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Abstract: Magnetic metal–organic frameworks (MMOFs) are gaining increased attention as emerging
adsorbents/water remediation agents. Herein, a facile development of novel MMOFs comprised of
coated ferrite nanoparticles (MNPs) and UiO-66 metal–organic framework is reported. In specific,
coated Co- and Zn-doped ferrite magnetic nanoparticles were synthesized as building block while
the metal–organic framework was grown in the presence of MNPs via a semi-self-assembly approach.
The utilization of coated MNPs facilitated the conjugation and stands as a novel strategy for fabricat-
ing MMOFs with increased stability and an explicit structure. MMOFs were isolated with 13–25 nm
crystallites sizes, 244–332 m2/g specific surface area (SSA) and 22–42 emu/g saturation magne-
tization values. Establishing the UiO-66 framework via the reported semi-self-assembly resulted
in roughly 70% reduction in both magnetic properties and SSA, compared with the initial MNPs
building blocks and UiO-66 framework, respectively. Nonetheless, the remaining 30% of the magne-
tization and SSA was adequate for successful and sufficient adsorption of two different pesticides,
2,4-Dichlorophenoxyacetic acid (2,4-D) and 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T), while the
recovery with a commercial magnet and reuse were also found to be effective. Adsorption and
kinetic studies for all three MMOFs and both pesticides were performed, and data were fitted to
Langmuir–Freundlich isotherm models.

Keywords: nanoadsorbents; magnetic nanomaterials; magnetic metal–organic frameworks; UiO-66;
water remediation; pesticides

1. Introduction

Moving on from the illustrious perspectives of magnetic nanoparticles (MNPs) and
their plethora of applications, research and development has now shifted to more advanced
magnetic nano-architectures (MNAs) [1–4]. These innovative materials retain and can
even augment the magnetic properties of their building blocks while displaying additional
characteristics such as delivery of molecular cargos, adsorption capacity, desired interaction
with biomolecules, and preferred rheological/in-suspension behavior. All these added
traits are governed by the specific design of the MNA that can lead potentially to an
abundance of shapes, sizes, structures, and surface chemistries. As a result, these new-age
materials exhibit multimodal action, greater overall potential and expanded applicability.

Amongst various applications, MNAs are currently investigated as particularly promis-
ing water remediation agents [5–10] with the obvious benefit being the ease of recovery and
reuse via external magnets. While this advantage is provided by the MNP building blocks,
the adsorption properties of the MNPs may be insufficient or even totally absent. On the
other hand, conventional adsorbents, such as zeolites [11–13] and/or novel engineered ma-
terials such as metal–organic frameworks (MOFs) [14–18], have great porosity and tunable
pore sizes, endowing highly selective adsorption capacity of hazardous contaminants from
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the environment. However, these adsorbents are difficult to be recycled from the mixture
solution. To overcome these problems, the combination of MNPs with MOFs, under the
tag of magnetic metal–organic frameworks (MMOFs) is gaining increasing attention for
hazardous contaminant removal from the environment [19–22].

Various fabrication routes and strategies have been reported and diverse MMOFs
have been isolated by each pathway [19–22]. However, in many of these cases, over 90%
diminish in either the magnetic properties (provided by the MNPs) or the specific surface
area (SSA, endowed by the MOF) cannot be avoided due to the altered ordering of the
newly developed structure. It is also worth mentioning that stability of the MMOF in
aqueous solutions can also stand as a challenging issue as dissociation and/or slow release
of their metal ions and organic linkers may occur. Moreover, the synthetic economic cost of
the MMOF can be prohibitive for transfer to the industrial scale if complex, multifaceted
and multistep procedures are employed for the design of either the building blocks (MNPs
and/or MOF) and/or the final MMOF nano-architecture.

Herein, in continuation of our endeavors on the synthesis of MNPs [23–27] and design
of MNAs [28–31], we report on the fabrication of three different MMOFs as pesticide
removal agents in water remediation, using coated Co- and Zn-doped ferrite nanoparticles
as the MNP building blocks and UiO-66 as the MOF framework. Amine and/or PEG-
ylated coated MNPs were synthesized following protocols from our previously reported
routes utilizing green, facile, one-step syntheses in autoclaves. In that manner, coated
MNPs with different sizes, surface characteristics and magnetization values were isolated.
The construction of the MMOFs was achieved by a semi-self-assembly development of
UiO-66 in the presence of MNPs. Keeping the same MOF in all cases, the influence of
the primary MNP building blocks (different sizes, physicochemical properties and surface
characteristics)was investigated. UiO-66 was also synthesized in the absence of MNPs
for comparative purposes. MMOFs were characterized by means of scanning electron
microscopy (SEM-EDS), X-ray diffraction (XRD), infrared spectroscopy (FTIR) as well as
thermogravimetric analysis (TGA) to determine the composition, morphology, crystallite
size, structure and organic content. Magnetic properties were evaluated with a vibrating
sample magnetometer (VSM) while the specific surface area (SSAs) was measured via N2-
porosimetry/BET theory. Adsorption efficiency was studied for two different pesticides,
2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), with
the aid of magnetic separation, whilst the quantification of the adsorption capacity was
achieved via ultra-violet visible spectroscopy (UV-Vis). Results were fitted to both the
Langmuir and Freundlich isotherm models. Moreover, pseudo first order (PFO) and pseudo
second order (PSO) kinetic studies were also employed to study the adsorption mechanism.
Lastly, recovery and reuse of MMOFs were investigated in repeated adsorption cycles.

2. Results and Discussion
2.1. Synthetic Aspects

There are three important aspects under consideration when designing MMOFs:

• Selecting the MNPs building blocks;
• Selecting the MOF framework;
• Selecting the design pattern.

In almost the full spectra of magnetic applications, ferrite MNPs stand on the top of
pyramid and in our current work, doped ferrite MNPs [23–27] were chosen, both Co- and
Zn-doped. Doping provides protection from undesired oxidation phenomena to which
magnetite is susceptible (the iron-only ferrite that is more commonly investigated) that
are more frequent than usual when meta-synthetic chemical procedures are employed
for the MMOF fabrication. Furthermore, beneficial magnetic properties can be present
in doped ferrites, such as zinc [24]. Regarding the chosen synthetic approach, autoclave
route provides reproducible results, energy efficiency and isolation of coated MNPs that
are readily able to form stable suspensions [23–27]. Herein, two diverse coatings were
established, the octadecylamine (ODA) coating on the Co-doped ferrite MNPs and the
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PEG coating on the Zn-doped ferrite MNPs, both coatings previously employed by our
group [28–31]. ODA and PEG when they are used in a triple role (solvent/surfactant/redu-
cing agent) provide amine and hydroxyl groups respectively that extend from the surface of
the MNPs, acting as donors that facilitate meta-synthetic architecting such as the attachment
to MOF. Meanwhile, the coating prevents aggregation and therefore allows the particles to
be more isolated, and a significant surface area is favored in this way. Thus, it provides the
highly sought in meta-synthetic procedures colloidal stability that favors minimal decline in
magnetic properties and SSAs of the MNA. As for the MOF outline, the well-known UiO-66,
a high SSA MOF [32–34] (over 1300 m2/g), stable in aquatic solution was selected to be
generated in-situ in the presence of the MNPs via a previously published facile route. A
semi-self-assembly that resembles the so-called embedding approach was carefully selected
amongst other reported strategies, such as simple mixing, layer-by-layer approach and/or
encapsulation [14–22]. This choice aims to satisfy the bench-to-industry need for the few-in-
number fabrication steps that layer-by-layer and encapsulation strategies lack, as both are
complex and multistep syntheses. While simple mixing also satisfies the above-mentioned
need it often fails to produce uniform and compact final structures, a goal that can also be
achieved via the present semi-self-assembly procedure. Moreover, the affinity of the amine
and hydroxyl of the MNPs to the Zr ions ensures stabilization of the two matrices (MNPs
and MOF) through covalent and/or hydrogen bonding. To our knowledge, it is the first
reported utilization of coated MNPs in the preparation of MMOFs.

2.2. Characterization of MMOFs
2.2.1. CF MMOF

Figure 1 presents the main results derived by different characterization techniques
for CF MMOF. SEM imaging at Figure 2 depicts the presence of polygonal particles with
rough surfaces and sizes ranging from a few hundreds of nanometers to a few micrometers.
SEM-EDS (Figures 1A and S1 in SM with full EDS spectrum)reveal a composition of 82%
w/w Zr and 18% w/w Fe. The Co-doped MNPs were also investigated by SEM-EDS (SM,
Figure S4) prior to the transformation to CF MMOF and have a composition of 66% w/w
Fe and 34% w/w Co. Converting those values by dividing the % w/w Fe of CF MMOF
with that of Co-doped MNPs resulted in a final MNPs content of 27% w/w for the CF
MMOF. Moreover, the EDS spectra image portrays a uniform distribution of Zr and Fe in
the CF MMOF with no particle segregation or aggregation apparent. Figure 1B illustrates
the XRD graph of the CF MMOF where peaks match both the simulated pattern for the
UiO-66 [32–34] and the cobalt ferrite pattern (ICDD-PDF #79-1744). Crystallite size for the
MNPs and UiO-66 framework was estimated at 15 nm and 25 nm, respectively, via fitting
the diffraction data and utilizing the Scherrer formula. The difference in the sizes is in
accordance with the embedding approach. Figure 1C compares the FTIR spectra of CF
MMOF, Co-doped MNPs and UiO-66 (synthesized in the absence of MNPs for comparative
purposes). Peaks for both the Zr-O and the Fe-O appear in the CF MMOF spectra in the
800–500 cm−1 area. Full FTIR spectra with peaks indicated in the spectra are given in the
SM (Figure S8).

Furthermore, UiO-66 framework peaks dominate the CF MMOF spectra with shoul-
ders of the ODA coating of Co-doped MNPs also being evident. Analogous comparative
TGA curves (Figure 1D) verify the co-existence of MNPs and UiO-66 in the CF MMOF. In
particular, the ODA coating forms a double layer around the MNPs, with the inner layer
decomposing at elevated temperatures above 600 ◦C [25]. Meanwhile, free amines are
provided as it has been shown before by the ninhydrin colorimetric assay [30]. In the TGA
curve of CF MMOF, up to 600 ◦C, the curve resembles that of UiO-66 while above 600 ◦C it
is more similar to that of the inner ODA layer of Co-doped MNPs. This can be attributed to
an explicit conjugation of the two matrices, where the outer layer of ODA is transformed
via the process. This also explains the faint ODA shoulders in the FTIR of CF MMOF.
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Figure 2. Additional, higher resolution SEM images for the sample CF MMOF.

2.2.2. ZF(acac) MMOF

Two different ZF MMOFs were fabricated by varying the zinc precursor during the
synthesis of Zn-doped MNPs. This strategy has been previously employed by our group to
diversify the zinc doping [24]. Figure 3 demonstrates the characterization measurements
for ZF(acac) MMOF. Irregular-shaped particles with coarse surface and polygonal particles
with sizes in the range from a few hundreds of nanometers up to a few micrometers are
spotted in the SEM image of Figure 4. SEM-EDS compositions for Zn-doped(acac) MNPs
(SM, Figure S5) and ZF(acac) MMOF (Figures 2A and S2 in SM with full EDS spectrum)
were found at 71% w/w Fe and 29% w/w Zn and 82% w/w Zr with18% w/w Fe, respec-
tively, giving a final MNPs content of 25% w/w for the ZF(acac) MMOF. EDS spectrum
image reveals a homogeneous elemental distribution of Zr and Fe, indicating a rather
undisturbed in-situ growth pattern of the MOF around the primary ferrite nanoparticles.
XRD diffractogram of ZF(acac) MMOF (Figure 3B) contains peaks corresponding to both
the simulated pattern for the UiO-66 and the zinc ferrite pattern (ICDD-PDF #74-2397).
Crystallite size for the MNPs and UiO-66 framework was estimated at 20 nm and 25 nm,
respectively. Comparative FTIR spectra (Figure 3C) and TGA curves (Figure 3D) provide
similar results to that of CF MMOF. Full FTIR spectra with peaks indicated in the spectra
are given in the SM (Figure S8). In detail, PEG also forms a double layer around the MNPs
decomposing at even higher temperatures above 700 ◦C [35] and the inner layer is present
in the ZF(acac) MMOF as indicated by the TGA recordings. The outer layer is possibly
dissolved as suggested by the faint shoulders in the FTIR spectra while both the Zr-O and
the Fe-O are present in the ZF(acac) MMOF spectra in the 800–500 cm−1 area.
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2.2.3. ZF(Cl) MMOF

Figure 5 displays the main characterization results for ZF(Cl) MMOF.SEM imaging
at Figure 6 illustrates the prevalence of polygonal particles with size in the microscale.
Though many of the particles seem to have a somewhat rough surface, a good portion of
this sample appears to contain smoother particle surfaces and more clear (less blurred)
edges and corners compared to the previous samples. Compositions for Zn-doped(acac)
MNPs (SM, Figure S6) and ZF(Cl) MMOF (Figures 3A and S3 in SM with full EDS spectrum)
were found at 95% w/w Fe and 5% w/w Zn and 65% w/w Zr with 35% w/w Fe, respectively,
providing a final MNPs content of 37% w/w for the ZF(Cl) MMOF. EDS spectra image
illustrates an even distribution of Zr and Fe throughout the whole zone tested in the
microscale size regime. By utilizing the ZnCl2 precursor, the regulation of the zinc doping
was achieved according to the polyol process mechanism and based on the stability of
intermediate complexes formed at an initial stage, as previously shown by our group [24].
Additionally, the content of MNPs in ZF(Cl) MMOF is found significantly higher than the CF
and ZF(acac) MMOFs. XRD peaks of ZF(Cl) MMOF (Figure 5B) match both the simulated
pattern for the UiO-66 and the zinc ferrite pattern (ICDD-PDF #74-2397). Crystallite size
for the MNPs and UiO-66 framework was estimated at 13 nm and 25 nm, correspondingly.
This is the biggest size difference amongst the three MMOFs and is possibly the crucial
factor for the significantly higher content of MNPs in ZF(Cl) MMOF. Comparative FTIR
spectra (Figure 5C) and TGA curves (Figure 5D) for ZF(Cl) MMOF offer similar insights to
what was discussed above regarding the ZF(acac) MMOF. Full FTIR spectra with peaks
indicated in the spectra are given in the SM (Figure S8).
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2.3. Magnetic Properties and SSA Values

VSM hysteresis loops for the three MMOFs can be observed in Figure 7. Saturation
magnetization was measured at 38, 42 and 22 emu/g for CF, ZF(acac) and ZF(Cl) MMOFs,
respectively, while coercivity values derived were 300, 130 and 130 Oe for CF, ZF(acac) and
ZF(Cl) MMOFs, correspondingly. Higher coercivity was indeed expected for CF MMOF
due to the Co doping [25]. Furthermore, M-H plots were also recorded for the MNPs
building blocks (SM, Figure S7) to estimate the magnetization quenching and saturation
magnetization which were found at 101, 129 and 117 emu/g for Co-doped, Zn(acac)-doped,
Zn(Cl)-doped MNPS, respectively. Zinc doping has been shown to induce an increase in
magnetization due to favorable spin-spin interactions in the spinel lattice [24]. However,
based on reported studies, [24] the low Zn-doping in the Zn(Cl)-doped MNPs should lead to
the highest magnetization value amongst the two Zn-doped MNPs and that is not the case
here. This can be explained by considering the crystallite sizes. As Zn(acac)-doped MNPs are
significantly larger, size effects (larger size results in larger magnetization) outshine doping
effects. Magnetization decrease values, stemming from ratio of ([Ms of MMOFs]/[Ms of
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MNPs]) × 100 are calculated at 62%, 67% and 81% for CF, ZF(acac) and ZF(Cl) MMOFs,
respectively. Regarding comparison with the saturation magnetization values of MMOFs in
the literature, Refs. [19–22] they span in the range of 3 to 73 emu/g, making the saturation
magnetization values of the current MMOFs higher than about 50% of the reported MMOFs.
Low saturation magnetization values of MMOFs occur mainly because of the spacer/organic
coating that is added to cover bare MNPs, for instance silica coated Fe3O4 nanoparticles
resulted to UiO-66@Fe3O4@SiO2 with magnetization value of 8.1 emu g−w [36]. Controlling
the thickness and/or the coating percentage onto MNPs is deemed as crucial to preserve
high Ms magnitudes in nanocomposites [8,31]. This is particularly important as first-rate
magnetic properties ensure the recycle-reuse modality with the use of common/commercial
magnets, that is among the primary desired functions of the MMOFs.
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N2 absorption isotherms for all three MMOFs as well as UiO-66 are presented in
Figure 8. SSAs are calculated via this isotherms at 1132, 332, 244 and 311 m2/g for UiO-66,
CF MMOF, ZF(acac) MMOF and ZF(Cl) MMOF, respectively. SSA reduction is estimated at
71%, 78% and 71% for CF, ZF(acac) and ZF(Cl) MMOFs correspondingly when compared
with the initial MOF (UiO-66). Additionally, the integration of the two matrices (MNPs
and MOF) is indicated and ensures high stability. However, the resulted SSA magnitudes
can be considered moderate and higher than about 25% of the reported MMOFs that span
in the range of 17 to 1248 emu/g [19–22]. Table 1 sums the physicochemical traits for all
three MMOFs.
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Table 1. MMOFs physicochemical traits.

Properties/MMOFs CF ZF(acac) ZF(Cl)

MNPs Content (% w/w) 27 25 37

MNPs crystallite size (nm) 15 20 13

UiO-66 Framework crystallite size (nm) 25 25 25

Saturation Magnetization (emu/g) 38 42 22

Magnetization reduction (%) 62 67 81

SSA (m2/g) 332 244 311

SSA reduction (%) 71 78 71

2.4. Pesticide Adsorption Studies

2,Dand 2,4,5-T have been used as pesticides for over 70 years [37]. However, health
risks are associated with both of them, and it is considered vital to ensure that their quantity
in drinking, domestic and irrigation waters is below the actual health risk limits. For that
purpose, adsorption studies for all three MMOFs were carried out in varying pesticide
concentrations (10, 20, 40, 80, 120, 160, 200, 250 ppm) at a steady time frame of 48 h. After
the end of the experiments, MMOFs were removed from the solution via the use of external
commercial magnet and the remaining pesticide concertation was identified via UV-Vis.
Data were fitted to Langmuir and Freundlich models [38–44] for both linear and non-linear
fitting and results are summarized in Table 2. The R2 values for the Langmuir model
are higher than the Freundlich ones, suggesting that the adsorption action of MMOFs is
characterized by a maximum adsorption value (Qmax) and the chemisorption took place
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on a monolayer on a homogeneous surface containing identical active sites [45]. Both the
linear and the non-linear fitting of the Langmuir model led to high R2 values. Qmax values
were plotted for all three MMOF and both pesticides and are demonstrated in Figure 9.
CF MMOF and ZF(Cl) MMOF displayed higher Qmax values than ZF(acac) MMOF, in
correlation with their SSA. Furthermore, all three MMOF exhibited higher adsorption
capacity for the 2,4-D possibly due to the hindrance caused by the extra Cl- atom of
the 2,4,5-T.

Table 2. Adsorption data for all three MMOFs, both tested pesticides, fitted to Langmuir and
Freundlich models, both linearly and non-linearly.

Isotherm Pesticide

MMOF

CF MMOF ZF(acac) MOF ZF(Cl) MMOF

Fitting

Linear Non-Linear Linear Non-Linear Linear Non-Linear

Langmuir

2,4,5-T

Qmax 137.74 140.62 136.05 138.75 167.79 174.37

KL 0.02 0.02 0.02 0.02 0.05 0.05

RL 0.19 0.20 0.23 0.03 0.11 0.12

Adj. R2 0.963 0.943 0.972 0.969 0.982 0.944

2,4-D

Qmax 199.60 174.66 171.53 174.66 250.00 257.84

KL 0.07 0.07 0.08 0.07 0.02 0.02

RL 0.07 0.08 0.07 0.08 0.21 0.22

Adj. R2 0.943 0.837 0.988 0.967 0.957 0.948

Freundlich

2,4,5-T

1/n 0.508 0.422 0.493 0.450 0.375 0.299

KF 9.22 13.66 8.93 10.90 25.29 35.28

Adj. R2 0.920 0.868 0.966 0.938 0.848 0.813

2,4-D

1/n 0.392 0.292 0.299 0.268 0.524 0.459

KF 29.86 46.62 37.78 43.35 13.65 18.50

Adj. R2 0.771 0.666 0.931 0.905 0.955 0.902
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pesticides.

Kinetic studies [46–49] for all three MMOFs and both pesticides were also performed
at a fixed pesticide concentration (200 ppm) at time intervals of 2, 4, 8, 24, 48, 72, 96, 144 and
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192 h. Data were fitted to pseudo first order (PFO) and pseudo second order (PSO) models,
both linearly and non-linearly. PFO resulted in poor R2 values and is rejected. Table 3
summarizes the PSO data. PSO better fit indicates a fast adsorption rate in the beginning
that slows down over time.

Table 3. Kinetic data for all three MMOFs, both tested pesticides, fitted to PSO model, both linearly
and non-linearly.

Kinetic
Model Pesticide

MMOF

CF MMOF ZF(acac) MMOF ZF(Cl) MMOF

Fitting

Linear Non-Linear Linear Non-Linear Linear Non-Linear

PSO

2,4,5-T

qe 137.17 140.72 115.47 118.17 137.36 139.48

K2 2.17 × 10−5 1.65 × 10−5 2.14 × 10−5 1.67 × 10−5 1.07 × 10−5 9.49 × 10−6

H 0.409 0.326 0.285 0.228 0.202 0.185

Adj. R2 0.998 0.990 0.994 0.966 0.994 0.965

2,4-D

qe 213.22 208.41 212.77 214.87 196.85 201.90

K2 1.70 × 10−5 2.78 × 10−5 3.63 × 10−5 3.05 × 10−5 2.95 × 10−5 2.12 × 10−5

H 0.775 1.208 1.645 1.409 1.144 0.866

Adj. R2 0.989 0.940 0.995 0.978 0.995 0.977

Lastly, after their adsorption studies, all three MMOFs were collected, washed, dried
and reused in new adsorption cycles using a stock solution of 200 pm 2,4-D pesticide. The
goal of this study was to investigate the efficiency of their recovery and reusability potential.
Figure 10 illustrates the UV-Vis curves in the vicinity of the 2,4-D characteristic absorbance,
after 24 h of adsorption period for all three washed and dried MMOFs, in comparison
with the 2,4-D starting solution curve. ZF(Cl) MMOF displayed by far the best potential
amongst the three while it is worth mentioning that all samples are considered suitable for
recovery and reuse. Although the sample under discussion seemed to contain also some
smooth-shaped particles, its good percentage of particles with uneven surfaces probably
favored the trapping and removing of pollutants.
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Considering the adsorption mechanism is still unclear to us as further enlighten-
ing experiments are needed. However, formerly four possibilities have been suggested:
(i) coordination in unsaturated metal centers of MMOFs, (ii) π-π stacking interactions via
the organic rings of MOF, (iii) electrostatic interactions, and (iv) bonding through func-
tional groups of MMOF surface [45,50]. At present, the (iv)case is considered unlikely as
NH2 and/or OH functional groups of MNP surfaces are bonded in the integrated matrix
MMOF based on TGA and FTIR evidence. Electrostatic interactions are also excluded as
both pesticides are negative-charged. Given the similar structures and the presence of
phenyl ring in both pesticides we assume π-π stacking interactions via the organic rings of
UiO-66 framework as the most possible interaction while adsorption onto coordinatively
unsaturated sites cannot be excluded.

3. Materials and Methods
3.1. Materials

Iron(III)acetylacetonate Fe(acac)3(Merck-Schuchardt, M = 353.18 g mol−1), cobalt(III)a-
cetylacetonate Co(acac)3(Merck-Schuchardt, M = 356.26 g mol−1), octadecylamine(ODA;
Sigma-Aldrich, 90%, M = 269.509 g mol−1), zinc(II)acetylacetonate hydrate Zn(acac)2(Sigma-
Aldrich, M = 263.61 g mol−1), zinc chloride dehydrate ZnCl2(Sigma-Aldrich, 90%,
M = 269.509 g mol−1), polyethylene glycol (PEG; Alfa Aesar, M = 8000 g mol−1), zirco-
nium(IV) chloride dehydrate ZrCl4(J&K Scientific, 98%, M = 233.04 g mol−1), terephthalic
acid (H2BDC; J&K Scientific, 99%, M = 166.13 g mol−1), 2,4-dichlorophenoxyacetic acid
(2,4-D; Sigma, Minimum 98%, M = 221.04 g mol−1), 2,4,5-trichlorophenoxyacetic acid
(2,4,5-T; Sigma, Approx. 97%, M = 255.49 g mol−1).

3.2. Synthesis of MNPs Building Blocks

Three kinds of coated doped ferrite MNPs were prepared via similar autoclave routes.
ODA-coated Co-doped MNPs were produced in an autoclave by the decomposition
of acetylacetonate iron(III) and cobalt(III) at a 2:1 ratio, Fe(acac)3 1.8 mmol/Co(acac)3
0.9 mmol in the presence solely of ODA 12.9 mmol. Accordingly, PEG-coated Zn-doped
MNPs were fabricated by the decomposition of acetylacetonate iron(III) and the zinc pre-
cursor, being zinc acetylacetonate(II) and zinc chloride(II) for the two diverse syntheses at
a 2:1 ratio, Fe(acac)3 1.8 mmol/Zn(acac)2 or ZnCl2 0.9 mmol in the presence solely of PEG
9.375 mmol. In all instances the temperature of the oven was elevated with a steady rate
(4 ◦C/min) to 200 ◦C and was kept stable for 24 h. After the 24 h reaction autoclaves were
left to cool down to room temperature with a rate of 5 ◦C/min. Co- and Zn-doped ferrite
MNPs (hereafter named as Zn-doped(acac) MNPs and Zn-(doped)Cl MNPs, respectively)
were isolated after repeating washing cycles with EtOH and centrifugations (5000 rpm),
followed by solvent evaporation.

3.3. Synthesis of UiO-66

UiO-66 was prepared via a previously reported facile route according to which ZrCl4
(0.108 mmol) and benzene-dicarboxylic acid (H2BDC; 0.15 mmol) were mixed and dissolved
in DMF (3 mL) and HCl (0.2 mL) [32]. Specifically, a vial was loaded with ZrCl4, one third
of the DMF, and concentrated HCl before being sonicated for 20 min until fully dissolved.
H2BDC and the remaining portion of the DMF were then added and the mixture was
sonicated for another 20 min (without the ligand being completely soluble under these
conditions though) before being heated at 80 ◦C overnight in a conventional oven. After
the spontaneous cooling of the vessel to room temperature its content was transferred to
a 15 mL falcon and a white fine-grained solid was isolated through washing cycles with
DMF and EtOH and centrifugations (5000 rpm), followed by solvent evaporation.
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3.4. Fabrication of MMOFs

Three different MMOF materials originating from Co-doped, Zn-doped(acac) and
Zn-doped(Cl) MNPs (hereafter named as CF MMOF, ZF(acac) MMOF and ZF(Cl) MMOF,
respectively) were synthesized by using the following general procedure. Briefly, 0.025 g
of the corresponding ferrite MNPs were dispersed in DMF (29 mL) in a two-neck round
bottom flask before the addition of ZrCl4 (0.060 g) and H2BDC (0.067 g) and subsequent
20-min sonication (the ligand was not completely soluble). UiO-66 growth was promoted
through a heat-driven reaction under reflux conditions and simultaneous mechanical
stirring for 12 h under a stable temperature of 120 ◦C. After the reaction, the vessel was left
to cool down to room temperature while the magnetic material was collected through the
application of external commercial magnet before the removal of the supernatant. Repeated
washing cycles and centrifugations (5000 rpm) with DMF and EtOH and subsequent solvent
evaporation yielded powder-like magnetic solids, which were left to dry under vacuum.

3.5. Characterization

The elemental composition of the samples was tested by field emission gun scanning
electron microscopy (FEG-SEM; Tescan Lyra dual beam microscope), where energy disper-
sive spectrometry (EDS; X-ManN) spectra were obtained. A 20 mm2 SDD detector (Oxford
Instruments) and Aztec Energy software were used. Samples for SEM were placed on a
carbon conductive tape. For SEM and SEM-EDS measurements, a 10 kV electron beam was
employed. The crystal structures of the MMOFs were investigated through X-ray diffrac-
tion (XRD; Bruker D8-Bragg-Brentano para focusing geometry diffractometer) performed in
the 2θ region from 5 to 90◦, with monochromatized Cu Ka radiation (λ = 1.5418 Å). Fourier
transform infrared spectroscopy (FTIR; Nicolet FTIR 6700 spectrometer, 450–4000 cm−1)
was recorded with samples prepared as KBr pellets. Thermogravimetric analysis (TGA;
SETA-RAM SetSys-1200 instrument) was performed at a heating rate of 10 min−1 under N2
atmosphere in the range of ambient temperature to 900 ◦C. Magnetic measurements were
acquired by a vibrating sample magnetometer (VSM; Oxford Instruments 1.2 H/CF/HT
VSM). The specific surface area of the as-prepared MMOFs samples was measured via N2
porosimetry, using the Brunauer-Emmett-Teller theory (BET; Tristar 3000 Micrometrics).
Degassing was carried out using N2 gas at 110 ◦C for 2 h, cryogenic conditions were
achieved with liquid nitrogen while helium was also employed as a purging gas. The
absorbance measurements of all pesticide solutions were performed on a double beam
ultraviolet-visible spectrometer (UV-Vis; Hitachi U-2001).

3.6. Adsorption Studies

Calibration curves of 2,4-D and 2,4,5-T were prepared by measuring the absorbance
at 283 and 287.5 nm via UV-Vis spectrometry, respectively, with a series of standard
pesticide aqueous solutions (0–250 ppm). The adsorption experiments were executed at
ambient temperature for a series of pesticide solutions with varying concentrations. Before
adsorption, the adsorbents were dried under vacuum overnight. The pesticide solutions
were prepared by dilutions of a stock solution (250 ppm) with deionized water and the pH
of the final solutions was adjusted to 3.5 by the addition of minimum volume of HCl. For
each concentration, 10 mg of ground MMOF sample was added to 50 mL of the pesticide
solution in a conical flask and stirred for 48 h at 130 rpm. After adsorption, the adsorbent
was magnetically separated with the use of external magnet and the remaining amount
of pesticide in the solution was monitored by UV-Vis spectrometry by using the prepared
calibration curves based on Lambert-Beer law.

3.7. Kinetic Studies

For the kinetic studies, adsorption experiments were conducted at ambient temper-
ature in conical flasks containing 50 mL of 2,4-D solution (200 ppm) or 2,4,5-T solution
(80 ppm) of pH 3.5. 10 mg of adsorbent were added to each solution, which was stirred
with shaking speed of 130 rpm. 2 mL aliquots were taken with pipette at certain time
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intervals after magnetic separation of the adsorbent with external magnet on the walls
of the vessel, while it was temporarily removed from the stirrer. The concentration of
the contaminants in the aliquots was measured by UV-Vis spectrometry. The sampling of
aliquots was only terminated after the adsorption process was considered to have reached
a dynamic equilibrium.

3.8. Recovery and Reuse

Adsorbed MMOFs with loaded 2,4-D were treated with repeating washing cycles with
deionized water and ethanolic solutions by vortex shaking to release the pesticide. After
the evaporation of the solvent the adsorbents were dried under vacuum overnight and
were tested in subsequent adsorption cycles by the addition of 10 mg in newly prepared
2,4-D solution (200 ppm) and the measurement of the remaining amount of pesticide after
24 h of contact.

4. Conclusions

The motivation to use MMOFs for water pollution remediation is rising. However, for
practical usage the synthetic procedure is needed to not be complicated as the cost, safety
and convenience are required parameters. In that vein, three novel MMOFs have been
prepared through a facilitated procedure by (i) the employment of a well-studied MOF
such as UiO-66 with exceptional stability and reproducibility and without any additional
functionality and (ii) well established, stable, and reproducible coated MNPs. The resulting
MMOFs presented a roughly 70% reduction in both the magnetic properties and the SSA in
comparison with their building blocks; nevertheless, the remaining 30% of magnetization
and SSA was adequate for successful and sufficient adsorption of two pesticides that
constitute health risks. As the properties of the UiO-66 framework remained fixed in all
three materials, differences in performance are attributed to the composition of the MNPs.
Based on that, MNPs with the smallest crystallite size as well as a PEGylated surface
achieved the highest MNP loading in the framework in combination with the smallest
SSA reduction and performed better as adsorbents. Comparatively, to our knowledge, the
present MMOFs displayed higher saturation magnetization values than 50% and higher
SSA values than 25% of the reported MMOFs. Meanwhile, they can be recovered and
reused via commercial magnets to satisfy the need for sustainable and low-cost innovation.
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MMOF, Figure S4: SEM/EDS of CF MNPs, Figure S5: SEM/EDS of ZF(acac) MNPs, Figure S6:
SEM/EDS of ZF(Cl) MNPs, Figure S7: VSM hysteresis loops of CF, ZF(acac) and ZF(Cl) MNPs.
Figure S8: FTIR spectra for all MNPs and MMOFs, Table S1: Recycle data after 24 h of adsorption
period for all three washed and dried MMOFs, in comparison with the 2,4-D starting solution curve.
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