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Abstract: Air quality in Europe continues to remain poor in many areas, with regulation limits
often exceeded by many countries. The EU Life-IP PREPAIR Project, involving administrations and
environmental protection agencies of eight regions and three municipalities in Northern Italy and
Slovenia, was designed to support the implementation of the regional air quality plans in the Po Valley,
one of the most critical areas in Europe in terms of pollution levels. In this study, four air quality
modelling systems, based on three chemical transport models (CHIMERE, FARM and CAMx) were
applied over the Po Valley to assess the sensitivity of PM2.5 concentrations to NOx and NH3 emission
reductions. These two precursors were reduced (individually and simultaneously) from 25% up to
75% for a total of 10 scenarios, aimed at identifying the most efficient emission reduction strategies
and to assess the non-linear response of PM2.5 concentrations to precursor changes. The multi-model
analysis shows that reductions across multiple emission sectors are necessary to achieve optimal
results. In addition, the analysis of non-linearities revealed that during the cold season, the efficiency
of PM2.5 abatement tends to increase by increasing the emission reductions, while during summertime,
the same efficiency remains almost constant, or slightly decreases towards higher reduction strengths.
Since the concentrations of PM2.5 are greater in winter than in summer, it is reasonable to infer that
significant emission reductions should be planned to maximise reduction effectiveness.

Keywords: emission scenarios; NH3; NOx; PM2.5; CTM; Potential Impacts (PI); Po Valley

1. Introduction

The scientific community has overwhelmingly demonstrated that particulate matter
has harmful impacts on human health [1–5]. In particular, long-term exposure to fine partic-
ulate matter concentrations (PM2.5) has been associated with cardiovascular, neurological
and respiratory diseases as well as with cancer and mortality [6–9]. Acute exposure to
PM2.5 is also linked to detrimental health impacts, such as cardiovascular and respiratory
disorders, diabetes, neurological diseases and deep vein thrombosis [10–13]. Despite the
fact that mitigation measures have decreased pollution levels in several nations, air quality
levels in some parts of Europe are beyond the most recent WHO recommendations [14]
and the limit values specified in the EU air quality regulations [15]. This is particularly
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true for PM2.5 concentrations, for which many urban areas, especially those in Northern
Italy (Po Valley) and Eastern Europe (Poland, Bosnia and Herzegovina, Kosovo, Croatia
and Turkey), exceed the EU’s yearly average limit value of 25 µg m−3 [15]. In addition, in
2020, all the EU-27 countries, apart from Estonia, measured PM2.5 concentrations above the
WHO daily and annual objectives of 15 and 5 µg m−3.

To effectively reduce pollutant concentrations below exceedance levels, efficient and
coordinated air quality solutions must be implemented and achieved. To meet this need,
the EU Life-IP PREPAIR Project was designed to support the implementation of the regional
air quality plans in the Po Valley, one of the most critical areas of Europe for pollution levels.
Within the PREPAIR Project, the environmental agencies and the administrations of eight
regions and three municipalities of Northern Italy and Slovenia have worked together to
implement short- and long-term measures to abate pollution emissions and improve the
air quality in the whole Po Valley [16].

The Po Valley is a well-known characteristic area of Europe where meteorological
conditions favour the accumulation of pollutants: its climate is prone to air mass stagnation,
characterised by low wind speed regimes and prolonged thermal inversion that can last for
several days during the winter. In addition, characteristic processes for the formation of
particulate matter make the secondary fraction account for the great majority (more than
50%) of the total PM2.5 concentrations, as shown by many studies [17–22]. Although other
regions of Europe experience similar shares of secondary fractions of total PM (e.g., south
of Poland [23], England [24,25], Greater Paris region [26] and other areas of France [27]),
the Po Valley is a peculiar site where non-linear processes (i.e., the non-linear response of
pollutant concentrations to an emission change) [28–30] and large variations in seasonal
and spatial chemical regimes occur [31,32]. Still today, chemical regimes and secondary
particle processes remain partly unknown; however, clear is the role of nitrogen oxides and
ammonia as PM2.5 precursors. For all these reasons, the design and application of effective
air quality plans is a challenging task, which requires a careful study of the atmospheric
response to emissions changes.

Chemical transport models (CTMs) are numerical models that compute diffusion,
transport and photochemical processes in the atmosphere, and they can be used to infer
the pollutant concentrations to precursor changes by computing the effects of different
hypothetical policies on air quality.

Recently, two works in the literature [31,32] have simulated emission reduction sce-
narios of inorganic precursors of PM2.5 over the Po Valley, using a single-defined chemical
transport model (EMEP). This study tackles the same topic: four different air quality (AQ)
modelling systems were applied over the Po Valley to assess the effects of nitrogen oxide
(NOx) and ammonia (NH3) reductions on PM2.5 concentrations. Precursor changes are
imposed as emission reductions of 25%, 50% and 75%, as in [31,32].

The AQ modelling systems are based on three different CTMs, namely CHIMERE [33,34],
the Flexible Air quality Regional Model (FARM) [35,36] and the Comprehensive Air Quality
Model (CAMx) [37–39]. This multi-model approach reduces the uncertainties intrinsically
present in a singular CTM and increases the robustness of the results. In addition, all the AQ
modelling systems have implemented a common emission dataset [40] with higher spatial
resolution in comparison to [31,32].

The main goals of this paper are as follows:

1. To perform a multi-model sensitivity assessment of PM2.5 concentrations to the inor-
ganic precursor (NOx and NH3);

2. To investigate spatial and temporal variabilities of the chemical regimes over the Po
Valley by considering two seasons, October–March and April–September (including
the transition periods that are disregarded in [31,32]). The choice of the two periods
follows the time cycle of the regional air quality plans, which impose structural and
emergency measures for the period from October to March;

3. To analyse the non-linear response of the atmosphere considering different levels of
emission reduction.
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The structure of the paper is organised as follows. In Section 2, we describe the
four AQ modelling systems, the emission inventory common to all the models and the
emissions scenarios that are the focus of this study. In the same section, we also describe the
potential impact, a useful indicator used for the discussion of results and to compare results
with [31,32]. Section 3 presents the analysis of the base case concentrations, the impact of
NOx and NH3 reductions, and the assessment of non-linearity in PM2.5 concentrations with
respect to precursor changes. In Section 4, we finally discuss the results, considering the
main differences and the analogies compared to previous works [31,32].

2. Materials and Methods
2.1. Chemical Transport Models

Among all the air quality forecast tools operating on a daily basis within the PREPAIR
project, four AQ modelling systems were selected for this study: NINFA-ER (“Network
dell’Italia del Nord per previsioni di smog Fotochimico e Aerosol” [41], run by Arpae
Emilia-Romagna), PieAMS (“Piemonte Atmospheric Modeling System”, run by ARPA
Piemonte), SMAL-LO (“System Modeling Air Lombardy”, run by ARPA Lombardia) and
SPIAIR (“Sistema Previsione Inquinamento Air”, run by ARPAV) (see Figure 1 for the ap-
plication domain of the four AQ modelling systems). They rely on three state-of-the-art
CTMs, namely CHIMERE for NINFA-ER, FARM for PieAMS and SMAL-LO, and CAMx
for SPIAIR. The AQ modelling systems share the same annual anthropogenic emission
inventory for the whole Po Valley, but differ in terms of emissions spatialisation and specia-
tion/disaggregation, application domain and grid, meteorological input and parameterisa-
tions, and gas-phase and aerosol mechanisms. The physical and chemical parameterisations
included in each modelling system, together with the domain characteristics, are reported
in Table 1.
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Figure 1. Computational domains of the AQ modelling systems. The background stations used
for validation are indicated by blue dots, while orange stars show the super-site stations for PM10

composition. The NINFA-ER and PieAMS domains overlap.

The main differences concern gas-phase chemistry, aerosol models and meteorological
drivers, which are briefly described below. The emission inventory and modules are
discussed in Section 2.2.

The gas-phase chemical mechanisms are MELCHIOR2 [42] by NINFA-ER, SAPRC-99
POPS-Hg [43] by PieAMS and SMAL-LO, and the Carbon Bond mechanism (CB05, [44]) by
SPIAIR. The MELCHIOR2 gas-phase scheme, implemented within the CHIMERE model,
describes 120 chemical reactions of more than 40 gaseous species [45–47], while the SAPRC-
99POPS-Hg (an updated version of SAPRC-99) includes 215 chemical reactions of more
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than 140 species. The CB05 mechanism, used by CAMx, describes 156 reactions of 51 species
and it includes the simulation of hydrogen peroxide under low NOx conditions.

The main difference in aerosol schemes is how each module manages the size dis-
tribution of the aerosol. The CHIMERE model simulates the main aerosol processes by
dividing the aerosols in 10 size bins. PieAMS implements FARM with the AERO3_NEW [48]
aerosol module, while SMAL-LO runs FARM with the AERO0 [49] aerosol module. The
AERO3_NEW module describes particles distribution by a superposition of three lognor-
mal distributions (Whitby approach [50]), while the AERO0 module and CAMx (SPIAIR)
model use two size fractions for aerosols (fine and coarse).

Meteorological inputs for NINFA-ER, PieAMS and SPIAIR are provided by the limited
area atmospheric model COSMO-5M, which is used every day by the Italian National
Civil Protection Department (DPCM) and is implemented and operated by Arpae in the
framework of the COnsortium for Small-scale MOdelling (http://www.cosmo-model.org/
content/model/cosmo/default.htm, accessed on 2 March 2023) [51,52]. COSMO-5M covers
the Mediterranean area with 5 km horizontal resolution and 45 vertical levels from 20 m
up to 22 km. Conversely, the SMAL-LO model uses the Weather Research and Forecasting
(WRF) model, version 4.1.1 [53], at 4 km horizontal resolution with 33 levels from 20 m up
to 20 km.

The parameterisation of turbulent and convective processes in the atmosphere has a
significant impact on atmospheric stability and, consequently, on the simulated chemical
concentrations, as widely demonstrated by many studies [54–57]. For this reason, many
schemes have been developed by different authors and each modelling system implements
its own computational method. In this work:

• NINFA-ER accounts for the vertical turbulent mixing using the parameterisations of
Troen and Mahrt [58], while the horizontal transport is simulated according to the
formulation proposed by Van Leer [59];

• PieAMS and SMAL-LO make use of the vertical turbulence coefficients as implemented
in the Random Displacement Method [60,61]. Horizontal diffusion coefficients are
computed following the formulation of Smagorinsky [62] coefficients depending on
the local stability class and the wind speed. Horizontal advection–diffusion operators
are solved using the method by Yamartino [63], while the numerical integration of the
vertical diffusion equation follows Yamartino et al. [64];

• SPIAIR accounts for vertical turbulent mixing by means of vertical diffusion coeffi-
cients [65]. Horizontal diffusion coefficients are determined within CAMx using a
deformation approach based on the methods of Smagorinsky [62]. Horizontal advec-
tion is solved using the area preserving flux-form advection solver of Bott [66].

Table 1. Main features of the AQ modelling systems involved in this study.

NINFA-ER PieAMS SMAL-LO SPIAIR

CTM CHIMERE2017 r4v1 FARM v4.13 FARM v4.13 CAMx v6.5
Operator Arpae Emilia-Romagna ARPA Piemonte ARPA Lombardia ARPA Veneto

Vertical layers 9 levels up to
5800 m a.s.l.

16 levels up to
7500 m a.s.l.

16 levels up to
7979 m a.s.l.

11 levels up to
6000 m a.s.l.

Depth of the first
vertical layer ~25 m 10 m 20 m 20 m

Horizontal extension Lon: 6.25–14.37◦

Lat: 43.1–47.35◦
Lon: 6.25–14.37◦

Lat: 43.1–47.35◦
Lon: ~6.0–16.7◦

Lat: ~43.4–47.2◦
Lon: ~6.5–14.1◦

Lat: ~ 43.6–47.1◦

Horizontal resolution Lon: 0.07◦

Lat: 0.05◦
Lon: 0.07◦

Lat: 0.05◦
Lon: ~0.05◦

Lat: ~0.04◦
Lon: ~0.05◦

Lat: ~0.04◦

Meteorological driver COSMO-5M
model levels

COSMO-5M
model levels WRF-ARW

COSMO-5M pressure
levels (from 1000 hPa to

300 hPa) and surface
level (10 m)

http://www.cosmo-model.org/content/model/cosmo/default.htm
http://www.cosmo-model.org/content/model/cosmo/default.htm
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Table 1. Cont.

NINFA-ER PieAMS SMAL-LO SPIAIR

Chemical boundary
conditions PREV’AIR PREV’AIR QualeAria forecast

system PREV’AIR

Advection scheme Second-order van Leer
scheme [59]

Finite elements method
based on

Blackman cubic
polynomials [63]

Finite elements method
based on

Blackman cubic
polynomials [63]

Horizontal advection
uses input horizontal

winds fields and is
solved using the area

preserving
flux-form advection

solver of Bott [66]

Vertical diffusion

Vertical diffusion
coefficient (Kz)

approach following
Troen and Mahrt [58]

Vertical diffusion
coefficient (Kz)

approach following
RDM model [60,61].

Hybrid
semi-implicit/fully

implicit scheme [64].

Vertical diffusion
coefficient (Kz)

approach following
RDM model [60,61].

Hybrid
semi-implicit/fully

implicit scheme [64].

Kz approach, with
vertical eddy

diffusivity taken from
CMAQ [65]

Gas-phase chemistry MELCHIOR2 SAPRC-99_POPS-Hg SAPRC-99_POPS-Hg CB05
Aerosol model 10 bins (10 nm–40 µm) AERO3_NEW [48] AERO0 [49] Coarse/Fine (CF)

Ammonium nitrate
equilibrium ISORROPIA II [67] ISORROPIA II [68] ISORROPIA II [68] ISORROPIA [67]

SOA formation Single-step
oxidation scheme SORGAM [69] SORGAM [69] SOAP [70]

2.2. Emission Inventory and Temporal Modulations

The LIFE PREPAIR project includes, among its products, a common air pollutant
emission dataset on the Po Valley and Slovenia. The latest updated emission dataset refers
to 2017 and has been extensively discussed in Marongiu et al. [40].

All the local emission inventories that have been used to compose the unitary PREPAIR
inventory refer to the methodological reference EEA-EMEP Guidebook [71,72], and almost
all use the same emission modelling system (INEMAR, [73]).

Figure 2 summarises the main results reported for the LIFE PREPAIR Emission
dataset [40]. The combustion in the civil sector (mainly for heating) and road traffic are
relevant sources of primary emissions of PM10, CO and NOx, while the agriculture sector,
which encompasses manure management of livestock (housing, stocking and spreading)
and the use of mineral fertilisers, is the main source of NH3. Furthermore, residual content
of sulphur in burned fuels in industrial sources is the primary source of SO2.

Since the data regarding forest fires are collected at the municipal level but refer
to different years, those emissions have been disregarded to avoid misleading results.
Biogenic VOCs emissions were estimated for all AQ modelling systems with MEGAN
(Model of Emissions of Gases and Aerosols from Nature [74]).

The emission density maps at the municipal level for primary PM10, NOx and NH3
and additional detailed information can be found in [40].

The emission inventory adopted in this study distinguishes between stack sources
and emissions produced near the ground; thus, all the AQ modelling systems account for
both diffuse and point emission sources. Although all the modelling systems can allocate
point sources at specific heights, each system adopts a different vertical distribution for
diffuse emissions. More in detail, SPIAIR, due to a model limitation, sets all the diffusive
emissions in the first model layer, i.e., between the ground and 20 m, while NINFA-ER,
SMAL-LO and PieAMS distribute them following different vertical profiles according to
the SNAP emission sector or activity.

Temporal and spatial patterns used to allocate annual emission inventory to hourly
timestep are different for each modelling system. Figure 3 provides an overview of the
temporal distribution of NH3 emissions, a key precursor in the formation of secondary
PM2.5, throughout the year for each AQ modelling system. Figure 3a reports the total
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trimestral emissions and Figure 3b shows the monthly variability, providing the minimum
and maximum monthly NH3 emissions among the 4 models.
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2.3. Emission Scenarios

The reference year for meteorological conditions was 2019 and a total of ten emission
scenarios were simulated using NINFA-ER, PieAMS, SMAL-LO and SPIAIR, as described
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in Table 2. The emission inventory outlined in Section 2.2 was used to simulate a base case
scenario (named SC1), then NOx and NH3 precursors were reduced, either combined or
individually, from 25% up to 75% for nine additional scenarios, as in Table 2, in the whole
domain. No data assimilation was performed for any of the considered scenarios.

Table 2. Definition of the emission scenarios.

Reduction (%) NOx NH3 NOx-NH3

0 SC1 (base case)
25 SC2 SC3 SC4
50 SC5 SC6 SC7
75 SC8 SC9 SC10

To study the impact of each emission reduction on concentrations, the results are
focused on two main periods in 2019: a warm period from April to September and a cold
period from October to March. In previous works [31,32], March and October are classified
as transition periods and disregarded. In the present study, the entire year is considered by
dividing it into two large seasons in order to compare results and explore similarities.

2.4. Indicators

Following the formulation already presented by [31,32], the effects of the emission
reductions on PM2.5 concentrations are analysed using the concept of potential impact. A
potential impact (PI) is defined as a normalisation of the concentration changes (∆Cα) with
respect to the reduction strength (α). More specifically, ∆Cα can be computed as:

∆Cα = PM2.50 − PM2.5α (1)

where PM2.50 represents the PM2.5 concentration simulated using SC1, and PM2.5α is the
PM2.5 concentration produced by an emission reduction α from SC1. Then, the PI of a
single precursor is obtained as:

Pα
NH3 =

∆Cα
NH3
α

, Pα
NOX =

∆Cα
NOx
α

(2)

When the simultaneous reduction in both precursors is performed, the total PI is the
sum of the PI of the single precursors and a non-linear deviation term:

Pα
NOxNH3 =

∆Cα
NH3
α

+
∆Cα

NOx
α

+
Ĉα

NOxNH3
α

= Pα
NH3 + Pα

NOx + P̂α
NOxNH3 (3)

Ĉα
NOxNH3 is the interaction term and it quantifies the non-linearities in PM2.5 concen-

trations when an emission reduction is applied to both precursors (NOx and NH3).
Moving from an emission reduction α to a greater reduction β, it is possible to quantify

the changes in the PI between the two considered reduction levels. Subtracting the α level
PI from the β level PI, Equation (4) is obtained, and all the terms on the right side of this
equation quantify the total non-linearity introduced moving from the emission reduction α

to β. See [31,32] for further explanation.

Pβ
NOxNH3 − (Pα

NOX + Pα
NH3) = P̂α

NOxNH3 + P̂β−α
NOx + P̂β−α

NH3 + P̂β−α
NOxNH3 (4)

Generally, a limited number of scenarios are provided when designing air quality
plans, and they are used to estimate the responses to other emission reduction levels. PIs
could constitute effective formulations to determine the reduction threshold at which these
responses remain proportional to each other and thus easy to interpret. In addition, PI can
also be used to identify regions where the reduction in one of the precursors (on the whole
domain) is more effective in mitigating pollutant concentrations.
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In Section 3.3, two properties of PI are assessed to check the degree of linearity:

− Consistency, i.e., the variation in PI across the range of emission reductions;
− Additivity, i.e., the difference between the sum of the PI of each precursor and the PI
resulting from the simultaneous reduction in all precursors.

3. Results

In this section, a preliminary description of the spatial and temporal variation in
PM2.5 concentrations is presented, and then modelled concentrations by the four modelling
systems are validated against observations in terms of total daily PM2.5 concentrations and
daily PM10 inorganic components. Finally, chemical regimes and related non-linearities are
analysed in the following sections by means of PI.

3.1. Base Case Concentrations and Model Validation

The base case is useful for model validation to verify whether the AQ models simulate
the 2019 year satisfactorily, and for comparison with the scenarios of emission reduction.

The modelled PM2.5 concentrations by NINFA-ER, PieAMS, SMAL-LO and SPIAIR
are presented in Figure 4, where the average concentrations for the whole year are shown
in the bottom panels, those for the winter period are shown in the central panels and those
for the summer period are shown in the top panels. The winter season is characterised by
the highest concentrations due to the typical Po Valley meteorological conditions: recurrent
thermal inversions, persistent high-pressure systems and foggy conditions, which favour
air mass stagnation and pollutant accumulation [17,75–79]. In addition, specific emission
sources, such as non-industrial combustion processes, mainly wood burning for domestic
heating, are relevant only during winter, exacerbating the accumulation of particulate
matter in the whole Po Valley [80–82]. On the other hand, different weather conditions,
such as convective processes induced by higher solar radiation reaching the land surface
and lesser emissions, particularly those from domestic heating, favour generally better air
quality during summertime.
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All four AQ systems reproduce very similar spatial patterns for the concentrations
over the Po Valley (see Figure 4 and Table 3), with concentration averages differing by at
most 5 µg m−3 for summer and winter periods, and by 4 µg m−3 for the yearly average.
During wintertime, spatially averaged simulated PM2.5 concentrations are between 10 and
15 µg m−3. In this situation, SPIAIR tends to generally reproduce slightly higher values
than the other three CTMs, possibly because anthropogenic diffusive emissions are all
allocated to the first model layer, while the other systems account for more vertically spread
out emissions, causing more diluted concentrations close to the ground. On the other hand,
SMAL-LO shows generally slightly lower concentrations than the other systems, probably
due to different boundary conditions which might impact total PM2.5 concentrations all
over the simulation domain.

Table 3. Statistics of spatial PM2.5 concentrations for summertime (“Apr–Sep”), wintertime (“Oct–
Mar”) and yearly average (“Year”) computed for available cells over the shared area by the four
modelling systems.

Statistics Period NINFA-ER
(µg m−3)

PieAMS
(µg m−3)

SMAL-LO
(µg m−3)

SPIAIR
(µg m−3)

25th percentile Apr–Sep 9 8 5 7
average Apr–Sep 11 10 6 10
median Apr–Sep 11 10 6 10

75th percentile Apr–Sep 12 13 8 12
25th percentile Oct–Mar 6 6 4 7

average Oct–Mar 11 13 10 15
median Oct–Mar 9 10 7 12

75th percentile Oct–Mar 16 19 14 21
25th percentile Year 8 7 4 7

average Year 12 12 8 12
median Year 11 11 7 11

75th percentile Year 14 12 11 16

During spring and summertime, thanks to the increase in the atmospheric boundary
layer depth and to high temperatures that favour the gas phase of semi-volatile compounds,
PM2.5 concentrations sharply decrease with respect to the winter period and average spatial
concentrations fall to values between 7 and 11 µg m−3, with very similar distribution over
the whole domain (Figure 4).

The simulated PM2.5 concentrations from SC1 were compared with measurements
at 85 stations, located in rural, suburban and urban background areas within the Po
Valley. In addition, PM10 chemical characterisation was performed at six urban background
super-sites in Milan (Pascal and Senato stations, labelled as PA and SE, respectively, in
Figure 1), Turin (TO), Bologna (BO) and Vicenza (VI) and at Schivenoglia (SC), a rural
background location near Mantua. The PM10 components used for model comparison are
those representative of inorganic aerosols, i.e., total nitrate and ammonium, since in this
paper, only emission scenarios involving the reduction in those inorganic precursors are
analysed. The effects of emissions reduction on the formation of secondary organic aerosols
are not treated in this work. Figure 1 shows the station locations for total PM2.5 and PM10
chemical composition.

The comparison results show that models’ performances are in line with similar case
studies focusing on the same area [57,83–85] (see Figure 5a for monthly time series and
Figure 5b for model indicators). In addition, with the aim of assessing the models’ capability
to reproduce PM2.5 concentrations for policy making purposes, the model error is compared
with the Model Quality Objective (MQO) [86,87] using measurement uncertainty. The
analysis outcomes show that the Model Quality Indicator (MQI), the statistical index used
to determine whether the MQO is fulfilled, is lower than one for most of the stations (see
Figure S1 in the Supplementary Materials). More specifically, the percentage of the stations
that has the MQI lower than 1 for the yearly average PM2.5 concentrations is between 95%
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and 98%, depending on the model considered. This confirms that the model quality in
reproducing PM2.5 concentrations for policy use is fulfilled, and further investigations are
based on a robust model performance.
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Figure 5. Comparison between modelled and observed monthly averaged PM2.5 concentrations,
with related 95% confidence intervals (black segments in (a)) and statistical scores for NMB, R and
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ends of a box indicate the 25th and 75th percentiles, respectively.

Looking at the results more in detail (Figure 5b), SMAL-LO generally tends to underes-
timate observed PM2.5 concentrations for both summertime and wintertime but expresses
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a higher Pearson correlation coefficient (R) with respect to other models for summer and
yearly averages. NINFA-ER shows a contrasting behaviour between seasons: PM2.5 ob-
servations are generally overestimated during summertime (particularly between April
and July, Figure 5a) and underestimated during wintertime (mostly during January and
March). PieAMS, despite higher root mean square error (RMSE) values for summertime
with respect to other models, has an average normalised mean bias (NMB) very close to
zero for both seasons and for the yearly average. On the other hand, SPIAIR generally
tends to overestimate PM2.5 observations during both wintertime and summertime, but
RMSE and R are in line with the performances of the other models.

All the metrics previously mentioned are defined in Section S1 of the Supplementary
Materials.

Figure S2 in the Supplementary Materials reports the mean modelled and observed
concentrations of total nitrate (NO3

−) and ammonium (NH4
+) for all sites included in

the analysis. Average concentrations and relative 95% confidence intervals are reported
for summer and winter seasons, as well as for the yearly average. The results show that
ammonium concentrations are generally overestimated by NINFA-ER, particularly at the
rural background site (Schivenoglia), where the model failed to capture the yearly trend,
probably due to an overestimation of the ammonia emissions in this area all throughout the
year. The same model adequately reproduced total nitrate concentrations for all stations
considered. SMAL-LO and PieAMS, probably because they rely on the same CTM, show
generally similar results in reproducing total nitrate and ammonium concentrations, with
the former being underestimated during wintertime and the latter being well reproduced
throughout the whole year. Finally, SPIAIR, confirming the results obtained for the to-
tal PM2.5 concentrations, generally slightly overestimates all the inorganic components
considered in this study for the six stations.

3.2. Potential Impacts (PI) of Precursor Reduction

In previous studies [31,32], the Po Valley has been highlighted as one of the most
heterogeneous areas in Europe in terms of chemical processes that lead to the formation
of secondary inorganic aerosols, with contrasting chemical regimes being present within
hundreds of kilometres. Here, four modelling systems, in combination with a detailed and
updated emission inventory, were used to provide a detailed characterisation of chemical
regimes across the Po Valley during the cold and warm seasons. Different meteorological
forcing conditions and independent chemical schemes were used to provide a range of
variability to models output, yielding an additional value with respect to previous works
focusing on the same area.

As it is easy to prove, a combination of NOx and NH3 reductions is more effective
than reducing one single precursor, unless there are strong non-linear negative interactions;
nevertheless, it is worthwhile to assess which inorganic precursor needs to be prioritised to
achieve greater PM2.5 reductions. In this view, the individual PIs computed for the SC2,
SC5 and SC8 scenarios are compared with PIs from SC3, SC6 and SC9. Figures 6 and 7
depict the spatial distribution of the difference Pα

NOx − Pα
NOx for three levels of emission

reduction (25%, 50% and 75%, reported in the first, second and third rows, respectively)
during the cold (Figure 6) and warm (Figure 7) seasons. Positive values (red palettes)
indicate areas where the reduction in NOx will result in a greater reduction in PM2.5 (also
named NOx-sensitive), and negative values (blue palettes) show the regions where NH3
reductions are more effective in PM2.5 abatement (NH3-sensitive). Following previous
studies, for very weak NOx- or NH3-sensitive regimes, i.e., for those areas where a reduction
in one of the two precursors causes a close drop in PM2.5 concentrations, a neutral regime,
between −1 and +1 µg m−3, is assumed. It is worth emphasising that defining NOx- or
NH3-sensitive areas does not necessarily indicate that reducing emissions of NH3 or NOx,
respectively, will have no effect on PM2.5 concentrations. Rather, the relative magnitude of
its effects is smaller compared to reducing the other precursor.
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During the cold season (Figure 6), the NOx-sensitive regime tends to dominate a large
part of the Po Valley, particularly in the area centred in Mantua (labelled as Ma in the
maps) between Lombardy, Veneto and Emilia-Romagna. A second NOx-sensitive spot
is located in the province of Cuneo, around 50 km south of Turin (labelled as To) with
different intensity depending on the modelling system. NH3-sensitive zones are generally
less pronounced with respect to NOx-sensitive areas and located near Milan (labelled as
Mi), between Lombardy and Piedmont regions and in Bologna, with the latter noticed only
by SMAL-LO and NINFA-ER for strong emission reductions (75%).

Confirming the outcome of [31], NOx-sensitive regimes correspond to those regions
characterised by the highest agricultural emissions (NH3) of the whole Po Valley [40],
and NH3-sensitive regimes are located in NOx rich regions, such as the metropolitan
area of Milan. In addition, the multi-model analysis highlights that non-linearities are
characterised by a reinforcement of the respective chemical regimes (PIs are not constant
with the emission reduction strength).

By comparing the results obtained in this study for 25% reduction with those of [31],
three main findings can be observed. First, the extension and the absolute values of NH3-
sensitive areas found by [31] are larger and higher compared to those observed here. In [31],
the NH3-sensitive area encompasses the surrounding area of Milano, Bergamo, Crema
and Manerbio up to Verona, in a triangular shape. Here, the NH3-sensitive spot is mainly
centred in Milan and does not extend to the east side of the Po Valley, but slightly scratches
the west, as also highlighted by [31]. Secondly, the NOx-sensitive areas found in this study
roughly correspond to those of [31], for both location and magnitude. Finally, the main
difference with respect to [31] is that by increasing the reduction strength, we did not
observe a progressive shift in chemical regime, but rather a reinforcement of this latter.
NOx- and NH3-sensitive areas remain in place and tend to increase in intensity moving
from 25% to 75% reductions.

We believe that these discrepancies can be mainly attributed to a difference in the
emission inventory and in the temporal modulation profile used to distribute the annual
total. Indeed, the choice of the modulation profile for PM precursors seems to significantly
affect model results in terms of both PI and chemical regimes, even if the total annual
emission inventory is the same (see Figure 6, Figures S3 and S5).

Between April and September (warm period, see Figure 7), the entire Po Valley is
characterised by weak NOx-sensitive conditions, with a maximum intensity located in
the central part of the domain, between Mantua and Milan (Lombardy region) and in the
province of Cuneo (south of Turin, Piedmont), supporting the results obtained by [31] for
the summer season. Unlike the cold period, by increasing the emission reductions, the
chemical regime generally tends to reduce its extension and to decrease its intensity, making
neutrality the prevailing regime in the Po Valley. However, for the SPIAIR system, the
prevailing regime is NOx-sensitive also with the strongest emission reduction considered
in this study, although its extension progressively reduces with the reduction strength.

3.3. Analysis of Non-Linearities

As stated in the previous section, the Po Valley is dominated by significant variations
in chemical regimes within a limited geographic area. These variations emphasise the role
played by strong spatial emission gradients for both precursors. In areas with high NOx
emissions (such as the region near Milan), NH3 becomes the limiting factor in secondary
inorganic formation; conversely, the same role is played by NOx in those regions with
significant NH3 emissions. In this section, additivity and consistency of PI are evaluated in
both relative and absolute terms in order to quantify the effects of non-linearities.

Following Equation (2), when emission reductions are applied simultaneously to NOx
and NH3, the reduction in PM2.5 concentrations cannot be simply estimated as the sum of
the reduction induced by single precursors; rather, an additional component, the interaction
term, needs to be accounted for to assess the actual response of PM2.5 concentrations. In
Figure 8, information about the interaction term at the 25% reduction level is provided. The
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PIs computed for the simultaneous reduction in NOx and NH3 (combined reduction) are
plotted as a function of the sum of the single PI (sum reduction), and the deviation from
the bisector quantifies the interaction term. For most of the points depicted in Figure 9, the
interaction term is null or negative, and as indicated by the slope of the linear fit, it ranges
between −11% and −6% for the warm period and is between −7% and −5% for both the
cold period and the yearly average, confirming that for limited emission reductions (up
to 25%), the non-linearity in Po Valley tends to be in the order of −10%, as also shown by
other authors [88–91]. In other terms, the slope of the linear fit can be seen as a measure of
how much the PM2.5 concentrations would be overestimated if the individual NOx and
NH3 reductions were linearly added.
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Figure 8. Non-linear interaction term for 25% emission reduction scenario. Comparison between the
PI resulted from the simultaneous reduction in NOx and NH3 emissions (y-axis) and the sum of the
PI computed from the single reduction in the two precursors (x-axis). Each point in the scatter plot
represents a grid cell in the modelling domain, and the deviation from the bisector quantifies the
interaction term of the total non-linearity. The axis units are µg m−3.
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Figure 9. Boxplots of PM2.5 potential impacts at station locations. P(NOx) and P(NH3) indicate
potential impact computed from the reduction in NOx and NH3 emissions, respectively. P*(NOxNH3)
is the difference between the sum of single potential impacts and the potential impact of the simul-
taneous reduction in both precursors. Results from NINFA-ER, SMAL-LO, PieAMS and SPIAIR
are reported in the panels on the first, second, third and fourth row, respectively. The horizontal
lines in a box indicate the median; the lower and upper ends of a box indicate the 25th and 75th
percentiles, respectively.

The non-linear behaviour observed in Figure 8 can be explained by a shift in the
chemical regime when reductions become more important, and the negative nature of this
effect is due to the fact that a reduction in one of the two precursors involves a reduction
in both the components (NO3

− and NH4
+) of ammonium nitrate. Therefore, the PM2.5

reduction induced by jointly decreasing NOx and NH3 is lower than the effect caused by
the sum of the two.

Figure 9 shows the PI of each reduction scenario simulated in this study, considering
concentrations extracted at 85 station locations (see Figure 1). Boxplots coloured with
green represent the PI of NOx, those in red represent the PI of NH3 and those in black
represent the interaction term, of the opposite sign, of the simultaneous reduction in NOx
and NH3 (Equation (3)). A distinction between warm and cold periods (labelled Apr–Sep
and Oct–Mar, respectively), as well as for the yearly average (Year), is also made (see
different columns). The results highlight that the PIs of both precursors tend to increase
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by increasing the reduction strength for yearly averages and for the winter period. This
corresponds to an increase in efficiency toward higher percentages of emission reductions
(i.e., an enhancement of positive non-linearity; see also further discussion in this section). In
other terms, given that the relationship between the variation in PM2.5 concentrations and
the precursors’ emission reductions is not constant within the range assessed (25–75%), PI
cannot be used to interpolate or extrapolate the responses of other emission reduction levels.

On the other hand, during summertime, the response of the four modelling systems
is generally more consistent than during wintertime, particularly for NOx reductions, for
which PIs remain almost constant in all the three reduction steps, showing limited non-
linearities. In addition, during summer, the concentrations of ammonium and nitrate are
on average very similar between models for all the simulated scenarios (Figure S4). The
only exception is represented by SPIAIR, which generally tends to model higher nitrate
concentrations compared to other models. These higher concentrations also seem to affect
the efficiency in reducing the same nitrate, being generally higher for SPIAIR than the other
models (Figure S6).

Focusing on the abatement of single precursors, the reduction in NOx on average is
more efficient than the reduction in NH3, particularly during the warm period, when more
than half of the total annual ammonia is emitted and PM2.5 concentrations become more
sensitive to NOx emissions. Conversely, during winter, a contrasting behaviour is observed
between the models. On average, NINFA-ER and SMAL-LO express similar PIs for NOx
and NH3 reductions, while PieAMS and SPIAIR are clearly more sensitive to NOx emissions.
A possible explanation could be found in the differences in the reduction efficiency of
ammonium and nitrate: these are higher for NINFA-ER and SMAL-LO compared to the
other models during wintertime when NH3 emissions are reduced (see SC3, SC6 and SC9
facets in Figure S5). Furthermore, as introduced in the previous section, we think that
different temporal emission modulations can produce significant differences in the model
behaviour during the same season. For example, looking at the PI of PieAMS and SMAL-
LO during winter, even if they share the same CTM, the response to NH3 reduction is
considerably different. In fact, the efficiency in reducing nitrate for this season by SMAL-LO
is on average higher than PieAMS (see SC3, SC6 and SC9 facets in Figure S5).

Valuable information on the additive property of linearity is provided in Figure 9. Black
box plots highlight that when reductions do not overcome 25%, the interaction term tends
to be limited below 1 µg m−3 (about 10%, see Figure 8), while all the models agree with its
increase toward higher percentages of emission reductions, on average up to 2–4 µg m−3

(about 25–30% in relative terms, not shown), depending on the model considered.
Considering applying a certain reduction to both precursors (for example, 25% or

50%), and from that situation further increasing the reduction to a higher level (50% or 75%,
respectively), three additional non-linear terms are generated (see the right side of Equation
(4)) by comparing respective PIs. Each term represents a peculiar feature of the non-linearity.
In particular, single precursor non-linearity (i.e., P̂β−α

NOx and P̂β−α
NH3) tells us whether or not

the chemical regime (PM2.5 sensitivity to one precursor) is consistent with emission pertur-
bations. High values of single precursor non-linearity indicate more variability in chemical
regimes during emissions abatement, while low values lead to more stability. Conversely,
the sum of the multi-precursor non-linear interaction terms (P̂α

NOxNH3 + P̂β−α
NOxNH3) quanti-

fies the strengthening (negative values) or the weakening (positive values) of the NOx-NH3
non-linear interaction term when stricter emission reductions are applied.

Figure 10 shows the PI variation when the reductions are increased from 25% to 50%
and from 50% to 75% for the two periods considered in this study (April–September and
October–March). Regardless of seasonality, it is worthwhile to note that all the modelling
systems used in this study agree that reducing emissions increases the PI, which means that
the overall non-linearities are positive and increase with the emission reduction strength.
In relative terms, moving from 25% to 50% reduction, the non-linearity increases between
20% and 30% depending on the modelling system (see the linear fit slope) and between
10% and 40% from 50% to 75% reduction.
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Figure 10. Scatter plots representing the relation between impacts of combined emission reduction
in NOx and NH3 from 25% to 50% emission reduction (top panel) and from 50% to 75% (bottom
panel). Dots represent a grid cell in the modelling domains, with blue for wintertime and yellow for
summertime. The distance from the 1:1 line quantifies the magnitude of the overall non-linear terms.

On the other hand, during the warm period, PIs are slightly negative and decrease
with the emission reduction strength, revealing a limited change in non-linearity when
stricter emission reductions are applied for the warm period. More in detail, PI decreases
between −2% and −7% (linear fit slope between 0.98 and 0.93) moving from 25% to 50%
reduction and between −4% and −11% (linear fit slope between 0.96 and 0.89) moving
from 50% to 75% reduction.

The relative increment in PIs seen in Figure 10 for the cold and warm periods can also
be observed in absolute terms in Figures 11 and 12, where the total non-linearity introduced
by increasing emission reduction is shown in terms of µg m−3 through spatial maps. During
the cold period (Figure 11), all modelling systems show an increment in non-linearities
(green palettes) in the area centred in Mantua between Lombardy, Emilia-Romagna and
Veneto for both reduction steps. The increment tends to be limited to 3 µg m−3, with the
only exception of SPIAIR, which shows generally higher values and a maximum increment
of 3.8 µg m−3 in the southern part of Lombardy when emissions are decreased from 50%
to 75%. A possible explanation of this different behaviour can be found in the approach
followed by SPIAIR for the vertical distribution of the anthropogenic emissions. In contrast
to the other systems, all emissions are allocated to the first model layer, which may result
in stronger effects on PI computation when high levels of reduction are applied.
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Confirming the outcomes shown by other authors [31,32], by disentangling the total
non-linearity in three terms (Equation (4) and Figure S7 in the Supplementary Materials),
the total contribution is dominated by the single NOx non-linearity (reinforcement of NOx-
sensitive regime), while the single NH3 non-linearity has only a modest contribution. On
the other hand, the non-linear interaction term tends to be neutral or slightly negative
(violet palettes for negative values), indicating that the NOx–NH3 non-linearity increases
upon moving from 25% to 50% and from 50% to 75% reductions (this latter case is not
shown as spatial maps but is visible from the black box plot of Figure 9).

During the warm period (Figure 12), PI variations are smaller than those during the
cold period (see different scale between Figures 11 and 12), and in contrast to this latter
period, the overall non-linearities are slightly negative, which means that by increasing
the reduction strength, the PI decreases. Figure S8 in the Supplementary Materials also
shows that for the warm period, the multi-precursor non-linear interaction terms dominate
the total non-linearity, implying a reinforcement of the P̂α

NOxNH3 component, i.e., the more
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emissions are reduced, the more this latter term becomes negative, as observed for the
cold period.

4. Discussion and Conclusions

When a decision maker has to decide whether to take a specific action for a specific
air quality target, he/she needs to understand how this action affects different locations
(i.e., spatial variability) and how much is efficient. Whereas it is quite simple to design
successful solutions for non-reactive primary pollutants, it is much more complex for sec-
ondary compounds, for which the relation between emission reductions and concentrations
abatement might not be linear.

This paper follows the scheme of recent works on PM2.5 concentrations in the Po
Valley [31,32], where a single CTM was used to simulate emission scenarios. In this study,
four chemical transport models, used by four different Italian Environmental Agencies,
were applied over the Po Valley to provide a robust response to reducing emissions of two
important inorganic precursors, nitrogen oxides (NOx) and ammonia (NH3), in the forma-
tion of secondary PM2.5. NOx and NH3 were reduced individually and simultaneously,
from 25% to 75%, with the aim of providing insight about abatement strategies necessary
to further reduce pollution levels.

To verify the robustness of the AQ modelling system responses, the base case was used
to validate modelled PM2.5, total ammonium and total nitrate concentrations with respect
to observations at background stations. Modelled concentrations from emission reductions
were also compared to the base case to describe the spatial and temporal variability of
chemical regimes and to outline the reduction efficiency in terms of potential impacts (PI).

The first straightforward conclusion from our analysis is that for both summertime
and wintertime, all the modelling systems simulate on average lower PM2.5 concentrations
when both precursors are jointly decreased. Besides this expected outcome, we found an
important difference with respect to [31]. The four modelling systems did not observe an
increase in PM2.5 concentrations by reducing NOx emissions. Even if the same explanation
provided in [31] about the increase in the oxidative capacity of the atmosphere for limited
NOx reductions could hold here, the conditions experienced during this study did not bring
an increase in ammonium and nitrate concentrations for the same reductions tested in [31].
Rather, we observed a progressive decrease (more than linear) in these two components
toward stronger reductions, for both seasons. Different meteorological years (2019 here
and 2015 in [31]) and different emission and model resolutions might have led to different
outcomes. Indeed, the first reduction step at 25% may be too high to observe the same
increase noted by [31] for the model set-ups and emission inventory used here. Thus, we
think that additional tests at lower reduction steps (below 25%) are needed to provide more
insight about the phenomenon observed by [31].

In the second part of the study, the analysis of PI and chemical regimes identified two
contrasting chemical regimes during the cold season. NOx-sensitive areas were detected
in Mantua (between Lombardy, Veneto and Emilia-Romagna regions) and in the province
of Cuneo (south of Turin), which correspond to NH3 rich regions. On the other hand, a
NH3-sensitive spot is located near Milan and between Lombardy and Piedmont, where
NOx emissions are generally high. It is interesting that, by comparing the results of this
paper with those obtained in [31] for winter, the extension of the NH3-sensitive area
observed here encompasses only the territory surrounding Milan, whereas in [31], the
NH3-sensitive area covers a large part of the Northern Po Valley, from Milan to Verona.
The same area in [31] was also under strong NH3-sensitive conditions, while here, NH3-
sensitive spots were generally weak. Moreover, [31] noted a progressive shift in chemical
regime toward stronger reductions, which was not found here for any of the modelling
systems. Conversely, we observed a reinforcement of both the chemical regimes when
moving from low to higher emission reductions. A possible explanation could be found in
the differences in the emission inventories and in the temporal modulation profiles used
to allocate emissions during the year. In addition, the usage of different meteorological
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years can also produce significant differences in model responses in the identification of
chemical regimes.

During summertime, the situation changes: although the neutrality of PI between
NOx and NH3 tends to predominate, particularly for strong emission reductions, PM2.5
concentrations are characterised by weak NOx-sensitive conditions, with the highest inten-
sity occurring between Mantua and Milan, confirming more similarities between this study
and [31] in summer.

Although the assessment of chemical regimes may imply counter-intuitive actions, a
reduction in NOx emissions over NOx-sensitive areas and a reduction in NH3 emissions
over NH3-sensitive areas would be the most efficient abatement strategy for decreasing
PM2.5 concentrations.

The analysis of non-linearities revealed that during the cold season, the PIs tend to
increase by increasing the emission reductions, particularly in those areas identified as
NOx-sensitive, expressing positive non-linearities for each reduction considered (i.e., the
more emissions are reduced, the more efficiently PM2.5 concentrations are decreased, as
similarly concluded by [31]). During summertime, the magnitude of non-linearities is
smaller than in wintertime and PIs tend to remain almost constant, or slightly negative,
by increasing the emission reductions. Since wintertime PM2.5 concentrations are higher
than in summertime, it is possible to conclude that strong emission reductions should be
envisaged to maximise reduction effectiveness.

This study also found that by increasing the reduction strength, the difference between
the PI of the simultaneous reduction in NOx and NH3 and the sum of a single PI increases
for both seasons, being limited to 1 µg m−3 (10% in relative terms and thus manageable
in terms of air quality planning) for limited emission reductions (25%) and increasing
on average up to 4 µg m−3 (about 30%) for 75% emission reductions, which cannot be
neglected in the design of air quality plans.

To conclude, to carefully determine whether further PM2.5 abatement may be achieved,
additional simulations aimed at exploring the effects of other precursor reductions should
be performed. Other key pollutants in the formation of secondary PM2.5 are sulphur
dioxide (SO2) and non-methane volatile organic compounds. Although SO2 has generally
low concentrations in the Po Valley, its further reduction may lead to additional PM2.5
decreases, as stated in [32], because of its involvement in secondary particulate processes.
Non-methane volatile organic compounds could also have an important impact since they
affect oxidant concentrations and, consequently, nitrate and sulphate formation.
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