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1. Introduction

This paper concerns Schrödinger evolution equations with a time dependent poten-
tial. As it is known, these dynamics are models for the behaviour of the elementary
particles and hence they are of great interest in applied sciences.

The initial value problem associated to the linear Schrödinger equation,i
∂

∂t
u(x, t)−∆u(x, t) + V (x, t)u(x, t) = f(x, t) for (x, t) ∈ R3 × I,

u(x, 0) = u0(x) for x ∈ R3
(LS)

where I := [0, T ], V : R3×I → R, f : R3×I → C and u0 : R3 → C, was extensively in-
vestigated and several important contributions already appeared. They are frequently
based on the semigroup theory introduced by Kato [13] [14] (see also Kato [15] and
Vrabie [28]). We quote, in particular, the results by Acquistapace-Terreni [1], Neid-
hardt [18] (see also Tanabe [27, Chapter VI]), Okazawa [20] and Okazawa-Yoshii [21].
In [21] the existence of a unique solution to (LS) was proved, in the very general case
of moving Coulomb potentials with multiple charges (see Section 2). The survey by
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Yajima [29] accounts of the most important methods used for the study of (LS).
In abstract setting problem (LS) becomes

d

dt
u(t) +A(t)u(t) = f(t) for t ∈ I,

u(0) = u0.
(P0)

where {A(t); t ∈ I} is a family of closed linear operators in a complex Hilbert space
X with inner product (·, ·) and norm ‖ · ‖. The domain D(A(t)) may vary with t but
it is assumed the existence of a subspace Y ⊂ X such that Y ⊂ D(A(t)) for all t ∈ I
and f : I → Y .

In this paper a nonlinear term is added, into the Schrödinger equation. We assume
that the linear part has the very general behaviour discussed in [21] and briefly recall
its properties in Theorems 2.2 and 2.4; the proofs are omitted and can be found
in [21].

The paper splits into two parts. The first one is in Sections 4 and 5 and deals with
the nonlocal problem

i
∂

∂t
u(x, t)−∆u(x, t) + V (x, t)u(x, t) = f(x, t)

+ γ
(
t,

1

t

∫ t

0

∫
R3

a(y, s)∆u(y, s) dyds
)
g(x, t) for (x, t) ∈ R3 × I,

u(x, 0) = u0(x) +

∫ T

0

b(s)u(x, s) ds for x ∈ R3,

(NLS)
with V and f as in (LS), γ : I×C→ C, a, g : R3×I → C and b : I → C. The existence
of a unique solution for (NLS) is discussed in Section 5 (see Theorem 5.1). As usual
problem (NLS) is treated in its abstract setting

d

dt
u(t) +A(t)u(t) = f(t) + Γ(t,K(t)u)g(t) for t ∈ I,

u(0) = u0 +Mu,
(P)

with {A(t); t ∈ I} and f as in (P0), K(t) : C(I;Y ) → C linear and bounded for all
t ∈ I, g : I → Y, Γ: I × C→ C continuous, u0 ∈ Y , and M : C(I;Y )→ Y linear and
bounded.
Definition 1.1. (Nonlocal (classical) solution to (P)) A vector-valued function
u : I → X is said to be a classical solution to (P) if u ∈ C1(I;X) ∩ C(I;Y ) and
satisfies (P).

The existence and uniqueness of a classical solution to problem (P) is in Theorem
4.1. Its proof is based on the Schauder-Tychonoff fixed point theorem (see e.g. Theo-
rem 3.5) applied to the solution operator Φ which is defined in (4.3) by a linearization
device. In Remark 4.3 we show that, in the genuinely nonlinear case for the equation
in (P), by Theorem 4.1 we never obtain the trivial solution u ≡ 0

Let V and W be arbitrary Banach spaces. The symbol L(V,W ) denotes the space
of all bounded linear operators from V to W , with norm ‖·‖L(V,W ). The abbreviations:
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L(V ) := L(V, V ), L(W ) := L(W,W ) will be used. The symbol C∗(I;L(V,W )) stands
for the space of all strongly continuous functions from W to V . More precisely,
F (·) ∈ C∗(I;L(V,W )) means that F (t) ∈ L(V,W ) is defined for all t ∈ I and F (·)v ∈
C(I;W ) for each v ∈ V (for this notation see e.g. Kato [16]). Notice that, in Theorem
4.1, the function K(·) will be assumed strongly continuous from C(I;Y ) to C.

Some concrete examples for the operators M and K are proposed now. They
provide an idea of additional nonlocal problems which could be considered besides
(NLS) (see also Remark 5.4).

Examples of M : C(I;Y )→ Y .

(1) Mu =

∫ T

0

µ(t)u(t) dt with µ ∈ L1(I). It is possible to show that ‖M‖ = ‖µ‖L1(I)

(a proof is given in Lemma 7.2). In particular, when µ(t) =
1

T
for t ∈ [0, T ], then

Mu is the mean value of u.

(2) Mu =

n∑
i=1

λiu(ti) with λi ∈ C, ti ∈ I, i = 1, 2, . . . , n and 0 < t1 < t2 < · · · <

tn ≤ T . Then we obtain ‖M‖ =

n∑
i=1

|λi|. In fact, it is clear that ‖M‖ ≤
n∑
i=1

|λi|. On

the other hand, set y ∈ Y satisfying ‖y‖Y = 1, α ∈ C(I;C) such that |α(t)| ≤ 1 and
α(ti) = λ∗i /|λi|, λi 6= 0; α(ti) = 0, λi = 0, where the symbol ∗ stands for the complex

conjugate. Then u(t) := α(t)y satisfies ‖u‖C(I;Y ) = 1 and ‖Mu‖Y =

n∑
i=1

|λi|.

Examples of K(·) ∈ C∗(I;L(C(I;Y ),C)).

(1) For all u and µ ∈ C(I;Y ), (u(·), µ(·))Y ∈ C(I;C). Therefore if we set

K(t)u :=


1

t

∫ t

0

(u(s), µ(s))Y ds, t ∈ (0, T ];

(u(0), µ(0))Y , t = 0.

Then K(·) ∈ C∗(I;L(C(I;Y ),C)), and ‖K(t)‖ ≤ ‖µ‖C(I;Y ), for t ∈ I.
(2) Let {A1(t); t ∈ I} be a family of closed linear operators such that Y ⊂ D(A1(t)) ⊆
X for all t ∈ I and A1(·) ∈ C∗(I;L(C(I;Y ),C)). Notice that ‖A1(t)y‖ ∈ C(I) for
y ∈ Y , and thus it follows, from the uniform boundedness principle, that there exists
a positive constant c1 such that

c1 := max
t∈I
‖A1(t)‖L(Y,X).

As a consequence, (A1(·)u(·), µ(·)) ∈ C(I;C) for µ ∈ C(I;X) and u ∈ C(I;Y ).
Therefore if we set

K(t)u :=


1

t

∫ t

0

(A1(s)u(s), µ(s)) ds, t ∈ (0, T ];

(A1(0)u(0), µ(0)), t = 0,

then, again, K(·) ∈ C∗(I;L(C(I;Y ),C)), and ‖K(t)‖ ≤ c1‖µ‖C(I;X) for t ∈ I.
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The use of an abstract framework is fairly common for the study of boundary
value problems associated to differential dynamics. Usually, it is combined with the
application of some fixed point theorem or with the use of an index invariance by
homotopy. Except with the topological argument, the sole well posedness of the
associated linear dynamics is always involved, and this explains the success of the
technique. The seminal contributions go back to Hartman [10], Mawhin [17] and
Schmitt-Thompson [26] (see also the references therein). The books by Pazy [24] and
Kamenskii-Obukhovskii-Zecca [11] deal with this method. The technique is still actual
and successfully used for the study of semilinear equations. We refer, in particular, to
Paicu and Vrabie [22] and Papageorgiou [23], where the linear part does not depend
on t and it generates a compact semigroup. We also mention Benedetti, Malaguti and
Taddei [2] and Benedetti, Taddei and Väth [4] about nonlinear boundary conditions
in a multivalued dynamic. The solution is always intended in integral form.

The domain of the solution operator in this paper is the space C(I;Y ) of continuous
functions. Due to the special form which take both the nonlinear part and the nonlocal
condition in (NLS), the weak topology in C(I;Y ) can be used, for proving the required
regularities (see Lemmas 4.7 and 4.8); as a consequence, though the evolution system
generated by {A(t); t ∈ I} is no longer compact, the study of (NLS) can be lead with
the only continuity of γ. Moreover, due to the properties of the evolution system,
classical solutions are furnished. To the best of our knowledge (NLS) is the first study
of a nonlocal problem associated to a nonlinear Schrödinger equation.

The second part of this paper is in Section 6 and treats the controllability of the
nonlocal solutions for the Schrödinger equation, i.e. it is about the problem

i
∂

∂t
u(x, t)−∆u(x, t) + V (x, t)u(x, t) = v(x, t) + f(x, t)

+ γ
(
t,

1

t

∫ t

0

∫
R3

a(y, s)∆u(y, s) dyds
)
g(x, t), (x, t) ∈ R3 × I,

u(x, 0) = u0(x) +

∫ T

0

b(s)u(x, s) ds, x ∈ R3,

u(x, T ) = u1(x), x ∈ R3,

(CPS)

and its abstract formulation, i.e.
d

dt
u(t) +A(t)u(t) = f(t) + Γ(t,K(t)u)g(t) +Bv(t) for t ∈ I,

u(0) = u0 +Mu,

u(T ) = u1,

(CP)

where u0, u1 ∈ Y , the control function v(·) is considered in a Banach space D and
B : D → X is a bounded linear operator.
Definition 1.2. ((Classical) controllable solution to (CP)) A pair of vector-valued
functions u(·) : I → X and v(·) : I → D is said to be a classical controllable solution
to (CP) if (u,Bv) ∈

(
C1(I;X) ∩ C(I;Y )

)
× C(I;X) and satisfies (CP).
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The existence of a solution (u, v) satisfying (CP) for every given u0, u1 ∈ Y is
discussed in Section 6 (see Theorem 6.1). The application to problem (CPS) is in
Example 6.5. The weak compactness in C(I;Y ) of the solutions to problem (CP)
is proved in Theorem 6.4. It implies the possibility to find a solution u∗, and a
corresponding control v(u∗), which minimizes (or maximizes) any suitably regular cost
function J : C(I;Y ) → R. Again, the discussion is based on a topological argument
and has some similarities with the recent contributions by Obukhovskii and Zecca [19]
and by Benedetti, Obukhovskii and Taddei [3]. However, the abstract setting in [3]
and [19] does not allow applications to Schrödinger evolution equations; furtherM ≡ 0
there, and the solutions are intended in integral form. The controllability of the
Schrödinger equation by an additive control as in (CPS) was recently studied in
Sarychev [25] whereas a multiplicative control was introduced in Chambrion, Mason,
Sigalotti and Boscain [7], for the same purpose. In Section 6 we are able to discuss the
exact controllability of the nonlinear Schrödinger equation; the solutions are classical
and satisfy a nonlocal additional condition given by M ; they form a compact set and
the concrete formula for the associated control Bv(·) strategies is furnished.

Several preliminary theorems are contained in Section 3. Some calculations are
confined in Section 7.

2. The linear abstract problem

This part is about the initial value problem (P0). Sufficient conditions are proposed
in Theorem 2.4 for its unique solvability. The result is based on [21].

In the case, as in this paper, that D(A(t)) depends on t ∈ I, the introduction of
an auxiliary family of operators {S(t); t ∈ I} with suitable properties can be very
useful for the construction of the evolution system associated to {A(t); t ∈ I} (see e.g.
[21]). We follow this method here and hence we first introduce a family of operators
{S(t); t ∈ I}.

Assumption on {S(t)}.

(S1) For every t ∈ I, S(t) is positive selfadjoint in X and

(u, S(t)u) ≥ ‖u‖2 for u ∈ D(S(t)).

Let Yt be the Hilbert space D(S(t)1/2) with new inner product (· , ·)Yt and norm ‖·‖Yt
for t ∈ I and u, v ∈ Yt:

(u, v)Yt := (S(t)1/2u, S(t)1/2v), ‖u‖Yt := (u, u)
1/2
Yt

;

assume that Yt is embedded continuously and densely in X and that Y := Y0.

(S2) For t ∈ I, Yt = Y and S(·)1/2 ∈ C∗(I;L(Y,X)).

(S3) There exists a nonnegative function σ ∈ L1(I) such that for
(t, s) ∈ ∆+ := {(t, s); 0 ≤ s ≤ t ≤ T},

exp
(
−
∫ t

s

σ(r) dr
)
‖S(s)1/2v‖ ≤ ‖S(t)1/2v‖ ≤ exp

(∫ t

s

σ(r) dr
)
‖S(s)1/2v‖, v ∈ Y.
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Remark 2.1. (1) Under conditions (S1) and (S2), although domain D(S(t)1/2) is
independent of t ∈ I, both inner product (·, ·)Yt and norm ‖ · ‖Yt depend on t ∈ I.

(2) Condition (S3) and following conditions are equivalent:
(S3)′ There exists a nonnegative function σ′ ∈ L1(I) such that for (t, s) ∈ ∆+,∣∣‖S(t)1/2v‖ − ‖S(s)1/2v‖

∣∣ ≤ ∫ t

s

σ′(r) dr min
r∈[s,t]

‖S(r)1/2v‖, v ∈ Y.

(S3)′′ There exists a nonnegative function σ′′ ∈ L1(I) such that for (t, s) ∈ ∆+,∣∣‖S(t)1/2v‖ − ‖S(s)1/2v‖
∣∣ ≤ ∫ t

s

σ′′(r) dr max
r∈[s,t]

‖S(r)1/2v‖, v ∈ Y.

The proof of this equivalency is given in Section 7.

Assumption on {A(t)}.
(A1) There exists a constant α ≥ 0 such that

|Re (A(t)v, v)| ≤ α‖v‖2, v ∈ D(A(t)), t ∈ I.
(A2) Y ⊂ D(A(t)), t ∈ I.

(A3) There exists a constant β ≥ α such that

|Re (A(t)u, S(t)u)| ≤ β‖S(t)1/2u‖2, u ∈ D(S(t)) ⊂ Y, t ∈ I.
(A4) A(·) ∈ C∗(I;L(Y,X)).

When the linear part {A(t)} satisfies all conditions (A1)-(A3) and (S1)-(S3),
then a unique evolution system exists and its main properties can be showed. This
is discussed int the following result (see Theorem 2.2). Instead, we refer to Section 5
for a concrete example of linear part which satisfies all the quoted conditions.
Theorem 2.2. ([21, Theorem 1.2] see also [30]) Suppose that Assumptions on {A(t)}
and {S(t)} are satisfied. Then there exists a unique evolution operator

{U(t, s); (t, s) ∈ Σ := I × I}
for (P0) having the following properties:

(i) U(·, ·) ∈ C∗(Σ;L(X)), with

‖U(t, s)‖L(X) ≤ eα|t−s|, (t, s) ∈ Σ,

where α is defined in (A1).

(ii) U(t, r)U(r, s) = U(t, s) on Σ and U(s, s) = 1 (the identity).

(iii) U(t, s)Y ⊂ Y and U(·, ·) ∈ C∗(Σ;L(Y )), with

‖U(t, s)‖L(Ys,Yt)
≤ exp

(
β|t− s|+

∣∣∣∫ t

s

σ(r) dr
∣∣∣), (t, s) ∈ Σ, (2.1)

‖U(t, s)‖L(Y ) ≤ exp
(
β|t− s|+ 2

∫ t∨s

0

σ(r) dr
)
, (t, s) ∈ Σ, (2.2)

where t ∨ s := max{t, s}, β and γ(·) are defined in (A3) and (S3), respectively.

Furthermore, let v ∈ Y . Then U(· , ·)v ∈ C1(Σ;X), with
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(iv) (∂/∂t)U(t, s)v = −A(t)U(t, s)v, (t, s) ∈ Σ, and

(v) (∂/∂s)U(t, s)v = U(t, s)A(s)v, (t, s) ∈ Σ.
Remark 2.3. We remark that in [21, 30] all the results in Theorem 2.2 are given
only for (t, s) ∈ ∆+ := {(t, s); 0 ≤ s ≤ t ≤ T}. However, we can obtain the results on
Σ. In fact, set

Ã(t) := −A(T − t), S̃(t) := S(T − t), for t ∈ I.

Then {Ã(t)} and {S̃(t)} also satisfy Assumptions {A(t)} and {S(t)}. Therefore we

can show that there exists a unique evolution operator {Ũ(t, s); (t, s) ∈ ∆+}. Define

U(t, s) := Ũ(T − t, T − s), (t, s) ∈ ∆− := {(t, s); 0 ≤ t ≤ s ≤ T}.
This is an extension of {U(t, s); (t, s) ∈ ∆+} to Σ = ∆+ ∪ ∆− and satisfies the
properties in Theorem 2.2 on Σ. For instance, we can show that for (t, s) ∈ ∆− and
v ∈ Y ,

∂

∂t
U(t, s)v = − ∂

∂(T − t)
Ũ(T − t, T − s)v = Ã(T − t)Ũ(T − t, T − s)v = −A(t)U(t, s)v

(see also [21, Remark 4] and [20, Remark 1.3 and Section 5.2]).
Theorem 2.4. ([21, Theorem 1.3]) Let {U(t, s)} be the evolution operator for (P0)
as in Theorem 2.2 above. For u0 ∈ Y and f(·) ∈ C(I;X) ∩ L1(I;Y ) define u(·) as

u(t) := U(t, 0)u0 +

∫ t

0

U(t, s)f(s) ds, t ∈ I.

Then u(·) ∈ C1(I;X) ∩ C(I;Y ) and u(·) is the unique (classical) solution to (P0).
Remark 2.5. According to Theorem 2.2 it is easy to see that if u1 ∈ Y and

f ∈ C(I;X) ∩ L1(I;Y ).

Then

u(t) := U(t, T )u1 +

∫ t

T

U(t, s)f(s) ds

belongs to C1(I;X) ∩ C(I;Y ) and it is the unique (classical) solution to the final
value problem 

d

dt
u(t) +A(t)u(t) = f(t) for t ∈ I,

u(T ) = u1.

3. Preliminary results

In this section we propose useful theorems for the study of the nonlinear problems
(P) and (CP). Their proofs appear, for instance, in the quoted references.

Let {xn} ⊂ X be a sequence in the Banach space X and x ∈ X. If {xn} converges
to x with respect to the weak topology then we write xn ⇀ x in X, while xn → x
stands for the strong convergence in X.

Let A ⊂ X. Then A and A
W

denote the closure of A in X with respect to the
strong and weak topology, respectively. The symbol Ac stands for the complementary
of A in X.
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We recall now the characterization of weak convergence in spaces of continuous
functions.
Theorem 3.1. (Bochner and Taylor [5, Theorem 4.3]) Let X be a Banach space. Set
{fn} ⊂ C([a, b];X) and f ∈ C([a, b];X). Then fn ⇀ f in C([a, b];X) weakly, if and
only if

(a) there exists M > 0 such that ‖fn‖C([a,b];X) ≤M, n ∈ N,

(b) for t ∈ [a, b], fn(t) ⇀ f(t) in X.

We recall now the Eberlein Šmulian theory about weak compactness in Banach
spaces.
Theorem 3.2. (Eberlein Šmulian theory (see also Kantorovich and Akilov [12, Theo-
rem 1, p.219])) Let Ω be a subset of a Banach space. Then the following two statements
are equivalent :

(a) Ω is weakly relatively compact ;

(b) Ω is weakly relatively sequentially compact.
Corollary 3.3. ([12, p.219]) Let Ω be a subset of a Banach space. Then the following
two statements are equivalent :

(a) Ω is weakly compact ;

(b) Ω is weakly sequentially compact.
The following result is about a sufficient condition for the weak compactness in

L1-space.
Theorem 3.4. (Diestel, etc.[8, Corollay 2.6]) Let X be a Banach space. Assume that
A is a bounded and uniformly integrable subset of L1([a, b];X) such that for f ∈ A,
one has f(t) ∈ Bt a.e. t ∈ [a, b], where, for t ∈ [a, b], Bt ⊂ X is weakly relatively
compact. Then A is weakly relatively compact in L1([a, b];X).
Theorem 3.5. (Schauder-Tychonoff fixed point theorem, see e.g. Dunford and
Schwartz [9, p. 458]) Let E be a locally convex topological vector space. Let Q ⊂ E be
convex and closed. If F : Q→ Q is continuous and compact then F has a fixed point.

In a Banach space X endowed with its weak topology, the continuity condition
of the map can be replaced by its weak sequential closure. This is showed in the
following proposition. We recall that Φ: Q → Q with Q ⊂ X is weakly sequentially
closed if {xn} ⊂ Q with xn ⇀ x ∈ Q implies Φ(xn) ⇀ Φ(x).
Proposition 3.6. Let X be a Banach space. Assume that Q ⊂ X is convex and
closed. If Φ : Q→ Q is weakly sequentially closed and weakly compact, then Φ has a
fixed point.

The proof of previous proposition is a straightforward consequence of the following
lemma.
Lemma 3.7. In the same conditions of Proposition 3.6 there exists Ĉ ⊆ Q convex
and weakly compact such that Φ(Ĉ) ⊆ Ĉ and Φ : Ĉ → Ĉ is weakly continuous.
Proof. Step 1. First we show the existence of a convex and weakly compact set

Ĉ ⊆ Q satisfying Φ(Ĉ) ⊆ Ĉ. Since Q is closed, we have Φ(Q)
W
⊆ Q. Moreover

co
(
Φ(Q)

W)
is the smallest convex and closed subset of X which contains Φ(Q)

W
.
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Notice that Q is also convex, closed and Φ(Q)
W
⊆ Q, so define

Ĉ := co
(
Φ(Q)

W)
⊆ Q.

Then Ĉ is convex and closed. By the compactness of Φ, Ĉ is also weakly compact
(see e.g. Dunford and Schwartz[9, p.434]). According to the above results we have

Φ(Ĉ) ⊆ Φ(Q) ⊆ Φ(Q)
W
⊆ co

(
Φ(Q)

W)
= Ĉ.

Thus Ĉ is convex, weakly compact and Φ : Ĉ → Ĉ.

Step 2. We show that Φ : Ĉ → Ĉ has weakly closed graph. Since Ĉ is weakly
compact, Ĉ × Ĉ is also weakly compact in X ×X. By Corollary 3.3, Ĉ × Ĉ is weakly
sequentially compact in X × X. The graph G(Φ|Ĉ) = {(x,Φ(x));x ∈ Ĉ} is weakly
sequentially compact. In fact, let

{(xn,Φ(xn));xn ∈ Ĉ} ⊂ G(Φ|Ĉ) ⊂ Ĉ × Ĉ.

By weakly sequentially compactness of Ĉ × Ĉ, there exists {(xnk
,Φ(xnk

))}k≥1 such
that

(xnk
,Φ(xnk

)) ⇀ (x0, y0) in Ĉ × Ĉ.
Since Φ has weakly sequentially closed graph, we obtain that y0 = Φ(x0). Therefore
(x0, y0) ∈ G(Φ|Ĉ), and then G(Φ|Ĉ) is weakly sequentially compact. By Theorem 3.2
G(Φ|Ĉ) is weakly compact. Thus G(Φ|Ĉ) is weakly closed.

Step 3. We show that Φ : Ĉ → Ĉ is weakly continuous. Fix x ∈ Ĉ and take
W ⊂ Ĉ weakly open with Φ(x) ∈ W . Take y ∈ Φ(Ĉ) \W . It implies that y 6= Φ(x)
and then (x, y) 6∈ G(Φ|Ĉ). This means that (x, y) ∈ (G(Φ|Ĉ))c. Since (G(Φ|Ĉ))c

is weakly open in Ĉ × Ĉ, there exist two weakly open sets Ṽy and W̃y such that

(x, y) ∈ Ṽy × W̃y ⊂ (G(Φ|Ĉ))c. And then we have

Φ(Ṽy) ∩ W̃y = ∅. (3.1)

Next we consider a set {W̃y : y ∈ Φ(Ĉ) \W}. Since Φ(Ĉ)
W

is weakly compact in Ĉ,

Φ(Ĉ) \W
W

is also weakly compact in Ĉ. Then, noting that {W̃y : y ∈ Φ(Ĉ) \W} is

a weakly open covering of Φ(Ĉ) \W
W

, we can extract a finite sub-covering; that is

there exist y1, . . . , yn ∈ Φ(Ĉ) \W such that

n⋃
i=1

W̃yi ⊃ Φ(Ĉ) \W
W

. Set V :=

n⋂
i=1

Ṽyi .

Then x ∈ V and V is weakly open and Φ(V ) ⊂ W . In fact, if and only if v ∈ V ,

then v ∈ Ṽyi for i = 1, 2, . . . , n. By (3.1) it implies that Φ(v) 6∈ W̃yi ∀i = 1, · · · , n,

so Φ(v) 6∈
n⋃
i=1

W̃yi . Therefore we have Φ(V ) ⊂W . For the arbitrariness of x, we have

showed that Φ is weakly continuous.
Proof of Proposition 3.6. It is sufficient to apply Schauder-Tychonoff fixed point
theorem (see Theorem 3.5) to Φ|Ĉ .
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4. The abstract nonlocal problem

This part deals with problem (P). Its solvability is discussed in Theorem 4.1 and
the proof involves a fixed point argument. The solution operator Φ is defined in (4.3)
and its properties discussed in Lemmas 4.6, 4.7 and 4.8.
Theorem 4.1. Suppose that Assumptions on {A(t)}, {S(t)} are satisfied. Take
K(·) ∈ C∗(I;L(C(I;Y ),C)), g(·) ∈ C(I;X) ∩ L1(I;Y ). Let

(ΓM) Γ and M satisfy ‖M‖L(C(I;Y );Y )+liminf
n→∞

Γn
n
‖g‖L1(I;Y ) < e−βT−2‖σ‖L1(I) , where

k0 := sup
t∈I
‖K(t)‖L(C(I;Y ),C), Γn := max{|Γ(t, h)|; t ∈ I, |h| ≤ nk0} for n ∈ N,

the constant β was introduced in (A3) and the function σ(·) in (S3). Then for u0 ∈ Y
and f(·) ∈ C(I;X) ∩ L1(I;Y ), (P) has a (classical) solution

u(·) ∈ C1(I;X) ∩ C(I;Y ).

Further if the following condition is added

(Lip) There exists a constant L > 0 such that

|Γ(t, h1)− Γ(t, h2)| ≤ L|h1 − h2|, t ∈ I, h1, h2 ∈ C (4.1)

and

‖M‖L(C(I;Y );Y ) + Lk0‖g‖L1(I;Y ) < e−βT−2‖σ‖L1(I) ,

then the solution u(·) is unique.
Remark 4.2. (1) By a similar reasoning as in Example (2) about K(·) in Section 1
it is possible to show that k0 is well-defined.

(2) Condition (Lip) is stronger than condition (ΓM). In fact, it follows from condition
(Lip) that for t ∈ I and |h| ≤ nk0

|Γ(t, h)| ≤ L|h|+ |Γ(t, 0)| ≤ nLk0 + max
t∈I
|Γ(t, 0)|,

and then

liminf
n→∞

Γn
n
≤ Lk0.

Remark 4.3. Assume that

f(t) + Γ(t, 0)g(t) 6≡ 0, t ∈ I,

and consider u0 = 0. By the linearity of K(t) for all t ∈ I, it is immediate to see that
the solutions given by Theorem 4.1 are never the trivial solution u ≡ 0.

Now we introduce two special cases of Theorem 4.1. If, in particular, we consider
the case Γ ≡ 0, then we obtain following
Corollary 4.4. Suppose that Assumptions on {A(t)} and {S(t)} are satisfied.
Assume that

‖M‖L(C(I;Y );Y ) < e−βT−2‖σ‖L1(I) .
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Then for u0 ∈ Y and f(·) ∈ C(I;X)∩L1(I;Y ), the abstract nonlocal Cauchy problem
for linear evolution equation of the form

d

dt
u(t) +A(t)u(t) = f(t) for t ∈ I,

u(0) = u0 +Mu

has a unique (classical) solution

u(·) ∈ C1(I;X) ∩ C(I;Y ).

On the other hand, if we consider the case M ≡ 0, then we obtain
Corollary 4.5. Suppose that Assumptions on {A(t)}, {S(t)} are satisfied. Assume
that K(·) ∈ C∗(I;L(C(I;Y ),C)), g(·) ∈ C(I;X) ∩ L1(I;Y ) and

liminf
n→∞

Γn
n
‖g‖L1(I;Y ) < e−βT−2‖σ‖L1(I) ,

with Γn defined in (ΓM). Then for u0 ∈ Y and f(·) ∈ C(I;X)∩L1(I;Y ), the abstract
Cauchy problem for nonlinear evolution equation of the form

d

dt
u(t) +A(t)u(t) = f(t) + Γ(t,K(t)u)g(t) for t ∈ I,

u(0) = u0

has a (classical) solution

u(·) ∈ C1(I;X) ∩ C(I;Y ).

Further if (4.1) is satisfied and

Lk0‖g‖L1(I;Y ) < e−βT−2‖σ‖L1(I) .

Then the solution u(·) is unique.
The case Γ ≡ 0 and M ≡ 0 was studied in [21, Theorem 1.3] (see also Theorem

2.4). Thus we can regard Theorem 4.1 as a generalization of [21, Theorem 1.3].

The proof of Theorem 4.1 is based on a fixed point argument. So, we first introduce
a solution operator Φ (see (4.3) below) and discuss its main properties in the following
Lemmas 4.6, 4.7 and 4.8.

For every q ∈ C(I;Y ) we consider the linearized problem
d

dt
uq(t) +A(t)uq(t) = f(t) + Γ(t,K(t)q)g(t) for t ∈ I,

uq(0) = u0 +Mq.
(Pq)

Note that u0 +Mq ∈ Y and

Γ(·,K(·)q)g(·) ∈ C(I;X) ∩ L1(I;Y ). (4.2)

In fact, by the assumption on K(·), we get that K(·)q ∈ C(I;C) and then, by the
continuity of Γ(·, ·), we have that Γ(·,K(·)q) ∈ C(I;C). Therefore we obtain (4.2). It
follows from Theorem 2.4 that (Pq) has a unique solution uq(·) ∈ C1(I;X)∩C(I;Y ).
So we can define the solution operator as follows:

Φ : C(I;Y )→ C1(I;X) ∩ C(I;Y ), Φ : q 7→ uq. (4.3)
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It is easy to see that every fixed point of Φ corresponds to a solution of (P). For
this reason we need to investigate the properties of Φ. First we show the existence of
Q ⊂ C(I;Y ) which satisfies Φ(Q) ⊆ Q.
Lemma 4.6. There exists Q ⊂ C(I;Y ) with Q bounded, closed and convex satisfying
Φ(Q) ⊆ Q.
Proof. Set Qn := {q ∈ C(I;Y ); supt∈I ‖q(t)‖Y ≤ n}; then Qn is bounded, closed and
convex. Assume that q ∈ Qn. We see from Theorem 2.4 that

Φ(q)(t) = uq(t) = U(t, 0)(u0 +Mq) +

∫ t

0

U(t, s)(f(s) + Γ(s,K(s)q)g(s)) ds. (4.4)

We have from |K(s)q| ≤ nk0 that

|Γ(t,K(t)q)| ≤ Γn, t ∈ I,
with k0 and Γn given in (ΓM). Notice that

‖Mq‖Y ≤ ‖M‖ sup
t∈I
‖q(t)‖Y ≤ n‖M‖,

it follows from Theorem 2.4 that

‖uq(t)‖Y ≤ ‖U(t, 0)‖L(Y )(‖u0‖Y + ‖Mq‖Y )

+

∫ t

0

‖U(t, s)‖L(Y )(‖f(s)‖Y + |Γ(s,K(s)q)|‖g(s)‖Y ) ds

≤ e
∫ t
0
β+2σ(r) dr(‖u0‖Y + n‖M‖)

+

∫ t

0

exp
(
β(t− s) + 2

∫ t

0

σ(r) dr
)

(‖f(s)‖Y + Γn‖g(s)‖Y ) ds,

and then

‖uq(t)‖Y ≤ eβT+2‖σ‖L1(I)(‖u0‖Y +‖f‖L1(I;Y ))+ne
βT+2‖σ‖L1(I)

(
‖M‖+Γn

n
‖g‖L1(I;Y )

)
.

By condition (ΓM), there exists n̄ ∈ N satisfying ‖uq(t)‖Y ≤ n̄ (details of this
computation are in Lemma 7.3). It is clear that Qn̄ satisfies Φ(Qn̄) ⊆ Qn̄.

In the following Q := Qn̄ and we denote by nQ the upper bound of the norm of
q ∈ Q. Next we show that the solution operator Φ is weakly sequentially closed.
Lemma 4.7. Let Φ as in (4.3) and Q ⊂ C(I;Y ) be as in Lemma 4.6. Then Φ|Q is
weakly sequentially closed.
Proof. Set {qk} ⊂ Q and q ∈ C(I;Y ) with qk ⇀ q ∈ C(I;Y ). Then

‖q‖C(I;Y ) ≤ liminf
n→∞

‖qk‖C(I;Y ) ≤ n.

Therefore q ∈ Q. The proof is complete when showing that Φ(qk) ⇀ Φ(q) in C(I;Y ).
Since K(t) : C(I;Y )→ C is linear and bounded, then K(t)qk → K(t)q in C.
It implies that

Γ(t,K(t)qk)→ Γ(t,K(t)q) in C
for t ∈ I. The convergence of {Γ(t,K(t)qk)} is dominated. In fact, by the assumption
on K(·) we have that

|K(t)qk| ≤ k0nQ.
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Then

|Γ(t,K(t)qk)| ≤ max{|Γ(t, h)|; t ∈ I, |h| ≤ k0nQ} =: Γn,

with k0 defined in (ΓM). Therefore, by definition of g and the property (2.2), we have

U(t, s)Γ(s,K(s)qk)g(s)→ U(t, s)Γ(s,K(s)q)g(s) in Y, a.a. s ∈ I (4.5)

and the convergence is dominated, that is

‖U(t, s)Γ(s,K(s)qk)g(s)‖Y ≤ eβT+2‖σ‖L1(I)Γn‖g(s)‖Y ∈ L1(I), (4.6)

with Γn as in (ΓM). Thus, by Lebesgue’s dominated convergence theorem, we have∫ t

0

U(t, s)Γ(s,K(s)qk)g(s) ds→
∫ t

0

U(t, s)Γ(s,K(s)q)g(s) ds in Y.

On the other hand,

Mqk ⇀Mq in Y as k →∞,
because M is linear and bounded. According to previous estimates, it follows that

Φ(qk)(t) = U(t, 0)(u0 +Mqk) +

∫ t

0

U(t, s)(f(s) + Γ(s,K(s)qk)g(s)) ds

weakly converges to

Φ(q)(t) = U(t, 0)(u0 +Mq) +

∫ t

0

U(t, s)(f(s) + Γ(s,K(s)q)g(s)) ds

in Y , for t ∈ I. Since {Φ(qk)} ⊂ Q ⊂ C(I;Y ) is bounded, we obtain from Theorem
3.1 that Φ(qk) ⇀ Φ(q) in C(I;Y ).

We show that the solution operator Φ is weakly relatively compact.
Lemma 4.8. Let Q ⊂ C(I;Y ) be as in Lemma 4.6 and set Φ : Q→ Q, Φ(q) = uq as
in (4.3). Then Φ(Q) is weakly relatively compact in C(I;Y ).
Proof. By Theorem 3.2, it is enough to show that Φ(Q) is weakly relatively sequen-
tially compact. So let {qk} ⊂ Q for k ∈ N. Then

Φ(qk)(t) = U(t, 0)(u0 +Mqk) +

∫ t

0

U(t, s)(f(s) + Γ(s,K(s)qk)g(s)) ds, t ∈ I.

(a) {Mqk} ⊂ Y is a bounded sequence. Y is a Hilbert space, so it is reflexive. By

Kakutani’s theorem (see e.g. Brezis [6, Theorem 3.17]) {Mqk} is weakly relatively
compact in Y . By Theorem 3.2 {Mqk} weakly sequentially relatively compact. So
there exist a subsequence {qkh} of {qk} and v̂ ∈ Y ;

Mqkh ⇀ v̂ ∈ Y.

(b) Define mh ∈ L1(I;Y );

mh(t) := Γ(t,K(t)qkh)g(t), a.a. t ∈ I.

We show that {mh} satisfies all the assumptions in Theorem 3.4. By definition of mh

we have that

‖mh(t)‖Y ≤ ΓnQ
‖g(t)‖Y , for a.a. t ∈ I. (4.7)
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Hence {mh} is bounded in L1(I;Y ). Take an arbitrary ε > 0. Since

t 7→
∫ t

0

‖g(s)‖Y ds

is absolutely continuous, there exists δ > 0:∫
E

‖g(t)‖Y dt ≤
ε

Γn

for every E ⊂ I, E measurable with Lebesgue measure µ(E) < δ. So∥∥∥∥∫
E

mh(t) dt

∥∥∥∥
Y

≤ ε.

Hence {mh} is uniformly integrable. Let Bt := {y ∈ Y : ‖y‖Y ≤ Γn‖g(t)‖Y } a.a.t ∈ I.
Bt is bounded in Y . Y is a Hilbert space, then it is reflexive. By Kakutani’s Theorem
Bt is weakly relatively compact. Moreover notice that Bt is convex and strongly
closed, since it is a closed ball. So Bt is also weakly closed. In conclusion Bt is weakly
compact. By estimate (4.7) we have that mh(t) ∈ Bt for a.a. t, h ∈ N, so we can
apply Theorem 3.4. Then there exists a subsequence {mh`

} and m̂ ∈ L1(I;Y ) such
that mh`

⇀ m̂ in L1(I;Y ). Fix t ∈ I. We claim that

U(t, ·)mh`
(·) ⇀ U(t, ·)m̂(·) in L1([0, t];Y ). (4.8)

Notice that L∞([0, t];Y ′) is the dual space of L1([0, t];Y ) (see e.g. [6]).
Let R ∈ (L1([0, t];Y ))′, R : L1([0, t];Y ) → C. Then there exists ρ ∈ L∞([0, t];Y ′)
with

Rϕ =

∫ t

0

〈ρ(s), ϕ(s)〉Y,Y ′ ds,

where 〈·, ·〉Y,Y ′ denotes the duality between Y and its dual space Y ′. Let us define

R̂ : L1([0, t];Y )→ C,

R̂ϕ :=

∫ t

0

〈ρ(s), U(t, s)ϕ(s)〉Y,Y ′ ds.

Notice that R̂ is linear and bounded. Then R̂ ∈ (L1([0, t];Y ))′. Hence by mh`
⇀ m̂ in

L1([0, t];Y ) we have that R̂mh`
→ R̂m̂ in C. This is equivalent as R [U(t, ·)mh`

(·)]→
R [U(t, ·)m̂(·)] in C. Since R is arbitrary in (L1([0, t];Y ))′, then the claim (4.8) is
proved. By (4.8) we have that∫ t

0

U(t, s)mh`
(s) ds ⇀

∫ t

0

U(t, s)m̂(s) ds in Y, t ∈ I.

Put

v(t) := U(t, 0)(u0 + v̂) +

∫ t

0

U(t, s)(f(s) + m̂(s)) ds,

then v ∈ C(I;Y ) and
Φ(qkh`

)(t) ⇀ v(t) in Y, t ∈ I.
Since {Φ(qk)} ⊂ Q is bounded in C(I;Y ), we have Φ(qkh`

) ⇀ v in C(I;Y ).

Proof of Theorem 4.1. (Existence) Let us consider the solution operator Φ defined

in (4.3). By Lemma 4.6, there exists Q closed and convex such that Φ(Q) ⊂ Q. By
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Lemmas 4.7 and 4.8, Φ is weakly sequentially closed and weakly relatively compact.
By Proposition 3.6 Φ has a fixed point q0 ∈ C(I;Y ). Clearly q0 is a solution of (P),
and q0 = Φ(q0) ∈ C1(I;X).

(Uniqueness) Let u1, u2 be solutions to (P), hence fixed points of Φ. Then it follows

from (4.1) that

|Γ(s,K(s)u1)− Γ(s,K(s)u2)| ≤ L|K(s)u1 −K(s)u2| ≤ Lk0‖u1 − u2‖,

with k0 as in (ΓM). Therefore, with a similar computation as proof of Lemma 7.3,
we obtain

‖u1(t)− u2(t)‖Y ≤ eβT+2‖σ‖L1(I)(‖M‖+ Lk0‖g‖L1(I;Y ))‖u1 − u2‖C(I;Y ).

It follows from the latter half part of (Lip) that ‖u1−u2‖C(I;Y ) = 0. Thus we obtain
u1 = u2.

5. Application to Schrödinger equation

In this section we shall apply Theorem 4.1 to the nonlocal Cauchy problem for the
nonlinear Schrödinger equation (NLS). We assume that u0 : R3 → C, V : R3×I → R,
f , g, a : R3 × I → C, γ : I × C → C and b : I → C. Let Wm,p(R3) be the usual
Sobolev space and we set H2(R3) := W 2,2(R3). We define

H2(R3) := {u ∈ L2(R3); (1 + |x|2)u ∈ L2(R3)}, ‖u‖H2 := ‖(1 + |x|2)u‖L2 ,

Σ2(R3) :=H2(R3) ∩H2(R3), ‖u‖Σ2 := ‖u‖H2 + ‖u‖H2
.

We simply wrote H2 and Σ2 for denoting norms in the spaces H2(R3) and Σ2(R3),
respectively and we will use this shorter notation also in the following.

By a solution of (NLS) we mean a function u(x, t) such that

ū(·) ∈ C1(I;L2(R3)) ∩ C(I; Σ2(R3)), (5.1)

where ū(t) := u(·, t) ∈ L2(R3) (or Σ2(R3)) for t ∈ I.
We will prove

Theorem 5.1. Let V satisfies

V ∈W 1,1(I;L2(R3) + 〈x〉2L∞(R3)), (5.2)

where

〈x〉2L∞(R3) := {f ∈ L∞loc(R3); (1 + |x|2)−1f ∈ L∞(R3)}
and Z1 + Z2 := {z1 + z2; z1 ∈ Z1, z2 ∈ Z2}, i.e., (5.2) means that there exist

V1 ∈ L∞(I;L2(R3)), V2 ∈ L∞(I; 〈x2〉L∞(R3)),

W1 ∈ L1(I;L2(R3)), W2 ∈ L1(I; 〈x2〉L∞(R3))
(5.3)

satisfying V1 + V2 = V and W1 +W2 =
∂

∂t
V . Assume that

g ∈ C(I;L2(R3)) ∩ L1(I; Σ2(R3)), a ∈ C(I;L2(R3)), γ ∈ C(I ×C) and b ∈ L1(I;C).

Let γn := max{|γ(t, h)|; t ∈ I, |h| ≤ n‖a‖C(I;L2)} for n ∈ N. The following cases occur
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(i) If

‖b‖L1(I) + liminf
n→∞

γn
n
‖g‖L1(I;Σ2) < e−βT−2‖σ‖,

where β ∈ R and σ ∈ L1(I) depend only on V (concrete forms are given in
the proof ), then for every initial value u0 ∈ Σ2(R3) and f ∈ C(I;L2(R3)) ∩
L1(I; Σ2(R3)), problem (NLS) has a (classical) solution (5.1).

(ii) If there exists a constant L ≥ 0 satisfying

|γ(t, h1)− γ(t, h2)| ≤ L|h1 − h2|, t ∈ I, h1, h2 ∈ C,

‖b‖L1(I) + L‖a‖C(I;L2)‖g‖L1(I;Σ2) < e−βT−2‖σ‖,

with β and σ(·) as in (i), then for every initial value u0 ∈ Σ2(R3) and f ∈
C(I;L2(R3))∩L1(I; Σ2(R3)), problem (NLS) has a unique (classical) solution
(5.1).

Remark 5.2. Under the conditions in Theorem 5.1, it is clear that the function

t 7→ 1

t

∫ t

0

(∫
R3

a(y, s)∆u(y, s) dy
)
ds

is well-defined on t ∈ (0, T ]. We can consider the closed (continuous) extension of

previous function, i.e., regard 0 7→
∫
R3

a(y, 0)∆u(y, 0) dy.

Before proving Theorem 5.1 we prepare a lemma.
Lemma 5.3. Set S(t) := (cV1 −∆ +V (x, t) + cV2(1 + |x|2))2, where V satisfies (5.2),
cV1 ≥ 0 depends on ‖V1‖L∞(I;L2) (concrete definition is given at the end of the proof )
and

cV2
:= 1 + 2‖(1 + |x|2)−1V2‖L∞(I;L∞).

Then S(t) is positive selfadjoint in L2(R3) and D(S(t)1/2) = Σ2(R3).
Proof. Define H0 := −∆ + cV2

(1 + |x|2) with D(H0) := Σ2(R3). Then S(t) := H(t)2,
where H(t) := cV1

+ H0 + V (x, t) with D(H(t)) := D(H0) ∩ D(V (t)). First V (t) is

H0-bounded with H0-bound
1√
2

if we show that for u ∈ Σ2(R3),

‖V1(t)u‖L2 + ‖V2(t)u‖L2 ≤ 1√
2
‖H0u‖L2 +

(√
3cV2

+ b1
)
‖u‖L2 , (5.4)

where b1 ≥ 0. By the Gagliardo-Nirenberg interpolation inequality we have

‖V1(t)u‖L2 ≤‖V1‖L∞(I;L2)‖u‖L∞

≤ cGN‖V1‖L∞(I;L2)‖∆u‖
3/4
L2 ‖u‖1/4L2

≤ 1

2
‖∆u‖L2 + b1‖u‖L2 ,

where cGN is the constant given by the Gagliardo-Nirenberg interpolation inequality
and b1 ≥ 0 depends on ‖V1‖L∞(I;L2). On the other hand we see from the definition
of cV2

that

‖V2(t)u‖L2 ≤ ‖(1 + |x|2)−1V2‖L∞(I;L∞)‖(1 + |x|2)u‖L2 ≤ cV2

2
‖u‖H2 .
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Combining two inequalities, then we have

‖V1(t)u‖L2 + ‖V2(t)u‖L2 ≤ 1√
2

(‖∆u‖2L2 + c2V2
‖u‖2H2

)1/2 + b1‖u‖L2 .

Noting that Re(−∆u, (1 + |x|2)u)L2 = ‖(1 + |x|2)1/2∇u‖2L2 − 3‖u‖2L2 , we have

‖∆u‖2L2 + c2V2
‖u‖2H2

≤‖∆u‖2L2 + 2cV2‖(1 + |x|2)1/2∇u‖2L2 + c2V2
‖u‖2H2

= ‖H0u‖2L2 + 6cV2
‖u‖2L2 .

Therefore we obtain (5.4). It follows from the Kato-Rellich theorem that H(t) is
selfadjoint in L2.
Next we show the positivity of H(t). By the similar way, we can show that∣∣∣∫

R3

V2(t, x)|u(x)|2 dx
∣∣∣ ≤ cV2

2
‖u‖2H1

and ∣∣∣∫
R3

V1(t, x)|u(x)|2 dx
∣∣∣ ≤ ‖V1‖L∞(I;L2)‖u‖2L4

≤ cGN ′‖V1‖L∞(I;L2)‖u‖
1/2
L2 ‖∇u‖3/2L2

≤ 1

4

(
cGN

′‖V1‖L∞(I;L2)

)4‖u‖2L2 +
3

4
‖∇u‖2L2 ,

where cGN
′ is also the constant given by the Gagliardo-Nirenberg interpolation in-

equality. Therefore we obtain

(H(t)u, u)L2 = cV1
‖u‖2L2 + ‖∇u‖2L2 + cV2

‖u‖2H1
+

∫
R3

V (t, x)|u(x)|2 dx

≥
(
cV1
− 1

4

(
cGN

′‖V1‖L∞(I;L2)

)4)‖u‖2L2 .

Thus, setting cV1 := 1 +
1

4

(
cGN

′‖V1‖L∞(I;L2)

)4
, then H(t) is positive.

It follows from Lemma 5.3 that ‖ · ‖Σ2 and ‖S(t)1/2 · ‖L2 are norm equivalent, such
that, there exists a positive constant c satisfying

‖u‖H2 + ‖u‖H2
≤ c‖S(t)1/2u‖L2 , (5.5)

where c ≥ 0 depends on only ‖V1‖L∞(I;L2) and ‖(1 + |x|2)−1V2‖L∞(I;L∞).

Proof of Theorem 5.1. Set A(t) := i−1(−∆ + V (x, t)) and S(t) as above. Then A(t)
and S(t) satisfy conditions (S1), (S2), (S3), (A1), (A2), (A3) and (A4) with α = 0,
β = 2ccV2 and

σ(t) := cmax{cGN‖W1(·, t)‖L2 , ‖(1 + | · |2)−1W2(·, t)‖L∞}, (5.6)

where c is the same constant as in (5.5).
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In fact, (S1) follows from Lemma 5.3. We show (S2) and (S3). By the definition
of S(t), we have

S(x, t)1/2u(x)− S(x, t0)1/2u(x) =V (x, t)u(x)− V (x, t0)u(x)

=

∫ t

t0

(W1(x, s) +W2(x, s))u(x) ds

for t, t0 ∈ I. By the same way as in the proof of Lemma 5.3 we obtain

‖W1(t)u‖L2 ≤ cGN‖W1(t)‖L2‖u‖H2

and

‖W2(t)u‖L2 ≤ ‖(1 + |x|2)−1W2(t)‖L∞‖u‖H2 .

Therefore we obtain

‖S(t)1/2u− S(t0)1/2u‖L2 ≤
∣∣∣∫ t

t0

‖(W1(s) +W2(s))u‖L2 ds
∣∣∣

≤
∣∣∣∫ t

t0

σ(s)‖S(s)1/2u‖L2 ds
∣∣∣,

where σ ∈ L1(I) is given by (5.6). This inequality means (S2), and by the estimation
of integral inequality, we obtain (S3) with (5.6) (see also Lemma 7.1).
(A1) with α = 0 is clear because A(t) is skew-symmetric. (A2) is shown in a way
similar as in proof of Lemma 5.3. Let u ∈ Σ2(R3), then

‖A(t)u‖L2 ≤ ‖∆u‖L2 + ‖V1(t)u‖L2 + ‖V2(t)u‖L2 ≤ 3

2
‖∆u‖L2 +

cV2

2
‖u‖H2

+ b1‖u‖L2 .

Hence there exists a positive constant cA satisfying

‖A(t)u‖L2 ≤ cA‖u‖Σ2 .

This inequality implies Σ2(R3) ⊂ D(A(t)).
To prove (A3) let v ∈ D(S(t)) ⊂ Y . Then we see from definitions of A(t), S(t)

and H(t) that

Re(A(t)v, S(t)v)L2 = −2cV2 Im(3u+ 2x · ∇u,H(t)u)L2 .

By simple computations we have

‖3u+ 2x · ∇u‖2L2 = 4‖x · ∇u‖2 − 9‖u‖2

and

Re((1−∆)u, (1+|x|2)u)L2 = ‖|x|∇u‖2+‖|x|u‖2+‖∇u‖2−2‖u‖2 ≥ ‖|x|∇u‖2−2‖u‖2.

Thus we can show that

‖3u+ 2x · ∇u‖L2 ≤ ‖u‖H2 + ‖u‖H2
≤ c‖S(t)1/2u‖L2 .

Therefore we obtain

|Re(A(t)v, S(t)v)L2 | = 2ccV2
‖S(t)1/2u‖2L2 .

(A4) follows from (5.2); note that W 1,1(I) ⊂ C(I).



SCHRÖDINGER EVOLUTION EQUATION 675

Set

K(t)u :=
1

t

∫ t

0

∫
R3

a(y, s)∆u(y, s) dyds

and

Mu :=

∫ T

0

b(s)u(x, s) ds.

Then |K(t)u| ≤ ‖a‖C(I;L2)‖u‖C(I;H2) and ‖M‖ = ‖b‖L1(I) (see also Example of M(1)
in Section 1). Thus we see from Theorem 4.1 that, in case (i), (NLS) has a (classical)
solution u(·) ∈ C1(I;L2(R3)) ∩ C(I; Σ2(R3)). Such a solution is also unique, when
conditions (ii) occur.
Remark 5.4. Consider the equation in (NLS) associated to the Cauchy multicon-
dition

u(0) = u0 +

n∑
i=1

λiu(ti)

with u0 ∈ L1(I; Σ2(R3)) and λi, ti, i = 1, . . . n as in Example of M(2) in Section 1. If,

in the statement of Theorem 5.1, ‖b‖L1(I) is replaced by

n∑
i=1

|λi| then the conclusions

of Theorem 5.1 remains true, also in this case.

6. Controllability

This part is about problem (CPS), i.e. it deals with the controllability of nonlocal
solutions of the Schrödinger equation. In Theorem 6.1 we prove that its abstract
formulation (CP) has a classical controllable solution for every given u0, u1 ∈ Y . The
proof exploits a topological method hence we introduce a solution operator Π (see
(6.3) below) which is obtained by combining the operator Φ defined in (4.3) with
the solution Ψ of the final value problem (6.2). The application to (CPS) is then
straightforward and given in Example 6.5.
Theorem 6.1. Suppose that Assumptions on {A(t)} and {S(t)} are satisfied.
Assume that K(·) ∈ C∗(I;L(C(I;Y ),C)), g(·) ∈ C(I;X) ∩ L1(I;Y ) and

‖M‖L(C(I;Y );Y ) +
1

2
liminf
n→∞

Γn
n
‖g‖L1(I;Y ) < e−βT−2‖σ‖L1(I) (ΓM)′

with Γn as in (ΓM). Then for u0, u1 ∈ Y and f(·) ∈ C(I;X) ∩ L1(I;Y ), (CP) has a
(classical) controllable solution (u, v) with

u ∈ C1(I;X) ∩ C(I;Y )

and Bv(·) ∈ C(I;X) ∩ L1(I;Y ).
Set q ∈ C(I;Y ). Before constructing the solution operator of (CP), we introduce

the operator

Ψ(q)(t) := U(t, T )u1 +

∫ t

T

U(t, s)(f(s) + Γ(s,K(s)q)g(s)) ds, t ∈ I. (6.1)
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where u1 ∈ Y . By Remark 2.5, Ψ : C(I;Y ) → C1(I;X) ∩ C(I;Y ) and Ψ(q) is the
unique solution of the following problem:

d

dt
uq(t) +A(t)uq(t) = f(t) + Γ(t,K(t)q)g(t) for t ∈ I,

uq(T ) = u1.
(6.2)

Therefore, we expect that a solution to (CP) with some suitable Bv(·) corresponds
to a fixed point of the following operator:

Π(q)(t) := (1− ζ(t))Φ(q)(t) + ζ(t)Ψ(q)(t), (6.3)

where Φ(q) was defined in (4.3) and ζ ∈ C∞(I;R) satisfying ζ(0) = 0, ζ(T ) = 1. The
function Π(q)(·) is the unique solution of a two-point boundary value problem.
Lemma 6.2. Let Π(q) be defined as in (6.3). Then Π(q) is the unique classical
solution of the two-point problem:

d

dt
uq(t) +A(t)uq(t) = f(t) + Γ(t,K(t)q)g(t) +Bv̄q(t) for t ∈ I,

uq(0) = u0 +Mq,

uq(T ) = u1,

(CPq)

where

Bvq(t) := −dζ
dt

(t)(Φ(q)(t)−Ψ(q)(t)).

Proof. First notice that, by Theorem 2.4, problem (CPq) may have at most a classical
solution uq(·). Clearly, Π(q)(0) = Φ(q)(0) = u0 +Mq and Π(q)(T ) = Ψ(T ) = u1. We
show that Π(q) satisfies the differential equation in (CPq).
Since Φ(q),Ψ(q) ∈ C1(I;X) ∩C(I;Y ), we obtain Π(q) ∈ C1(I;X) ∩C(I;Y ). Noting
that

d

dt
Φ(q)(t) = −A(t)Φ(q)(t) + f(t) + Γ(t,K(t)q)g(t),

d

dt
Ψ(q)(t) = −A(t)Ψ(q)(t) + f(t) + Γ(t,K(t)q)g(t)

and by the definition of Bv(·), we have that

d

dt
Π(q)(t) = (1− ζ(t))

d

dt
Φ(q)(t) + ζ(t)

d

dt
Ψ(q)(t)− dζ

dt
(t)
(
Φ(q)(t)−Ψ(q)(t)

)
= −A(t)Π(q)(t) + f(t) + Γ(t,K(t)q)g(t) +Bvq(t).

Therefore Π(q) is the classical solution to (CPq).

We see from g ∈ L1(I;Y ) that the function t 7→
∫ t

0

‖g(s)‖Y ds is continuous and

increasing. Therefore there exists t0 ∈ (0, T ) such that∫ t0

0

‖g(s)‖Y ds =

∫ T

t0

‖g(s)‖Y ds =
1

2

∫ T

0

‖g(s)‖Y ds. (6.4)

Let

F :=
{
ϕ ∈ C(I;R);ϕ(0) = 0, ϕ(t0) =

1

2
, ϕ(T ) = 1, monotone increasing

}
. (6.5)
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We choose in the following a function ζ ∈ C∞(I;R) ∩ F with t0 satisfying (6.4).
Consequently (see Lemma 7.4), for t ∈ I,

(1− ζ(t))

∫ t

0

‖g(s)‖Y ds+ ζ(t)

∫ T

t

‖g(s)‖Y ds ≤
1

2
‖g‖L1(I;Y ). (6.6)

Proof of Theorem 6.1 Let ζ be as above. We prove the existence of a fixed point
of Π.

Step 1. First we show that there exists Q ⊂ C(I;Y ) with Q bounded, closed and
convex satisfying Π(Q) ⊆ Q. Set Qn as in the proof of Lemma 4.6 and assume that
q ∈ Qn. We see from (4.4) and (6.1) that

‖Φ(q)(t)‖Y ≤ eβT+2‖σ‖L1(I)

(
‖u0‖Y + n‖M‖+

∫ t

0

‖f(s)‖Y + Γn‖g(s)‖Y ds
)
,

‖Ψ(q)(t)‖Y ≤ eβT+2‖σ‖L1(I)

(
‖u1‖Y +

∫ T

t

‖f(s)‖Y + Γn‖g(s)‖Y ds

)
.

Therefore we have by (6.6) that

e−βT−2‖σ‖L1(I)‖Π(q)(t)‖Y
≤ e−βT−2‖σ‖L1(I)

(
(1− ζ(t))‖Φ(q)(t)‖Y + ζ(t)‖Ψ(q)(t)‖Y

)
≤ max{‖u0‖Y , ‖u1‖Y }+ n‖M‖+ ‖f‖L1(I;Y )

+ Γn

(
(1− ζ(t))

∫ t

0

‖g(s)‖Y ds+ ζ(t)

∫ T

t

‖g(s)‖Y ds
)

≤ max{‖u0‖Y , ‖u1‖Y }+ ‖f‖L1(I;Y ) + n
(
‖M‖+

Γn
2n
‖g‖L1(I;Y )

)
.

By the same way as in the proof of Lemma 4.6 (see also Lemma 7.3), it follows from
condition (ΓM)′ that there exists n̄ ∈ N satisfying Π(Qn̄) ⊆ Qn̄. In next steps, we
set Q := Qn̄ and denote by nQ the upper bound of the norm of q ∈ Q.

Step 2. Next we show that Π is weakly sequentially close. Set {qk} ⊂ Q and
q ∈ C(I;Y ) with qk ⇀ q in C(I;Y ). We already proved in Lemma 4.8 that q ∈ Q and
Φ(qk) ⇀ Φ(q) in C(I;Y ). By (4.5) and (4.6) it is easy to show that Ψ(qk)→ Ψ(q) in
C(I;Y ). Therefore we obtain Π(qk) ⇀ Π(q) in C(I;Y ).

Step 3. Third we prove that Π is weakly relatively sequentially compact. Let {qk} ⊂
Q. By Lemma 4.8, there exists a subsequence {qkh} and vΦ ∈ Q satisfying Φ(qkh) ⇀
vΦ in C(I;Y ). We define the sequence {mh} as in part (b) of the proof of Lemma

4.8; with a similar reasoning as there we can find a subsequence {mh`
} and a function

m̂ ∈ L1(I;Y ) such that∫ t

T

U(t, s)mh`
(s) ds ⇀

∫ t

T

U(t, s)m̂(s) ds

in Y , t ∈ I. It implies that Ψ(qkh`
) ⇀ vΨ in C(I;Y ) where

vΨ(t) := U(t, T )u1 +

∫ t

T

U(t, s)m̂(s) ds.
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Therefore, Π(qkh`
)(t) ⇀ v(t) := (1 − ζ(t))vΦ(t) + ζ(t)vΨ(t) in Y for t ∈ I. Since

{Π(qk)} ⊂ Q and Q is bounded, by Theorem 3.1 we obtain that Π(qkh`
) ⇀ v in

C(I;Y ). By above properties we see from Proposition 3.6 that Π has a fixed point
u(·) which is a solution of (CP) with

Bv(t) := −dζ
dt

(t)(Φ(u)(t)−Ψ(u)(t)), t ∈ I (6.7)

and u(·) ∈ C1(I;X) ∩ C(I;Y ).

Remark 6.3. It is easy to see that every solution u(·) ∈ C1(I;X)∩C(I;Y ) to (CP)
with Bv(·) satisfying (6.7) is indeed a fixed point of Π, i.e. u(·) = Π(u)(·).

We investigate the topological structure of the solution set to (CP). Put

S := {u ∈ C1(I;X) ∩ C(I;Y ); (u, v) is a solution of (CP) with Bv as in (6.7)}.

Theorem 6.4. Suppose that Assumptions on {A(t)} and {S(t)} are satisfied. Assume
that K(·) ∈ C∗(I;L(C(I;Y ),C)) and

‖M‖L(C(I;Y );Y ) +
1

2
limsup
n→∞

Γn
n
‖g‖L1(I;Y ) < e−βT−2‖σ‖L1(I) , (ΓM)′′

u0, u1 ∈ Y and f(·), g(·) ∈ C(I;X)∩L1(I;Y ). Then S is weakly compact in C(I;Y ).
Proof. The proof splits into two parts.

(Boundedness of S). Let u(·) satisfy (CP) with Bv(·) given by (6.7). We show the

boundedness of u(·). Put b := limsupn→∞
Γn
2n
‖g‖L1(I;Y ). Then for ε > 0 there exists

n̄ = n̄(ε) ∈ N such that
Γn
2n
‖g‖L1(I;Y ) ≤ b + ε for n ≥ n̄. By condition (ΓM)′′, we

can choose ε = ε0 satisfying

‖M‖+ b+ ε0 < e−βT−2‖σ‖L1(I) .

For u ∈ C(I;Y ), there exists n ∈ N such that n− 1 < ‖u‖C(I;Y ) ≤ n. If n ≤ n̄, then
‖u‖C(I;Y ) ≤ n̄. If n > n̄, then we obtain from |Γ(s,K(s)u)| ≤ Γn that

Γn‖g‖L1(I) ≤ 2n(b+ ε0) ≤ 2(1 + ‖u‖C(I;Y ))(b+ ε0),

and therefore by Remark 6.3

‖u(t)‖Y ≤ (1− ζ(t))‖Φ(u)(t)‖Y + ζ(t)‖Ψ(u)(t)‖Y

≤ eβT+2‖σ‖L1(I)

(
‖u0‖ ∨ ‖u1‖+ ‖M‖‖u‖C(I;Y ) + ‖f‖L1(I;Y ) +

Γn
2
‖g‖L1(I;Y )

)
≤ eβT+2‖σ‖L1(I)

(
‖u0‖ ∨ ‖u1‖+ ‖M‖‖u‖C(I;Y ) + ‖f‖L1(I;Y )

+ (1 + ‖u‖C(I;Y ))(b+ ε0)
)

≤ eβT+2‖σ‖L1(I)
(
‖u0‖ ∨ ‖u1‖+ ‖f‖L1(I;Y ) + b+ ε0

)
+ eβT+2‖σ‖L1(I)

(
‖M‖+ b+ ε0

)
‖u‖C(I;Y ).
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Thus we have

‖u‖C(I;Y ) ≤
‖u0‖ ∨ ‖u1‖+ ‖f‖L1(I;Y ) + b+ ε0

e−βT−2‖σ‖L1(I) − ‖M‖ − b− ε0

=: m.

In conclusion, we obtain ‖u‖C(I;Y ) ≤ n̄ ∨m.

(Weak compactness of S). By the Eberlein-Šmulian theory (see e.g. Corollary 3.3) it

is sufficient to prove that S is weakly sequentially compact. So, let {uk} ⊂ S. Since
S is bounded, then {Muk} is also bounded in Y . Then we can find v̂ ∈ Y and a
subsequence {ukh} such that Mukh ⇀ v̂ ∈ Y . Let

mh(t) := Γ(t,K(t)ukh(t))g(t), a.a. t ∈ I.

With a similar reasoning as in the proof of Lemma 4.8 we can find m̂ ∈ L1(I;Y ) and
a subsequence {mh`

} satisfying mh`
⇀ m̂ in L1(I;Y ). Hence (see the the proof of

Lemma 4.8)

U(t, ·)mh`
(·) ⇀ U(t, ·)m̂(·) in L1([0, t];Y ) (6.8)

and

U(t, ·)mh`
(·) ⇀ U(t, ·)m̂(·) in L1([t, T ];Y ) (6.9)

for t ∈ I. Put

û(t) := (1− ζ(t))
[
U(t, 0)(u0 + v̂) +

∫ t

0

U(t, s)(f(s) + m̂(s)) ds
]

+ ζ(t)
[
U(t, T )u1 +

∫ t

T

U(t, s)(f(s) + m̂(s)) ds
]

for t ∈ I with ζ defined in (6.6). By (6.8), (6.9) and the definition of v̂, it follows that
Π(ukh`

)(t) ⇀ û(t) in Y for t ∈ I. Since {uk} ⊂ S, we have that uk = Π(uk) for all k

(see Remark 6.3). By the boundedness of S we obtain that

ukh`
= Π(ukh`

) ⇀ û (6.10)

in C(I;Y ). Notice that Φ(uhk`
) ⇀ Φ(û) according to Lemma 4.7 and Ψ(uhk`

) ⇀

Ψ(û) by Step 2 in the proof of Theorem 6.1 and both convergences are in C(I;Y ).
Consequently, as in Step 3 of the proof of Theorem 6.1 we get that

uhk`
:= (1− ζ)Φ(uhk`

) + ζΨ(uhk`
) ⇀ (1− ζ)Φ(û) + ζΨ(û) = Π(û) (6.11)

in C(I;Y ). Thus we obtain from (6.10) and (6.11) that û = Π(û) and then û ∈ S.

Example 6.5. Let V satisfy (5.2). Assume that g ∈ C(I;L2(R3)) ∩ L1(I; Σ2(R3)),
a ∈ C(I;L2(R3)), γ ∈ C(I × C), b ∈ L1(I;C) and they satisfy

Cγ := liminf
n→∞

max{|γ(t, h)|; t ∈ I, |h| ≤ n‖a‖C(I;L2)}
n

<∞,

‖b‖L1(I) +
Cγ
2
‖g‖L1(I;Σ2) < e−βT−2‖σ‖,
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where β ∈ R and σ ∈ L1(I) are defined in Theorem 5.1. Then for every initial
value u0, u1 ∈ Σ2(R3) and f ∈ C(I;L2(R3))∩L1(I; Σ2(R3)), controllable problem for
Schrödinger equation

i
∂

∂t
u(x, t)−∆u(x, t) + V (x, t)u(x, t) = v(x, t) + f(x, t)

+ γ
(
t,

1

t

∫ t

0

∫
R3

a(y, s)∆u(y, s) dyds
)
g(x, t), (x, t) ∈ R3 × I,

u(x, 0) = u0(x) +

∫ T

0

b(s)u(x, s) ds, x ∈ R3,

u(x, T ) = u1(x), x ∈ R3

(CPS)

has a controllable solution

u ∈ C1(I;L2(R3)) ∩ C(I; Σ2(R3))

with v(·, t) as in (6.7).
By the same way as in the proof of Theorem 5.1, we can verify the conditions of

Theorem 6.1.

7. Appendix for some calculations

We collect in this part some technical results which are useful in the proofs of main
results.
Lemma 7.1. Let f ∈ C(I) be a nonnegative function. Then following properties are
equivalent:

(a) There exists a nonnegative function σ ∈ L1(I) such that

f(t) ≤ exp
(∫ t

s

σ(r) dr
)
f(s) (t, s) ∈ ∆+.

(b) There exists a nonnegative function σ′ ∈ L1(I) such that

f(t)− f(s) ≤
∫ t

s

σ′(r) dr min
r∈[s,t]

f(r), (t, s) ∈ ∆+.

(c) There exists a nonnegative function σ′′ ∈ L1(I) such that

f(t)− f(s) ≤
∫ t

s

σ′′(r) dr max
r∈[s,t]

f(r), (t, s) ∈ ∆+.

Proof. (b) ⇒ (c) is clear. First we show that (a) ⇒ (b). Fix (t, s) ∈ ∆+. Then there
exists rm ∈ [s, t];

f(rm) = min
r∈[s,t]

f(r).

We see from (a) that

f(t) ≤ exp
(∫ t

rm

σ(r) dr
)
f(rm), f(s) ≥ exp

(
−
∫ rm

s

σ(r) dr
)
f(rm).
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Therefore we obtain

f(t)− f(s) ≤
(

exp
(∫ t

rm

σ(r) dr
)
− exp

(∫ s

rm

σ(r) dr
))
f(rm)

=

∫ t

s

σ(r) exp
(∫ r

rm

σ(τ) dτ
)
drf(rm) ≤

∫ t

s

σ(r)e‖σ‖L1(I) drf(rm).

Thus we obtain (b) with σ′ := σe‖σ‖L1(I) .

Next we show that (c)⇒ (a). Fix (t, s) ∈ ∆+ and take n ∈ N grater than

∫ t

s

σ′′(r) dr.

Then we can find a finite sequence {ti} ⊂ I (i = 0, 1, 2, . . . , n) satisfying

s = t0 < t1 < · · · < tn = t

and ∫ ti

ti−1

σ′′(r) dr =
1

n

∫ t

s

σ′′(r) dr ( < 1) for i = 1, 2, . . . , n.

There exist ri ∈ [ti−1, ti];

f(ri) = max{f(r); r ∈ [ti−1, ti]} for i = 1, 2, . . . , n.

We see from (c) that for i = 1, 2, . . . , n,

f(ti)− f(ri) ≤
∫ ti

ri

σ′′(r) drf(ri), f(ri)− f(ti−1) ≤
∫ ri

ti−1

σ′′(r) drf(ri).

Therefore we obtain for i = 1, 2, . . . , n,

f(ti) ≤
(

1 +

∫ ti

ri

σ′′(r) dr
)
f(ri), f(ri) ≤

(
1−

∫ ri

ti−1

σ′′(r) dr
)−1

f(ti−1).

Noting that (1 + a)−1(1− b) ≥ (1− a− b) for a, b ≥ 0, we have for i = 1, 2, . . . , n,

f(ti) ≤
(

1 +

∫ ti

ri

σ′′(r) dr
)(

1−
∫ ri

ti−1

σ′′(r) dr
)−1

f(ti−1)

≤
(

1−
∫ ti

ti−1

σ′′(r) dr
)−1

f(ti−1),

and then

f(t) ≤
(

1− 1

n

∫ t

s

σ′′(r) dr
)−n

f(s).

Passing to the limit as n→∞, we obtain (a) with σ = σ′′.

Lemma 7.2. Let X be a Banach space with norm ‖ · ‖ and µ ∈ L1(I;C).
Set M : C(I;X)→ X,

Mu :=

∫ T

0

µ(t)u(t) dt.

Then ‖M‖L(C(I;X);X) = ‖µ‖L1(I).
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Proof. (≤) Set u ∈ C(I;X) satisfying ‖u‖C(I;X) := maxt∈I ‖u(t)‖ = 1. Then

‖Mu‖ ≤
∫ T

0

|µ(t)|‖u(t)‖ dt ≤
∫ T

0

|µ(t)| dt ‖u‖C(I;X).

(≥) Put ε > 0 and x ∈ X satisfying ‖x‖ = 1 and set µε(t) := (µ̄ ∗ ρε)(t), where µ̄ is
0-extension of µ and ρε is a mollifier. Define

uε := x
( µε(·)∗

|µε(·)|+ ε
∗ ρ̌ε

)∣∣∣
I
(t),

where ∗ is complex conjugate, ρ̌(t) = ρ(−t) (t ∈ R) and |I is the restriction to I.
Then uε ∈ C(I;X) and ‖uε‖C(I;X) ≤ ‖x‖ = 1. By properties of the convolution, we
have

Muε =x

∫
R
µ̄(t)

( µε(·)∗

|µε(·)|+ ε
∗ ρ̌ε

)
(t) dt = x

∫
R
(µ̄ ∗ ρε)(t)

µε(t)
∗

|µε(t)|+ ε
dt

=x

∫
R

|µε(t)|2

|µε(t)|+ ε
dt,

and then

‖Muε‖ =

∫
R

|µε(t)|2

|µε(t)|+ ε
dt =

∫
R
|µε(t)| dt− ε

∫
R

|µε(t)|
|µε(t)|+ ε

dt

≥
∫
R
|µε(t)| dt− ε|supp (µε)|.

Since µε → µ̄ in L1(R) and ‖µ̄‖L1(R) = ‖µ‖L1(I), therefore we have

‖M‖L(C(I;X);X) = sup
‖u‖C(I;X)≤1

‖Mu‖ ≥ liminf
ε→0

‖Muε‖ ≥ ‖µ‖L1(I).

Thus we obtain the desired equality.

Lemma 7.3. Let {an} ⊂ R satisfy liminfn→∞ an < 1. Then for every C > 0 there
exists n̄ ∈ N such that C + n̄an̄ < n̄.
Proof. Set b := liminf

n→∞
an. Then we can find a subsequence {ank

} such that

ank
< (b+ 1)/2.

Choose n̄ ∈ {nk} grater than
2C

1− b
. Then C + n̄an̄ <

1− b
2

n̄+
b+ 1

2
n̄ = n̄.

Lemma 7.4. Let t0 ∈ (0, T ) and ϕ, ψ ∈ F , with F defined in (6.5). Then for t ∈ I,

(1− ϕ(t))ψ(t) + ϕ(t)(1− ψ(t)) ≤ 1

2
.

Proof. Since ϕ, ψ ∈ F , we have

t ∈ [0, t0]⇒ 1− 2ϕ(t) ≥ 0, 1− 2ψ(t) ≥ 0,

t ∈ [t0, T ]⇒ 1− 2ϕ(t) ≤ 0, 1− 2ψ(t) ≤ 0

and therefore obtain for t ∈ I,

(1− ϕ(t))ψ(t) + ϕ(t)(1− ψ(t)) =
1

2
− 1

2
(1− 2ϕ(t))(1− 2ψ(t)) ≤ 1

2
.
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