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Abstract Motivated by some recent studies on the Allen–Cahn phase transition model with
a periodic nonautonomous term, we prove the existence of complex dynamics for the second
order equation

−ẍ + (
1 + ε−1A(t)

)
G ′(x) = 0,

where A(t) is a nonnegative T -periodic function and ε > 0 is sufficiently small. More
precisely, we find a full symbolic dynamics made by solutions which oscillate between any
two different strict local minima x0 and x1 of G(x). Such solutions stay close to x0 or x1 in
some fixed intervals, according to any prescribed coin tossing sequence. For convenience in
the exposition we consider (without loss of generality) the case x0 = 0 and x1 = 1.

Keywords Periodic solutions · Non-autonomous equations · Allen–Cahn equation ·
Complex dynamics

Mathematics Subject Classification 34C25 · 34C28 · 54H20

1 Introduction

Let G : [0, 1] → R be a differentiable function with locally Lipschitz continuous derivative
g(x) := G ′(x) satisfying the following condition
(G1) G ′(0) = 0 = G ′(1) and there exist a0, b0 with 0 < a0 < b0 < 1 such that

g(x) > 0 ∀ x ∈ ]0, a0] and g(x) < 0 ∀ x ∈ [b0, 1[ .
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Let A : R → R be a T -periodic locally integrable function such that for some τ ∈ ]0, T [
it holds that
(A1) A(t) = 0 for a. e. t ∈ [τ, T ] and A(t) > 0 for a. e. t ∈ [0, τ ].

In this paper, we study the second order nonlinear scalar ODE

ẍ − wε(t)G
′(x) = 0, (1)

where, for ε > 0,

wε(t) := 1 + A(t)

ε
.

Solutions of (1) are meant in the Carathéodory setting.
The study of these equations is motivated by the search of stationary solutions to some

parabolic PDEs which are used in physical models of phase transition. A classical example is
given by theAllen–Cahn equation introduced in [4]. In suchmodels a typical potentialG(x) is
a double well function as in the real Ginzburg-Landau equation. The presence of nonconstant
weight functions accounts for models describing heterogeneous materials. In recent years a
great deal of interests has been devoted to the study of multiple solutions satisfying different
boundary conditions (see, for instance [1–3,5,6,9,17,18] and the references therein).

Our interest for Eq. (1) is motivated by recent works by Byeon and Rabinowitz [6–9]
concerning the equation

− Δu + AεG
′(u) = 0, x ∈ R

N , (2)

where G is a double well potential of the form G(u) = u2(1 − u)2 and

Aε(x) := 1 + A(x)

ε
,

where A(x) is a nontrivial non-negative function which is 1-periodic with respect to
x1, . . . , xN and such that the support of A|[0,1]N is contained in ]0, 1[N . It was shown in [6]
that there is an infinitude of mixed states that shadow 0 and 1 in any prescribed way on a
spatially periodic array of sets (from the Introduction in [8]). Further improvements of this
result were obtained in [9], by producing several other solutions of mountain pass type.

In the present work we consider a simpler situation with respect to the case of (2), in fact
we deal with the one-dimensional case N = 1. On the other hand, we obtain analogous results
with a completely different approach which rely on the theory of topological horseshoes [11]
applied to planar dynamical systems. Our main results (Theorems 1 and 2) require a minimal
set of assumptions on the potential. In particular, in our first result, we only suppose the
existence of two strict local minima for the potential which are conventionally indicated as 0
and 1. Such local minima are neither required to be consecutive ones, nor at the same energy
level. Indeed, we have:

Theorem 1 Assume (G1) and (A1). For every pair (a, b) with 0 < a ≤ a0 and b0 ≤ b < 1,
there exists ε∗ = ε(a, b) > 0 such that, for each fixed ε ∈ ]

0, ε∗[ the following property
holds.

For each nontrivial two-sided sequence s = (sn)n∈Z ∈ {0, 1}Z , there exists at least one
solution u(t) = us,ε(t) of (1) with the following properties:

1. 0 < u(t) < 1 for all t ∈ R;
2. for all n ∈ Z one has that

{
0 < u(t) ≤ a if sn = 0

b ≤ u(t) < 1 if sn = 1
∀t ∈ [nT, nT + τ ];
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3. u is kT -periodic if the sequence s is k-periodic for some k ∈ N.

In particular, as ε → 0+, we have that:

us,ε → sn uniformly on [nT, nT + τ ] for each n ∈ Z.

In the trivial cases s = (0)n∈Z and s = (1)n∈Z we can only provide the trivial solutions u ≡ 0
and u ≡ 1, respectively.

Our result can be applied to any two strict local minima of the potential G(x) in equation
(1) without any other assumption on G. In particular, we do not assume that G(0) = G(1) (a
condition which sometimes has been required in related papers). Indeed, if G is a potential
with several (possibly infinitely many) strict local minima, we can take any pair {x0, x1}with
x0 < x1 of such local minima and obtain a complex dynamics in the interval ]x0, x1[ of the
form described in Theorem 1. Another feature of our result is that we could allow the weight
function A(t) to vanish at some points in ]0, τ [, provided that there is no subinterval of ]0, τ [,
where A(·) vanishes identically. However, our method can be easily adapted also to deal with
the case in which the shape of the function A(t) is made by a finite number of positive humps
separated by some intervals where A(·) vanishes identically. This is briefly described at the
end of Sect. 3. Finally, we point out that the constant ε∗ can be estimated in terms of the
coefficients of the equation (see the determination of ε0 in Lemma 5). Even if we find useful
for our computations to exploit some properties of the conservative equation x ′′ +G ′(x) = 0
(for example, in using the energy level lines as comparison trajectories), however our method
of proof is of topological nature and do not rely on the Hamiltonian/variational structure of
(1). As a consequence, conclusions 1, 2, 3 of Theorem 1 are still true for an equation of the
form

x ′′ + cx ′ + wε(t)G
′(x) = 0

provided that c is a sufficiently small constant (depending on ε).
Using a classical approach, the study of (1) will be performed by means of the analysis

of the equivalent system in the phase plane:
{
ẋ = y

ẏ = wε(t)g(x).
(3)

For such a system, we will show that the associated Poincaré map has a rich dynamics.
The present paper is organized as follows. In Sect. 2 we recall the main topological tools

which are used in the proof of our theorems. Namely, we give a brief survey of the so-
called stretching along the paths (SAP) method introduced in [13] and further developed
in a series of articles [12,14–16]. Section 3 is devoted to the proof of Theorem 1 and to
some of its immediate extensions. Subsequently, in Sect. 4, we propose a refinement of the
results obtained in our main theorem from the point of view of the oscillatory properties of
the solutions. This is obtained in Theorem 2, by imposing some extra assumptions on the
potential G(x) and also on the weight function A(t).

Throughout the article, the following basic set of notation is used: We denote by Z and N

the sets of integers and nonnegative integers, respectively.

2 Topological Tools

In this section, we briefly recall some topological results concerning the method of stretching
along the paths (SAP). The general theory has been developed for domains which are home-
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omorphic images of cylindrical sets in a Banach space (see [16]), however, for the purpose
of the present paper, we just expose some basic facts in the simplified setting of planar maps.

By an oriented rectangle we mean a pair R̃ := (R,R−), whereR ⊂ R
2 is a homeomor-

phic image of the unit square [0, 1]2 andR− ⊂ ∂R is the union of two disjoint compact arcs
denoted by Rleft and Rright. Consider now a continuous map Ψ : DΨ (⊂ R

2) → R
2. Given

two oriented rectangles Ã := (A,A−), B̃ := (B,B−), and a compact subset K of A∩DΨ ,

we say that the pair (K, Ψ ) stretches Ã to B̃ along the paths and write (K, Ψ ) : Ã �−→B̃ if
for each continuous curve γ : [0, 1] → A with γ (0) ∈ Aleft and γ (1) ∈ Aright there exist
t ′, t ′′ ∈ [0, 1] (with t ′ < t ′′) such that

1. γ (t) ∈ K and Ψ (γ (t)) ∈ B for all t ∈ [t ′, t ′′];
2. Ψ (γ (t ′)) and Ψ (γ (t ′′)) belong to different components of B−.

Usually the curve γ is called a path and its restriction to [t ′, t ′′] a sub-path. We also say
that Ψ stretches Ã to B̃ along the paths with crossing number m and write Ψ : Ã �−→m B̃,
if there exist m ≥ 2 pairwise disjoint compact subsets K1 . . . ,Km of A ∩ DΨ , such that
(Ki , Ψ ) : Ã �−→B̃ for each i = 1, . . . ,m.

The SAP technique allows to prove the existence of fixed points for Ψ in the set K, when
(K, Ψ ) : R̃ �−→R̃, and, moreover, to detect the presence of a full symbolic dynamics on m
symbols when Ψ : R̃ �−→mR̃, for some m ≥ 2. It can be interpreted in the context of the
theory of so-called topological horseshoes, a name that is usually given to those theories that
propose to extend the prototypical geometric scheme of Smale’s horseshoe in a topological
setting.

We present below some results which will be then applied to the Poincaré map associated
to (1). For the sake of completeness in the exposition, we also introduce the set Σm :=
{0, . . . ,m − 1}Z of two-sided sequences of m ≥ 2 symbols with its standard metric and the
(Bernoulli) shift automorphism σ : Σm → Σm defined by σ : (sn)n → (sn+1)n .

Lemma 1 Let Ψ : DΨ (⊂ R
2) → R

2 be a continuous map. Suppose there are two oriented
rectangles R̃0 and R̃1 and four compact and pairwise disjoint sets Hi, j ⊂ Ri ∩ DΨ such
that

(
Hi, j , Ψ

) : R̃i �−→R̃ j , ∀ i, j ∈ {0, 1}.
Then, for each two-sided sequence s := (sn) ∈ Σ2, there exists a sequence of points (zn)n∈Z
in DΨ with zn+1 = Ψ (zn), ∀ n ∈ Z, such that

zn ∈ Hsn ,sn+1 , ∀ n ∈ Z

and, moreover, we can choose (zn)n as a k-periodic sequence if s is k-periodic. Furthermore,
if Ψ is one-to-one, there exists a compact set Λ ⊂ DΨ ∩ (

R0 ∪ R1
)
which is invariant for

Ψ and such that Ψ |Λ is topologically semiconjugate to the Bernoulli shift on two symbols

Λ Λ

Σ2 Σ2

�Ψ

�
h

�
h

�
σ

with the continuous surjection h (making the diagramcommutative) such that h−1(s) contains
a k-periodic point of Ψ for every k-periodic sequence s ∈ Σ2.
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R0 R1Ψ |H0,0

Ψ |H0,1

Ψ |H1,1

Ψ |H1,0

Fig. 1 Graph associated with the situation described in Lemma 1

In the setting of Lemma 1 it is possible to derive further information about dynamical
properties of the mapΨ. For instance, we know that the topological entropy ofΨ |Λ is at least
log 2. Figure 1 illustrates the directed graph associated to Lemma 1.

Lemma 1 can be extended to the case of a stretching with any crossing number m ≥ 2.
In this situation we can produce an invariant set Λ which is semiconjugate to the Bernoulli
shift on m symbols in Σm . Actually, these results can be derived from a general criterion
concerning an arbitrary sequence of oriented rectangles and maps (see [14, Theorem 2.2])
which we recall here for a later use in Sect. 4.

Lemma 2 Assume there are double sequences of oriented rectangles R̃n , compact sets
Ln ⊂ Rn and maps Ψn (for n ∈ Z) such that

(Ln, Ψn) : R̃n �−→R̃n+1, ∀ n ∈ Z.

Then, the following conclusions hold:

– There exists a two-sided sequence (zn)n∈Z such that zn ∈ Ln and Ψn(zn) = zn+1 for all
n ∈ Z;

– If there are integers p, q with p < q such that R̃p = R̃q , then there is a finite sequence
(zn)p≤n≤q with zn ∈ Ln and Ψn(zn) = zn+1 for each n = p, . . . , q − 1, and such that
zq = z p.

In the special casewhenΨn = Ψ for all n ∈ Z, the second instance of Lemma 2 guarantees
the existence of a fixed point for Ψ q−p , that is a periodic point of Ψ with period equal to
q− p.By a suitable choice of the setsLn it will be possible to prove that q− p is the minimal
period.

3 Main Results

In this section we prove Theorem 1 as an application of Lemma 1 to the Poincaré map
associated to system (3). Accordingly, as a first step, we make sure to have such Poincaré
map globally defined on the plane. We extend G on the whole real line by setting:

G̃(x) :=

⎧
⎪⎨

⎪⎩

G(0) if x < 0

G(x) if 0 ≤ x ≤ 1

G(1) if x > 1,

(4)

which is still differentiable in R with a locally Lipschitz continuous derivative g̃ := G̃ ′.
Thanks to (4) all the solutions of

ẍ − wε(t)g̃(x) = 0 (5)
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are defined for all t ∈ R. Such a modification does not affect our study since, by a suitable
form of the maximum principle, we can prove that solutions of (5) which are frequently in
]0, 1[ must necessarily have range in ]0, 1[. Indeed we prove the following:

Lemma 3 Assume x(t) is a solution of (5) and that there is a double sequence (tn)n∈N such
that tn → ±∞ as n → ±∞, x(tn) ≤ 1 for all n ∈ Z and there is a k ∈ Z such that x(tk) < 1.
Then x(t) < 1 for all t ∈ R. Similarly, if x(tn) ≥ 0 for all n ∈ Z and there is a k ∈ Z such
that x(tk) > 0, then x(t) > 0 for all t ∈ R.

Proof Without loss of generality we assume that tn is strictly increasing. Suppose (by con-
tradiction) there is t∗ ∈ R such that x(t∗) > 1. We have t∗ ∈ ]

tn, tn+1
[
for some n ∈ Z and

let [t ′, t ′′] be the maximal interval such that t∗ ∈ [t ′, t ′′] ⊂ [tn, tn+1] and x(t) > 1 in
]
t ′, t ′′

[
.

By the continuity of x and the unique solvability of Cauchy problems for (5) we have that
x(t ′) = x(t ′′) = 1, ẋ(t ′) > 0 and ẋ(t ′′) < 0. Hence:

0 > ẋ
(
t ′′
)− ẋ

(
t ′
) =

∫ t ′′

t ′
wε(t)g̃ (x(t)) dt = 0,

that is a contradiction. We have thus proved that x(t) ≤ 1 for all t ∈ R. If x(t̂) = 1 for
some t̂ , then ẋ(t̂) = 0 and by the unique solvability of the Cauchy problems for (5), we have
x(t) ≡ 1. This cannot happen in our case because x(tk) < 1. Hence x(t) < 1 for every t . A
similar argument applies to prove that x(t) > 0 for every t . ��

In what follows, in order to simplify the notation we will write G and g in place of G̃ and
g̃.

On the time interval [τ, T ] all the solutions of (1) are in fact solutions of the autonomous
equation {

ẋ = y

ẏ = g(x)
(6)

therefore the pairs (x(t), y(t)) = (x(t), ẋ(t)) lie on the level lines of the energy

E(x, y) := y2

2
− G(x). (7)

Lemma 4 Let

G∗ := min
x∈[0,1]G(x)

and let us fix any E0 such that

E0 ≥ 1

2(T − τ)2
− G∗. (8)

We have that every solution (x, y) of (6) with energy E(x(t), y(t)) = E0 and x(τ ) ∈ [0, 1]
satisfies x(T ) ≥ 1 if y(τ ) > 0 and x(T ) ≤ 0 if y(τ ) < 0.

Proof For all t ∈ [τ, T ] we have that:
ẋ(t)2 = y(t)2 = 2(G(x(t)) + E0) ≥ 2(G∗ + E0) > 0,

by (8) and, thus, either ẋ(t) > 0 for all t ∈ [τ, T ] or ẋ(t) < 0 for all t ∈ [τ, T ]. In both cases
we can estimate:

|x(T ) − x(τ )| =
∫ T

τ

|ẋ(t)|dt ≥ (T − τ)
√
2 (G∗ + E0) ≥ 1
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again by assumption (8), and the thesis follows. ��
For each a ∈ ]0, a0] and b ∈ [b0, 1[ let us introduce the following “rectangular” domains

R0 := {
(x, y) : 0 ≤ x ≤ a and y2 ≤ 2(G(x) + E0)

}

R1 := {
(x, y) : b ≤ x ≤ 1 and y2 ≤ 2(G(x) + E0)

}

where E0 satisfies (8) (see Fig. 2). The sets R0 and R1 will be the supports of two corre-
sponding oriented rectangles. Indeed we choose an orientation on R0 and R1 by setting:

Rleft
0 := {0} ×

[
−√2(G(0) + E0), 0

]

Rright
0 := {a} ×

[
−√2(G(a) + E0),

√
2(G(a) + E0)

]

and, symmetrically:

Rleft
1 := {1} ×

[
0,
√
2(G(1) + E0)

]

Rright
1 := {b} ×

[
−√2(G(b) + E0),

√
2(G(b) + E0)

]
.

For later use we also define:

Rtop
0 :=

{(
x,
√
2(G(x) + E0)

)
: 0 ≤ x ≤ a

}

Rbot
0 :=

{(
x,−√2(G(x) + E0)

)
: 0 ≤ x ≤ a

}

Rtop
1 :=

{(
x,−√2(G(x) + E0)

)
: b ≤ x ≤ 1

}

Rbot
1 :=

{(
x,
√
2(G(x) + E0)

)
: b ≤ x ≤ 1

}
.

Lemma 5 Fix δ1, δ2 with 0 < δ1 < δ2 < a. Then there is ε0 = ε0(δ1, δ2, a) > 0 such
that the following properties hold for the solutions (x(t), y(t)) of (3) on the interval [0, τ ]
whenever ε ∈ ]0, ε0[:

1. if (x(0), y(0)) ∈ R0 and x(0) = δ2 and [0, t1] is the maximal interval in [0, τ ] such that
(x(t), y(t)) ∈ R0 ∩ {(x, y) : x ≥ δ1} for all t ∈ [0, t1], then t1 < τ , δ1 < x(t) < a for
all t ∈ [0, t1] and y(t1) = √

2(G(x(t1)) + E0);
2. if (x(t0), y(t0)) ∈ R0, x(t0) ≤ δ2, y(t0) ≥ 0 for some t0 ∈ [0, τ ] and [t0, t1] is the

maximal interval in [t0, τ ] such that (x(t), y(t)) ∈ R0 for all t ∈ [t0, t1], then x(t) < a
for all t ∈ [t0, t1].

Proof We let

g0 := min
s∈[δ1,a] g(s)

M := max
(x,y)∈R0

|y| = √
2(G(a) + E0)

r := min

{
τ,

δ2 − δ1

M
,
a − δ2

M

}

ε0 := g0
2M

min
t0∈[0,τ−r ]

∫ t0+r

t0
A(t)dt

and remark that ε0 > 0 by our assumptions on g and A. In what followswe fix any ε ∈ ]0, ε0[.
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In order to prove Statement 1 we point out that the solution (x(t), y(t)) may exit the set
R0 ∩ {x ≥ δ1} only through one of the vertical lines {δ1} × ]−∞, 0[ and {a} × [0,+∞[ or
through Rtop

0 and Rbot
0 . If we use the energy E(x, y) in (7) and, along solutions of (3) for

t ∈ [0, t1] , we compute:

Ė(x(t), y(t)) = −g(x(t))y(t) + y(t)

[
1 + A(t)

ε

]
g(x(t)) = A(t)

ε
y(t)g(x(t)),

we immediately deduce that Ė(x(t), y(t)) ≤ 0when y(t) ≤ 0. Therefore, as long as y(t) ≤ 0
for t ∈ [0, t1], E(x(t), y(t)) cannot increase above the value E0 and the solution (x(t), y(t))
cannot exitR0 throughRbot

0 . Thus, if we assume by contradiction that Statement 1 does not
hold, then only the following three possibilities can occur: t1 = τ or x(t1) = δ1 or x(t1) = a.
Since:

|x(t1) − δ2| = |x(t1) − x(0)| =
∣
∣
∣
∣

∫ t1

0
y(t)dt

∣
∣
∣
∣ ≤ Mt1,

in all three cases we have t1 ≥ r . Hence, we obtain the following contradiction:

2M ≥ y(t1) − y(0) =
∫ t1

0

(
1 + A(t)

ε

)
g(x(t))dt ≥ g0

ε

∫ r

0
A(t)dt > 2M (9)

since ε < ε0.
In a similar way we can show that, if (x(t), y(t)) is a solution as in Statement 2 which

also satisfies x(t1) = a, then again we have that t1 − t0 ≥ r and a contradiction like (9) is
obtained. ��

A symmetric result holds in R1 and can be proved in a similar way.

Lemma 6 Fix δ1, δ2 with b < δ2 < δ1 < 1. Then there is ε1 = ε1(δ1, δ2, b) > 0 such
that the following properties hold for the solutions (x(t), y(t)) of (3) on the interval [0, τ ]
whenever ε ∈ ]0, ε1[:

1. if (x(0), y(0)) ∈ R1 and x(0) = δ2 and [0, t1] is the maximal interval in [0, τ ] such that
(x(t), y(t)) ∈ R1 ∩ {(x, y) : x ≤ δ1} for all t ∈ [0, t1], then t1 < τ , b < x(t) < δ1 for
all t ∈ [0, t1] and y(t1) = −√

2(G(x(t1)) + E0);
2. if (x(t0), y(t0)) ∈ R1, x(t0) ≥ δ2, y(t0) ≤ 0 for some t0 ∈ [0, τ ] and [t0, t1] is the

maximal interval in [t0, τ ] such that (x(t), y(t)) ∈ R1 for all t ∈ [t0, t1], then x(t) > b
for all t ∈ [t0, t1].
Let Φ t

s(z) = (x(t; s, z), y(t; s, z)) be the solution (x(t), y(t)) of system (3) such that
(x(s), y(s)) = z. For i, j ∈ {0, 1} we define the following compact sets:

Hi := {
z ∈ Ri : Φ t

0(z) ∈ Ri ∀ t ∈ [0, τ ]} ,

Hi, j :=
{
z ∈ Hi : ΦT

0 (z) ∈ R j

}
.

(10)

Now we are in position to check the SAP property for the map Ψ = ΦT
0 with DΨ = R

2.

Lemma 7 There exists ε∗ = ε∗(a, b) > 0 such that for all ε ∈ ]
0, ε∗[ we have that

(Hi, j , Φ
T
0 ) : R̃i �−→R̃ j for each i, j ∈ {0, 1}.

Proof Let ε∗ = min{ε0, ε1}, where ε0 is given by Lemma 5 with the choices δ1 = a/3
and δ2 = 2a/3 and ε1 is given by Lemma 6 with δ1 = 1 − (1 − b)/3 = (2 + b)/3 and
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Fig. 2 Example of a path stretched by the Poincaré map. For the present example we have taken g(x) =
2x(1 − x)( 12 − x), A(t) = sin+(2π t), so that τ = 1/2 and T = 1. The sets R0 and R1 are defined for

a = 0.2, b = 0.8 and E0 = y20/2 with y0 = 2.1 so that (8) is satisfied. The figure shows the effect of the

stretching of path γ through the Poincaré map ΦT
0 for ε = 5 × 10−3

δ2 = 1 − 2(1 − b)/3 = (1 + 2b)/3. We fix any ε ∈ ]
0, ε∗[ and show explicitly that

(H0, j , Φ
T
0 ) : R̃0 �−→R̃ j with j ∈ {0, 1}. The other two situations are completely symmetric

and therefore their proof is omitted. Figure 2 provides an illustration of a path γ crossing
R0, which is stretched by ΦT

0 across R0 and R1.
Now the analytical proof follows. Let γ : [0, 1] → R0 be a continuous curve such that
γ (0) ∈ Rleft

0 and γ (1) ∈ Rright
0 . Since γ is continuous, we can define:

s1 := min {s ∈ [0, 1] : γ (s) ∈ {δ2} × R}

and we have 0 < s1 < 1 and γ (s) ∈ [0, δ2] × R ∩ R0 for all s ∈ [0, s1]. By Lemma 5.1,
Φ t

0(γ (s1)) stays above Rtop
0 for some t ∈ ]0, τ [, thus we can define:

s2 := inf
{
s ∈ [0, s1] : ∃t ∈ [0, τ ] s.t. either x(t; 0, γ (s)) > a or

y(t; 0, γ (s)) >
√
2[G(x(t; 0, γ (s))) + E0]

}

and we have 0 < s2 < s1. Moreover, by the continuous dependence on initial data, we
deduce that Φ t

0(γ (s2)) ∈ R0 for all t ∈ [0, τ ] and, in particular, either y(τ ; 0, γ (s2)) =√
2[G(x(τ ; 0, γ (s2))) + E0] or x(τ ; 0, γ (s2)) = a. Let us see that the second case cannot

hold. Indeed, we surely have y(τ ; 0, γ (s2)) > 0 and, hence, we consider:

t0 := min
{
t ∈ [0, τ ] : y(t; 0, γ (s2)) ≥ 0

}
< τ.

so that y(t; 0, γ (s2)) ≥ 0 for all t ∈ [t0, τ ]. If t0 = 0 then x(t0; 0, γ (s2)) ≤ δ2 by construc-
tion, while, if t0 > 0, then ẋ(t; 0, γ (s2)) = y(t; 0, γ (s2)) < 0 for all t ∈ [0, t0[ and again
x(t0; 0, γ (s2)) ≤ δ2. Therefore, Lemma 5.2 applies and we deduce that x(τ ; 0, γ (s2)) < a
and, thus, that y(τ ; 0, γ (s2)) = √

2[G(x(τ ; 0, γ (s2))) + E0]. Hence, we can define

s3 := sup
{
s ∈ [0, s2] : ∃t ∈ [0, τ ] s.t. x(t; 0, γ (s)) = 0

}
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and note that 0 ≤ s3 < s2 and x(τ ; 0, γ (s3)) = 0. By construction,we have that γ ([s3, s2]) ⊂
H0 since Φ t

0(γ (s)) ∈ R0 for all t ∈ [0, τ ] and all s ∈ [s3, s2]. Moreover Φτ
0 (γ (s3)) ∈ Rleft

0

and Φτ
0 (γ (s2)) ∈ Rtop

0 .
Now, since the flow generated by (3) during the time interval [τ, T ] coincides with the one

generated by (6), the region {E(x, y) ≤ E0}, which contains both R0 and R1, is invariant
for Φ t

τ as t ranges in [τ, T ]. Therefore ΦT
0 (γ (s)) ∈ {E(x, y) ≤ E0} for all s ∈ [s3, s2].

Moreover:

Φτ
0 (γ (s3)) ∈ Rleft

0 �⇒
{
x(T ; 0, γ (s3)) ≤ 0

y(T ; 0, γ (s3)) ≤ 0

Φτ
0 (γ (s2)) ∈ Rtop

0 �⇒
{
x(T ; 0, γ (s2)) ≥ 1

y(T ; 0, γ (s2)) > 0

by Lemma 4. We then define:

s4 := max{s ∈ [s3, s2] : x(T ; 0, γ (s)) = 0}
s5 := min{s ∈ [s4, s2] : x(T ; 0, γ (s)) = a}
s6 := max{s ∈ [s5, s2] : x(T ; 0, γ (s)) = b}
s7 := min{s ∈ [s6, s2] : x(T ; 0, γ (s)) = 1}

and note that the above construction and the properties of the flow of (6) imply that
ΦT

0 (γ (s)) ∈ R0 for all s ∈ [s4, s5] and ΦT
0 (γ (s)) ∈ R1 for all s ∈ [s6, s7], while

ΦT
0 (γ (s4)) ∈ Rleft

0 , ΦT
0 (γ (s5)) ∈ Rright

0 , ΦT
0 (γ (s6)) ∈ Rright

1 and ΦT
0 (γ (s7)) ∈ Rleft

1 .
This shows that (H0, j , Φ

T
0 ) : R̃0 �−→R̃ j for j ∈ {0, 1}. ��

We are ready now to conclude the proof.

Proof (Proof of Theorem 1) Let the pair (a, b) be fixed as in the statement of the theorem,
let ε∗ = ε∗(a, b) > 0 be given by Lemma 7 and let us fix ε ∈ ]

0, ε∗[. Then we have that
(Hi, j , Φ

T
0 ) : R̃i �−→R̃ j for each i, j ∈ {0, 1} by Lemma 7. Therefore, Lemma 1, applied

to Ψ = ΦT
0 , grants that for any non-trivial two-sided sequence s = (sn)n∈Z ∈ {0, 1}Z there

exists a two-sided sequence (zn)n∈Z in the plane such that zn+1 = ΦT
0 (zn) and

zn ∈ Hsn ,sn+1 ∀ n ∈ Z,

with (zn)n k-periodic whenever s is k-periodic. We will show that the function us,ε(t) :=
x(t; 0, z0) satisfies all the requirements in the statement of the theorem.

First of all, by the T -periodicity of wε , we have that
(
us,ε(nT ), u̇s,ε(nT )

) = ΦnT
0 (z0) =

(
ΦT

0

)n
(z0) = zn ∈ Hsn ,sn+1 ⊂ Hsn ⊂ Rsn

for all n ∈ Z. In particular we can apply Lemma 3 with the choice tn = nT , n ∈ Z: we have
that 0 ≤ us,ε(tn) ≤ 1 for all n ∈ Z and, since the sequence s is nontrivial, there are h, k ∈ Z,
with h �= k, such that zh ∈ R0, zk ∈ R1 and, thus, us,ε(th) ≤ a < 1 and us,ε(tk) ≥ b > 0.
Therefore we can infer that 0 < us,ε(t) < 1 for all t ∈ R and that us,ε is in fact a solution of
(1).

Moreover, if the sequence s is k-periodic, we have that us,ε is kT -periodic since
(
us,ε(0), u̇s,ε(0)

) = z0 = zk = ΦkT
0 (z0) = (

us,ε(kT ), u̇s,ε(kT )
)
.

Finally, Statement 2 also holds by the very definition of the setHi (10) since ΦnT
0 (z0) =

zn ∈ Hsn . ��
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Remark 1 The same argument employed for the proof of Theorem 1 can be used to provide
an extension of our result to a class of more general weight functions. Indeed, let us suppose
that A : R → R is a T -periodic locally integrable function such that there are points

0 = σ0 < τ0 < σ1 < τ1 < · · · < σm−1 < τm−1 < σm = T

such that, for all � = 0, . . . ,m − 1,
(A1′) A(t) = 0 for a. e. t ∈ [τ�, σ�+1] and A(t) > 0 for a. e. t ∈ [σ�, τ�].

In this case, if we choose

E0 ≥ 1

2min0≤�≤m−1(σ�+1 − τ�)2
− G∗

(see (8)) we can construct the oriented rectangles R̃0 and R̃1 as above. For each interval
[σ�, τ�] we can repeat the proof of Lemma 5 we gave for the interval [0, τ ] and obtain a
corresponding constant ε�

0 . Similarly, we can reproduce Lemma 6 on each interval [σ�, τ�]
and obtain a corresponding constant ε�

1 . Next, following (10), we introduce the sets

H�
i := {

z ∈ Ri : Φ t
σ�

(z) ∈ Ri ∀ t ∈ [σ�, τ�]
}
,

H�
i, j :=

{
z ∈ H�

i : Φ
σ�+1
σ�

(z) ∈ R j

}

and, arguing as in Lemma 7 we can prove the following

Lemma 8 There exists ε∗ = ε∗(a, b) > 0 such that for all ε ∈ ]
0, ε∗[ we have that

(H�
i, j , Φ

σ�+1
σ�

) : R̃i �−→R̃ j for each i, j ∈ {0, 1} and each � = 0, . . . ,m − 1.

The constant ε∗ is now defined as

ε∗ := min
{
ε�
0, ε

�
1 : � = 0, . . . ,m − 1

}
.

Lemma 8 implies that the scheme of Fig. 1 holds for each map Ψ = Φ
σ�+1
σ�

with respect to
the sets H�

i, j . Since the Poincaré map on one period is given by

ΦT
0 = Φσm

σm−1
◦ · · · ◦ Φσ1

σ0
,

we conclude that the same diagram of Fig. 1 holds also forΦT
0 , but each arrow corresponds to

2m−1 different itineraries. In otherwords,we have that for each i, j ∈ {0, 1}, the Poincarémap
ΦT

0 stretches R̃i to R̃ j along the paths with crossing number 2m−1. In this manner, under
the assumptions (G1) and (A1′), we have a version of Theorem 1 in which the obtained
solutions realize a full dynamics on 2m symbols.

4 More Complicated Dynamics

In this section we investigate the case in which solutions oscillate several times around
(1/2, 0) in the interval [0, τ ]. To achieve this result we need some further technical assump-
tions on the time map of an associated autonomous system which in turn allow us to compute
the rotation number of the solutions. Accordingly, besides the basic hypotheses on G(x)
considered in Sect. 1, we suppose further that

(G2) G(0) = G(1) = 0 and G(x) > 0 ∀ x ∈ ]0, 1[
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and we still assume without loss of generality that the auxiliary position (4) holds. We denote
by x∗ a point in ]0, 1[ such that

G(x∗) = max
x∈[0,1]G(x).

As a consequence of the above assumption, without loss of generality, we may assume that
the constants a0 and b0 can be chosen so that

min
x∈[a0,b0]

G(x) = G(a0) = G(b0), with a0 < x∗ < b0 .

Moreover, in order to make our analysis more transparent, we consider a T -periodic stepwise
weight function vμ(t) given by

(A2) vμ(t) =
{

μ if 0 ≤ t < τ

1 if τ ≤ t < T,

so that Eq. (1) reduces to
ẍ − vμ(t)g(x) = 0. (11)

As in the previous section, we perform a phase-plane analysis on the associated planar system
{
ẋ = y

ẏ = vμ(t)g(x)
(12)

and we denote again by Φ t
s(z) the value at time t of the solution of (12) such that

(x(s), y(s)) = z.
When t ∈ [0, τ ], (12) is the autonomous system

{
ẋ = y

ẏ = μg(x)
(13)

whose solutions run on the level sets of the energy function

Eμ(x, y) := y2

2
− μG(x)

and are periodic orbits contained in the strip 0 < x < 1 if −μG(a0) ≤ Eμ(x, y) < 0, while
the level set Eμ(x, y) = 0 contains the two heteroclinic orbits connecting the saddle points
(0, 0) and (1, 0). Indeed, for each e ∈ [−μG(a0), 0[ there exist exactly two values x0, x1
such that G(x0) = G(x1) = −e/μ with x0 ∈ ]0, a0] and x1 ∈ [b0, 1[. Viceversa, for each
x0 ∈ ]0, a0] (respectively, for each x1 ∈ [b0, 1[) there exists a unique periodic orbit of (13)
passing through (x0, 0) (respectively, through (x1, 0)) which crosses again the x-axis at only
another point (x1, 0) with b0 ≤ x1 < 1 (respectively, (x0, 0) with 0 < x0 ≤ a0) and whose
period, denoted by Tμ(x0) is given by

Tμ(x0) :=
√

2

μ
p(x0),

where

p(x0) = p(x1) :=
∫ x1

x0

dξ√
G(ξ) − G(x0)

.
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In particular, all these periodic orbits turn around the point P∗ := (x∗, 0) in the clockwise
sense. In the sequel it will be useful to introduce a polar coordinate systems with center at P∗,
counting the angles in the clockwise sense starting from the half-line {(x∗, y) : y ≤ 0}. In this
system, we denote by ϑ(t, Q) the angular coordinate associate with the solution (x(t), y(t))
of system (13) such that (x(0), y(0)) = Q, with ϑ(0, Q) ∈ ]−π, π[. Notice that with this
position,ϑ(t, Q) is well defined for every initial point Q which does not belong to the vertical
half-line {(x∗, y) : y ≥ 0}.

On the time interval [τ, T ], the solutions of (12) are again solutions of (6). In particular,
Lemma 4 holds without any change.

Theorem 2 Let G satisfy (G1) and (G2), vμ be given as in (A2), and a, b be fixed with
0 < a ≤ a0 and b0 ≤ a < 1. For each N ∈ N, N ≥ 1, there exists μ∗

N = μ∗
N (a, b) > 0 such

that for every μ > μ∗
N and every sequence s = (δn, kn)n∈Z ∈ [{0, 1}×{0, 1, . . . , 2N −1}]Z

there exists at least a global solution xs of (11) such that

1. 0 < xs(t) < 1 for all t ∈ R;
2. for all n ∈ Z one has that xs(nT ) < a if δn = 0, while xs(nT ) > b if δn = 1; moreover,

xs − x∗ vanishes exactly kn times in the interval ]nT, nT + τ [;
3. if the sequence s is m-periodic for some m ∈ N, then xs is mT -periodic.

Proof According to Lemma 4 in the present situation we have G∗ = 0 and we fix E0 ≥
1

2(T−τ)2
. Given a, b with

0 < a ≤ a0, b0 ≤ b < 1,

we choose x0 ∈ ]0, a[ and x1 ∈ ]b, 1[ such that G(x0) = G(x1).
Next, we consider μ > μ1, for

μ1 := max

{
G(a) + E0

G(a) − G(x0)
,

G(b) + E0

G(b) − G(x1)

}
.

Now we introduce two regions (depending on the parameter μ > μ1) as follows

S0 := {
(x, y) : 0 ≤ x ≤ a, 2μ[G(x) − G(x0)] ≤ y2 ≤ 2(G(x) + E0)

}

S1 := {
(x, y) : b ≤ x ≤ 1, 2μ[G(x) − G(x1)] ≤ y2 ≤ 2(G(x) + E0)

}
.

By construction, Si ⊂ Ri . Indeed, S0 is a rectangular domain bounded below and above
by the level lines y = ±√

2(G(x) + E0), by the y-axis at the left and by the level line
y2 = 2μ[G(x) − G(x0)] at the right. This is a consequence of the fact that the curves
y = ±√

2(G(x) + E0) and y2 = 2μ[G(x) − G(x0)] cross exactly at one point in the strip
0 ≤ x ≤ a (actually the crossing point lies in x0 < x < a) since G is strictly increasing on
[0, a0] and μ > μ1. Similarly, S1 is bounded at the left, above and below by the same level
lines and at the right by the vertical line x = 1.

We choose a first orientation (Si ,S−
i ) on Si , for i = 0, 1, by setting S−

i := S left
i ∪ Sright

i
with:
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S left
0 := {0} ×

[
−√2(G(0) + E0), 0

]

Sright
0 := {

(x, y) : x0 ≤ x ≤ a, 2μ[G(x) − G(x0)] = y2 ≤ 2(G(x) + E0)
}

and, symmetrically:

S left
1 := {1} ×

[
0,
√
2(G(1) + E0)

]

Sright
1 := {

(x, y) : b ≤ x ≤ x1, 2μ[G(x) − G(x1)] = y2 ≤ 2(G(x) + E0)
}
.

We also define:

S top
0 :=

{
(x, y) : 0 ≤ x ≤ a, y2 ≥ 2μ[G(x) − G(x0)], y = √

2(G(x) + E0)
}

Sbot
0 :=

{
(x, y) : 0 ≤ x ≤ a, y2 ≥ 2μ[G(x) − G(x0)], y = −√2(G(x) + E0)

}

S top
1 :=

{
(x, y) : b ≤ x ≤ 1, y2 ≥ 2μ[G(x) − G(x1)], y = −√2(G(x) + E0)

}

Sbot
1 :=

{
(x, y) : b ≤ x ≤ 1, y2 ≥ 2μ[G(x) − G(x1)], y = √

2(G(x) + E0)
}

.

Indeed we will consider also the following (somehow complementary) orientation (Si ,S+
i )

of Si , where:

S+
i := Sbot

i ∪ S left
i ∪ S top

i i = 0, 1.

Observe that here Sbot
i ∪ S left

i and S top
i are the two connected components of S+ that play

the role of opposite sides of the topological rectangle Si .
Wewill show that themapΦτ

0 stretches (Si ,S−
i ) to (S j ,S+

j )multiple times, ifμ is chosen

large enough, while ΦT
τ stretches (Si ,S+

i ) to (S j ,S−
j ), for each μ > μ1. In order to do this,

we now define the compact sets in Si with respect to which the stretching along the paths
occurs. Namely, for each i, j ∈ {0, 1} and k ∈ N we set:

Hi, j := {
Q ∈ Si : Φτ

0 (Q) ∈ S j
}
,

Hk
i, j :=

{
Q ∈ Hi j : ϑ(τ, Q)

π
∈ ]i + | j − i | + 2k, i + | j − i | + 2k + 1[

}
,

Ki, j := {
Q ∈ Si : ΦT

τ (Q) ∈ S j
}
.

Observe that a solution of (12) starting at time t = 0 from Q ∈ Hk
i j will cross the line x = x∗

exactly |i − j | + 2k times before reaching the rectangle S j at time t = τ .

Claim For any N ∈ N and any μ such that:

μ > μ∗
N := max

{

μ1, 2

[
N

p(x0)

τ

]2}

(14)

we have thatΦτ
0 : (Si ,S−

i ) �−→N (S j ,S+
j ), for each i, j ∈ {0, 1}, with respect to the compact

sets Hk
i j , for k = 1, . . . , N .

Indeed, let us consider the case i = 0 and let γ : [0, 1] → S0 be any path such that
γ (0) ∈ S left

0 and γ (1) ∈ Sright
0 . We have that Φ t

0(γ (0)) ∈ ]−∞, 0[ × ]−∞, 0[ for all t > 0.
On the other hand, Φ t

0(γ (1)) belongs to the level line

Eμ(x, y) = −μG(x0),

123



J Dyn Diff Equat (2017) 29:1215–1232 1229

which is a periodic orbit of system (13) of period Tμ(x0). By (14) we have that τ > NTμ(x0).
Passing to the polar coordinates, this in turn implies that ϑ(τ, γ (1)) > 2Nπ , while
ϑ(τ, γ (0)) < π/2, therefore the interval spanned by the angle ϑ(τ, γ (s)) as s ranges in
[0, 1] contains the interval [π/2, 2Nπ ] .

We can now split the interval [0, 1] into some subintervals of the form [s′
�, s

′′
� ], as follows:

s′
0 := max

{
s ∈ [0, 1] : x(τ ; 0, γ (s)) ≤ 0

}
,

s′′
0 := min

{
s ∈ ]

s′
0, 1

] : Φτ
0 (γ (s)) ∈ S top

0

}
,

s′
1 := max

{
s ∈ ]

s′′
0 , 1

] : 1 <
ϑ(τ, γ (s))

π
< 2, Φτ

0 (γ (s)) ∈ Sbot
1

}
,

s′′
1 := min

{
s ∈ ]

s′
1, 1

] : Φτ
0 (γ (s)) ∈ S top

1

}
,

and recursively for k = 1, . . . , N − 1:

s′
2k := max

{
s ∈ ]

s′′
2k−1, 1

] : 2k <
ϑ(τ, γ (s))

π
< 2k + 1, Φτ

0 (γ (s)) ∈ Sbot
0

}
,

s′′
2k := min

{
s ∈ ]

s′
2k, 1

] : Φτ
0 (γ (s)) ∈ S top

0

}
,

s′
2k+1 := max

{
s ∈ ]

s′′
2k, 1

] : 2k + 1 <
ϑ(τ, γ (s))

π
< 2k + 2, Φτ

0 (γ (s)) ∈ Sbot
1

}
,

s′′
2k+1 := min

{
s ∈ ]

s′
2k+1, 1

] : Φτ
0 (γ (s)) ∈ S top

1

}
.

For each � = 0, 1, . . . , 2N − 1, by the choice of the points s′
� and s′′

� it follows that

Φτ
0 (γ ([s′

�, s
′′
� ])) ∈ S j , Φτ

0 (γ (s′
�)) ∈ S left

j ∪Sbot
j , Φτ

0 (γ (s′′
� )) ∈ S top

j , and γ ([s′
�, s

′′
� ]) ⊂ Hk

0, j ,
where j ≡ � mod 2 and k = ��/2�. We just remark here the small difference between the
cases � = 0 and 1 ≤ � ≤ 2N − 1 that led us to the definition of S+

i : we actually have
that Φτ

0 (γ (s′
0)) ∈ S left

0 , while Φτ
0 (γ (s′

�)) ∈ Sbot
j for 1 ≤ � ≤ 2N − 1 and j ≡ � mod 2.

However, we now have shown that
(
Hk

0, j , Φ
τ
0

)
: (S0,S−

0

)
�−→

(
S j ,S+

j

)
for j = 0, 1 (15)

for each k = 0, . . . , N − 1. The remaining cases with i = 1 can be proved in a similar way.

Claim For any μ > μ1 and any i, j ∈ {0, 1} we have that
(
Ki j , Φ

T
τ

)
: (Si ,S+

i

)
�−→

(
S j ,S−

j

)
. (16)

Again we will show the details only for the cases with i = 0 and leave the ones with i = 1
to the reader. Let γ : [0, 1] → S0 be any path such that γ (0) ∈ S left

0 ∪ Sbot
0 and γ (1) ∈ S top

0 .
Still ΦT

τ maps the point γ (0) in the third quadrant: if γ (0) ∈ S left
0 , it is just a consequence

of the behavior of (12), while, if γ (0) ∈ Sbot
0 , it comes from the choice of E0 and Lemma 4.

On the other hand, ΦT
τ (γ (1)) lies in the half plane x > 1 again by the choice of E0 and

Lemma 4. Moreover the strip given by {(x, y) : E1(x, y) ≤ E0} is invariant for Φ t
τ for any

t ∈ [τ, T ]. Hence we can define:

s′
0 := max {s ∈ [0, 1] : x(T ; τ, γ (s)) ≤ 0} ,

s′′
0 := min

{
s ∈ [s′

0, 1] : ΦT
τ (γ (s)) ∈ Sright

0

}
,

s′
1 := max

{
s ∈ [s′′

0 , 1] : ΦT
τ (γ (s)) ∈ Sright

1

}
,

s′′
1 := min

{
s ∈ [s′

1, 1] : x(T ; τ, γ (s)) ≥ 1
}
.
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These choices imply that, for j = 0, 1, ΦT
τ (γ ([s′

j , s
′′
j ])) ⊂ S j , ΦT

τ (γ (s′
0)) ∈ S left

0 ,

ΦT
τ (γ (s′′

0 )) ∈ Sright
0 , ΦT

τ (γ (s′
1)) ∈ (S)

right
1 , ΦT

τ (γ (s′′
1 )) ∈ S left

1 and γ ([s′
j , s

′′
j ]) ⊂ K0, j .

Thus, the claim is proved for i = 0.
As a consequence of Claims 1 and 2, we have that the map ΦT

0 = ΦT
τ ◦ Φτ

0 satisfy a SAP
property of the form (Si ,S−

i ) �−→(S j ,S−
j ), through the composition

(
Si ,S−

i

)
�−→ (

Sh,S+
h

)
�−→

(
S j ,S−

j

)
,

where i, h, j ∈ {0, 1} can be chosen arbitrarily (the fact that the SAP property is preserved by
the composition of maps easily follows from the definition [16]). To make the formula more
precise, we should determine the compact subsets of Si which are involved in the definition.
Actually, from (15) and (16), we have that

(
Hk

i,h ∩ Φ0
τ

(
Kh, j

)
, ΦT

0

)
: (Si ,S−

i

)
�−→

(
S j ,S−

j

)
, (17)

where we recall that Φ0
τ = (Φτ

0 )−1.

Suppose now thatμ > μ∗
N is fixed and let s = (δn, kn)n∈Z ∈ [{0, 1}×{0, 1, . . . , 2N−1}]Z

be an arbitrary two-sided sequence. We show how to enter in the setting of Lemma 2, via the
following positions.

For each n ∈ Z we take as oriented rectangle

R̃n := S̃δn

and a constant sequence of maps

Ψn := ΦT
0 = ΦnT+T

nT .

For the compact sets Ln we make the following observation. A solution with initial point
in Sδn (at the time nT ), after the time τ will be in the same rectangle or in the other one
according to the fact that kn is even or odd, respectively. On the other hand, the index δn+1

specifies in which rectangle the solution should be at the time nT + T . Therefore, in view of
formula (17), we have to take, at any step n, i = δn , j = δn+1 and the intermediate index h
will be determined according to the parity of kn . Accordingly, we define

Ln := Hk
δn ,h ∩ Φ0

τ

(
Kh,δn+1

)
, (18)

with

k :=
⌊
kn
2

⌋
, and h ≡ kn + δn mod 2.

Now we are in position to apply Lemma 2 to the sequence

(Ln, Ψn) : R̃n �−→R̃n+1, ∀ n ∈ Z.

In particular, given any sequence (zn)n∈Z with zn+1 = ΦT
0 (zn) with zn ∈ Ln for each

n ∈ Z, we have that the solution (x(t), y(t)) = (x(t; 0, z0), y(t; 0, z0)) of (12) satisfies the
following properties:

1. x(t) is a solution of (11) with 0 < x(t) < 1 for all t ∈ R (this follows by the construction
of the rectangular sets and also by Lemma 3).

2. x(nT ) < a0 if δn = 0 and x(nT ) > b0 if δn = 1. Moreover, x(t) − x∗ has exactly kn
simple zeros in the interval ]nT, nT + τ [ (this follows from the choice of the sets Hk

i,h
and the definition (18)).
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3. If zm = ΦmT
0 (z0) = z0 for some m ≥ 1, then the corresponding solution x(t) is mT -

periodic (this situation occurs when the sequence (Ln, R̃n)n is m-periodic and this, in
turn, follows whenever the sequence of symbols s is m-periodic).

Concerning the third property, observe that, if we choose the sequence Ln as a periodic
sequence of minimal period m, then the corresponding mT -periodic solution x(t) has mT
as its minimal period.

In this manner all the assertions in the statement of Theorem 2 have been verified. ��
Remark 2 Theorem 2 is stable with respect to small perturbations of the weight function
vμ(t). Indeed, it is possible to check that Claim 1 and Claim 2 are still valid if we perturb
the right hand member of equation (12) by a sufficiently small term. More precisely, as a
consequence of the theoremof continuous dependence of solutions [10, Lemma3.2 andp. 28],
we see that once we have fixed N and μ > μ∗

N , then the same conclusion of Theorem 2
holds for equation

x ′′ + cx ′ + w(t)g(x) = 0,

provided that |c| < δ and
∫ T
0 |w(t) − vμ(t)|dt < δ, where δ = δN ,μ > 0 is a sufficiently

small constant.
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