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Abstract: This paper presents a novel implementation of a human-swarm interface that allows humans
to define an area with desired shape to be reached by a multi-robot system. Human-swarm interaction
can be useful in order to exploit human intelligence and knowledge for the operation of swarm robots.
The proposed work deals with limitations usually met when dealing with real-world implementation, e.g.
limited sensing capabilities of the agents and hard conditions where communication is difficult or even
completely denied. Gaussian Mixture Models are exploited in order to define an appropriate probability
density function of the environment based on the area selected by a human operator. Then, velocity input
for each robot is calculated in a distributed manner using Voronoi tessellation and Lloyd’s algorithm.
Finally, results of both virtual and real-world tests are presented, showing the final configuration reached
by the multi-robot system in comparison with the desired region defined on the graphical interface.
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1. INTRODUCTION

Multi-robot systems are increasing in popularity and research
interest during last years as described by Dorigo et al. (2020),
thanks to several advantages they offer in terms of robustness,
flexibility and reduction of time needed to accomplish a specific
task. Those systems employ multiple robots, often with limited
capabilities like in Chand and Carnegie (2013), controlled
in order to reach complex behaviours, allowing to achieve
better performances with lower economic effort with respect to
their single-robot counterpart. Among many applications, robot
swarms are nowadays successfully employed in agriculture (see
Zhang and Noguchi (2017)), collaborative transportation (see
Li et al. (2021)) and space monitoring and exploration, as we
already described in our previous work (see Catellani et al.
(2022)). An interesting topic in the research field of multi-robot
systems is the interaction between them and humans. Hussein
and Abbass (2018) show that combining the abilities of humans
and robots can lead to higher success rates for trivial operations.
This benefit can be gained assigning the role of supervisor to
the human, in order to exploit their superior intelligence and
external point of view, while robots can concentrate on retrieving
data from the environment and accomplish the mission. An
interesting approach is proposed by Cheah et al. (2009), where
a moving region of specific shape is defined for all the robots to
stay inside. Potential energy functions are exploited to calculate
the control input for each robot, and the results show great
performances in shape control while maintaining a minimum
distance between the agents. However, this solution requires
a central computer with global knowledge, and only simple
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regular-shaped regions can be defined with a mathematical
equation. Another solution is presented by Li and Liu (2019),
where the human is equipped with a haptic device acting as
a controller robot, while swarm robots are placed into the
environment performing a coverage task. A non-uniform density
function represents areas with higher sensing interest, and a
goal is defined by the operator manipulating the device. This
approach exploits Voronoi tessellation and Lloyd’s algorithm
(see Cortes et al. (2004)) to obtain the control input and deals
with the limited capabilities of the agents, but only allows to
define a goal instead of a region with a desired shape, and
the implementation is strictly related to the presence of a haptic
device as controller robot. Swarm shaping is studied in one of the
two approaches proposed by Diaz-Mercado et al. (2015), where
Gaussian Mixture Models are exploited to define the region
of interest and robots are controlled in a distributed manner
following the already mentioned Lloyd’s algorithm. However,
the agents are supposed to operate in a convex and obstacles-
free environment, making this solution unlikely to be applied in
real-world operations.

Contribution Our solution evolves from the work of Diaz-
Mercado et al. (2015) with the aim of overcoming the limitation
of assuming the environment to be convex and without obstacles
inside. We make use of Gaussian Mixture Models to define a
non-uniform density, in order to describe the desired region of
interest to be reached by the agents. Then, a limited Voronoi
diagram is calculated following the methodology presented
by Pratissoli et al. (2022), which makes each robot capable
of dealing with unknown and non-convex environments. In
addition, it is worth noting that communication among robots is
not necessary, while communication with a central unit is only
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needed at the beginning of the mission, where the parameters
defining the Gaussian Mixture Model have to be transmitted
to the agents. In this way, the human operator can be seen
as an external supervisor, possibly with a global view of the
environment, while on-field operations are demanded to swarm
robots, which can operate even in hard or dangerous conditions.
We extensively tested our control strategy in simulations
and also with few real-world experiments, where the final
configuration of the multi-robot system is compared with the
desired shape of the defined region of interest.

2. PROBLEM DESCRIPTION

Consider a multi-robot system composed by n robots moving in
two dimensions, controlled in order to reach a specific area of the
environment. We assume each robot to be modeled as a single
integrator system, whose position 𝑝𝑝𝑖𝑖 ∈ R2 evolves according to
𝑝𝑝𝑖𝑖 = 𝑢𝑢𝑖𝑖 , where 𝑢𝑢𝑖𝑖 ∈ R2 is the control input, ∀𝑖𝑖 = 1, . . . , 𝑛𝑛.
We consider the following assumptions:

• Localization: each robot is able to localize itself with
respect to a global reference frame, which is common for
every robot within the team.

• Limited sensing capabilities: each robot is able to detect
and measure the position of every object (including other
robots and environmental boundaries) inside its limited
sensing range, defined as a circle with radius 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ R≥0.

Based on these assumptions, we can formalize the problem
addressed in this paper as follows:
Problem 1. Implement a human-swarm interface that allows
a user to define a specific area of the environment with a
desired shape to be reached by a multi-robot system with limited
sensing capabilities. The solution must deal with non-convex
environments, possibly with obstacles inside.

2.1 Proposed Architecture of the Human-Swarm Interface

To solve the mentioned problem, we propose a human-friendly
methodology, whose aim is to autonomously interact with
swarm robots, while the human operator is only required to
draw the desired region to be reached. This solution can be
briefly described as a 5-steps procedure:

(1) Human operator draws the region of interest on a graphical
interface.

(2) A suitable Gaussian Mixture Model is calculated fitting
the desired shape.

(3) Parameters defining the Gaussian Mixture Model are
communicated to the agents.

(4) Probability density of the environment is calculated by
each robot.

(5) Control action is calculated in a distributed manner.

2.2 Notation and Definitions

In the rest of the paper, we denote by N, R, R≥0, and R>0
the set of natural, real, real non-negative, and real positive
numbers, respectively. Given 𝑥𝑥 ∈ R𝑠𝑠, let ∥𝑥𝑥∥ be the Euclidean
norm. Instead, given the matrix Σ ∈ R𝑠𝑠×𝑚𝑚, we define |Σ | as its
determinant. LetF(R2) be the collection of finite point sets inR2.
We can denote an element of F(R2) as P = {𝑝𝑝1, . . . , 𝑝𝑝𝑠𝑠} ⊂ R2,
where {𝑝𝑝1, . . . , 𝑝𝑝𝑠𝑠} are points in R2. We denote, for 𝑝𝑝 ∈ R2

and 𝑟𝑟 ∈ R>0, the closed and open ball in R2 centered at
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𝑝𝑝 with radius 𝑟𝑟 with 𝐵𝐵(𝑝𝑝, 𝑟𝑟) =

𝑞𝑞 ∈ R2 |∥𝑞𝑞 − 𝑝𝑝∥ ≤ 𝑟𝑟


and

𝐵𝐵(𝑝𝑝, 𝑟𝑟) =

𝑞𝑞 ∈ R2 | ∥𝑞𝑞 − 𝑝𝑝∥ < 𝑟𝑟


, respectively. In the paper,

𝑄𝑄 ⊂ R2 denotes a generic polygon: it will be used, in particular,
to denote the environment where the robots are supposed to
operate. An arbitrary point in 𝑄𝑄 is denoted by 𝑞𝑞 ∈ 𝑄𝑄.

3. GMM-BASED PROBABILITY DENSITY FUNCTION

In this section we analyze how the geometrical shape drawn by
the operator is converted into a probability density function of
the environment, and how this function is exploited to highlight
the desired region of interest. Before going into details, it is
necessary to introduce Gaussian Mixture Models, as they will
play a key role in our implementation. A Gaussian Mixture
Model (GMM) is a multivariate distribution that consists
of multivariate Gaussian distribution components, each one
defined by a mean point 𝜇𝜇𝑖𝑖 ∈ R2 and a covariance matrix Σ𝑖𝑖

(see Kotz et al. (2004)). Given 𝑘𝑘 components, with 𝑘𝑘 ∈ R>0,
the overall model is obtained as the result of their combination
following a specific mixture proportion, defined by a vector of
weighting factors 𝝎𝝎 = [𝜔𝜔1, . . . , 𝜔𝜔𝑘𝑘]𝑇𝑇 ∈ R𝑘𝑘

>0 related to each
component, with

𝑘𝑘
𝑖𝑖=1 𝑤𝑤𝑖𝑖 = 1.

Given a polygon 𝑆𝑆 ⊂ 𝑄𝑄 drawn by the user on a graphical
interface, representing the area of interest in the environment,
a GMM fitting the desired shape is estimated with a Maximum
Likelihood method as described by McLachlan et al. (2019).
This method uses an Expectation-Maximization algorithm to
iteratively find the optimal set of parameters (𝜇𝜇, Σ,𝝎𝝎).
Once the Mixture Model has been defined, we can define the
probability density function as the sum of the contributions
brought by the single components. According to the definition
provided by Kotz et al. (2004), the contribution of a single 𝑑𝑑-
dimensional component (in our case, 𝑑𝑑 = 2), is calculated as

𝜙𝜙𝑖𝑖 (𝑞𝑞, 𝜇𝜇𝑖𝑖 , Σ𝑖𝑖) =
1√︁

|Σ𝑖𝑖 | (2𝜋𝜋)𝑑𝑑
exp


−1

2
(𝑞𝑞 − 𝜇𝜇𝑖𝑖)Σ−1 (𝑞𝑞 − 𝜇𝜇𝑖𝑖)𝑇𝑇


.

(1)
From the above equation, the contribution of a single Gaussian
component to the global probability density is obtained from the
covariance matrix Σ, defining the spatial distribution around the
mean point 𝜇𝜇, specifically calculated to fit the drawn polygon.
Finally, the overall probability function is obtained as the sum of
each component weighted according to the mixture proportion

Φ(𝑞𝑞, 𝜇𝜇,Σ) =
𝑘𝑘∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖𝜙𝜙𝑖𝑖 (𝑞𝑞, 𝜇𝜇,Σ) . (2)

This probability function defines a non-uniform density of the
environment, assigning to each point 𝑞𝑞 high probability values
if placed inside the region of interest drawn on the graphical
interface. An example can be seen in Figure 1, where the region
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needed at the beginning of the mission, where the parameters
defining the Gaussian Mixture Model have to be transmitted
to the agents. In this way, the human operator can be seen
as an external supervisor, possibly with a global view of the
environment, while on-field operations are demanded to swarm
robots, which can operate even in hard or dangerous conditions.
We extensively tested our control strategy in simulations
and also with few real-world experiments, where the final
configuration of the multi-robot system is compared with the
desired shape of the defined region of interest.

2. PROBLEM DESCRIPTION

Consider a multi-robot system composed by n robots moving in
two dimensions, controlled in order to reach a specific area of the
environment. We assume each robot to be modeled as a single
integrator system, whose position 𝑝𝑝𝑖𝑖 ∈ R2 evolves according to
𝑝𝑝𝑖𝑖 = 𝑢𝑢𝑖𝑖 , where 𝑢𝑢𝑖𝑖 ∈ R2 is the control input, ∀𝑖𝑖 = 1, . . . , 𝑛𝑛.
We consider the following assumptions:

• Localization: each robot is able to localize itself with
respect to a global reference frame, which is common for
every robot within the team.

• Limited sensing capabilities: each robot is able to detect
and measure the position of every object (including other
robots and environmental boundaries) inside its limited
sensing range, defined as a circle with radius 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ R≥0.

Based on these assumptions, we can formalize the problem
addressed in this paper as follows:
Problem 1. Implement a human-swarm interface that allows
a user to define a specific area of the environment with a
desired shape to be reached by a multi-robot system with limited
sensing capabilities. The solution must deal with non-convex
environments, possibly with obstacles inside.

2.1 Proposed Architecture of the Human-Swarm Interface

To solve the mentioned problem, we propose a human-friendly
methodology, whose aim is to autonomously interact with
swarm robots, while the human operator is only required to
draw the desired region to be reached. This solution can be
briefly described as a 5-steps procedure:

(1) Human operator draws the region of interest on a graphical
interface.

(2) A suitable Gaussian Mixture Model is calculated fitting
the desired shape.

(3) Parameters defining the Gaussian Mixture Model are
communicated to the agents.

(4) Probability density of the environment is calculated by
each robot.

(5) Control action is calculated in a distributed manner.

2.2 Notation and Definitions

In the rest of the paper, we denote by N, R, R≥0, and R>0
the set of natural, real, real non-negative, and real positive
numbers, respectively. Given 𝑥𝑥 ∈ R𝑠𝑠, let ∥𝑥𝑥∥ be the Euclidean
norm. Instead, given the matrix Σ ∈ R𝑠𝑠×𝑚𝑚, we define |Σ | as its
determinant. LetF(R2) be the collection of finite point sets inR2.
We can denote an element of F(R2) as P = {𝑝𝑝1, . . . , 𝑝𝑝𝑠𝑠} ⊂ R2,
where {𝑝𝑝1, . . . , 𝑝𝑝𝑠𝑠} are points in R2. We denote, for 𝑝𝑝 ∈ R2

and 𝑟𝑟 ∈ R>0, the closed and open ball in R2 centered at
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, respectively. In the paper,

𝑄𝑄 ⊂ R2 denotes a generic polygon: it will be used, in particular,
to denote the environment where the robots are supposed to
operate. An arbitrary point in 𝑄𝑄 is denoted by 𝑞𝑞 ∈ 𝑄𝑄.

3. GMM-BASED PROBABILITY DENSITY FUNCTION

In this section we analyze how the geometrical shape drawn by
the operator is converted into a probability density function of
the environment, and how this function is exploited to highlight
the desired region of interest. Before going into details, it is
necessary to introduce Gaussian Mixture Models, as they will
play a key role in our implementation. A Gaussian Mixture
Model (GMM) is a multivariate distribution that consists
of multivariate Gaussian distribution components, each one
defined by a mean point 𝜇𝜇𝑖𝑖 ∈ R2 and a covariance matrix Σ𝑖𝑖

(see Kotz et al. (2004)). Given 𝑘𝑘 components, with 𝑘𝑘 ∈ R>0,
the overall model is obtained as the result of their combination
following a specific mixture proportion, defined by a vector of
weighting factors 𝝎𝝎 = [𝜔𝜔1, . . . , 𝜔𝜔𝑘𝑘]𝑇𝑇 ∈ R𝑘𝑘

>0 related to each
component, with
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Given a polygon 𝑆𝑆 ⊂ 𝑄𝑄 drawn by the user on a graphical
interface, representing the area of interest in the environment,
a GMM fitting the desired shape is estimated with a Maximum
Likelihood method as described by McLachlan et al. (2019).
This method uses an Expectation-Maximization algorithm to
iteratively find the optimal set of parameters (𝜇𝜇, Σ,𝝎𝝎).
Once the Mixture Model has been defined, we can define the
probability density function as the sum of the contributions
brought by the single components. According to the definition
provided by Kotz et al. (2004), the contribution of a single 𝑑𝑑-
dimensional component (in our case, 𝑑𝑑 = 2), is calculated as

𝜙𝜙𝑖𝑖 (𝑞𝑞, 𝜇𝜇𝑖𝑖 , Σ𝑖𝑖) =
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(1)
From the above equation, the contribution of a single Gaussian
component to the global probability density is obtained from the
covariance matrix Σ, defining the spatial distribution around the
mean point 𝜇𝜇, specifically calculated to fit the drawn polygon.
Finally, the overall probability function is obtained as the sum of
each component weighted according to the mixture proportion

Φ(𝑞𝑞, 𝜇𝜇,Σ) =
𝑘𝑘∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖𝜙𝜙𝑖𝑖 (𝑞𝑞, 𝜇𝜇,Σ) . (2)

This probability function defines a non-uniform density of the
environment, assigning to each point 𝑞𝑞 high probability values
if placed inside the region of interest drawn on the graphical
interface. An example can be seen in Figure 1, where the region
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Fig. 2. Limited Voronoi partitioning in the presence of obstacles.
of interest is assigned with much higher probability values than
the rest of the environment. In the next section we describe how
to take advantage of this probability density function to calculate
a proper control action to fulfill the goal of the mission.

4. DISTRIBUTED CONTROL ALGORITHM

As previously stated in Section 1, the aim of the proposed work
is to tackle limitations usually met in real-world applications.
More in details, the proposed solution is expected to work
as a distributed methodology to operate in unknown non-
convex environments where communication among the agents
is denied. Based on the assumptions in Section 2, every robot
is capable of detecting and localizing obstacles, environmental
borders and other robots falling inside its sensing range 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 .
For the sake of simplicity, we can denote the surface occupied
by obstacles as

O =
𝑚𝑚
𝑖𝑖=1

𝑂𝑂𝑖𝑖 (3)

where 𝑚𝑚 ∈ R≥0 is the number of obstacles and {𝑂𝑂1, . . . , 𝑂𝑂𝑚𝑚} ⊂
R2 is the set of areas defining the surface occupied by each
of them. Thus, we can define a new region 

𝐵𝐵(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) as the
difference between the area 𝐵𝐵(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) covered by the agent’s
sensing range and the surface O occupied by obstacles:


𝐵𝐵(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝐵𝐵(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) − O. (4)

Coordination among the agents is performed with a Voronoi
partitioning, consisting in optimally allocating a region of the
environment to each robot. Since robots do not have a global
knowledge, but are only aware of what is placed inside their
sensing range, a limited Voronoi partitioning is carried out,
according to the definition in Pratissoli et al. (2022):

𝑉𝑉𝑖𝑖 (P) = {𝑞𝑞 ∈ 
𝐵𝐵(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) |∥𝑞𝑞 − 𝑝𝑝𝑖𝑖 ∥ ≤ ∥𝑞𝑞 − 𝑝𝑝 𝑗𝑗 ∥,∀𝑝𝑝 𝑗𝑗 ∈ P}.

(5)
An example of the obtained partition is depicted in Fig. 2.

Subsequently, the centroid of each Voronoi cell𝐶𝐶𝑉𝑉𝑖𝑖
is calculated

taking into account the probability density function Φ(𝑞𝑞, 𝑞𝑞,Σ)
defined in (2):

𝐶𝐶𝑉𝑉𝑖𝑖
=

∫
𝑉𝑉𝑖𝑖
𝑞𝑞Φ(𝑞𝑞, 𝑞𝑞,Σ)𝑑𝑑𝑞𝑞

∫
𝑉𝑉𝑖𝑖
Φ(𝑞𝑞, 𝑞𝑞,Σ)𝑑𝑑𝑞𝑞

. (6)

Finally, the desired control input for the 𝑖𝑖-th robot is calculated
proportionally to the distance from the centroid of its cell,
making it moving towards it according to the law

Algorithm 1 Best Fitting GMM Calculation Algorithm
input : 𝑆𝑆, 𝑘𝑘 , 𝛿𝛿
output: (𝑞𝑞, Σ, 𝜔𝜔)
begin

Discretize area of 𝑆𝑆.
𝑖𝑖 = 1.
while 𝑖𝑖 ≤ 𝑘𝑘 do

Get GMM with 𝑖𝑖 components using Expectation-
Maximization algorithm.
Calculate 𝐵𝐵𝐵𝐵𝐶𝐶 (𝑖𝑖).
if 𝐵𝐵𝐵𝐵𝐶𝐶 (𝑖𝑖) − 𝐵𝐵𝐵𝐵𝐶𝐶 (𝑖𝑖 − 1) ≥ −𝛿𝛿 then

break
else

𝑖𝑖 + +

𝑢𝑢𝑖𝑖 = −𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

�
𝑝𝑝𝑖𝑖 − 𝐶𝐶𝑉𝑉𝑖𝑖


(7)

where 𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ R≥0 is a proportional gain. Such a control
law, together with the probability density function defined
in (2), leads agents towards the region of interest, which is
assigned with a higher probability density. It is worth noting
that, according to (5) and (6), no global knowledge is required
by the agents to calculate their control action, since both the
limited Voronoi partitioning and the centroid can be computed in
a distributed manner. Moreover, communication among swarm
robots is also not required. As a matter of fact, the only data
needed by each robot to calculate its control input are its own
position, the neighbors’ location and the probability density of
the environment, as was extensively tested by Bertoncelli et al.
(2022).
However, it must be taken into account that, in certain circum-
stances, the limited Voronoi region could result in a non-convex
region, thus its centroid could be placed outside. This means
that the robot could be driven towards an obstacle and crash into
it. Therefore, the proposed control strategy does not guarantee
obstacle avoidance, so a further implementation could be needed
to safely operate in real-world applications.
In the following section, an experimental evaluation of the
developed solution is presented, describing how this has been
implemented and showing the final results obtained in different
scenarios.

5. EXPERIMENTAL EVALUATION

In this section we will describe how the proposed solution
was implemented to be tested on both virtual and real mobile
platforms. First of all, the implementation of the graphical
interface is presented, in order to explain the transition from a
drawn polygon to a specific GMM. The definition of the region
of interest through the graphical interface is equally applied to
both simulations and real-world tests. Subsequently, experimen-
tal evaluation is presented both in simulations and real-world
environments, showing the behaviour of the controlled system
to reach the region of interest defined through the graphical
interface.

5.1 Implementation of the Graphical Interface

The implementation is carried out using MATLAB, and a
blank canva is presented to the operator, who is expected to
draw a polygon 𝑆𝑆 ⊂ R2 moving the mouse cursor on it and
to decide the maximum number of components 𝑘𝑘 ∈ R>0 to
be generated. Subsequently, the best fitting Gaussian Mixture
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Model is calculated following Algorithm 1: a discretization
of the area is performed and a suitable Mixture Model is
iteratively calculated with an increasing number of components
according to the Expectation-Maximization algorithm proposed
by McLachlan et al. (2019). Then, the Bayesian Information
Criterion (BIC) is calculated according to Schwarz (1978): the
lower is the BIC, the better the model is fitting the region.
The process continues until convergence is achieved, or the
maximum number of components 𝑘𝑘 is reached. It is interesting
to note that the proposed algorithm iteratively searches for the
optimal number of components fitting the desired shape, in
order to have a low number of parameters to be stored and
computationally efficient calculations to be carried out by the
swarm robots during the mission. The optimal set of parameters
(𝜇𝜇𝜇 Σ𝜇𝝎𝝎) defining the GMM calculated with Algorithm 1 is
stored to be communicated to the robotic agents.

5.2 Virtual Tests

MATLAB has also been used for a first implementation of the al-
gorithm, where swarm robots were approximated to networking
nodes moving in the environment as single integrator systems.
This first set of tests has shown that the multi-robot system
behaved as expected, as we can see from Fig. 3 where the final
configuration of the network perfectly fitted the desired shape
of the region of interest. Moreover, the low computational effort
required for those simulations allowed to employ a large number
of robots, thanks to the absence of a physical engine modeling
interactions of robots with each other and with the environment.
Subsequently, trials were performed employing mobile plat-
forms and using ROS2 as a control architecture. The behaviour
of the controlled multi-robot system was extensively tested with
simulations carried out within the Gazebo physical engine em-
ploying virtual models of the TurtleBot3 Burger robot. Robots
were controlled in a distributed manner, and the set of parameters
defining the Gaussian Mixture Model was communicated to
each one at the beginning of the mission using a custom ROS
message, directly sent over the ROS network from the MATLAB
implementation of the graphical user interface. An example of
final configuration reached by the multi-robot system can be
seen in Fig. 4, where the probability density shown in Fig. 1 was
exploited to define the region of interest.

Fig. 4. Simulation within a virtual environment

Fig. 5. Real-world implementation

5.3 Real-world Experiments

A further step in testing the developed solution has been made
with real-world trials, carried out employing the real counterpart
of the TurtleBot3 Burger platforms used for simulations. As
for virtual trials, the set of parameters defining the GMM
was communicated to the agents only at the beginning of the
mission over a ROS network. This kind of tests were performed
with randomly chosen starting positions of the agents within
a 4.5 × 3.5 𝑚𝑚2 environment, and the Optitrack motion capture
system was exploited to obtain localization of the robots with
respect to a global reference frame. It is important to note
that communication with a central unit has been exploited
by each robot only to gain information on its global position
and the relative position of its neighbors, in order to emulate
localization capabilities as described in the assumptions in
Section 2. Initially, results were investigated with the same
probability density that was shown in Fig. 1, in order to have a
comparison with the behaviour obtained in simulations where
the final configuration in Fig. 4 was reached. Swarm robots
ended up reaching the desired region of interest as shown in
Fig. 5, demonstrating that the presented approach ensures good
performances in swarm shaping. Because of the limited size
of the area at our disposal for the execution of on-field tests,
only simple scenarios were set up and no obstacles were placed
in the environment. Several heterogeneous regions of interest
were tried out, and the multi-robot system always displayed a
performing behaviour in reaching a final configuration fitting
the desired shape. A further example is shown in Fig. 6, where
the entire workflow of the presented methodology is displayed,
from the definition of the region of interest, to the generation of a
Gaussian Mixture Model fitting the desired shape, and finally to
the actuation of robotic agents. As one would expect, the higher
is the number of robots employed in the mission, the better they
will fit the region of interest.
Finally, we conducted a further set of virtual trials, focusing on
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Model is calculated following Algorithm 1: a discretization
of the area is performed and a suitable Mixture Model is
iteratively calculated with an increasing number of components
according to the Expectation-Maximization algorithm proposed
by McLachlan et al. (2019). Then, the Bayesian Information
Criterion (BIC) is calculated according to Schwarz (1978): the
lower is the BIC, the better the model is fitting the region.
The process continues until convergence is achieved, or the
maximum number of components 𝑘𝑘 is reached. It is interesting
to note that the proposed algorithm iteratively searches for the
optimal number of components fitting the desired shape, in
order to have a low number of parameters to be stored and
computationally efficient calculations to be carried out by the
swarm robots during the mission. The optimal set of parameters
(𝜇𝜇𝜇 Σ𝜇𝝎𝝎) defining the GMM calculated with Algorithm 1 is
stored to be communicated to the robotic agents.

5.2 Virtual Tests

MATLAB has also been used for a first implementation of the al-
gorithm, where swarm robots were approximated to networking
nodes moving in the environment as single integrator systems.
This first set of tests has shown that the multi-robot system
behaved as expected, as we can see from Fig. 3 where the final
configuration of the network perfectly fitted the desired shape
of the region of interest. Moreover, the low computational effort
required for those simulations allowed to employ a large number
of robots, thanks to the absence of a physical engine modeling
interactions of robots with each other and with the environment.
Subsequently, trials were performed employing mobile plat-
forms and using ROS2 as a control architecture. The behaviour
of the controlled multi-robot system was extensively tested with
simulations carried out within the Gazebo physical engine em-
ploying virtual models of the TurtleBot3 Burger robot. Robots
were controlled in a distributed manner, and the set of parameters
defining the Gaussian Mixture Model was communicated to
each one at the beginning of the mission using a custom ROS
message, directly sent over the ROS network from the MATLAB
implementation of the graphical user interface. An example of
final configuration reached by the multi-robot system can be
seen in Fig. 4, where the probability density shown in Fig. 1 was
exploited to define the region of interest.
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Fig. 5. Real-world implementation

5.3 Real-world Experiments

A further step in testing the developed solution has been made
with real-world trials, carried out employing the real counterpart
of the TurtleBot3 Burger platforms used for simulations. As
for virtual trials, the set of parameters defining the GMM
was communicated to the agents only at the beginning of the
mission over a ROS network. This kind of tests were performed
with randomly chosen starting positions of the agents within
a 4.5 × 3.5 𝑚𝑚2 environment, and the Optitrack motion capture
system was exploited to obtain localization of the robots with
respect to a global reference frame. It is important to note
that communication with a central unit has been exploited
by each robot only to gain information on its global position
and the relative position of its neighbors, in order to emulate
localization capabilities as described in the assumptions in
Section 2. Initially, results were investigated with the same
probability density that was shown in Fig. 1, in order to have a
comparison with the behaviour obtained in simulations where
the final configuration in Fig. 4 was reached. Swarm robots
ended up reaching the desired region of interest as shown in
Fig. 5, demonstrating that the presented approach ensures good
performances in swarm shaping. Because of the limited size
of the area at our disposal for the execution of on-field tests,
only simple scenarios were set up and no obstacles were placed
in the environment. Several heterogeneous regions of interest
were tried out, and the multi-robot system always displayed a
performing behaviour in reaching a final configuration fitting
the desired shape. A further example is shown in Fig. 6, where
the entire workflow of the presented methodology is displayed,
from the definition of the region of interest, to the generation of a
Gaussian Mixture Model fitting the desired shape, and finally to
the actuation of robotic agents. As one would expect, the higher
is the number of robots employed in the mission, the better they
will fit the region of interest.
Finally, we conducted a further set of virtual trials, focusing on
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(a) (b) (c)

Fig. 6. Complete workflow of the proposed methodology: (a) the region of interest is drawn on a graphical interface, (b) a GMM
is calculated fitting the desired shape, (c) the multi-robot system is actuated and reaches the desired configuration

(a) (b)

(c) (d)

Fig. 7. Multi-robot system dealing with obstacles in the environment. (a), (c): The final configuration is reached and the obstacle is
avoided. (b), (d): Comparison between the final configuration and the probability density representing the region of interest.

the behaviour of the controlled multi-robot system within a non-
convex environment. As we mentioned in the above sections,
the ability to deal with obstacles and cluttered environments is
a fundamental feature for robot swarms to be employed in real-
world operations. Several virtual environments were prepared
with randomly positioned obstacles of different regular shapes,
in order to lower the chance of generating non-convex limited
Voronoi regions that could make robots crash. Results have
shown that the multi-robot system behaves as expected, avoiding
obstacles while navigating and reaching the final desired shape
only covering areas within the region of interest that do not
contain obstacles. Examples are shown in Fig. 7, where swarm
robots sense the presence of obstacles preventing them to reach
certain areas, so they rearrange themselves to cover obstacles-

free portions of the region of interest. The area covered by the
multi-robot system has been evaluated and compared with the
overall area enclosed by the region of interest as shown in Fig. 8,
resulting in a complete sensing of the desired region.
In conclusion, we can say that those trials validated the proposed
methodology, so it can be stated that the presented control
architecture ensures great performances in covering a specific
area with desired shape using a multi-robot system, even when
dealing with non-convex environments or obstacles.

6. CONCLUSION

In this paper, a human-swarm interaction methodology was
presented, whose aim is to allow a human operator to define

Fig. 8. Comparison between total area of the desired region and
area covered by swarm robots with 3.5 𝑚𝑚 sensing range

a region of interest with a desired geometrical shape to be
explored by the agents in the environment. With this solution, the
operator plays the role of a supervisor with a global knowledge
of the environment, while on-field execution of the mission
is demanded to robotic agents. Hence, safety conditions are
guaranteed to the human being, who is not required for an in-
person visit in a possibly dangerous environment. This strategy
exploits the definition of Gaussian Mixture Models from a
polygon drawn on a graphical interface to define a non-uniform
density function, where higher importance is given to the region
of interest, together with a limited Voronoi partitioning of
the environment. This approach sets up a distributed strategy
in order to deal with limitations usually met in real-world
implementations, e.g. limited sensing capabilities of the agents
and communication impossibility. It is important to note that the
definition in (4) only considers the difference between free and
occupied surfaces, but it does not take into account blind spots
generated using a sensor on a real robot. In particular, the real
field of view of a ground vehicle will be slightly different from
the one calculated with this assumption, while no differences
are met when employing aerial vehicles observing from above.
However, the mentioned assumption does not prevent from using
this methodology in real-world applications, since the absence
of blind spots in the sensing range can only positively affect the
overall behaviour of the controlled system. Several tests have
been made both in simulation and on real mobile platforms, and
the results show that the multi-robot system behaves as expected
and reaches a final configuration fitting the desired shape of the
region of interest. At the moment, only regular environments
have been tested, with simple-shaped obstacles placed inside
of them only in simulations, therefore robots have been able to
avoid collisions.
Future work will extend on-field trials to more complex
scenarios, where agents are required to operate in larger areas
with obstacles placed into the environment. Furthermore, a
necessary step could be the integration of an inner control layer
to always guarantee obstacle avoidance, in order to allow for
a real-world application of the proposed control strategy. An
interesting approach could exploit Control Barrier Functions to
define a minimum distance to be maintained between robots
and obstacles (see Ferraguti et al. (2022)), calculating the
optimal control action compliant with this constraint from
the desired one obtained with the methodology presented in
this paper. Finally, another interesting enhancement of the
proposed architecture could exploit a previously taken picture
of the operation area, allowing its integration into the graphical

interface. In this way, the operator will be able to interactively
draw the region of interest in order to precisely fit a specific area
of the environment. The image could also be elaborated with the
aim of finding specific features, from which the region of interest
can be automatically generated. An example of a scenario where
this solution could be exploited is a search and rescue mission
taken in a urban environment with a group of UAVs, where
buildings must be treated as obstacles and a specific area must
be reached by the agents, where a certain target feature is located.
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a region of interest with a desired geometrical shape to be
explored by the agents in the environment. With this solution, the
operator plays the role of a supervisor with a global knowledge
of the environment, while on-field execution of the mission
is demanded to robotic agents. Hence, safety conditions are
guaranteed to the human being, who is not required for an in-
person visit in a possibly dangerous environment. This strategy
exploits the definition of Gaussian Mixture Models from a
polygon drawn on a graphical interface to define a non-uniform
density function, where higher importance is given to the region
of interest, together with a limited Voronoi partitioning of
the environment. This approach sets up a distributed strategy
in order to deal with limitations usually met in real-world
implementations, e.g. limited sensing capabilities of the agents
and communication impossibility. It is important to note that the
definition in (4) only considers the difference between free and
occupied surfaces, but it does not take into account blind spots
generated using a sensor on a real robot. In particular, the real
field of view of a ground vehicle will be slightly different from
the one calculated with this assumption, while no differences
are met when employing aerial vehicles observing from above.
However, the mentioned assumption does not prevent from using
this methodology in real-world applications, since the absence
of blind spots in the sensing range can only positively affect the
overall behaviour of the controlled system. Several tests have
been made both in simulation and on real mobile platforms, and
the results show that the multi-robot system behaves as expected
and reaches a final configuration fitting the desired shape of the
region of interest. At the moment, only regular environments
have been tested, with simple-shaped obstacles placed inside
of them only in simulations, therefore robots have been able to
avoid collisions.
Future work will extend on-field trials to more complex
scenarios, where agents are required to operate in larger areas
with obstacles placed into the environment. Furthermore, a
necessary step could be the integration of an inner control layer
to always guarantee obstacle avoidance, in order to allow for
a real-world application of the proposed control strategy. An
interesting approach could exploit Control Barrier Functions to
define a minimum distance to be maintained between robots
and obstacles (see Ferraguti et al. (2022)), calculating the
optimal control action compliant with this constraint from
the desired one obtained with the methodology presented in
this paper. Finally, another interesting enhancement of the
proposed architecture could exploit a previously taken picture
of the operation area, allowing its integration into the graphical

interface. In this way, the operator will be able to interactively
draw the region of interest in order to precisely fit a specific area
of the environment. The image could also be elaborated with the
aim of finding specific features, from which the region of interest
can be automatically generated. An example of a scenario where
this solution could be exploited is a search and rescue mission
taken in a urban environment with a group of UAVs, where
buildings must be treated as obstacles and a specific area must
be reached by the agents, where a certain target feature is located.
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