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Machine Learning finds application in the quantum control and readout of qubits. In this work we
apply Artificial Neural Networks to assist the manipulation and the readout of a prototypical molec-
ular spin qubit - an Oxovanadium(IV) moiety - in two experiments designed to test the amplitude
and the phase recognition, respectively. We first successfully use an artificial network to analyze
the output of a Storage/Retrieval protocol with four input pulses to recognize the echo positions
and, with further post selection on the results, to infer the initial input pulse sequence. We then
apply an Artificial Neural Network to ascertain the phase of the experimentally measured Hahn
echo, showing that it is possible to correctly detect its phase and to recognize additional single-pulse
phase shifts added during manipulation.

I. INTRODUCTION

Machine Learning (ML) methods are extremely versa-
tile and flexible algorithms finding large applications in a
continuously increasing number of fields [1–6]. Merging
ML with the latest, state of the art, progresses of quan-
tum technologies has contributed to develop algorithms
working on quantum states or in which genuine quantum
features are used to enhance the capability of the algo-
rithms themselves [7–9]. ML has found application in
quantum optics and metrology [10] e.g. in phase estima-
tion problems [11], in sensor calibration [12] and in the
readout of trapped-ions qubits [13]. Semicondutor-based
quantum dots have benefited from ML in their fabrica-
tion processes [14], in the automatic search and tuning
of their working points [15–17] and in their measurement
[18]. Similar advantages have been recently reported also
on the design [19], the quantum optimal control [20] and
the readout [21–23] of superconducting qubits. ML tech-
niques have been recently successfully implemented on
electronic and nuclear spins resonance experiments both
at microwave (MW) and radio (RF) frequency. Along
this line, promising results were obtained on Nitrogen-
Vacancy (NV) centers in diamonds to enhance and op-
timize the contrast of their optical readout [24–26], to
sense their surrounding nuclear spin bath [27] or for 2D
imaging [28]. Nuclear Magnetic Resonance-based quan-
tum processors [29, 30], the recognition of electronic spin
echoes from noise background [31], and the design and
optimization of pulse sequences in Nuclear Magnetic Res-
onance spectroscopy [32, 33] have been also investigated.
ML has been applied also to HYSCORE sequences to
analyze correlation of hyperfine signal [34]. To the best
of our knowledge, most of ML approaches reported are
based on Artificial Neural Networks, that are networks of
fundamental units (nodes or neurons) in which learning
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and execution of a task aim to mimic the behaviour of
the human brain [35].

Molecular spin qubits have been recently shown to have
long coherence times over a wide range of temperature
[36–43]. The viability of their integration into hybrid
quantum circuits at MW frequency and in solid-state
quantum technologies has been also demonstrated both
in the Continuous Wave (CW) [44–50] as well as in the
Pulsed Wave (PW) regime [51–53] of excitation. For in-
stance, molecular spin qubits were found to reach the
coherent spin-photon coupling [44–48, 54] and to be suit-
able as quantum memories for information [51, 52]. Their
readout in the dispersive, non-resonant regime has been
also reported [55]. The implementation of quantum al-
gorithms on single molecules in a spin transistor geom-
etry has been also experimentally demonstrated [56–58].
Several protocols (i.e. PW sequences at MW and RF
frequency) were proposed to encode and process infor-
mation using quantum states built from molecular spin
qudits [42, 59–61], with also the potential advantages of
an already-embedded quantum error correction for gate
operations [62–65] and of a multiqubit dispersive read-
out [66]. Along these lines, however, no ML algorithm
has been developed for the manipulation and readout of
molecular spin qubits yet.

In this work we test Artificial Neural Networks (here-
after, ANNs) to assist the resonant readout and manipu-
lation of an oxovanadium(IV) complex, VO(TPP) (where
TPP2− is the Tetraphenyl porphyrinate ligand), a molec-
ular spin qubit on which we have recently demonstrated
the coherent manipulation and the implementation of a
Storage/Retrieval protocol when embedded into a pla-
nar superconducting MW resonator [51]. Thanks to its
electronic spin S = 1/2, this system constitutes a pro-
totypical spin qubit for testing ML algorithms. We first
revisit the Storage/Retrieval protocol [51] to codify into
the ensemble all the 24 = 16 sequences obtainable from 4
binary digits (decimal numbers from 0 up to 15), and we
show that an ANN can be used to recognize each of the
resulting weak output echo/es signal/s without any prior
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knowledge on their number and position. A further post
selection performed with an unsupervised ML method
(K-Means clustering) allows us to successfully infer the
initial input bit sequence with high (≥ 97 %) accuracy.
We then test the readout of the phase of an optimal Hahn
echo using an ANN. We show that it is possible to cor-
rectly determine the initial phase of the spin precession
from the analysis of raw measured quadrature outputs.
The ANN is found to recognize the effects of additional
single-pulse phase shifts introduced in the spin precession
during its initialization (π/2 pulse) or during its refocus-
ing (π pulse). These results demonstrate the possibility
to use ANNs to assist the readout of the amplitude or
phase of (molecular) spin qubits, a key aspect for the im-
plementation of gate operations. Our approach can find
more general application to all systems showing quan-
tum coherence in the form of refocusing echo signal/s
and it can also be further extended down to the case
when quantum regime of the driving electromagnetic ra-
diation is achieved. Potential systems along this line can
be superconducting qubits [67, 68] and solid-state spin
qubits based on semiconductor quantum dots [69] or on
diluted magnetic centers [70].

II. EXPERIMENTAL METHODS

A. Experimental Set Up and PW Sequences

We use a 2% doped polycrystalline powder of
VO(TPP) in its isostructural diamagnetic analog
TiO(TPP). Each molecule has an electronic spin
S = 1/2 ground state and an additional hyperfine split-
ting given by the interaction with the I = 7/2 nuclear
spin of the 51V ion (natural abundance: 99.75%). The
magnetic properties and the electron spin resonance
spectroscopy of this molecule have been previously
reported in [71]. We perform our experiments by
placing the sample on a superconducting coplanar
resonator (ν0 ≈ 6.91 GHz) made out of superconducting
YBa2Cu3O7 (YBCO) films on a Sapphire substrate, as
described in [45, 47, 51]. The CW and PW microwave
spectroscopy of VO(TPP) through the resonator has
been previously reported in [51]. The sample and the
resonator are cooled-down to 4 K into a commercial
Quantum Design Physical Properties Measurement
System (QD PPMS), which is also used to apply the
external static magnetic field [44, 51].

Our Storage/Retrieval protocol consists of a train of 4
weak MW pulses equally-spaced in time, with duration
tp = 40 ns and interpulse delay td = 300 ns. A π
pulse with duration tπ = 190 ns is sent after a delay
τ = 1200 ns with respect to the last pulse of the input
train. A relaxation time trelax = 15 ms is added at
the end of the sequence to avoid sample saturation.
The refocusing occurs after an additional delay τ with
respect to the π pulse, giving a train of weak output

Figure 1. Summary of the experimental workflow. The flow
chart on top summarizes the main steps of our method, from
data acquisition, to signal processing and to the execution of
the final task (classification or regression). The three sketches
at bottom help in recognizing different steps (raw data acqui-
sition, processing, prediction). We use off-line methods, in
which acquisition and processing with ANN are done in two
distinct steps. Details on training procedures are given in
Supplementary Information.

echoes. This protocol allows us to use the spin ensemble
as a temporary memory for information [51, 72, 73]. In
this work we exploit the 4 input pulses to codify into
the ensemble the binary sequences corresponding to 16
decimal numbers (from 0 to 15, i.e. from 0000 to 1111).
An input pulse ON corresponds to the classical logical
bit 1 (visible output echo), while a pulse OFF gives the
classical logical bit 0 (no output echo). We denote the
position of each pulse in the input train with the index
i = 1, . . . , 4, according to their order of generation. In
other words, the index i will give the Storage order into
the ensemble and the weight of the bit from the most
significant to the least significant one.

The Hahn echo sequence used in the phase recognition
experiments consists of two pulses spaced by an inter-
pulse delay τ = 750 ns. Their durations are tπ/2 = 145
ns and tπ = 180 ns, respectively. A relaxation time
trelax = 20 ms is added at the end of the sequence to avoid
sample saturation. The phase of each input pulse can be
controlled independently by the AWG. The phase gener-
ation and the whole phase-sweep acquisition is controlled
by a home-written Python script. We test a similar phase
recognition on additional data sets measured in slightly
different experimental conditions, in which tπ/2 = 120
ns, tπ = 290 and τ = 800 ns (see Supplementary Infor-
mation).

B. Machine Learning Methods

We use Artificial Neural Networks (ANNs) [35] for
the experiments described in this work. Each Network
has been implemented using the Keras and Tensorflow
Python packages [74, 75] within home-written Python
scripts. We used sequential networks characterized by
dense layers. The topology and the parameters of each
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network have been optimized with the Python Talos
package [76] before the final experiments. In this work we
test off-line methods, in which experimental acquisition
of the data and ML processing are done in two different
sequential steps. The experimental workflow for the anal-
ysis of raw data is briefly summarized in Fig. 1, while
the training procedure is described in Supplementary In-
formation.

C. Echo Recognition in Storage/Retrieval

We design the ANN for a classification problem, in
which two different labels (1 = echo, 0 = noise) are as-
signed to an input signal. The input and the output
traces are normalized before training and before using
the ANN for predicitions. The test loss found after op-
timization is J = 3 · 10−2 with an accuracy of 99.2 %.
The output of the network is a 2D vector of normal-
ized values, (pe, pn), which results from the propagation
of the input across the network. These values represent
the confidence of the input to be an echo (pe) or noise
(pn), respectively, and can be though as equivalent to two
probability values. In the following, since pn = 1 − pe,
we restrict our analysis to pe and we will refer to it as
echo probability. Further details about the ANN and the
training data set used are given in Supplementary In-
formation. The training time required by the optimized
ANN described above and with our data sets was found
to be 90 s, while the one required for predicting output
values from an unknown data set was found to be always
below 1 ms, with typical values of ≈ 500µs.

The bit inference of Sec. III A is done by performing
an additional post-selection on the values of pe obtained
for each trace. This is done with the K-Means clustering
method of the Scikit-Learn Python package[77]. Briefly,
each trace is divided into four equally-spaced windows.
The K-means clustering is then applied to each window
to assign the data points to two clusters (accounting for
two possible logical outcomes with unknown label). The
final probability for each window is assigned using the
value associated to the centroid of the cluster with the
larger number of points. This post-selection gives the
probability values used to calculate the Fidelity in Fig.
3 through Eq. 1. Examples of clusterization obtained
from the results of Fig. 2 are shown in Supplementary
Information.

D. Phase Recognition from Hahn’s Echo

We design the ANN for a regression problem, in which
two raw traces given by the I and Q output ports of the
detection mixer (which are not the echo quadratures but

their combinations, see Supplementary Information) are
used to predict their corresponding phase value. Here,
only a small window of the traces corresponding to few
periods (40+40 points using a symmetric time window
taken around the maxima of the echo in the I channel) of
the down converted carrier frequency (90 MHz) is given
as input instead of the whole echo trace. This allows us to
reduce the size of the ANN and has been checked to not
affect the results. The test loss resulting after network
optimization is J = 4 · 10−6. The training time required
by the optimized ANN was 49 s, while the typical one
required for making predictions was ≈ 500µs. Further
details on the ANN and on the training data set are re-
ported in Supplementary Information. In this work, we
focus on the average phase value of the Hahn echo sig-
nal but we remark that, with the proper modification,
our approach can be extended also to the instantaneous
phase value (see Supplementary Information for details).

III. RESULTS

A. Machine Learning-Assisted Echo Recognition

We first consider the Storage/Retrieval protocol as
implemented in [51]. We generate and acquire all the
24 = 16 sequences arising from 4 input pulses, which al-
low us to codify and store into the ensemble all the deci-
mals numbers between 0 and 15 in binary units, as shown
in Fig. 2. Hereafter we will refer to the bit positions as
i (with i = 1, . . . , 4 in input order), and to the decimal
numbers codified in input as j (with j = 0, . . . , 15, which
will also correspond to the number of the sequence itself).
Each sequence gives a different train of output echoes, in
which their order is reversed with respect to the input
one according to the time reversal given by the π pulse
[51]. Moreover, the amplitude of the output echo train
decays over time according to the phase memory time of
the ensemble [51]. Each raw trace is sliced and sequen-
tially given as input to the Neural Network (see Supple-
mentary Information for details) in order to predict the
corresponding echo probability, pe, for each portion of
the trace. The result for each raw trace is shown in Fig.
2 (red traces and axes) together with its corresponding
raw measured signal (blue traces). Here, the probabil-
ity scale (in units) is shown on the right axis for better
comparison. We notice that a plateau of probability with
value pe ≈ 1 is clearly visible in correspondence of each
output echo and that the value is zero when there is no
echo. All echo signals are correctly identified for all se-
quences. This is remarkable if one considers that no prior
information on the positions or on the number of echo ex-
pected was given as input or during the training of the
network.

We further analyze these results by inferring the se-
quences given as input. To this end, we first split the

output trace given by the ANN in four, equally-spaced
windows. Then, we apply K-means clustering method
on each of them to analyze the aggregation of the echo
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Figure 2. Machine Learning-assisted recognition of output echoes of a Storage/Retrieval protocol. Blue traces are the measured
raw outputs from all the possible sequences of 4 classical bit inputs sequences (being 1 = pulse ON and 0 = pulse OFF, from
”0000” or j = 0 at top left down to ”1111” or j = 15 at bottom right, see labels), while red traces are the probability, pe, that
the ANN gives in classifying the output as an echo. The probability scale pe is added on the right axis in red color for better
comparison and clarity.

probability in two clusters. The probability value as-
signed for each window is the one of the centroid of the
cluster with the larger number of points (See Supplemen-
tary Information for details). This method allows us to
infer the bit value for each of the four logical positions of
each sequence. To quantify the accuracy of the recogni-
tion we define Fidelity as in Eq. 1. This corresponds to
one minus the absolute value of the difference between
the expected nominal value of the bit with position i for
a given jth sequence , Aji , and the corresponding echo

probability obtained after clusterization, pje,i,rev. These

latter values are reversed (subscript ”rev”) for a given j
to take into account the inversion due to the π pulse. We
express the Fidelity in percentage units and, according to

this definition, the larger the value the better is the ac-
curacy of the inference (i.e., 0% is a failure in recognition
while 100% is perfect agreement). The Fidelity obtained
with Eq. 1 are shown in Fig. 3.

F ji = (1 −
∣∣∣Aji − pje,i,rev

∣∣∣) · 100% (1)

The value is always above 95% for each bit and trace (the
unique exception is the point i = 1, j = 13, for which the
value is F j=13

i=1 ≈ 85 %), suggesting that each bit value is
correctly assigned in all cases and with high confidence.
Best Fidelity values are obtained for i = 4 because this
is the last bit stored into the ensemble and the first to be
retrieved. This means it is the one having largest ampli-
tude and, hence, the easiest to be detected and inferred.
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Conversely, the worst Fidelity is obtained for i = 1, that
is the last echo to be retrieved and, hence, the one with
the smaller output amplitude. Comparable trends are
obtained for i = 2 and i = 3. In Fig. 3 we show the av-
erage Fidelity for each ith bit over all its corresponding
j, F̂i = (

∑15
j=0 F

j
i )/16. The average Fidelity is always

F̂i ≥ 97 %, reaching up to F̂i=4 ≈ 99 %. We attribute
the increase of the average Fidelity to the effect of the
phase memory time and to the different total precession
time at which each bit is retrieved, as discussed above.

Figure 3. Fidelity of bit recognition after clusterization of
the echo probability (red traces in Fig. 2) according to the
definition of Eq. 1. a) Fidelity of each bit (from 1 up to
4 in input order) as a function of the input bit sequence.
b) Average Fidelity per bit resulting from the average of all
Fidelity values per bit in a). Error bars are calculated as
standard deviation of each corresponding point.

To better asses our results, we compare our method
with conventional scripts, which are not based on ML
(see Supplementary Information for details). In particu-
lar, we first apply a standard algorithm for peak search
to the raw traces of Fig. 2, in which a voltage threshold
is defined by the user to attribute a measured signal to
noise or echo. Our results suggest that the choice of the
threshold can affect the Fidelity of the recognition espe-
cially for the smallest signals (i = 1) and that, under our
conditions, a perfect inference (i.e. correct identification

of all bits for all sequences) cannot be achieved (with the
best threshold value giving 1 error over 64 cases, see Sup-
plementary Information). The comparison with Fidelity
obtained with ML suggests that these latter method can
have two advantages with respect to conventional (i.e.
non-ML) ones: i) no threshold values need to be man-
ually added and, ii) more accurate results are found for
signals which are small and having amplitudes more com-
parable to noise.
We then repeat a similar comparison on the post-
selection method used on the probability pe (red traces of
Fig. 2) to infer the bit values. We evaluate the Fidelity
for several different conventional search algorithms (see
Supplementary Information). Here in particular none of
the non-ML method gave perfect inference. The compar-
ison further suggests that Clusterization can give more
accurate results and lower variability in the predictions
and that it is also less sensitive to errors correlated to
signal variations or to the definition of the windows. The
percentage of success and the average Fidelity per bit
obtained with the methods considered in this work are
summarized in Tab. I.

B. Machine Learning-Assisted Phase Detection

In this section we focus on the recognition of the phase
of the output echo measured after an Hahn echo se-
quence. The same resonator, sample and experimental
set up of Sec. III A are used. Here, the phase of the
first π/2 pulse, φπ/2, or of the second π pulse, φπ, can
be tuned between 0 and 360◦ while monitoring the out-
put echo quadrature signals. The phase control on the
π/2 pulse allow us to initialize the precession of the spins
with any initial arbitrary angle in the xy precession plane,
while the control on the phase of the π pulse allows us to
change the direction of the spin refocusing and, hence, to
add an arbitrary phase shift during precession. We de-
velop an ANN taking as input the output echo traces
(which are the output signals from channels I and Q
of the mixer, respectively) and giving the correspond-
ing phase value as output. The data used for training
the network were taken by measuring the echo during
a full phase sweep of the first π/2 pulse between 0 and
360◦ in steps of 2 degrees. The data sets used to test the
predictions of the network are different from the training
ones, but they were measured under similar experimental
conditions.

We first check the output phase predicted by the
network with two different data sets in which the phase
φπ/2 pulse is swept between 0 and 360◦, but with
two different step sizes (3◦ and 5◦, Run #1 and #2
in Fig. 4, respectively). The phase predicted by the
network agrees with the one expected from the analysis
of the echo quadrature signals (black trace in Fig. 4,
see Supplementary Information). Moreover, also the
180◦ periodicity of the phase is correctly recognized.
These results demonstrate the capability of ANNs in
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Method
% success F̂1 F̂2 F̂3 F̂4Echo/Noise Bit Inference

ANNML K-meansML 100 97.7± 3.6 98.4± 1.8 98.7± 1.4 99.5± 0.6
Average 90.6 84.7± 19.1 83.3± 14.0 89.4± 8.9 96.5± 4.0
Max Search 84.4 94.6± 18.8 75.9± 42.8 72.8± 43.8 92.7± 16.4
Find Peaks 90.6 93.8 ± 21.4 87.4± 34.0 95.6± 15.3 89.0± 29.5

Find Peaks 98.4 93.7 ± 25.0 100 100 100

Table I. Summary of the percentage of success and of the average Fidelity per bit (F̂i) for different methods used in this work
(see text and Supplementary Information). The percentage of success is defined as the ratio between the number of cases for
which F ij ≥ 70% and the total number of bit values (64). Superscript ”ML” denotes Machine Learning methods.

Figure 4. Machine Learning-assisted recognition of the phase
of the output Hahn echo. a) Inferred phase as a function of
the input phase given to the π/2 pulse for two different data
sets (Run #1 and #2). Black trace shows the values expected
from the analysis of the output quadratures. b) Inferred phase
as a function of the input phase sweep of the π/2 pulse when
an initial phase bias (up to 90◦, see legend) is added. Vertical
blue arrows help in identifying the additional relative phase
shift.

detecting the phase of a spin echo. Here we note that
there is a small difference of ≈ 7 − 10◦ between the two
different runs (#1 and #2). This small bias is consistent
with the uncertainty given by the variability (noise) of
the expected theoretical behaviour (black trace). To
check the effect of the different spin initialization on
the predictions, we repeat the recognition with new

data sets in which the initial value of the φπ/2 sweep
is different from zero. Results are shown in Fig. 4.b.
The values expected without considering the initial
shift are added for comparison. The network correctly
recognizes the periodical oscillations of the phase and
also an additional phase bias introduced in the echo
signal. Since the initial phase of the magnetization is
expected to be preserved on the characteristic time scale
of the memory time during precession, we can attribute
the phase bias found to the effect of the different
initialization performed by the π/2 pulse. This suggests
that the network is sensitive to the different initial
condition of the magnetization and, more generally, to
an additional phase shift introduced in the precession by
means of a single microwave pulse.

We further inspect this latter effect using an addi-
tional data set in which the phase φπ/2 is fixed to zero
and the phase of the π pulse, φπ, is swept between
0 and 360◦. As mentioned above, this phase control
changes the refocusing axis of the spins and introduces
an additional phase shift in the precession, according to
the relation φfin = 2φπ −φin (in which φin and φfin are
the phases before and after the application of the pulse,
respectively). Here, we remark that the training data
set used with the network is the same as above, in which
the phase of the Hahn echo is mapped as a function of
φπ/2 for φπ = 0. Results are shown in Fig. 5. The values
expected from the analysis of the quadratures (black
trace) and from a sweep of φπ/2 for φπ = 0 (gray trace)
are added for comparison. It is clear that the sweeps
in φπ have opposite sign with respect to the sweep of
φπ/2 and that the period of the oscillations is halved
(i.e. doubled frequency). This behavior is consistent
with the inversion of the precession given by the π pulse
and with the phase shift added, as expected from the
term −φin and the prefactor 2 in φfin = 2φπ − φin.
These results shows that machine learning allows one
to recognize the additional phase-control introduced by
a single MW pulse during precession. This holds as
far as phase control is performed using a single pulse
and provided that the total number of pulses and the
experimental conditions are not changed with respect to
training ones.
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Figure 5. Machine Learning-assisted recognition of the phase
of the output Hahn echo when the phase given to the π pulse
is swept between 0 and 360◦ for φπ/2 = 0. Two different
dataset taken under similar conditions (Run #1 and #2) are
shown. Black trace shows the values expected from the anal-
ysis of the output quadratures, while gray trace shows the
result expected from a phase sweep of the π/2 pulse at fixed
φπ = 0 for comparison.

IV. DISCUSSION AND CONCLUSIONS

We have shown that it is possible to use ANNs to
assist the manipulation and readout of molecular spin
qubits embedded into planar microwave resonators. We
first consider the output of a Storage/Retrieval protocol
for sequences of 4 binary digits (i.e. 16 possible deci-
mal numbers), showing that the Network can recognize
the position of the output echoes from the measured raw
experimental traces. Here, we remark that no prior in-
formation on the number of echoes or on their position
within the sequence was given to the ANN. This results
hold potential for the analysis of traces containing an
unknown number of echo signals, or which are heavily
affected by noise or fluctuations. We then show that
an additional clustering procedure (an unsupervised ML
method) allows us to correctly infer the input sequence.
To quantify the accuracy of the recognition we define a
Fidelity (Eq. 1) which results to be above 95 % (with
lower bound of ≈ 97 % for the average Fidelity). We
then compare our method to different conventional algo-
rithms which are not based on ML methods (see Supple-
mentary Information). Our results suggest that ANNs
can outperform the accuracy of non-ML methods when
the measured signals are comparable to the noise level
(i.e. poor signal-to-noise ratio) and that they also re-
quire less operation by the user (e.g. definition of thresh-
olds). Furthermore, also the bit inference assisted by the
Clustering can give more accurate results with respect to
standard scripts and it is less affected by intrinsic signal
fluctuations. We then consider the phase of the molec-
ular spin qubit by focusing on the Hahn echo sequence,
the simplest protocol allowing for the manipulation of the

magnetization of the spin ensemble and for its readout.
We first show that an ANN can successfully recognize
the phase of the output echo from the analysis of raw
experimental measured data (output I and Q channels
of mixer). The network can also recognize additional
single-pulse phase shifts introduced during the initializa-
tion of the precession (π/2 pulse) or during the refocus-
ing (π pulse) of the magnetization. Here we additionally
notice that these latter results (Fig. 4 and 5) contain
some special cases. In fact, the choice φπ/2 = 0, 180◦

for the π/2 pulse gives a rotation by π/2 radiants about
the ±x̂ axis, while φπ/2 = 90, 270◦ gives an effect equiv-
alent to a rotation by the same angle about the ±ŷ axis.
These operations have the same effect of the applica-
tion of the Rotational Gates Rx(θ), Ry(θ) for the case
θ = π/2 [68, 78, 79]. The choice φπ = 0, 180◦ for the π
pulse corresponds to a rotation having the same effect of
a Pauli ±X gate, while the choice φπ = 90, 270◦ has the
effect of a Pauli ±Y gate [68, 78–80]. These considera-
tions suggest that our approach holds potential towards
the implementation of ML-assisted single-gate operations
such as Pauli Gates and Rotational Gates and, with the
proper training and optimized network, it might be fur-
ther extended to other gate operations. Thanks to the
relatively-small dimensions of the ANNs used, it runs on
standard and commercially-available hardware and it re-
quires limited computational resources (see Supplemen-
tary Information), which allows for an easy and light
implementation also on small processors or instrumen-
tation.

It is worth mentioning that our method could be fur-
ther extended in the view of implementing molecular spin
qudits [50, 53, 62, 81–84]. This constitutes a twofold
problem: i) upgrade and optimization of our experi-
mental set-up to allow for the realization of multiple
tones spectroscopy (microwave or microwave plus ra-
diofrequency) on molecular qudits, and ii) generalization
of our ML learning methods to account for the larger
complexity of the problem. While the first problem is
technological and can be addressed with commercially-
available instrumentation and solutions, the latter one
requires a careful choice of the input and of the out-
put parameters to be used and, consequently, of the cor-
responding training dataset and process. For instance,
once a qudit protocol is defined and experimentally im-
plemented, a possible approach might be adding an ad-
ditional label on the training dataset to account for the
frequency used.

Although developed on molecular spin qubits, our re-
sults and method are based on the analysis of raw echo
traces and does not require additional information on the
sequence (e.g. pulse durations, interpulse delay), on the
physical system used (e.g. memory time) or on exper-
imental and measurement conditions (e.g. integration
time, number of avererages). Therefore, it can be ex-
tended to more complex PW sequences, such as Dynam-
ical Decoupling Protocols [51, 85] or ENDOR-like scheme
to perform Storage/Retrieval of information into nuclear
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spins [86, 87]. More in general, it can be applied to other
spin systems and to all systems showing quantum co-
herence, such as diluted magnetic centers [70], supercon-
ducting qubits [67, 68] and solid-state spin qubits based
on semiconductor quantum dots [69].

Finally, further extension and outlooks are also possi-
ble. In particular, the recognition of the echo signal from
noise can find application in experiments in which the
echo signals are expected to be rather small or heavily af-
fected by noise, e.g. using resonators with active volumes
equal or below nanoliter [88–91] or addressing molecules
integrated on surfaces [71]. Our results on phase recogni-
tion can be applied also to the instantaneous phase value
and not only to the average one (see Supplementary In-
formation). Moreover, the introduction of the proper cor-
rections during the training of the ANN would allow to
automatically take into account any imbalance between
the I and Q channels of the mixers [92] or any additional
phase shift or bias of the set-up. Another possibility con-
sists in the implementation of similar ANNs within on-
line methods, paving the way for real time signal recogni-
tion, eventually at single-shot measurement level. Lastly,
further possibility is the implementation of adaptive au-
tomated optimization protocols [93, 94]. This might al-

low for the automated calibration and optimization of
complex pulse sequences, such as the above-mentioned
Dynamical Decoupling [51, 85], in analogy with a black
box-like operation in which the response of the set up is
partially or not fully known [93, 94]. Beneficial effects
can be foreseen also down to the quantum regime of the
electromagnetic excitation driving the spins, in which an
efficient design of quantum states and of gate operations
in presence of noise is highly desirable [95].
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Zumbühl, G. A. . D. Briggs, M. A. Osborne, E. A. Laird,
and N. Ares, npj Quantum Information 5, 79 (2019).
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