signal and w(t) is the complex
additive Gaussian noise (AGN) process affecting r(t).

The signal r(t) (3) undergoes analog-to-digital conversion
followed by DFT processing. A simple mathematical model
describing the sequence generated by the sampling of r(t) can
be derived as follows. Substituting the right-hand side (RHS)
of (1) in that of (3) and extracting the portion associated with
the mth OFDM symbol from the resulting expression yields

rm(t′) = A(τ) exp(j2πfDt′) exp(j2πfDmTs)
N−1∑
n=0

sm (n)

· γn (τ) ξn (fD, t′) · ζm,n (fD) exp (j2πn∆f t′)
+ w (t′) , (4)

where t′ ≜ t − mTs, A(τ) ≜ exp(−j2πfcτ), γn(τ) ≜
exp(−j2πn∆fτ), ξn(fD, t′) ≜ exp(j2π n∆f (fD/fc)t′) and
ζm,n(fD) ≜ exp(j2πn∆f (fD/fc) mTs). Note that: 1) the
phase of A(τ) depends on the target delay τ only, whereas
that of γn(τ) is proportional to both τ and the subcarrier
index n; 2) the factor ξn(fD, t′) produces a time-dependent
phase rotation influenced by both the target speed v and
the subcarrier index n; 3) the factor ζm,n(fD) generates a
phase rotation depending on both the OFDM symbol index
m and the subcarrier index n, and accounts for the so called
intersubcarrier Doppler effect (e.g., see [11, Sec. II, p. 3]).

Based on (4), it is not difficult to show that, if |fDτ | ≪ 1,
sampling rm(t′) (4) at the instant t′m,l = τ + T (l/N) yields

rm (l) ≜ rm

(
t′m,l

)
= A (τ) exp

(
j2π

l

N

fD

∆f

)
exp (j2πfDmTs)

N−1∑
n=0

sm (n)

· γn (τ) ξn,l (fD) ζm,n (fD) exp
(

j2πn
l

N

)
+wm (l) , (5)

with l = 0, 1, . . . , N−1; here, ξn,l(fD) ≜ ξn(fD, T l/N) and
wm(l) ≜ w(t′m,l) is the Gaussian noise affecting rm(l). In the
following, we also assume that: a) the sequence {wm(l); l =
0, 1, . . . , N − 1} can be modelled as additive white Gaussian
noise (AWGN); b) the target speed is limited, so that |2v/c| ≪
1/(MN) and |fD|/∆f = |fDT | ≪ 1. Consequently, the
factors exp(j2π(lfD)/(N∆f )), ξn,l(fD), ζm,n(fD) appearing

1This velocity is positive (negative) if the target approaches (moves away
from) the considered radar system.

in the RHS of (5) can be neglected; this leads to the simplified
signal model

rm(l) = A (τ) exp (j2πfDmTs)

·
N−1∑
n=0

sm(n) γn (τ) exp
(

j2πn
l

N

)
+ wm (l) , (6)

that represents our reference model in the derivation of the
CSFDE and CSFDEC algorithms.

The N signal samples acquired in the mth OFDM
symbol interval are collected in the vector rm ≜
[rm(0), rm(1), . . . , rm(N−1)]T , that undergoes order N DFT
processing. The nth element of the resulting DFT output vector
Rm ≜ [Rm(0), Rm(1), . . . , Rm(N − 1)]T is

Rm (n) ≜
1
N

N−1∑
l=0

rm (l) exp
(
−j2π

nl

N

)
= A (τ)

· exp (j2πfDmTs) sm (n) exp (−j2πn∆fτ)
+ Wm (n) , (7)

where Wm(n) is the AWGN sample affecting the nth
subcarrier of mth OFDM symbol. Since the channel symbol
sm(n) is known by the JCAS receiver for any n and m, the
estimate

Ĥm,n ≜
Rm (n)
sm(n)

= A (τ) am (FD) an (−Fr) + W̄m (n)

(8)

of the channel frequency response Hm,n at the nth subcarrier
frequency in the mth OFDM symbol interval can be computed;
here, Fr ≜ ∆f τ is the normalized target delay, FD ≜ fDTs is
the normalized Doppler frequency,2 aq(FX) ≜ exp(j2πqFX)
(with q = m or n and X = D or r) and

W̄m (n) ≜ Wm (n)/sm(n) (9)

is the noise sample affecting Ĥm,n (8). It is worth pointing
out that: 1) the parameter Fr (FD) satisfies the inequalities
Fr,min ⩽ Fr ⩽ Fr,max, (FD,min ⩽ FD ⩽ FD,max),
with Fr,min = 0 and Fr,max = 1 (FD,min = −1/2 and
FD,max = 1/2); 2) in all our computer simulations, the
channel symbols {sm(n)} belong to a Ns-ary phase shift
keying (PSK) constellation; 3) based on the last assumption,
the noise samples {W̄m(n)} (see (9)) can be modelled as
AWGN (the variance of each of them is denoted σ2

W );
4) without any loss of generality, the factor A(τ) appearing
in the RHS of (8) can be replaced by the complex gain
A ≜ a exp(jϕ), accounting for the phase rotation due to τ , the
path loss and the gain (attenuation) introduced by the target.

The model (8) has been derived for a single target, but can
be easily generalised to the case of K point targets. In fact,
in the last case, (7) becomes

Rm (n) = sm (n)
K−1∑
k=0

Ak am (FDk
) an (−Frk

) + Wm (n) ,

(10)

2Note that Fr is always a positive quantity, whereas FD is positive
(negative) if the considered target is approaching (moving away from) the
radar.
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so that Ĥm,n (8) can be expressed as

Ĥm,n =
K−1∑
k=0

Ak am (FDk
) an (−Frk

) + W̄m (n) , (11)

with m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1;
in the last two formulas, Frk

, FDk
and Ak denote the

normalized delay, the normalized Doppler frequency and
the complex gain, respectively, characterizing the kth target.
In the following, we assume that these complex exponentials
are ordered according to a decreasing strength, so that
|Ak| ≥ |Ak+1|, with k = 0, . . . ,K − 1.

From (11) it can be easily inferred that: 1) the noisy
samples {Ĥm,n} of the 2D channel response acquired over
a single frame can be modelled as the superposition of
multiple 2D complex exponentials with AWGN; 2) target
detection and estimation is tantamount to identifying the K
complex exponentials forming the useful component of the
sequence {Ĥm,n} and estimating their parameters. Finally,
it is important to point out that the two normalized frequencies
characterizing each target need to be estimated jointly; in fact,
if a 1D frequency estimator is used to estimate each of them
separately, a complicated pairing problem has to be solved in
order to avoid any ambiguity in target detection.

III. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION
OF TWO-DIMENSIONAL COMPLEX TONES

In this section, we first derive a novel algorithm for jointly
estimating the parameters of a single 2D complex tone. Then,
we show how this algorithm can be exploited to detect
multiple superimposed tones and estimate their parameters
through a procedure based on successive cancellations and
refinements. Finally, we analyse the computational complexity
of the developed algorithms, and discuss the similarities and
differences of our multiple tone estimator with other related
estimation techniques.

A. Joint Estimation of the Parameters of a Single
Two-Dimensional Complex Tone

Let us focus on the problem of estimating the parameters of
a single 2D complex tone affected by AWGN on the basis of
the noisy observations {Ĥm,n}, where (see (8) or, equivalently,
(11) with K = 1)

Ĥm,n = A exp (j2πmFD) exp (−j2πnFr) + W̄m (n) , (12)

with m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1. It is easy
to show that the ML estimates FD,ML, Fr,ML and AML of
FD, Fr and A, respectively, can be evaluated as

(FD,ML, Fr,ML, AML) ≜ arg min
F̃D,F̃r,Ã

ε
(
F̃D, F̃r, Ã

)
, (13)

where F̃D, F̃r and Ã are the trial values of FD, Fr and A,
respectively,

ε
(
F̃D, F̃r, Ã

)
≜

1
M

1
N

M−1∑
m=0

N−1∑
n=0

εm,n

(
F̃D, F̃r, Ã

)
(14)

is the mean square error3 (MSE) computed over the whole
set {Ĥm,n},

εm,n

(
F̃D, F̃r, Ã

)
≜

∣∣∣Ĥm,n −Hm,n

(
F̃D, F̃r, Ã

)∣∣∣2 (15)

is the square error between the noisy sample Ĥm,n (12) and
its useful component

Hm,n

(
F̃D, F̃r, Ã

)
≜ Ã exp

(
j2πmF̃D

)
exp(−j2πnF̃r)

(16)

evaluated under the assumption that FD = F̃D, Fr = F̃r and
A = Ã. Substituting the RHS of the last equation in that of
(15) yields

εm,n

(
F̃D, F̃r, Ã

)
=

∣∣Ĥm,n

∣∣2 +
∣∣Ã∣∣2

− 2ℜ
{

Ĥm,n Ã∗ exp
(
−j

(
φ̃m − ϕ̃n

))}
, (17)

where φ̃m ≜ 2πmF̃D and ϕ̃n ≜ 2πnF̃r. Then, substituting the
RHS of (17) in that of (14) gives, after some manipulation,

ε
(
F̃D, F̃r, Ã

)
= εH +

∣∣Ã∣∣2 − 2ℜ
{

Ã∗Ȳ
(
F̃D, F̃r

)}
, (18)

where εH ≜
∑M−1

m=0

∑N−1
n=0 |Ĥm,n|2/(MN) and

Ȳ
(
F̃D, F̃r

)
≜

1
MN

SFT
[
Ĥm,n

]
≜

1
M N

M−1∑
m=0

N−1∑
n=0

Ĥm,n exp
(
j2πnF̃r

)
· exp

(
−j2πmF̃D

)
(19)

is, up to a scale factor, the so called symplectic Fourier
transform (SFT) of the sequence {Ĥm,n}. It is important out
that:

1) The metric ε(F̃D, F̃r, Ã) is really optimal in the ML
sense, if a PSK constellation is adopted for the channel
symbols {sm(n)}, so that, as already pointed out in the
previous section, an AWGN model can be adopted for the
noise sequence {W̄m(n)} (see (12)). On the contrary, if a
QAM constellation is selected, the samples of that sequence
are not identically distributed, having, in general, different
variances (e.g., see [14]); consequently, in the last case, the
ML metric can still be put in a form similar to that expressed
by (14), but its terms {εm,n(F̃D, F̃r, Ã)} cannot be uniformly
weighted, being affected by different noise levels.

2) From (18) it is easily inferred that the optimization
problem (13) does not admit a closed form solution because
of the nonlinear dependence of the metric ε(F̃D, F̃r, Ã) (18)
on F̃D and F̃r.

The approach we pursued in developing an approximate (but
accurate) solution to (13) is based on:

a) Expressing the dependence of the function ε(F̃D, F̃r, Ã)
on the variables F̃D and F̃r through the couples (FD,c , δ̃D)
and (Fr,c , δ̃r) such that

F̃D = FD,c + δ̃D F̄D (20)

3It is not difficult to show that, if an arbitrary constellation is selected for
the transmitted channel symbols, the optimal metric to be adopted in (13) can
be still put in a form similar to (14), the only difference being represented by
the fact that εm,n(F̃D, F̃r, Ã) is multiplied by |sm(n)|2.
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and

F̃r = Fr,c + δ̃r F̄r. (21)

Here, FD,c (Fr,c) represents a coarse estimate of FD (Fr),
δ̃D and δ̃r are real variables called residuals.4 Moreover,
F̄D ≜ 1/M0 and F̄r ≜ 1/N0 are the normalized fundamental
Doppler frequency and the normalized fundamental delay,
respectively, characterizing the order (M0, N0) discrete SFT
(DSFT)

Ȳ0,0 ≜
[
Ȳ0,0 [l, p]

]
(22)

of the zero padded version5

Ĥ(ZP)
0,0 ≜

[
Ĥ0,0 0M,N0−N

0M0−M,N 0M0−M,N0−N

]
(23)

of the M×N matrix Ĥ0,0 ≜ [Ĥm,n] collecting all the elements
of the sequence {Ĥm,n}; moreover, in the last equation,
0D1,D2 is the D1 ×D2 null matrix, LD and Lr are positive
integers (dubbed oversampling factors),

M0 ≜ LD M (24)

and

N0 ≜ Lr N . (25)

Note that the element (l, p) of Ȳ0,0 (22) is defined as

Ȳ0,0 [l, p] ≜
1

M0N0

M−1∑
m=0

N−1∑
n=0

Ĥm,n exp
(
j2πnpF̄r

)
· exp

(
−j2πmlF̄D

)
, (26)

with l = 0, 1, . . . ,M0 − 1 and p = 0, 1, . . . , N0 − 1.
b) Assuming that the residuals δ̃D and δ̃r (appearing in the

RHS of (20) and (21), respectively) are small, so that Taylor
series

exp
(
jX̃

)
=

∞∑
k=0

jkX̃k

k!
, (27)

truncated to its first four terms (i.e., to the terms associated
with k = 0, 1, 2 and 3) can be employed to accurately
approximate the dependence of the function ε(F̃D, F̃r, Ã) on
these variables.

c) Exploiting an iterative method, known as alternating
minimization (AM; e.g., see [16]) to minimise the approximate
expression derived for ε(F̃D, F̃r, Ã); this allows us to
transform the three-dimensional (3D) optimization (13) into a
triplet of interconnected one-dimensional (1D) problems, each
referring to a single parameter and, consequently, much easier
to be solved than the original ML problem.

Let us show now how these principles can be put into prac-
tice. First of all, the exploitation of AM requires solving the
following three sub-problems: P1) minimizing ε(F̃D, F̃r, Ã)

4The decomposition of an unknown frequency into the sum of a multiple of
a given fundamental frequency and a frequency residual is commonly adopted
in the technical literature concerning ML frequency estimation (e.g., see [15]
and references therein).

5Note that the following definition represents a specific case of the matrix
Ĥ

(ZP)
k1,k2

defined right after (33) (in particular, its corresponds to the choice
k1 = k2 = 0).

with respect to Ã, given F̃D = F̂D and F̃r = F̂r; P2)
minimizing ε(F̃D, F̃r, Ã) with respect to F̃D, given Ã = Â
and F̃r = F̂r; P3) minimizing ε(F̃D, F̃r, Ã) with respect to
F̃r, given Ã = Â and F̃D = F̂D. The first sub-problem can
be solved exactly thanks to the polynomial dependence of the
cost function ε(F̃D, F̃r, Ã) (18) on the variable Ã. In fact, the
function ε(F̂D, F̂r, Ã) is minimized with respect to Ã if6

Ã = Â = Ȳ
(
F̂D, F̂r

)
, (28)

where Ȳ (F̂D, F̂r) can be computed exactly through its
expression (19) or, in an approximate fashion, through a
computationally efficient procedure based on the fact that the
matrix

Ȳs ≜ LD Lr Ȳ0,0 (29)

collects M0 × N0 uniformly spaced samples of the function
Ȳ (F̃D, F̃r), since Ȳ0,0[l, p] = Ȳ (lF̄D, pF̄r)/(LD Lr) (see
(19), (24)-(26)). For this reason, if one of the normalized
frequencies F̂D and F̂r or both of them are not a multiple
of F̄D and F̄r, respectively, an approximate evaluation
of Ȳ (F̂D, F̂r) can be accomplished by interpolating7 the
elements of the matrix Ȳs (29). Note also that the last matrix
can be efficiently computed by performing an order N0 inverse
fast Fourier transform (IFFT) along the rows of Ĥ(ZP)

0,0 (23),
followed an order M0 fast Fourier transform (FFT) along the
columns of the resulting matrix.

Let us take into consideration now P2 and P3. Such
sub-problems, unlike the previous one, do not admit closed
form solutions. However, approximate solutions can be
developed by: 1) representing the parameters FD and Fr in
the same form as F̃D (20) and F̃r (21), respectively, i.e.
as FD = FD,c + δD F̄D and Fr = Fr,c + δr F̄r, respectively;
2) using the 2D periodogram method to estimate FD,c and
Fr,c; 3) devising a novel algorithm for estimating the residuals
δD and δr, i.e. for accomplishing the fine estimation of FD

and Fr, respectively. The fine estimation algorithm is derived
as follows. Based on the representations (20) and (21) of
the trial variables F̃D and F̃r, respectively, the variables φ̃m

and ϕ̃n defined right after (17) are expressed as φ̃m =
2πm FD,c +mΩ̃ and ϕ̃n = 2πn Fr,c +n∆̃, respectively; here,
Ω̃ ≜ 2πδ̃D F̄D and ∆̃ ≜ 2πδ̃r F̄r. Then, the following steps
are accomplished: 1) the new expressions of φ̃m and ϕ̃n are
substituted in the RHS of (17); 2) the resulting expression is
substituted in the RHS of (14) and the approximation (27) is
adopted for exp(jmΩ̃) and exp(jn∆̃) under the assumption
that both Ω̃ and ∆̃ are small enough.8 This yields, after some
manipulation, the approximate expression

εCSFDE

(
Ω̃, ∆̃, Â

)
≜ εH +

∣∣Â∣∣2 − 2ξ
(
Ω̃, ∆̃, Â

)
(30)

6This represents a straightforward generalisation of a mathematical result
which is well known in 1D ML frequency estimation (e.g., see [17, Sec. IV]).

7See [18] for polynomial interpolation and [19] for barycentric
interpolation.

8This is equivalent to assuming that 1/M0 and 1/N0 are small enough
(i.e., that M0 and N0 are large enough).
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for the function ε(F̃D, F̃r, Ã) (14); here,

ξ
(
Ω̃, ∆̃, Â

)
=

3∑
p=0

3∑
q=0

(−1)(p+q) Ω̃p∆̃q

p!q!
ℜ

{
j(p−q)Â∗Ȳp,q

}
,

(31)

Ȳk1,k2 (ρD, ρr)≜
1

MN

M−1∑
m=0

N−1∑
n=0

Ĥ(k1,k2)
m,n exp

(
j
2πnρr

N0

)
· exp

(
−j

2πmρD

M0

)
, (32)

ρD ≜ FD,c/F̄D, ρr ≜ Fr,c/F̄r and Ĥ
(k1,k2)
m,n ≜ mk1nk2Ĥm,n,

with m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1.
It is important to point out that: a) if both ρD and ρr

are integers, the quantity Ȳk1,k2(ρD, ρr) (32) represents the
element (ρD, ρr) of the M0 ×N0 matrix

Ȳk1,k2 ≜ DSFT
[
Ĥ(ZP)

k1,k2

]
(33)

generated by the order (M0, N0) DSFT of the zero padded
version of the M ×N matrix9 Ĥk1,k2 ≜ [Ĥ(k1,k2)

m,n ]; b) if the
previous condition is not met, the quantity Ȳk1,k2(ρD, ρr) can
be evaluated exactly on the basis of (32) or, in an approximate
fashion, by interpolating multiple adjacent elements of the
matrix LD Lr Ȳk1,k2 (see (33)).

Minimizing εCSFDE(Ω̃, ∆̃, Â) (30) is equivalent to maxi-
mizing the function ξ(Ω̃, ∆̃, Â) (31). The last function can
be easily maximized with respect to the variable Ω̃ (∆̃) if
∆̃ (Ω̃) is known. Therefore, given ∆̃ = ∆̂, the estimate
δ̂D ≜ Ω̂/(2πF̄D) of δD can be evaluated by taking the
derivative of ξ(Ω̃, ∆̂, Â) with respect to Ω̃ and setting it to
zero. In fact, this leads to the estimate10

X̂ =
−bX +

√
b2
X − 4 aX cX

2 aX
, (34)

that represents one of the two solutions of the quadratic
equation

aX X̃2 + bX X̃ + cX = 0, (35)

with X = Ω; here,

aΩ = −∆̂3ℜ
{

Â∗Ȳ3,3

}
/6− ∆̂2ℑ

{
Â∗Ȳ3,2

}
/2

+ ∆̂ℜ
{

Â∗Ȳ3,1

}
+ ℑ

{
Â∗Ȳ3,0

}
, (36)

bΩ = ∆̂3ℑ
{

Â∗Ȳ2,3

}
/3− ∆̂2ℜ

{
Â∗Ȳ2,2

}
− 2∆̂ℑ

{
Â∗Ȳ2,1

}
+ 2ℜ

{
Â∗Ȳ2,0

}
, (37)

cΩ = ∆̂3ℜ
{

Â∗Ȳ1,3

}
/3 + ∆̂2ℑ

{
Â∗Ȳ1,2

}
− 2∆̂ℜ

{
Â∗Ȳ1,1

}
− 2ℑ

{
Â∗Ȳ1,0

}
. (38)

A simpler estimate (denoted Ω̂′) of Ω is obtained neglecting
the contribution of the quadratic term in the left-hand side

9Note that Ĥ
(ZP)
k1,k2

has the same structure as Ĥ
(ZP)
0,0 (23), the only

difference being represented by the fact that, in its definition, Ĥ0,0 is replaced
by Ĥk1,k2 .

10In the following equations, the dependence of the function
Ȳk1,k2 (ρD, ρr) (32) and of the coefficients {aX , bX , cX} on (ρD, ρr) is
not explicitly specified to ease reading.

(LHS) of (35), i.e. setting aΩ = 0. This leads to a first-degree
equation, whose solution is (with X = Ω)

X̂ ′ = −cX/bX . (39)

Dually, given Ω̃ = Ω̂, an estimate δ̂r ≜ ∆̂/(2πF̄r) of δ̃r is
computed by taking the derivative of ξ(Ω̂, ∆̃, Â) with respect
to ∆̃ and setting it to zero. This leads to a quadratic equation
in the variable ∆̃ whose structure is still expressed by (35)
(with X = ∆); however, its coefficients are

a∆ = −Ω̂3ℜ
{

Â∗Ȳ3,3

}
/6 + Ω̂2ℑ

{
Â∗Ȳ2,3

}
/2

+ Ω̂ ℜ
{

Â∗Ȳ1,3

}
−ℑ

{
Â∗Ȳ0,3

}
, (40)

b∆ = −Ω̂3ℑ
{

Â∗Ȳ3,2

}
/3− Ω̂2ℜ

{
Â∗Ȳ2,2

}
+ 2Ω̂ℑ

{
Â∗Ȳ1,2

}
+ 2ℜ

{
Â∗Ȳ0,2

}
, (41)

c∆ = Ω̂3ℜ
{

Â∗Ȳ3,1

}
/3− Ω̂2ℑ

{
Â∗Ȳ2,1

}
− 2Ω̂ℜ

{
Â∗Ȳ1,1

}
+ 2ℑ

{
Â∗Ȳ0,1

}
. (42)

For this reason, the estimates ∆̂ and ∆̂′ of ∆ can be computed
on the basis of (34) and (39), respectively.

Given the estimate δ̂D (δ̂r) of δD ( δr), a fine estimate F̂D

of FD (F̂r of Fr) can be evaluated on the basis of (20) ((21)).
The previous mathematical results allow us to easily develop

an AM-based procedure for estimating the parameters FD,
Fr and A in an iterative fashion. This procedure, dubbed
CSFDE, is initialized by computing: 1) the M0×N0 matrices11

{Ȳk1,k2 ; k1, k2 = 0, 1, 2, 3} (see (33)); 2) the coarse estimates
F̂

(0)
D,c = l̂ F̄D − 1/2 and F̂

(0)
r,c = p̂F̄r of FD and Fr,

respectively, where(
l̂, p̂

)
= arg max

l̃∈SM0 ,p̃∈SN0

∥∥∥Ȳ0,0

[
l̃, p̃

]∥∥∥2

(43)

and SX ≜ {0, 1, . . . , X−1} for any positive integer X; 3) the
initial estimate Â(0) of Ã on the basis of (28), with (F̂D, F̂r) =
(F̂ (0)

D,c, F̂
(0)
r,c ); 4) the coefficients {aΩ , bΩ , cΩ} ({a∆, b∆, c∆})

for (ρD, ρr) = (l̂(0), p̂(0))) according to (37)-(38) ((40)-(42));
5) the initial estimate Ω̂(0)(∆̂(0)) of Ω (∆) on the basis of
(34) or (39) with X = Ω (with X = ∆); 6) the initial fine
estimates (see (20) and (21))

F̂
(0)
D = F̂

(0)
D,c + Ω̂(0)/(2π) (44)

and

F̂ (0)
r = F̂ (0)

r,c + ∆̂(0)/(2π) (45)

of FD and Fr, respectively. Finally, we set the iteration index
i to 1 and start an iterative procedure. The ith iteration is fed
by the estimates F̂

(i−1)
D , F̂

(i−1)
r and Â(i−1) of FD, Fr and A,

respectively, and produces the new estimates F̂
(i)
D , F̂

(i)
r and

Â(i) of the same quantities (with i = 1, 2, . . . , Nit, where Nit

is the overall number of iterations). The procedure adopted for

11Note that the matrices {Ȳk1,k2} corresponding to (k1, k2) = (0, 3),
(3, 0) and (3, 3) are not required if the simpler estimates Ω̂′ and ∆̂′ are
evaluated.
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the evaluation of F̂
(i)
D , F̂

(i)
r and Â(i) consists of the two steps

described below.
1) Estimation of the normalized Doppler and the normalized

delay - The new estimates Ω̂(i) and ∆̂(i) of Ω̃ and ∆̃,
respectively, are computed according to (34) or (39). In the
evaluation of the coefficients of these equations, Â = Â(i−1),

ρD = ρ̂
(i−1)
D = F̂

(i−1)
D /F̄D (46)

and

ρr = ρ̂(i−1)
r = F̂ (i−1)

r /F̄r (47)

are assumed. Then,

F̂
(i)
D = F̂

(i−1)
D + Ω̂(i)/(2π) (48)

and

F̂ (i)
r = F̂ (i−1)

r + ∆̂(i)/(2π) (49)

are computed.
2) Estimation of the complex amplitude - The new estimate

Â(i) of Â is evaluated by means of (28); in doing so,
F̂D = F̂

(i)
D and F̂r = F̂

(i)
r are assumed.

The index i is incremented by one before starting the next
iteration. At the end of the last (i.e. of the Nitth) iteration, the
fine estimates F̂D = F̂

(Nit)
D , F̂r = F̂

(Nit)
r and Â = Â(Nit) of

FD, Fr and A, respectively, become available. The CSFDE
algorithm is summarized in Algorithm 1.

It is worth pointing out that: 1) the initial coarse estimates
F̂

(0)
D,c (44) and F̂

(0)
r,c (45) are computed by resorting to the

2D periodogram method (see (43)); 2) unlike traditional DFT-
based methods, the CSFDE algorithm requires the evaluation
of multiple DSFTs and, more precisely, of 16 (13) DSFTs
{Ȳk1,k2} if (34) ((39)) is employed in the evaluation of
the estimates of Ω and ∆; 3) the approximate ML metric
εCSFDE(Ω̃, ∆̃, Â) (30) on which the CSFDE algorithm is
based is new; 4) the estimates δ̂

(i)
D (δ̂(i)

r ) of δD (δr) computed
by the CSFDE algorithm in its ith iteration are expected
to become smaller as i increases, since F̂

(i)
D (F̂ (i)

r ) should
progressively approach FD (Fr) if this algorithm converges.

B. Estimation of Multiple Two-Dimensional Tones

Let us show now how the CSFDE algorithm can be
exploited to recursively estimate the multiple tones forming the
useful component of the complex sequence {Ĥm,n}, whose
(m, n)th element is expressed by (11), where K is assumed
to be greater than unity and unknown. The method we develop
to achieve this objective is called complex single frequency-
delay estimation and cancellation (CSFDEC) and is based on
the idea of 1) separating the contribution of the first (and
strongest tone) in the RHS of (11) from that of the remaining
(K − 1) tones and 2) considering the latter contribution as
part of the overall noise affecting the former one. Based on
this representation of {Ĥm,n}, an estimate of the parameters
(A0, FD0 , Fr0) can be evaluated through the CSFDE and
can be employed to subtract the contribution of the first
tone to {Ĥm,n}, so generating a residual measurement. This
estimation & cancellation procedure is repeated to recursively
estimate the other tones on the basis of the computed residuals

Algorithm 1 Complex Single Frequency-Delay Estimator
(CSFDE)
Input: The matrices {Yk1,k2 ; k1, k2 = 0, 1, 2 and 3} (see
(33)) and the value of the parameter Nit.

1 Initialization:
a- Evaluate Ȳ0,0 (22), l̂ and p̂ (see (43)); then, compute
the initial estimate Â(0) of A according to (28) and set
(ρ(0)

D , ρ
(0)
r ) = (l̂, p̂) (see (46)-(47)).

b- Compute the coefficients aΩ, bΩ and cΩ according to
(36)-(38); then, evaluate Ω̂(0) according to (34) or (39).
c- Evaluate the coefficients a∆, b∆ and c∆ according to
(40)-(42); then, compute ∆̂(0) according to (34) or (39).
d- Compute F̂

(0)
D and F̂

(0)
r according to (44) and (45),

respectively.
2 Refinement: for i = 1 to Nit do

e- Estimation of A: Set F̂D = F̂
(i−1)
D and

F̂r = F̂
(i−1)
r ; then, evaluate Ȳ (F̂D, F̂r) using (19) or

by interpolating a few adjacent elements of the
matrix Ȳs (29). Finally, compute Â(i), ρ̂

(i−1)
D and

ρ̂
(i−1)
r according to (28), (46) and (47), respectively.

f- Estimation of FD: Set Â = Â(i) and compute
Ȳk1,k2(ρ̂

(i−1)
D , ρ̂

(i−1)
r ) according to (32) or by

interpolating a few adjacent elements of Ȳk1,k2 (33);
then, compute aΩ, bΩ and cΩ according to (36)-(38)
assuming (ρD, ρr) = (ρ̂(i−1)

D , ρ̂
(i−1)
r ). Finally,

compute Ω̂(i) and F̂
(i)
D according to (34) (or (39))

and (48), respectively.
g- Estimation of Fr: Compute a∆̃, b∆̃ and c∆̃

according to (40)-(42) under the assumption that
(ρD, ρr) = (ρ̂(i−1)

D , ρ̂
(i−1)
r ); then, evaluate ∆̂(i) and

F̂
(i)
r on the basis of (34) (or (39)) and (49),

respectively.
end
Output: The estimates F̂

(Nit)
D , F̂

(Nit)
r and Â(Nit) of FD,

Fr and A, respectively.

until the energy of the last residual falls below a given
threshold; this generates, as a by-product, an estimate of K.
Moreover, in the CSFDEC method, after detecting a new tone
and estimating its parameters, a re-estimation technique is
executed to improve the accuracy of both this tone and the
previously estimated tones.

The CSFDEC algorithm is initialized by: 1) running the
CSFDE algorithm to compute the initial estimates F̂

(0)
D0

, F̂
(0)
r0

and Â
(0)
0 of the parameters FD0 , Fr0 and A0 characterizing

the first target; 2) setting the recursion index i to 1 and
Ȳ(0)

0,0 = Ȳ0,0 (see (22)). Then, a recursive procedure is
started. The ith recursion of this procedure is fed by the
vectors F̂(i−1)

D = [F̂ (i−1)
D0

, F̂
(i−1)
D1

, . . . , F̂
(i−1)
Di−1

]T , F̂(i−1)
r =

[F̂ (i−1)
r0 , F̂

(i−1)
r1 , . . . , F̂

(i−1)
ri−1 ]T and Â(i−1) = [Â(i−1)

0 , Â
(i−1)
1 ,

. . . , Â
(i−1)
i−1 ]T , collecting the estimates of the normalized

Doppler frequency, normalized delay and complex amplitude,
respectively, of the i tones detected and estimated in the
previous recursions, and generates the new vectors F̂(i)

D ,
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F̂(i)
r and Â(i) after: a) estimating the parameters F̂

(i)
Di

, F̂
(i)
ri

and Â
(i)
i of the new (i.e., of the ith) tone (if any); b)

refining the estimates of the i tones available at the beginning
of the considered recursion. The procedure employed for
accomplishing all this consists of the three steps described
below (the p th step is denoted CSFDE-Sp, with p = 1, 2
and 3)

CSFDEC-S1 (spectral cancellation and estimation of a new
tone) - In this step, the following quantities are evaluated (see
the initialization part of the CSFDE algorithm):

a) The residual spectrum

Y(i)
0,0 =

[
Ȳ

(i)
0,0 [l, p]

]
≜ Y(i−1)

0,0 −C(i)
0,0

(
Â(i−1), F̂(i−1)

D , F̂(i−1)
r

)
, (50)

where

C(i)
0,0

(
Â(i−1), F̂(i−1)

D , F̂(i−1)
r

)
≜

i−1∑
k=0

C̄0,0

(
Â

(i−1)
k , F̂

(i−1)
Dk

, F̂ (i−1)
rk

)
(51)

represents the contribution given by all the ith estimated
2D tones to Ȳ0,0 and C̄0,0(Â

(i−1)
k , F̂

(i−1)
Dk

, F̂
(i−1)
rk ) is the

contribution provided by the kth tone (with k = 0, 1, . . . , i−1)
to the same matrix (the expression of the elements of the
matrix C̄0,0(·, ·, ·) is derived in Appendix A; see (60)). If the
overall energy ε0,0[i] ≜ ∥Y(i)

0,0∥2 of the vector Y(i)
0,0 (50)

satisfies the inequality ε0,0[i] < TCSFDEC, where TCSFDEC

is a proper threshold, the algorithm stops and the estimate
K̂ = i of K is generated.

b) The couple of integers (l̂(i), p̂(i)) on the basis of ( 43)
(where, however, Ȳ0,0[l̃, p̃] is replaced by Ȳ

(i)
0,0 [l̃, p̃]) and the

coarse estimates F̂
(i)
D,ci

= l̂(i)F̄D − 1/2 and F̂
(i)
r,ci = p̂(i)F̄r of

FD,c and Fr,c, respectively.
c) The preliminary estimate (see (28))

Ā
(i)
i = Ȳ (F̂ (i)

D,ci
, F̂ (i)

r,ci
)

−Y̆0,0

(
F̂

(i)
D,ci

, F̂ (i)
r,ci

; Â(i−1), F̂(i−1)
D , F̂(i−1)

r

)
(52)

of the complex amplitude Ai; here,

Y̆0,0

(
F̂

(i)
D,ci

, F̂ (i)
r,ci

; Â(i−1), F̂(i−1)
D , F̂(i−1)

r

)
≜

i−1∑
k=0

Ȳ0,0

(
F̂

(i)
D,ci

, F̂ (i)
r,ci

; Â(i−1)
k , F̂

(i−1)
Dk

, F̂ (i−1)
rk

)
(53)

is the contribution given to Ȳ (F̂ (i)
D,ci

, F̂
(i)
r,ci) by

the first i estimated tones for (FD , Fr) =(F̂ (i)
D,ci

,

F̂
(i)
r,ci) and Ȳ0,0(F̂

(i)
D,ci

, F̂
(i)
r,ci ; Â

(i−1)
k , F̂

(i−1)
Dk

, F̂
(i−1)
rk )

represents the leakage due to the kth tone and
affecting the ith tone. The expression of the quantity
Ȳk1,k2(F̂

(i)
D,ci

, F̂
(i)
r,ci ; Â

(i−1)
k , F̂

(i−1)
Dk

, F̂
(i−1)
rk ) is provided in

Appendix B (see (63)).
d) The spectral coefficients

Ȳ
(i)
k1,k2

(
ρ
(i)
D , ρ(i)

r

)
= Ȳk1,k2

(
ρ
(i)
D , ρ(i)

r

)
− Y̆k1,k2

(
F̂

(i)
D,ci

, F̂ (i)
r,ci

; Â(i−1), F̂(i−1)
D , F̂(i−1)

r

)
, (54)

with k1, k2 = 0, 1, 2, 3; here, ρ
(i)
D = F̂

(i)
D,ci

/F̄D = l̂(i) −
1/(2F̄D) and ρ

(i)
r = F̂

(i)
r,ci/F̄r = p̂(i) (see (46) and (47),

respectively), whereas

Y̆k1,k2

(
F̂

(i)
D,ci

, F̂ (i)
r,ci

; Â(i−1), F̂(i−1)
D , F̂(i−1)

r

)
≜

i−1∑
k=0

Ȳk1,k2

(
F̂

(i)
D,ci

, F̂ (i)
r,ci

; Â(i−1)
k , F̂ (i−1)

rk
, F̂

(i−1)
Dk

)
(55)

represents the contribution given to Ȳ
(i)
k1,k2

(ρ(i)
D , ρ

(i)
r ) by all

the estimated tones (in particular, the term Ȳk1,k2(·, ·; ·, ·, ·)
appearing in the RHS of (55) represents the leakage due to
the k th estimated tone for (FD , Fr) = (F̂ (i)

D,ci
, F̂

(i)
r,ci));

e) The coefficients {aΩ , bΩ , cΩ } ({a∆ , b∆ , c∆}) on the
basis of (36)-(38) ((40)-(42)) with (ρD, ρr) = (ρ(i)

D , ρ
(i)
r ) and

the initial estimate of the residual Ω̂(0)
i (∆̂(0)

i ) of Ω (∆) on the
basis of ( 34) or (39) with X = Ω (X = ∆);

f) The initial fine estimate of the normalized Doppler
frequency F̂

(0)
Di

= F̂
(0)
D,ci

+ Ω̂(0)
i /(2π) and that of the

normalized delay F̂
(0)
ri = F̂

(0)
r,ci +∆̂(0)

i /(2π) (see (20) and (21),
respectively). The evaluation of F̂

(0)
D and F̂

(0)
r concludes the

first step.
CSFDEC-S2 (refinement of the last tone) - In this step, Nit

iterations are executed to refine the estimate of the parameters
of the new tone detected in the previous step. The processing
accomplished in this step follows closely that described in the
refinement part (i.e., in the second step) of the CSFDE. For
this reason, in each iteration, new estimates of the complex
amplitude and of the two residuals are computed for the ith
tone. This requires reusing (52)-(53) and (54)-(55) for the
removal of spectral leakage. At the end of the last iteration,
the estimates (F̌ (i)

Di
, F̌

(i)
ri , Ǎ(i)

i
) of (FDi

, Fri
, A

i
) are available;

these estimates represent (F̂ (i)
Di

, F̂
(i)
ri , Â

(i)
i ) if the next step is

not accomplished (i.e. if tone re-estimation is avoided).
CSFDEC-S3 (tone re-estimation) - This step is fed by the

(i + 1) normalized delays {F̂ (i−1)
r0 , F̂

(i−1)
r1 , . . . , F̂

(i−1)
ri−1 ,

F̌
(i)
ri }, the normalized Doppler frequencies {F̂ (i−1)

D0
,

F̂
(i−1)
D1

, . . . , F̂
(i−1)
Di−1

, F̌
(i)
ri } and the associated complex

amplitudes {Â(i−1)
0 , Â

(i−1)
1 , . . . , Â

(i−1)
i−1 , Ǎ(i)

i
}. It consists in

repeating the previous step for each of the detected tones,
starting from the first tone and ending with the last (i.e., with
the (i+1)th) one. This means that, when re-estimating the kth
tone, the leakage due to all the other (i− 1) tones is removed
(with k = 0, 1, . . . , i). This allows to progressively refine the
amplitude, normalized Doppler frequency and normalized
delay of each tone, so generating the final estimates. Note
that, in principle, this re-estimation procedure can be repeated
multiple (say, NREF) times.

C. Computational Complexity of the Proposed Algorithms

The computational complexity, in terms of number of
floating point operations (flops), can be assessed for both the
CSFDE and the CSFDEC algorithms as follows.12 First of all,

12The general criteria adopted in our evaluation of computational costs are
summarised in [15, App. C].
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the overall computational cost of the CSFDE is expressed as

CCSFDE = C0(CSFDE) + Nit Ci(CSFDE), (56)

where C0(CSFDE) (Ci(CSFDE)) represents the computa-
tional cost of its initialization (each of its iterations). The cost
C0(CSFDE) is evaluated by summing13: 1) the contribution
due to the computation of the couple (l̂, p̂) on the basis of
(43); 2) the contribution due to the computation of the matrices
{Ȳk1,k2} on the basis of (33), including the evaluation of the
spectrum Ȳ0,0; 3) the contributions due to the evaluation of the
estimates Ω̂ and ∆̂, respectively, on the basis of the quadratic
equation (34). The cost Ci,CSFDE, instead, is evaluated by
summing: 1) the contribution due to the computation of
Ȳ (F̂D, F̂r) on the basis of (19) or of the interpolation of a few
adjacent elements of the matrix Ȳs (29 ); 2) the contributions
due to the evaluation of ρ̂D (ρ̂r) on the basis of (46) ((47));
3) the contribution due to the evaluation of Â on the basis of
(28); 4) the contribution due to the computation of the quantity
Ȳk1,k2(ρ̂

(i−1)
D , ρ̂

(i−1)
r ) (54) through the interpolation of a few

adjacent elements of the matrix LD Lr Ȳk1,k2 (see (33)) for
the considered values of (k1, k2); 5) the contributions due to
the computation of Ω̂ and ∆̂ on the basis of (34). Based on
these considerations and the mathematical results illustrated in
[20, App. C], it can be proved that CCSFDE = O(NCSFDE),
where

NCSFDE = 16M0 N0 log2(M0 N0) + Nit 16 ID Ir (57)

and ID (Ir) is the interpolation order adopted in the Doppler
(range) domain for the evaluation of Ȳk1,k2(ρ̂

(i−1)
D , ρ̂

(i−1)
r )

(54). Note that, for small values of ID and Ir (e.g., if a
2D linear or barycentric interpolation is used; see [19]), the
contribution of the second term of the RHS of the last equation
can be neglected, so that the order of the whole computational
cost is well approximated by its first term, i.e. by the term
originating from DSFT processing.

Our assessment of the complexity of the CSFDEC algorithm
is based on the considerations illustrated in [15] for its 1D
counterpart. Based on these, it can be proved that CCSFDEC =
O(NCSFDEC), where

NCSFDEC = 16M0 N0 log2 (M0 N0) + K Nit 16 ID Ir, (58)

so that the required computational effort depends linearly
on K. The last result holds if tone re-estimation is not
accomplished and all the tones are detected (i.e., K̂ = K). The
first term appearing in the RHS of the last equation accounts
for the initialization (and, in particular, for the computation of
the matrices Ȳ0,0 (22) and {Ȳk1,k2 ; (k1, k2) ̸= (0, 0)} (33)),
whereas the second one for the fact that, in the CSFDEC
algorithm, the CSFDE is executed K times. Note that the
computational cost related to the estimation of the 2D-tones
detected after the first one and to their frequency domain
cancellation does not play an important role in this case.
However, if tone re-estimation is executed in the CSFDEC
algorithm, the parameter K appearing in the RHS of (58) is

13Note that the evaluation of the estimate of the tone complex amplitude
is neglected, being based on (28), that requires a negligible computational
effort.

replaced by K2, since this task involves all the estimated 2D-
tones.

D. Comparison of Our Multiple Tone Estimator With Related
Techniques

The CSFDEC algorithm is conceptually related with:
1) the 2D periodogram method [6] (denoted 2D-FFT in
the following); 2) the CLEAN algorithm [21], [22]; 3) the
modified Wax and Leshem (MWL) algorithm developed in [21]
and [22]. The 2D-FFT, CSFDEC and CLEAN algorithms
are FFT-based techniques; however, the last two algorithms
are more complicated than the first one. In fact, unlike
the 2D-FFT, both the CSFDEC and CLEAN algorithms
perform leakage compensation, iterative cancellation of the
detected targets and tone re-estimation. Note also that the
CLEAN algorithm, unlike the CSFDEC algorithm, does not
accomplish fine frequency estimation and employs coarse
frequency estimates in its target cancellation procedure. The
MWL algorithm, similarly as the CSFDEC algorithm, relies
on the idea of turning a complicated 3D optimization problem
(see (13)) into a triplet of three simpler 1D optimization
problems. However, unlike the CSFDEC algorithm, it requires
the computation of orthogonal projections (and, consequently,
of matrix inversions) and the definition of a search
grid.

If frequency re-estimation is ignored, the following
considerations can be formulated for the computational
complexity of the above mentioned algorithms:

1) The computational effort of the CLEAN algorithm is
expressed by the sum of three distinct contributions, related
to its initialization (which is based on the 2D-FFT), its tone
cancellation and its leakage compensation; these three costs
are shared with the CSFDEC algorithm, that requires the
computation of other 12 (or 15) additional DSFTs (see the
previous subsection).

2) The CLEAN and MWL algorithms perform cancellation
and leakage compensation in the time domain, whereas the
CSFDEC algorithm performs these tasks in the frequency
domain. This explains why the computational complexity of
the CSFDEC cancellation, being in the order of M0 × N0,
is LD×Lr times larger than the cost of the same task for the
CLEAN and MWL algorithms.

3) The computational cost of leakage removal can be
neglected for the CSFDEC algorithm because of its simplicity
(complex scalar subtraction), even if it has to be accomplished
on multiple DSFTs; on the other hand, the CLEAN and
MWL algorithms execute this task in a similar fashion as
cancellation, thus requiring O(M N) operations.

4) The computational effort of the MWL algorithm is
expressed by the sum of two distinct contributions, one due
to its initialization, the other one to its iterations. The cost
of the initialization task is the same as that of the Wax and
Leshem (WL) algorithm illustrated in [21]. The cost of each
iteration, instead, is given by that of the WL algorithm plus
a contribution due to leakage compensation; the last cost is
O(K M N), being equal to that required by the CLEAN
algorithm for the same procedure.
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To sum up, the 2D-FFT is the least demanding algorithm;
moreover, its computational effort is independent of the overall
number of detected targets (i.e., of K). The MWL algorithm
is less computationally demanding than the CLEAN algorithm
since it exploits alternating maximization. The CSFDEC
algorithm has the highest initialization cost and, usually,
is computationally heavier than all the other algorithms
mentioned above. However, the dependence of its complexity
on K is limited and weaker than that exhibited by the CLEAN
algorithm; in addition, the CSFDEC algorithm is substantially
more accurate than all the other algorithms in the presence
of multiple closely spaced targets, as shown in the following
section.

IV. NUMERICAL RESULTS

The accuracy of the CSFDEC algorithm has been assessed
in five different scenarios and compared with that achieved
by the related algorithms introduced in Section III-D and four
other algorithms, namely: 1) the 2D MUSIC algorithm [8],
[9], [23]; 2) the approximate ML method recently proposed
in [11] and dubbed modified14 alternating projection ML
(MAP-ML) algorithm; 3) an estimation algorithm based on
the same 2D cost function as the MAP-ML algorithm, but not
using the alternating projection method for its maximization
(this algorithm is denoted modified Zhang ML, MZ-ML);
4) the expectation maximization (EM) algorithm. A detailed
description of all these algorithms and an analysis of their
computational complexity are provided in [20, Sec. IV], and
are omitted here for space limitations; here, we limit to
point out that the MAP-ML and MZ-ML algorithms require
a significant computational effort, since they are ML-based
and do not turn, unlike the CSFDEC and MWL algorithms,
a multidimensional optimization problem into significantly
simpler sub-problems.

In our work, the first three scenarios (denoted S1, S2 and
S3) are characterized by a couple of targets having amplitudes
A0 = A1 = 1, but differ for the assumptions we make about
their ranges and speeds. In fact, we have that: 1) in S1,
the target ranges are R0 = 10 m and R1 = 10 + 3Rbin

m, whereas the target velocities are v0 = 1.39 m/s and
v1 = 1.39 + 3vbin m/s (here, Rbin = c/(2N∆f ) and vbin =
c/(2M fc Ts) represent the size of the range bin and velocity
bin, respectively, that characterize our FFT processing in the
absence of oversampling); 2) in S2, the range R0 (velocity v0)
is uniformly distributed15 over the interval [Rmin, Rmax] =
[3, 80] m ([vmin, vmax] = [0.2778, 10] m/s), whereas R1 =
R0 + 1.1Rbin and v1 = v0 + 1.1vbin; 3) in S3, the range
R0 (velocity v0) is uniformly distributed over the interval
[Rmin, Rmax] = [3, 30] m ([vmin, vmax] = [0.2778, 5.56] m/s),
whereas R1 = R0 +∆R(d) Rbin (v1 = v0 +∆v(d) vbin), with
d = 0, 1, . . . , 5. In the last scenario, ∆R(d) = 0.8 + 0.05 d
(∆v(d) = 0.8+0.05 d) represents the tone spacing normalized
with respect to Rbin (vbin) and the signal-to-noise ratio (SNR),

14In our work, the approximate ML-based algorithm devised in [11] has
been properly modified to adapt it to our signal model (11) (that does not
account for inter-pulse and inter-subcarrier Doppler effects).

15In both S2 and S3, R0 and v0 are independent random variables.

which, in general, is defined as SNR ≜
∑K−1

k=0 |Ak|2/σ2
W ,

is equal to 0 dB. The fourth scenario (denoted S4), instead,
is characterized by K ∈ {2, 3, . . . , 9}, i.e. by a varying number
of targets. In addition, for any K, the amplitude, range and
velocity of the kth target are given by Ak ≜ 10−k∆a/10,
Rk ≜ R0 + 1.8 k Rbin and vk ≜ v0 + 1.8 k vbin, respectively
(with k = 0, 1, . . . ,K − 1), the random variables R0 and
v0 are generated in the same way as S3, and the SNR is
equal to 5 dB for the strongest tone. In the last scenario
(denoted S5), the range and velocity of the kth target are
generated according to the simple mathematical laws given
for S4, but Rbin = vbin = 1.1 and Ak = 1 for any k (with
K ∈ {3, 5, 7, 9}) are assumed; moreover, the SNR ranges from
−15 dB to 25 dB.

It is important to point out that: 1) in S1 the spacing of
the two targets in the velocity and range domains is fixed and
not small, whereas in S2 (S3) the spacing in both the range
and velocity domains is small and fixed (variable); 2) S4 is
characterized by a variable number of close targets; 3) S5 is
characterized by a variable number of close targets and by
a variable SNR; 4) in all the considered scenarios, positive
velocities have been selected for all the targets and the overall
number of targets has been assumed to be known.

In our computer simulations, the estimation accuracy of
each algorithm has been assessed by evaluating the root mean
square error (RMSE) for the range (RMSER) and velocity
(RMSEv) of the considered targets. Moreover, the following
parameters have been selected for the OFDM modulation: 1)
overall number of subcarriers N = 32; 2) overall number
of OFDM symbols/frame M = 32; 3) subcarrier spacing
∆f = 250 kHz; 4) cyclic prefix duration TG = 12.5 µs
(consequently, the OFDM symbol duration is Ts = 1/∆f +
TG = 16.5 µs); 5) carrier frequency fc = 78 GHz; 6)
cardinality of the PSK constellation Ns = 32. Then, we have
that Rbin = 18.75 m and vbin = 3.64 m/s.

In S1 the accuracy of the all the considered estimation
algorithms has been assessed. Moreover, the following choices
have been made for these algorithms16: 1) the oversampling
factor LD = 16 (Lr = 16) has been chosen for
Doppler (range) estimation in both the 2D-FFT and CSFDEC
algorithms (so that M0 = MLD = 512 and N0 = NLr =
512; see (24) and (25), respectively); 2) (39) has been always
employed in the evaluation of the CSFDEC residuals (so
that 13 DSFTs {Ȳk1,k2} have been computed in each new
run); 3) the 2D-FFT method has been used to compute the
initial estimates of target range and Doppler in the MZML,
MAP-ML and EM algorithms; 4) M0 = 512 (N0 = 512)
has been chosen for the refinement grid over Doppler (range)
employed by the CLEAN, MWL, MZML, MAP-ML and EM
algorithms; 5) in the CSFDEC algorithm Nit = 15 refinement
steps have been accomplished for the computation of the range
and Doppler residuals, the interpolation17 orders ID = Ir = 7
have been selected and NREF = 3 re-estimations have been
executed; 6) NREF = 5 (NREF = 3) re-estimations have been

16The values of the parameters (defined in detail in [20, Sec. IV]) selected
for S1 have been also employed in S2 and S3.

17In all our simulations, the barycentric interpolation described in [19] has
been always used.
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executed by the CLEAN and MWL (MZML, MAP-ML and
EM) algorithms; 7) M0 = N0 = 11 (M0 = N0 = 9) have been
chosen for the grid size in the CLEAN and MWL (MZML,
MAP-ML and EM) algorithms during the re-estimation steps;
8) a unit value has been assigned to all the mixing coefficients
{β(i)

k } of the EM algorithm (see [20, Sec. IV, eq. (160)]);
9) the spacing between adjacent values in the search (initial
search) grid for 2D-MUSIC algorithm (CLEAN and MWL
algorithms) is ∆R = 0.6 m (∆v = 0.1166 m/s). Moreover,
in S1, M0 = 121 (N0 = 121) has been selected for the number
of trial values of the 2D-MUSIC algorithm and for the initial
trial values of the CLEAN and MWL algorithms in the
Doppler (range) domain; such values are uniformly spaced
in the range (velocity) interval18 [0, Rmax] ([0, vmax]), with
Rmax = 72 m (vmax = 13.986 m/s).

Some numerical results referring to S1 are given in
Fig. 1, where the RMSER and RMSEv characterizing all the
considered algorithms is shown for SNR ∈ [−15, 25] dB (in
these figures and in all the following ones, simulation results
are represented by labels, whereas continuous lines are drawn
to ease reading). From these results it is easily inferred that:

1) The CSFDEC, CLEAN and MWL algorithms achieve
good accuracy (very close to the CRLB) thanks to their use
of cancellation and refinement procedures.

2) The RMSE curves for the 2D-FFT and 2D-MUSIC
algorithms exhibit a floor at high SNRs.

3) The MAP-ML and the MZML algorithms perform
similarly since both aim at maximizing the same cost function.

4) The EM algorithm can be fruitfully exploited to refine
the estimates generated by other methods and, in particular,
if employed jointly with the 2D-FFT algorithm, achieves an
estimation accuracy similar to that provided by the MAP-ML
and MZML algorithms.

As far as point 2) is concerned, it is worth pointing out that:
a) The accuracy of the 2D-FFT algorithm is intrinsically

limited by the adopted FFT order, whereas that of the 2D-
MUSIC algorithm by the discretization of its steering vector;
for this reason, when the spectral leakage is limited (i.e., when
the targets are well spaced), the RMSE achieved by these two
algorithms at large SNRs is well approximated by the square
root of the variance of a random variable uniformly distributed
over an interval whose width is equal to the step size of the
grid of the considered algorithm, i.e., to

√
(X2

res/12), with
X = R or v; here, Rres = Rbin/N0 = 1.171875 m, vres =
vbin/M0 = 0.2276 m/s for the 2D-FFT, whereas Rres = ∆R

and vres = ∆v for the 2D-MUSIC).
b) For given values of M and N , the accuracy of the

2D-FFT algorithm improves if the associated oversampling
factors increase; unluckily, oversampling can provide a limited
improvement by itself, since it does not add extra information,
but simply allows to interpolate adjacent spectral samples.

c) The accuracy of the 2D-MUSIC algorithm can be
improved by selecting a finer grid, at the price, however, of an
higher computational complexity, as shown in [20, Sec. IV-B].

18Note that, in our simulations, positive trial values are always considered
for target velocities, without loss of generality.

d) Both the 2D-FFT and 2D-MUSIC algorithms do not
execute refinement and/or re-estimation steps.

These considerations apply to all the following results
shown for the two above mentioned algorithms.v In addition,
in analyzing the results shown in Fig. 1, readers should keep in
mind that: 1) the computational complexity of the CSFDEC
(CLEAN) algorithm is approximately 17 (39) times higher
than that of the 2D-FFT,19 whereas that of the MWL algorithm
is very close to it; 2) the complexity of the 2D-MUSIC, MAP-
ML and MZML algorithms is 3481, 577 and 2593 times
higher than that of the 2D-FFT algorithm, respectively;
3) the computational cost of the EM algorithm is approxi-
mately 149 (671) times smaller than that of the MAP-ML
(MZML) algorithm.

Some numerical results referring to S2 are provided in
Fig. 2, where the RMSER and RMSEv characterizing all the
considered algorithms is shown for SNR ∈ [−25, 20] dB.
In this case, M0 = 131 (N0 = 181) have been selected for the
number of trial values of the 2D-MUSIC algorithm and for
the initial trial values of the CLEAN and MWL algorithms
in the Doppler (range) domain; such values are uniformly
spaced in the range (velocity) interval [0, Rmax] ([0, vmax]),
with Rmax = 108 m (vmax = 15.15 m/s). These results lead
to the following conclusions:

1) The CSFDEC, MWL, CLEAN, MAP-ML, MZML and
EM algorithms are substantially more accurate than the 2D-
FFT and 2D-MUSIC techniques. In particular, the RMSEs in
range (velocity) of the 2D-FFT and 2D-MUSIC algorithms are
3.9 (4) and 1.5 (1.68) times higher, respectively, than that of
the above mentioned group of algorithms at SNR = 0 dB;
moreover, these performance gaps, in terms of both RMSER

and RMSEv , tend to increase by a factor 1.75 if the SNR is
incremented by 5 dB.

2) The trend of both the RMSER and RMSEv curves
referring to the 2D-MUSIC and 2D-FFT algorithms does not
follow that of the corresponding CRLB; for this reason, these
algorithms are ignored in following.

3) The SNR threshold of the CSFDEC, CLEAN, MAP-ML
and EM algorithms is about −10 dB, whereas that of the MWL
algorithm is substantially higher (about −5 dB).

4) The MAP-ML algorithm performs similarly as the
MZML algorithm; however, since the latter estimator requires
an higher computational effort than the former one, it is
ignored in the following.

It is also important to point out that the considerations
illustrated about the computational complexity of the various
algorithms in S1 still hold; however, the complexities of
the CLEAN, 2D-MUSIC and MWL algorithms are 64,
5497 and 1.01 times higher than that of the 2D-FFT algorithm,
respectively.

In S3, the RMSEs have been evaluated for different values
of the normalized tone spacing ∆R and ∆v; some numerical
results referring to this scenario are illustrated in Fig. 3, that
shows the dependence of RMSER and RMSEv , respectively,

19The 2D-FFT is taken as a reference since it represents the method
commonly adopted in real world systems, thanks to its computational
efficiency and acceptable accuracy.
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Fig. 1. Root mean square error performance achieved in range and velocity estimation (first scenario).

Fig. 2. Root mean square error performance achieved in range and velocity estimation (second scenario).

Fig. 3. Root mean square error performance achieved in range and velocity estimation (third scenario) for different values of the normalized tone spacing
∆R and ∆v , respectively. The CSFDEC, CLEAN, MWL, MAP-ML and EM algorithms are considered.

on the normalized tone spacing. In this case, the number of
initial trial values are M0 = 101 (N0 = 101) for the CLEAN
and MWL algorithms in the Doppler (range) domain; such
values are uniformly spaced in the range (velocity) interval
[0, Rmax] ([0, vmax]), with Rmax = 60 m (vmax = 11.66 m/s).
These results lead to the following conclusions: 1) The lowest
threshold in range estimation is achieved by the CSFDEC
algorithm (more specifically, in the considered scenario, its

threshold is found at the normalized spacing ∆R(2) = 0.9);
2) the lowest threshold in velocity estimation is achieved by
both the CLEAN and CSFDEC algorithms. Note also that the
complexity of the CLEAN is approximately 1.6 times higher
than that of the CSFDEC algorithm in this case.

Based on the considerations illustrated above, in S4 we
restrict our attention to the CSFDEC, CLEAN, MWL, MAP-
ML and EM algorithms. Moreover, our performance analysis
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Fig. 4. a) Probability of failure versus overall number of tones; b) computational complexity in terms of computation time (blue curves) and computational
cost (red curves). The CSFDEC, CLEAN, MWL, MAP-ML and EM algorithms are considered (fourth scenario).

Fig. 5. Root mean square error performance achieved in range and velocity estimation (fifth scenario) by the CSFDEC algorithm with a varying number of
targets, i.e. K ∈ [3, 5, 7, 9] and the SNR ∈ [−15; 25].

does not concern estimation accuracy, but the probability
of failure (Pf ), i.e. the probability that convergence is not
achieved, so that large estimation errors can be generated.
In our computer simulations, we have observed that large
estimation errors occur more frequently as K increases.
To detect the frequency of occurrence of these errors, we have
counted, in each simulation run, the number of failure events
for each of the considered algorithms; in practice, an event of
this type is detected whenever the absolute value of the range
error and that of the velocity error (or only one of these errors)
exceed the thresholds ∆ϵr = c/(4N∆f ) = 9.375 m and
∆ϵv = c/(4MfcTs) = 1.82 m/s, respectively.20 Moreover,
in generating our results for S4, the following changes have
been made with respect to the previous scenarios: 1) NREF =
7 (NREF = 5) re-estimations have been executed by the
CSFDEC, CLEAN and MWL (MAP-ML and EM) algorithms;
2) M0 = 551 (N0 = 551) have been selected for the
initial trial values of the CLEAN and MWL algorithms in the
Doppler (range) domain; 3) these trial values are uniformly
spaced in the range (velocity) interval [0, Rmax] ([0, vmax]),
with Rmax = 330 m (vmax = 64 m/s). Note that the spacing
between adjacent trial values is the same as S1-S3 in both
domains.

20Note that ∆ϵr (∆ϵv) correspond to half the size of the range (Doppler)
bin characterizing the processing of the considered algorithms.

The probability of failure estimated for K = 2, 3, . . . , 9 is
illustrated in Fig. 4-a). From this figure it is easily inferred
that: 1) the MAP-ML and EM (MWL) algorithms exhibit a
Pf greater than 10−2 for K ≥ 4 (K ≥ 5); 2) the CSFDEC
algorithm is substantially more robust than all the other
algorithms since it is characterized by a Pf not exceeding
10−4 for K ≤ 8; 3) the CLEAN algorithm achieves a Pf

smaller than 10−2 for K ≤ 7. These results evidence that
the CSFDEC algorithm performs substantially better than the
other estimators in the presence of multiple closely spaced
targets. This feature plays a fundamental role in the estimation
of extended targets, whose radar image is usually a dense point
cloud.

In S4 the computational effort required by the CSFDEC,
CLEAN, MWL, MAP-ML and EM algorithms in terms of
both computation time (CT)21 and estimated number of mega
FLOPs (MFLOPs) has been also evaluated. Our results,
illustrated in Fig. 4-b), evidence that: 1) the MWL (MAP-ML)
algorithm requires the lowest (highest) complexity in terms
of both CT and MFLOPs; 2) the complexity of the CLEAN
algorithm is not far from that of the MAP-ML algorithm;
3) the complexities of the CSFDEC and EM algorithms are
comparable and placed in the middle.

21The CT has been assessed on a personal computer equipped with an i7
processor.
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Our last results are shown in Fig. 5 and concern the RMSER

and RMSEv of the CSFDEC algorithm in S5; Nit = 10 and
NREF = 3 have been selected for this algorithm (the values
of its remaining parameters are the same as S1). These results
show that:

1) The SNR threshold of the CSFDEC algorithm depends
on K; for instance, this threshold for the range estimation
is found at a SNR ≈ −9 (SNR ≈ −5) dB for K = 3 and 5
(K = 7 and 9).

2) The range and velocity estimates generated by the
CSFDEC algorithm are unbiased. Note, for instance, that
for both K = 7 and 9, the RMSER and RMSEv and the
corresponding CRLB curves are separated by a constant SNR
gap when the SNR exceeds the above mentioned threshold;
further computer simulations have evidenced that this gap
can be reduced by increasing the values of NREF and,
more evidently, of Nit, at the price, however, of an higher
computational effort.

Finally, based on all the results illustrated above, we can
state that, thanks to its accuracy, its limited complexity
increase with respect to the 2D-FFT method and its ability
to resolve multiple closely spaced point targets, the CSFDEC
algorithm represents a good candidate for target detection and
estimation in future OFDM-based radars.

V. CONCLUSION

In this manuscript, a novel algorithm for the detection of a
single 2D complex tone and the estimation of its parameters
has been derived. Moreover, it has been shown how combining
this algorithm, dubbed CSFDE, with a serial cancellation
procedure leads to the development of a new algorithm for
the detection and the estimation of multiple 2D tones. Then,
the last algorithm, called CSFDEC, has been applied to the
detection of multiple targets, and to the estimation of their
range and velocity in an OFDM-based SISO radar system.
In addition, it has been compared, in terms of accuracy and
computational complexity, with various estimation methods
available in the technical literature. Our simulation results
evidence that the CSFDEC algorithm is very accurate and
outperforms all the other related estimators in the presence
of multiple closely spaced targets. Future work concerns the
application of the CSFDEC algorithm to other JCAS systems.

APPENDIX

A. Spectral Cancellation of a Two-Dimensional
Complex Tone

In this paragraph, the derivation of expression of the vector
C̄0,0(·, ·, ·) appearing in the RHS of (51) is sketched. This
vector is evaluated to cancel the contribution of the sequence

sm,n

(
F̄D, F̄r, Ā

)
= Ā w̄m

D w̄n
r (59)

to the vector Ȳ0,0 (22) (the adopted cancellation procedure
is expressed by (50) and (51)); here, w̄D ≜ exp(j2πF̄D)
and w̄r ≜ exp(−j2πF̄r). Since Ȳ0,0 is the order (M0, N0)
DSFT of the zero-padded version Ĥ(ZP )

0,0 (23) of the matrix
Ĥ0,0 = [Ĥm,n], it is easy to show that

C̄0,0

(
Ā, F̄D, F̄r

)
= ĀW̄0, (60)

where W̄0 denotes the order (M0, N0) DSFT of the M0×N0

matrix

w̄0 ≜

[
w̄ 0M,N0−N

0M0−M,N 0M0−M,N0−N

]
, (61)

w̄ ≜ [wm,n] is an M × N matrix such that wm,n ≜ w̄m−n,
with m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1, and
w̄ ≜ w̄D w̄r. Then, the (m, n)th element of the matrix W̄0 is
given by

W̄0 [m, n] =
1

M0

M−1∑
l=0

w̄l
D exp

(
−j2π

m

M0
l

)

· 1
N0

N−1∑
p=0

w̄p
r exp

(
j2π

n

N0
p

)

=
1

M0

M−1∑
l=0

(q̂D [m])l 1
N0

N−1∑
p=0

(q̂r [n])p , (62)

where q̂D[m] ≜ exp(j2π(F̂D − m/M0)) and q̂r[m] ≜
exp(−j2π(F̂r − n/N0)). Note that the identity in [20, App.
A, eq. (173)] can be exploited for an efficient computation of
the two sums appearing in the RHS of (62).

B. Cancellation of Two-Dimensional Spectral Leakage

In this paragraph, the expression of the quantity
Ȳk1,k2(· , ·; ·, ·, ·) appearing in the RHS of (53) and (55)
is derived. This quantity is computed by the CSFDEC
algorithm to cancel the contribution of the sequence
{sm,n(F̄Dk

, F̄rk
, Āk)} (see ( 59)) to Ȳ

(i)
k1,k2

(ρ(i)
D , ρ

(i)
r ) (54) for

k1, k2 = 0, 1, 2, 3. It is not difficult to show that

Ȳk1,k2

(
F̂

(i)
D,ci

, F̂ (i)
r,ci

; Â(i−1)
k , F̂

(i−1)
Dk

, F̂ (i−1)
rk

)
= Ā

(i−1)
k W̄

(k)
k1k2

(
F̂

(i)
D,ci

, F̂ (i)
r,ci

; F̂ (i−1)
Dk

, F̂ (i−1)
rk

)
, (63)

where

W̄
(k)
k1k2

(
F̂

(i)
D,ci

, F̂ (i)
r,ci

; F̂ (i−1)
Dk

, F̂ (i−1)
rk

)
=

1
M0

M−1∑
m=0

mk1

(
q̄D

(
F̂

(i)
D,ci

, F̂
(i−1)
Dk

))m

· 1
N0

N−1∑
n=0

nk2

(
q̄r

(
F̂ (i)

r,ci
, F̂ (i−1)

rk

))n

, (64)

with q̄D(F̂ (i)
D,ci

, F̂
(i−1)
Dk

) ≜ exp(j2π(F̂ (i−1)
Dk

− F̂
(i)
D,ci

)),
q̄r(F̂

(i)
r,ci , F̂

(i−1)
rk ) ≜ exp(−j2π(F̂ (i−1)

rk − F̂
(i)
r,ci)); here F̂

(i−1)
Dk

and F̂
(i−1)
rk are the fine estimates of the normalized Doppler

frequency and normalized delay, respectively, computed at the
(i − 1)th iteration for the kth target. Note that the identities
in [20, eqs. (173) and (178)-(180)] can be exploited for an
efficient computation of all the factors appearing in the RHS
of (53) and (54) (with k1, k2 = 0, 1, 2, 3).
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