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Abstract

The neural pathways that carry information from the foveal, macular, and peripheral

visual fields have distinct biological properties. The optic radiations (OR) carry foveal

and peripheral information from the thalamus to the primary visual cortex

(V1) through adjacent but separate pathways in the white matter. Here, we perform

white matter tractometry using pyAFQ on a large sample of diffusion MRI (dMRI)

data from subjects with healthy vision in the U.K. Biobank dataset (UKBB; N = 5382;

age 45–81). We use pyAFQ to characterize white matter tissue properties in parts of

the OR that transmit information about the foveal, macular, and peripheral visual

fields, and to characterize the changes in these tissue properties with age. We find

that (1) independent of age there is higher fractional anisotropy, lower mean diffusiv-

ity, and higher mean kurtosis in the foveal and macular OR than in peripheral OR,

consistent with denser, more organized nerve fiber populations in foveal/parafoveal

pathways, and (2) age is associated with increased diffusivity and decreased anisot-

ropy and kurtosis, consistent with decreased density and tissue organization with

aging. However, anisotropy in foveal OR decreases faster with age than in peripheral

OR, while diffusivity increases faster in peripheral OR, suggesting foveal/peri-foveal

OR and peripheral OR differ in how they age.
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1 | INTRODUCTION

Visual perception of peripheral and foveal eccentricities differs sub-

stantially, suggesting qualitatively different computational mechanisms

governing each of these parts of the visual field. These differences in

perception and computation stem from structural and functional differ-

ences between foveal and peripheral representations at every stage of

the visual system. In the retina, the fovea occupies a privileged position
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with no occlusion by blood vessels or incident axons, and a one-to-one

ratio of receptors to ganglion cells (Sjöstrand et al., 1999). The magnifi-

cation of the fovea in the retina is further enhanced as information

travels to the cortex, with approximately 50% of the primary visual cor-

tex (V1) devoted to the central 12� of vision (Horton & Hoyt, 1991).

Nearby points in the visual field are represented by neighboring points

on the surface of the visual cortex (Wandell & Winawer, 2011). This

mapping is a consequence of the ordered set of projections from the

retina to the lateral geniculate nucleus (LGN) and from the LGN to the

V1. The projections from LGN to V1 through the optic radiations (OR),

in particular, are known to contain a retinotopic organization, with

nerve fibers transmitting information about neighboring parts of the

visual field traveling close to each other. Information about nearby

points in the visual field travel through adjacent bundles of axons in

the white matter, as reflected in the fact that damage to the OR results

in scotomas in predictable parts of the visual field (Ebeling &

Reulen, 1988). Here, we asked whether there are systematic differ-

ences between the white matter projections that transmit information

about the central visual field and more peripheral eccentricities.

New large and openly available datasets like the U.K. Biobank

(Sudlow et al., 2015) (UKBB) provide an opportunity to study within

and cross-individual differences in the physical properties of the OR

at unprecedented scale. Here, we used a large sample (n > 5000) from

the UKBB dataset to ask whether there are differences in the tissue

properties of parts of the OR that contain the axons that transmit

information about different parts of the visual field. Furthermore,

aging is reflected in measurable changes in the physical properties of

the tissue (Cox et al., 2016; Yeatman et al., 2014). In the retina, the

fovea has a different trajectory of aging than the periphery (Haas

et al., 1986; Heijl et al., 1987). The large range of ages represented in

the UKBB sample also allows us to ask whether distinct effects of

aging can be measured in different parts of the OR.

To assess white matter tissue properties, we analyzed UKBB

diffusion-weighted MRI (dMRI), which measures the random motion

of water within brain tissue (Wandell, 2016). Computational tractogra-

phy uses directional diffusion information to generate estimates of

the trajectories of white matter pathways between different parts of

the brain. In the white matter between the LGN and V1, dMRI can be

used to accurately delineate the trajectory of the optic radiations

(OR) (Caffarra et al., 2021; Kammen et al., 2016; Sherbondy

et al., 2008). Furthermore, owing to the systematic mapping of the

visual field in the visual cortex, parts of the OR that transmit informa-

tion about different parts of the visual field can be systematically

parsed based on their endpoints close to the visual cortex (Sherbondy

et al., 2008; Yoshimine et al., 2018).

In addition to estimating macrostructural white matter tracts, dif-

fusion MRI data can also be used to assess the microstructural proper-

ties of the white matter tissue. Here, we used the diffusional kurtosis

model (DKI) (Henriques et al., 2021; Jensen et al., 2005). DKI extends

the classical diffusion tensor model (DTI (Basser et al., 1994)) by quan-

tifying how much the diffusion deviates from a single Gaussian com-

ponent. More specifically, low kurtosis indicates a distribution with

thinner tails than a Gaussian distribution, and high kurtosis indicates

thicker tails. Higher kurtosis indicates heterogeneity in white matter

tissue, consistent with more densely packed axons and other cellular

structures. Kurtosis is quantified in different directions and is summa-

rized in the mean kurtosis (MK) metric. In addition, we also used met-

rics from the DTI model, which is subsumed in the DKI model: the

average diffusion across directions (mean diffusivity or MD), and the

fractional anisotropy (FA). FA is a normalized variance of the diffusion

across directions, which is bounded between 0 (isotropic diffusion)

and 1 (anisotropic diffusion). DTI-derived parameters, such as FA and

MD are highly sensitive to biological change and to differences

between individuals, but unfortunately, they are also non-specific. For

example, FA tends to decrease with demyelination (Beaulieu

et al., 1996), leading some to interpret this parameter as indicative of

“white matter integrity”. However, it also decreases in voxels in which

more than one major fiber population is present, suggesting that cau-

tion should be taken in this interpretation (Jones et al., 2013). In some

cases, MK reduces the ambiguity and further constrains the interpre-

tation of FA and MD. For example, both damage to a population of

fibers and the addition of crossing fibers reduce FA, but the former

causes a decrease in MK, while the latter would cause an increase in

MK (Henriques et al., 2021). Tissue properties calculated with DKI

also relate to microstructural changes present in brain diseases (Hui

et al., 2012; Struyfs et al., 2015).

To assess the tissue properties in different sub-bundles of the

OR, corresponding to different parts of the visual field, and their

change with age, we used pyAFQ (https://yeatmanlab.github.io/

pyAFQ (Kruper et al., 2021)), an open-source software pipeline that

implements tractometry based on the Automated Fiber Quantification

approach (Yeatman et al., 2012). In this approach, white matter path-

ways, such as the OR, are automatically identified based on anatomi-

cal landmarks, and diffusion properties are quantified along the

trajectory of the bundle. Tractometry is used to characterize the phys-

ical properties of the major white matter pathways along their length,

taking into account systematic variability that exists in these proper-

ties throughout the length of the major white matter pathways. We

recently demonstrated that this process is both reliable in test–retest

data, as well as robust to variations in computational methodology

(Kruper et al., 2021), despite variability in the results of tractography

(Maier-Hein et al., 2017). Using this approach, we demonstrate a dif-

ferentiation between white matter properties of different sub-bundles

of the OR, and show that age-related changes in tissue properties sys-

tematically differ between the sub-bundles. These findings suggest

different aging trajectories for different populations of nerve fibers

even within the same anatomical pathway.

2 | METHODS

2.1 | Data

2.2 | Subjects

We used dMRI data from 7,438 subjects, that were selected because

they had both diffusion MRI data and optical coherence tomography
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measurements in each eye (Sudlow et al. 2015; Alfaro-Almagro

et al. 2018). However, this article focuses only on the dMRI measure-

ments. Of these, we selected 5,382 subjects that are classified as hav-

ing no eye problems/disorders based on an ACE touchscreen

question: “Has a doctor told you that you have any of the following

problems with your eyes? (You can select more than one answer)”
(see UKBB data field 6148), and who have high visual acuity (logMAR

of 0.3 or less). Population characteristics for this sample are shown in

Figure 1.

2.3 | MRI measurements

We used preprocessed diffusion MRI data that were processed and

released by the UK Biobank team. The acquisition protocol has been

described elsewhere (Miller et al., 2016), and we provide here only

some details. Data were acquired with a spatial resolution of

2 � 2 � 2 mm3. TE/TR = 14.92/3600 ms. Five volumes were

acquired with no diffusion weighting (b = 0), and 50 volumes were

acquired for each of two diffusion weightings: b = 1000 s/mm2 and

b = 2000 s/mm2. In addition to these 105 volumes acquired with an

anterior-to-posterior phase encoding direction, and additional 6 b = 0

volumes were acquired with posterior-to-anterior phase encoding

direction and subsequently used for EPI distortion correction. Prepro-

cessing was also described elsewhere (Alfaro-Almagro et al., 2018),

and we provide only some details. Briefly, head motion and eddy cur-

rents were corrected using the FSL “eddy” software, including correc-

tion of outlier slices. Subsequently gradient distortion correction was

performed. Non-linear registration using FNIRT was used to map the

individual-level data to the MNI template.

3 | ANALYSIS

3.1 | Tractography and registration

Residual bootstrap tractography (Rokem et al., 2021; Berman

et al., 2008) was used to delineate the trajectory of optic radiations in

each subject's individual data. We used a GPU-accelerated implemen-

tation of this method (Rokem et al., 2021), limiting tractography to the

posterior half of the brain. Based on the known trajectory of the optic

radiations, we defined inclusion, exclusion, and endpoint regions of

interest (ROIs) within the core white matter in each hemisphere

(Figure 2a,b). These were registered to each subject's anatomy using

the FNIRT non-linear warp and 64 seeds were uniformly distributed in

each voxel of each ROI.

3.2 | Bundle recognition

Bundle recognition used the pyAFQ software (https://github.com/

yeatmanlab/pyAFQ (Kruper et al., 2021)), which implements a proce-

dure very similar to the one described by Yeatman et al. (Yeatman

et al., 2012). The software finds streamlines that belong to a white

matter pathway by defining waypoint ROIs within the core of the

white matter along the trajectory of the pathway. The software allows

additional criteria for inclusion or exclusion of tractography stream-

lines; we used the following criteria to recognize the OR: streamlines

(1) do not pass through the sagittal midline of the brain; (2) have at

least one point that is within 3 mm of both of the inclusion ROIs;

(3) do not have any point that is within 3 mm from the exclusion ROI;

(4) terminate within 3 mm of the two endpoint ROIs (one in the thala-

mus and the other in V1) (Caffarra et al., 2021). After defining this

group of streamlines an additional cleaning procedure was applied to

remove streamlines that were outliers in terms of their length and tra-

jectory. Subsequently, streamlines were divided into foveal OR (fOR),

macular OR (mOR), or peripheral OR (pOR) based on the anatomical

position of their termination in V1, using eccentricity from the retino-

topic prior of Benson and Winawer (Benson & Winawer, 2018) and

masked with the V1 location in the AICHA atlas (Joliot et al., 2015)

(Figure 2c–j). The eccentricity ranges were: fOR, ≤3�; mOR, >3�, ≤7�;

pOR, >7�.

3.3 | Tract profiles

The dMRI signal in each voxel was modeled using the diffusional kur-

tosis model, implemented in DIPY (Garyfallidis et al., 2014; Henriques

et al., 2021). The streamlines in each bundle were resampled to

100 points and tissue properties were referred to points along the

length of fOR/pOR by extracting the values from the voxels in which

each node of each resampled streamline was positioned. Contribu-

tions from each node were inversely weighted by their distance from

the core fiber, the median of the coordinates in each of the 100 nodes

along the length of the bundle. In visualizing the results and in

F IGURE 1 Population characteristics of UKBB subjects. In each
panel, gender is denoted by color (green for female, red for male). In

the left panel, we plot the age distribution. Note that younger
subjects are majority female, while older subjects are majority male. In
the right panel, we break down the subjects into age bins. The middle
age bins all span 4 years. The first and last age bins were selected to
have similar numbers of subjects in each bin to the middle age bins.
These age bins are used to group subjects and to visualize changes in
tract profiles with age.
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statistical analysis, we excluded 20 nodes from either side of the bun-

dle, where tissue properties reflect partial volume effects with the

gray matter. An adjusted contrast index (ACI), interpretable as percent

difference, is calculated at each position as 2(x1 � x2)/(x1 + x2) for tis-

sue properties (FA, MD, or MK) x1 and x2 from two bundles. The ACI

is used to assess differences along a profile. ACIs can be calculated

between sub-bundles or across hemispheres. After calculating ACI

and tract profiles for each subject, we display mean profiles/ACI with

95% confidence intervals, calculated using bootstrapping across sub-

jects with 10,000 resamples.

3.4 | Modeling aging

We modeled aging of tissue properties averaged over all nodes in

each bundle. In each bundle, the change of each tissue property over

time was modeled as a linear (a + b � age) and, following Cox et al.

(2016), as a quadratic (a + b � age + c � age2). Both models were fit

using ordinary least squares, implemented in the Statsmodels Python

package (Seabold & Perktold, 2010). The two models were compared

using Akaike's Information Criterion (AIC). Confidence intervals on

model parameters (e.g., a, b) were estimated using the profile likeli-

hood confidence intervals method (Royston, 2007), as implemented in

Statsmodels.

For each tissue property, we also used analysis of variance

(ANOVA) to quantify the effects of various predictors on variation in

the mean tissue property. We quantify the effects of various predic-

tors on whether a bundle is missing using the same ANOVA setup.

The predictors are: age, subbundle, hemisphere, and the interaction

between age and subbundle. Because age is continuous, we used an

analysis of covariance for that factor. For the sub-bundle factor and

all of its interactions, we used Mauchly's test for sphericity

F IGURE 2 (a,b) Regions of interest (ROIs) for the initial right OR bundle recognition shown over the Montreal Neurological Institute (MNI) T2
template (Fonov et al., 2009). (c) Visual field colored by sub-bundle divisions. (d) Sub-bundle divisions shown in V1 over the MNI T2 (Fonov
et al., 2009). (e) The streamlines identified in an example subject, colored by sub-bundle, with T1-weighted image as background. Note the left
peripheral sub-bundle is not found in this subject. (f) The core bundles used to extract tract profiles in the example subject, with T1 as the
background. (g–j) Coronal slices of the T1 along the OR in the example subject. Smaller circles indicate where streamlines pass through the slice,
while larger bolded circles indicate where the core bundle passes through the slice. Note that, although the distance between the core bundles
may become small (particularly between the macular and foveal sub-bundles), separation between the sub-bundles is maintained along the
bundle.
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(Mauchly, 1940). When a null hypothesis of sphericity was rejected,

the Greenhouse Geisser correction was applied (Greenhouse &

Geisser, 1959).

3.5 | Control bundles

We performed the same analysis on two control bundles, the corti-

cospinal tract (CST) and uncinate (UNC). These bundles were not fur-

ther divided into subbundles. We used the default ROIs for these

bundles as provided in pyAFQ (Kruper et al., 2021).

3.6 | Software

All code to reproduce the analysis and the figures is available at

https://github.com/36000/OR_aging_ukbb.

4 | RESULTS

We delineated the trajectory of the fOR and pOR in a sample of 5382

subjects from the U.K. Biobank dataset between the ages of 45 and

81. In a portion of these individuals, we were not able to delineate

F IGURE 3 Percentage of successfully delineated bundles by age bin. The control bundles are found in almost all subjects, unlike the OR sub-
bundles, which are harder to track. Note that in some cases, less bundles are found at older ages. Uncertainties show the bootstrapped 95%
confidence interval.
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some of the sub-bundles (Figure 3). Using ANOVA, we find significant

main effects of age (F1,5380 = 18.6, p = .00002), sub-bundle

(F1.4,7309.5 = 342.2, p < .00001), and hemisphere (F1,5380 = 232.3,

p < .00001). We also find significant interactions between age and

subbundle (F1.4,7309.5 = 6.3, p = .00601) but not age and hemisphere

(F1,5380 = 0.01, p = .91).

To better understand the effects of the missing bundles, We cre-

ated a dataset using only subjects where all bundles are found. All

10 bundles are found in only 2,704 subjects. We generated all subse-

quent visualizations for this dataset, and found the same results. We

also ran ANOVA on this smaller dataset, and except where otherwise

stated, all significant results in the main 5,382 subject dataset are also

significant in the smaller 2,704 subject where all bundles are found.

We examine the results in the left hemisphere first (Figure 4). For

all tissue properties (Figure 4; rows) and in all sub-bundles (Figure 4;

columns), there are consistent changes in with age across almost the

entire profile. FA decreases with age, MD increases with age, and MK

decreases with age. We conducted pairwise comparisons between

points along each of the bundles using a within-subject adjusted con-

trast index, akin to a percent difference. In FA, there are clear differ-

ences between fOR and pOR sub-bundles (the ACI profiles deviate

from the red line at 0% difference; Figure 4, under “Fov (+) v. Per

(�)”, first row), but it is unclear if there are specific points along the

profile where these difference systematically vary with age (different

colored lines do not follow a clear gradient). In contrast, there are no

points along the profiles, where MK and MD clearly differ between

fOR and pOR (the profiles follow the red ACI = 0 line closely;

Figure 4, under “Fov (+) v. Per (�),” second and third rows). Similarly,

fOR and mOR sub-bundles do not differ much in any of the tissue

properties (the profiles follow the red ACI = 0 line closely; Figure 4,

under “Fov (+) v. Mac (�)”).
This pattern of results broadly replicates in the right hemisphere

(Figure 5). However, in the right hemisphere, there are distinct differ-

ences between fOR and pOR in MK and MD in particular points along

their profiles that are not apparent in the left hemisphere (Figure 4).

In addition to these differences in the patterns of results between

the hemispheres, we also find overall differences between the hemi-

spheres, apparent in point-by-point comparisons of the right and left

hemisphere instance of each sub-bundle (Figure 6). Even the consis-

tent point-by-point differences are generally not very large (almost all

ACI are smaller than 5%) and they do not clearly change with age.

We compared the tissue properties in the OR to two non-visual

sub-bundles that we used as a point of comparison in a previous study

(Caffarra et al., 2021): the corticospinal tract (CST) and the uncinate

fasciculus (UNC). We were not able to delineate left CST in 0.1% of

subjects and right CST in 0.1% of subjects. We successfully delineated

F IGURE 4 Tissue property profiles along the foveal, macular, and peripheral OR (fOR, mOR, pOR) in the left hemisphere. Positions are from
anterior (A) to posterior (P). Subjects are broken down into seven age bins. The first and last age bin have a larger range of ages so that the
number of subjects in each age bin are within the same order of magnitude. In the left two columns, tissue properties are plotted by age bins
(different line colors: purple is youngest and gold is oldest). Older subjects tend to have lower FA, higher MD, and lower MK. The thin lines show
bootstrapped 95% confidence intervals and are also colored according to age bin. In the right column, we show the adjusted contrast index (ACI)
between sub-ORs. Here, higher ACI corresponds to higher values in the tissue properties in the fOR than the pOR or mOR. These differences
change only slightly with age, and differences are more pronounced in the posterior section of the OR.
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both UNC in all subjects. Successfully delineated tract profiles and

bilateral ACIs are shown in Figures 7 (CST) and 8 (UNC).

In the CST, we see consistent tissue property profile changes with

age (Figure 7) that are similar in their directions (FA decrease, MD

increase, and MK decrease with age), but smaller in their magnitude

than the changes with age in the OR sub-bundles. CST also has some

systematic left–right asymmetries that are particularly large in FA and

small in MD. FA profile asymmetries systematically decrease with age.

In the UNC (Figure 8), we again observed changes with age that

qualitatively resemble the changes we observed in the OR and CST.

These changes were smaller than the changes with age in the OR sub-

bundles but larger than the changes observed in CST. Hemispheric

asymmetries along the length of the UNC are particularly large in MK

and these MK asymmetries increased with age.

To further analyze the tissue properties in the bundles, we aver-

aged each of these quantities along the length of the profiles for every

subject and every bundle/sub-bundle. Analysis of tissue profile means

recapitulated some of the results that were observed in the point-by-

point analysis, and revealed some new observations. For example, in

this analysis, we can see that in the CST, mean FA is higher, mean MD

is lower, and mean MK is higher than in both the OR sub-bundles. In

UNC, mean FA, mean MD, and mean MK are lower than in the OR

sub-bundles. OR sub-bundles are similar to each other, but the periph-

eral OR tends to have lower FA, higher MD, and lower MK.

Using an ANOVA, we model the averaged tissue properties in the

OR sub-bundles in terms of hemisphere, aging, and sub-bundle. As

expected from the point-by-point analysis (Figures 4,5), we found that

mean FA significantly decreases with age (F1,4945 = 204.5,

p < .00001). Even while accounting for age, there are also significant

differences between the sub-bundles representing different parts of

the visual field (F1.5,7470.8 = 3678.9, p < .00001), presumably because

of the lower mean FA in the pOR relative to fOR and mOR (Figure 9).

In the aggregate, the small differences seen in the point-by-point

hemispheric asymmetry analysis do also constitute a significant later-

alization effect, with a higher mean FA in the left hemisphere than in

the right hemisphere (F1,4945 = 178.5, p < .00001). In addition, the

effects of age on FA did not affect all sub-bundles uniformly, indicated

through a significant interaction between age and subbundle

(F1.5,7470.8 = 38.4, p < .00001). We explore this effect in more detail

below. MD significantly increases with age (F1,4945 = 622.4,

p < .00001). We also found a lateralization effect in MD, with higher

MD in the left hemisphere than in the right (F1,4945 = 74.9,

p < .00001), and a sub-bundle effect (F1.7,8364.3 = 512.1, p < .00001).

Here, interaction between sub-bundle and age is not significant. MK

significantly decreases with age (F1,4945 = 519.8, p < .00001), is signif-

icantly higher in the right than in the left hemisphere (F1,4945 = 272.6,

p < .00001), and has a sub-bundle effect (F1.6,7743.9 = 564.4,

p < .00001). For MK, an interaction between sub-bundle and age was

F IGURE 5 Tissue property profiles along the foveal, macular, and peripheral OR (fOR, mOR, pOR) in the right hemisphere. Positions are from
anterior to posterior. Subjects are broken down into seven age bins. The first and last age bin have a larger range of ages so that the number of
subjects in each age bin are within the same order of magnitude (see Figure 1). In the left two columns, tissue properties are plotted by age bins
(different line colors: purple is youngest and gold is oldest). The thin lines show bootstrapped 95% confidence intervals and are also colored
according to age bin. In the right column, we show the adjusted contrast index (ACI) between sub-ORs. Here, higher ACI corresponds to higher
values in the tissue properties in the fOR than the pOR or mOR. These differences change only slightly with age, and differences are more
pronounced in the posterior section of the OR.
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F IGURE 6 ACI between the left and
right ORs. Positions are from anterior to
posterior. Subjects are broken down into
seven age bins. The thin lines show
bootstrapped 95% confidence intervals
and are also colored according to age bin.
Here, higher ACI corresponds to higher
values in the tissue properties in the left
OR than the right OR.

F IGURE 7 Tissue property profiles
along the corticospinal tract (CST).
Positions are from inferior to superior.
Subjects are broken down into seven age
bins. The first and last age bin have a
larger range of ages so that the number of
subjects in each age bin are within the
same order of magnitude. In the left two
columns, tissue properties are plotted by
age bins (different line colors: purple is
youngest and gold is oldest). The thin lines
show bootstrapped 95% confidence

intervals and are also colored according to
age bin. In the right column, we show the
adjusted contrast index (ACI) between the
left and right CST. Here, higher ACI
corresponds to higher values in the tissue
properties in the left CST than the
right CST.
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found to be marginally significant (F1.6,4269.5 = 4.7, p = .01528) only

when considering the subjects for whom all bundles could be

delineated.

To further understand the manner in which age affects the aver-

aged tissue properties, we fit separate linear and quadratic regression

models to the mean of each tissue property in each bundle and sub-

bundle (Figure 10). Model comparison using AIC found these two

models to be closely equivalent in terms of their fit to the data, and

we chose to focus on the linear model, because the slope coefficient

in this model is more readily interpretable as the average rate of

change in a tissue property. OR sub-bundles all change substantially

more rapidly with age than the control bundles, in all three tissue

properties, indicated by linear regression slopes of larger magnitudes.

The significant age by sub-bundle ANOVA interaction is explained by

the consistent differences between the rate of change in the two cen-

tral visual field OR sub-bundles and pOR: FA decreases more rapidly

in fOR and mOR than in pOR. Much smaller differences in rate of

change are observed in MK and MD. However, MD in the pOR

increases at a faster rate than in the fOR and mOR.

5 | DISCUSSION

Many aspects of brain physiology and structure change with aging.

However, aging is not uniform across different parts of the brain, with

some regions of the brain more susceptible to aging than others. For

example, it is known that different white matter pathways age at

different rates (Cox et al., 2016). The goal of the present study was to

characterize the aging of the optic radiations, with a particular focus

on sub-bundles of the OR that represent different parts of the visual

field. Consistent with results from post-mortem dissections (Peltier

et al., 2006), we found OR sub-bundles that follow different anatomi-

cal trajectories to different parts of the visual cortex. In addition, we

found that the microstructural tissue properties in the pOR differ from

those measured in the fOR/mOR. We found higher FA, lower MD and

higher MK in fOR/mOR relative to pOR. These results are consistent

with more densely packed and coherently oriented white matter in

the foveal/macular OR relative to the peripheral OR. In this case, the

diffusional kurtosis model (DKI) provides additional support to the

DTI-based interpretation (Henriques et al., 2021; Jensen et al., 2005).

Importantly, in previous work we have demonstrated that even DTI-

based metrics such as FA and MD are more accurately and reliably

estimated using the DKI model, as done here. The differences

between the subbundles may relate to information processing differ-

ences between more central and more peripheral parts of the visual

field. For example, visual processing has much higher acuity in fovea

than in periphery (Cowey & Rolls, 1974) and contains more informa-

tion about color (Hansen et al., 2009), possibly requiring higher infor-

mation transmission.

Tissue properties of all OR bundles change substantially with age.

We modeled age-dependence of tissue properties using both a qua-

dratic model that has been previously applied to white matter in the

UK biobank (Cox et al., 2016), as well as a linear regression model. In

our interpretation of these models, we chose to focus on the linear

F IGURE 8 Tissue property profiles
along the uncinate (UNC). Positions are
from posterior to anterior. Subjects are
broken down into seven age bins. The
first and last age bin have a larger range of
ages so that the number of subjects in
each age bin are within the same order of
magnitude. In the left two columns, tissue
properties are plotted by age bins

(different line colors: purple is youngest
and gold is oldest). The thin lines show
bootstrapped 95% confidence intervals
and are also colored according to age bin.
In the right column, we show the adjusted
contrast index (ACI) between the left and
right UNC. Here, higher ACI corresponds
to higher values in the tissue properties in
the left UNC than the right UNC.
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model, because it achieved identical goodness-of-fit to the quadratic

regression, but its coefficients are easier to interpret as a rate of

change in the tissue properties with age. We found that the mean tis-

sue properties in the OR overall age more rapidly than the tissue

properties in two control bundles that we analyzed: the corticospinal

tract (CST) and the uncinate fasciculus (UNC). The relatively faster

aging in OR is consistent with previous results with a smaller sample

of UKBB participants (Cox et al., 2016). Nevertheless, it is remarkable

that CST tissue properties, and specifically FA, change very little, par-

ticularly in an aging population where overall motor abilities also

change over time. Importantly, results from tractometry of CST, par-

ticularly in the superior part of this pathway, tend to bias towards the

representations of the lower body, because of the difficulties to track

through the centrum semiovale to the upper body representations

that lie more lateral and inferior on the banks of the central sulcus.

This is somewhat improved using the probabilistic tractography

methods used here, as validated in a patient study that used the same

tractography algorithm paired with intraoperative electrical stimula-

tion in brain tumor patients (Mandelli et al., 2014), but is not entirely

resolved even with these methods. Regardless, the CST was not the

focus of the present study and this result would need further study in

populations with different age-related mobility changes.

Within the OR, we found that all sub-bundles age in a manner

that is consistent with age-related declines in density and tissue orga-

nization (decreased FA, increased MD and decreased MK). However,

concomitant faster declines of FA in fOR/mOR and faster increase in

MD in the pOR suggest distinct aging processes happening in parallel.

Overall, parts of the visual field with higher-resolution vision (fovea/

macula) are associated with white matter bundles that have higher

FA, lower MD, and higher MK. Taken together, these two sets of

F IGURE 9 Distribution of mean microstructural tissue properties in the youngest age group (45–51). The wide distributions demonstrate the
individual variability in this age group. Note that pOR subbundles have slightly lower mean FA, higher mean MD, and lower mean MK.
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findings are consistent with the high degree of information transmis-

sion that needs to be handled by the optic radiations, and particularly

within the foveal and macular portions. Replicating previous results

(Dayan et al., 2015; Levin et al., 2010; Sherbondy et al., 2008), we also

found consistent lateralization effects, with higher FA, higher MD and

lower MK in the left than in the right hemisphere.

The study and our conclusions are still subject to several limita-

tions. First, automatically detecting the OR within every individual is a

challenging computational task, particularly across a large and diverse

sample (e.g., in terms of their ages). This is because of the high curva-

ture of the tract, its narrow path leading into the occipital pole and its

intersection with multiple other pathways, challenges which could be

compounded by the expansion of the lateral ventricles with age.

Moreover, defining the sub-bundles of the OR is also challenging and

we were not able to define the OR bundles or sub-bundles in many of

the subjects (Figure 3). In addition to the large variance in subject

ages, this could reflect variable data quality among different individ-

uals in the sample, and reflects the difficulties of consistent tractogra-

phy to cortical (i.e., V1) and small subcortical (i.e., LGN) targets. To

complicate matters, missingness is not randomly distributed with

respect to the bundles and the age bins of interest. However, the

main conclusions described above hold if we only consider subjects

for whom all the bundles could be delineated. Thus, we conclude that

the patterns of missingness and bundle-specific differences in tissue

properties are reflecting similar biological processes in terms of the

change in the tissue. When FA and MK are lower, and MD is higher,

in older subjects (i.e., in the pOR) this bundle is also harder to find

because tractography algorithms require directional information to

track through these regions of the white matter.

Finally, we rely on participant self-report, in addition to visual acu-

ity, to exclude participants with eye diseases, and it is possible that

some of the results are driven by an increased prevalence of early-

stage undetected eye diseases in older participants (but see also discus-

sion of this point in Mehta et al. (Mehta et al., 2021)). It is possible that

this is driving some of the difference between OR and the non-visual

control bundles in this sample. However, even with these challenges,

the advantages of the UKBB dataset are clear: it provides a very large

sample, providing high confidence in the consistent results that we see

here. Finally, tractography cannot differentiate feedforward axons that

transmit information from the LGN to cortex from the feedback projec-

tions that transmit information in the opposite direction. Though these

feedback projections are thought to be abundant (Briggs, 2020), their

relative volume fraction within the bundle is not well known. Thus, our

conclusions need to be viewed as encompassing the properties of both

feedforward and feedback projections within the OR.

To summarize, our findings show that the white matter pathways

carrying information from different parts of the visual field have dis-

tinct biological properties. The largest differences occur between the

pOR and fOR/mOR, which follow different anatomical trajectories.

These different sub-bundles also have different functional properties.

The somewhat more rapid decreases in FA in the fOR/mOR may be

consistent with the higher degree of information transmission in this

part of the visual field. It is also consistent with two related studies

that show decrease in surface area representing the central 7� and

increased visual population receptive field sizes in this part of V1 and

other early visual cortical areas, as measured with functional MRI

(Brewer & Barton, 2012; Brewer & Barton, 2014). Hence, the distinct

aging of fOR and mPR relative to pOR may also be inherited by other

structures further into the visual system. Retinotopic organization of

the OR is also apparent in the callosal tracts that connect the visual

cortex in both hemispheres (Bock et al., 2013) and a similar analysis

could also be applied to the sub-bundles of the corpus callosum to

F IGURE 10 Change in microstructural tissue properties per year according to a linear regression of the mean of each metric. Error bars show
the 95% confidence interval. Note that fOR/mOR change more dramatically with age in mean FA than pOR, and that the OR sub-bundles change
more with age than the control bundles.
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study this topic further. The methods used here to delineate the dif-

ferent sub-bundles of the OR could be carried forward into population

studies of visual disorders that differentially affect different parts of

the visual field, such as age-related macular degeneration, as has

already been done in small samples (Yoshimine et al., 2018). More

generally, the findings demonstrate consistent anatomical variation in

tissue properties and their aging even within a single white matter

pathway.
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