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Abstract. The Precedence-Constrained Minimum-Cost Arborescence problem, has
been recently proposed. The purpose of the precedence constraints, that are en-
forced between pairs of vertices, is to prevent certain directed paths to appear in
the tree that violate a precedence relationship. In this work we introduce a new
mixed integer linear programming model that uses a smaller number of variables
and constraints to model the precedence relationships compared to those previously
appeared in the literature. Furthermore, two models with a polynomial number of
variables and constraints are introduced. It is based on a network-flow formula-
tion to model the connectivity of the arborescence. Extensive computational exper-
iments have been run to validate the new models.
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1. Introduction

The Minimum-Cost Arborescence problem (MCA) is a classical problem in the area of
graph theory. Given a root vertex r, the objective of the problem is to find a directed
minimum-cost spanning tree rooted at r. Yoeng-Jin Chu and Tseng-Hong Liu [1], and
Jack Edmonds [2], independently proposed the first polynomial time algorithm for solv-
ing the problem. An efficient implementation of the algorithm was later on proposed by
Gabow and Tarjan [3]. The Minimum-Cost Arborescence problem can be formally de-
scribed as follows. A directed graph G = (V,A) is given where V = {1, . . . ,n} is the set
of vertices, r ∈ V is the root of the arborescence, and A ⊆ V ×V is the set of arcs with
a cost ci j associated with every arc (i, j) ∈ A. The objective of the problem is to find a
minimum-cost directed spanning tree in G rooted at r, i.e. a set T ⊆ A of n−1 arcs, such
that there is a unique directed path from r to any other vertex j ∈V\{r} in the subgraph
induced by T .

Several variations of the MCA were introduced in the literature, such as the
Resource-Constrained Minimum-Weight Arborescence problem [4], where finite re-
sources are associated with the vertices of the input graph. The objective of the problem is
to find a minimum-cost arborescence, where for each vertex the sum of its outgoing arcs
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Figure 1. Comparing a MCA and a PCMCA solution. The graph on left is the instance graph with its respective
arc costs, with the precedence relationship (3,1) ∈ R highlighted in red. The graph in the middle shows the
optimal MCA, whereas the graph on the right shows the optimal PCMCA. The MCA solution is not a feasible
PCMCA solution since vertex 1 precedes vertex 3 on the same directed path and (3,1) ∈ R.

cost is at most equal to the resource associated with that vertex. The Minimum Spanning
Tree problem with Conflict Pairs [5] is a variation on the Minimum Spanning Tree Prob-
lem. Given an undirected graph and a set S of conflicting pairs of edges, the objective of
the problem is to find a minimum-cost spanning tree that contains at most one edge from
each conflict pair in S. The Capacitated Minimum-Spanning Tree problem [6] in which
each vertex other than the root is associated with a non-negative integer demand q j, and
an integer Q is given. The problem asks to find a minimum-cost spanning tree rooted at r,
such that for any subtree off of the root, the sum of the weights of the vertices in that sub-
tree is at most Q. The Constrained Arborescence Augmentation problem [7] that can be
described as follows. Given a weighted directed graph G = (V,A), and an arborescence
T = (V,Ar) rooted at r ∈V , the problem asks to find a subset of arcs A′ from A−Ar such
that there still exists a minimum-cost arborescence in the graph G′ = (V,Ar ∪A′ −a) for
each a ∈ Ar. A relevant problem is the p-Arborescence Star problem [8], which can be
described as follows. Given a weighted directed graph G = (V,A), a root vertex r ∈ V ,
and an integer p, the problem asks to find a minimum-cost reverse arborescence rooted at
r, that spans the set of vertices H ⊆V\{r} of size p, and each vertex v∈V\{H∪r}must
be assigned to one of the vertices in H. The Maximum Colorful Arborescence problem
[9] can be described as follows. Given a weighted directed acyclic graph, and each vertex
having a specified color from a set of colors, the problem asks to find an arborescence of
maximum weight, such that no color appears more than once.

A variation of the MCA, named the Precedence-Constrainted Minimum-Cost Ar-
borescence problem (PCMCA) was recently proposed in [10], where a set of precedence
constraints is included between pairs of vertices as follows. Given a set R of ordered
pairs of vertices, then for each precedence (s, t) ∈ R any path in the arborescence that
includes both s and t must visit s before visiting t. The objective of the problem is to find
an arborescence of minimum total cost that satisfies the precedence constraints.

A model for the PCMCA has been proposed in [10] based on a well-know formula-
tion for the MCA, and enforces precedence relationships by propagating a value on every
path in the arborescence. An alternative model has been discussed in [11].

Figure 1 presents an example that shows the difference between the classic MCA
and the PCMCA. The graph with its respective arc costs is shown in the figure on the
left, with the precedence relationship (3,1) highlighted in red. The figure in the middle
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shows a feasible MCA solution with a cost of 4. The MCA solution is infeasible for the
PCMCA since (3,1)∈ R, and vertex 1 belongs to the directed path connecting r to vertex
3. To make the solution feasible for the PCMCA, vertex 1 must succeed vertex 3 on
the same directed path, or the two vertices must reside on two disjoint paths. A feasible
PCMCA solution with a cost of 5 is shown in the figure on the right.

This work proposes three new mixed integer linear programming (MILP) models
for the PCMCA. The first model is based on the model proposed in [10], but uses a
smaller number of variables and constraints. The other new model use a polynomial
number of constraints to model the connectivity of the solution, instead of the exponential
number of constraints used in the previous models. These are the first compact models
ever proposed for the problem.

The rest of this paper is organized as follows. Section 2 presents several MILP mod-
els for the PCMCA. Section 3 discusses computational results, while conclusions are
summarized in Section 4.

2. The Models

In this section we introduce MILP models for the PCMCA. We first start by discussing
the precedence-enforcing constraints, and then four MILP models for the PCMCA are
introduced, three of which are new.

2.1. Precedence-Enforcing Constraints

The precedence-enforcing constraints adopted throughout this paper, that were first in-
troduced in [10], are based on the following idea. If we consider an arborescence T that
includes a simple directed path that starts with t and ends in s, such that (s, t) ∈ R and
s, t ∈ V , then the solution clearly violates a precedence relationship. In order to satisfy
the precedence relationship, we need to enforce that no directed path can exist which
covers both s and t and visits t before visiting s. This can be achieved by propagating a
value down all the paths of the solution starting from t.

Let xi j be a variable associated with every arc (i, j) ∈ A such that xi j = 1 if (i, j) ∈ T
and 0 otherwise. Let ust

j be a variable associated with every vertex j ∈ V and (s, t) ∈ R,
such that ust

s = 0 and ust
t = 1 for all (s, t) ∈ R. When the value of ust

t is propagated down
every path starting from t, and vertex s is reachable from t, then we are propagating a
value of 1 to vertex s and ust

s ≥ 1 which is unsatisfiable (since ust
s = 0), and therefore the

solution is infeasible. The set of inequalities for enforcing the precedence relationships
are as follows.

ust
j −ust

i − xi j ≥−1 ∀(s, t) ∈ R,(i, j) ∈ A (1)

ust
s = 0 ∀(s, t) ∈ R (2)

ust
t = 1 ∀(s, t) ∈ R (3)

ust
j ≥ 0 ∀(s, t) ∈ R, j ∈V (4)
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Figure 2. Demonstrating value propagation over feasible and infeasible paths. Each black arc is weighted
with its corresponding xi j value. Red dashed arrow shows a precedence relationship (s, t) ∈ R. The ut

j value is
written above each vertex, as for constraint (5). The figure shows a feasible path from s1 to t, since constraint
(5) impose that ut

t ≥ 0, and constraint (7) impose that ut
t = 1. The figure also show a violating path from t to s2,

since constraint (5) impose that ut
s2
≥ 1, and constraint (6) impose that ut

s2
= 0, which means the inequalities

are infeasible.

Constraints (1) propagate the value of ust
i down to ust

j if xi j = 1 for all (s, t) ∈ R, and
(i, j) ∈ A. Constraints (2) and (3) set the values of ust

s and ust
t to 0 and 1 respectively,

for all (s, t) ∈ R. Finally, constraints (4) define the domain of the variables. For further
details and an example on how the value propagation occurs can be found in [10].

In this paper we observe that, following the same idea of the previous set of con-
straints, variables ust

j can be instead defined for ut
j where t is part of a precedence re-

lationship (i.e. ∃(s, t) ∈ R). By doing so, the number of variables and constraints is re-
duced, and thus solving this model is theoretically faster (the experiments in Section 3
will corroborate this hypothesis). According to these settings, constraints (1)-(4) can be
redefined as follows.

ut
j−ut

i− xi j ≥−1 ∀t ∈V : ∃(s, t) ∈ R,(i, j) ∈ A (5)

ut
s = 0 ∀(s, t) ∈ R (6)

ut
t = 1 ∀t ∈V : ∃(s, t) ∈ R (7)

ut
j ≥ 0 ∀t ∈V : ∃(s, t) ∈ R, j ∈V (8)

Constraints (5) propagate the value of ut
i down to ut

j if xi j = 1. Constraints (6) and (7)
set the values of ut

s and ut
t to 0 and 1 respectively, for all (s, t) ∈ R, and t ∈V : ∃(s, t) ∈ R.

Finally, constraints (8) define the domain of the variables.
Figure 2 shows an example of how the value propagation occurs for the new con-

straints. The figure contains a feasible path from s1 to t, and a violating path from t to s2.
The figure demonstrates how a violating path can be detected after redefining the set of
variables and constraints.

2.2. Extensive Models

In this section we describe two models that extend a well-known model for the MCA.
Each model uses one of the two sets of precedence-enforcing constraints described in
Section 2.1. In all the models that follow, let S⊆V\{r} be a set of vertices. The two mod-
els use an exponential set of constraints to enforce the connectivity of the solution (the
solution is an arborescence), and a polynomial set of constraints (precedence-enforcing
constraints) is used to enforce the precedence relationships in the solution.
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2.2.1. Ust Model

The following model was originally introduced in [10].

minimize ∑
(i, j)∈A

ci jxi j (9)

subject to ∑
(i, j)∈A:
i/∈S, j∈S

xi j ≥ 1 ∀S⊆V\{r} (10)

ust
j −ust

i − xi j ≥−1 ∀(s, t) ∈ R,(i, j) ∈ A (11)

ust
s = 0 ∀(s, t) ∈ R (12)

ust
t = 1 ∀(s, t) ∈ R (13)

ust
j ≥ 0 ∀(s, t) ∈ R, j ∈V (14)

xi j ∈ {0,1} ∀(i. j) ∈ A (15)

Constraints (10) are the connectivity constraints that enforce every set of vertices
S ⊆ V\{r} must be reachable from the root r. The size of the set of constraints (10) is
exponential with a size of O(2|A|). Constraints (11) propagate the value of ust

i down to ust
j

if xi j = 1. Constraints (12) and (13) set the values of ust
s and ust

t to 0 and 1 respectively,
for all (s, t) ∈ R. Finally, constraints (14) and (15) define the domains of the variables.

2.2.2. Ut Model

The following model is introduced for the first time in this work.

minimize ∑
(i, j)∈A

ci jxi j (16)

subject to ∑
(i, j)∈A:
i/∈S, j∈S

xi j ≥ 1 ∀S⊆V\{r} (17)

ut
j−ut

i− xi j ≥−1 ∀t ∈V : ∃(s, t) ∈ R,(i, j) ∈ A (18)

ut
s = 0 ∀(s, t) ∈ R (19)

ut
t = 1 ∀t ∈V : ∃(s, t) ∈ R (20)

ut
j ≥ 0 ∀t ∈V : ∃(s, t) ∈ R, j ∈V (21)

xi j ∈ {0,1} ∀(i. j) ∈ A (22)

Constraints (17) are the connectivity constraints which enforce that for any set of
vertices S ⊆V\{r}, there must be a path which connects r to S. Constraints (18) propa-
gate the value of ut

i down to ut
j if xi j = 1. Constraints (19) and (20) fix the values of ut

s and
ut

t to 0 and 1 respectively, for all (s, t) ∈ R, and t ∈ V : (∃(s, t) ∈ R. Finally, constraints
(21) and (22) define the domains of the variables.
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Figure 3. A feasible MCA solution using the Flow-Connectivity constraints. Each arc (i, j) ∈ A that is part
of the solution has a weight equal to the amount of flow passing through that arc. Arcs entering a leaf vertex
have a flow value of 1, while arcs entering a non-leaf vertex have a flow value of m, where m is the number of
vertices reachable from vertex i.

2.3. Compact Models

In this section we propose two models for the PCMCA that are based on a polynomial
set of constraints (Flow-Connectivity constraints) which enforce the connectivity of the
solution. Each model uses one of the two sets of precedence-enforcing constraints de-
scribed in Section 2.1.

The Flow-Connectivity constraints that enforce the connectivity of the solution are
based on the following idea. If arc (i, j) ∈ A is part of the solution, then the amount of
flow passing through the arc must be equal to the number of vertices reachable from
vertex i. This implies that the flow passing through arcs entering a leaf vertex is equal to
1, and the flow passing through arcs entering non-leaf vertices is greater than 1. As there
are no arcs entering the root r, and every vertex must be reachable from the root, then
the sum of the flow leaving the root must be equal to |V |−1, where |V | is the number of
vertices in the graph. These set of inequalities will insure that every vertex is reachable
from r, and that no feasible solution contains a cycle. An example of the amount of flow
passing through every arc in a feasible solution is shown in Figure 3. See [12] for a
formal description of the idea.

In all the models that follow, let T be an arborescence rooted at r. Let yi j be a variable
associated with every arc (i, j) ∈ A, such that yi j = 1 if arc (i, j) ∈ T , and 0 otherwise.
Let xi j be a variable associated with every arc (i, j) ∈ A, where xi j is equal to the amount
of flow passing through arc (i, j) ∈ A.

2.3.1. Compact-Ust Model

The new model introduced in this section is based on a network-flow formulation for the
MCA problem [12], and adapts the first precedence-enforcing constraints described in
Section 2.1.

minimize ∑
(i, j)∈A

ci jyi j (23)

subject to ∑
(i, j)∈A

xi j− ∑
( j,i)∈A

x ji =

{−1 i 
= r
|V |−1 i = r ∀i ∈V (24)

ust
j −ust

i − yi j ≥−1 ∀(s, t) ∈ R,(i, j) ∈ A (25)
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ust
s = 0 ∀(s, t) ∈ R (26)

ust
t = 1 ∀(s, t) ∈ R (27)

yi j ≥ xi j

|V |−1
∀(i, j) ∈ A (28)

ust
j ≥ 0 ∀(s, t) ∈ R, j ∈V (29)

yi j ∈ {0,1} ∀(i. j) ∈ A (30)

xi j ∈ Z
+ ∀(i. j) ∈ A (31)

Constraints (24) are the flow-connectivity constraints which enforce every vertex to
be reachable from the root r, no arcs enter the root r, and that any feasible solution is
acyclic. Constraints (25) propagate the value of ust

i down to ust
j if yi j = 1. Constraints (26)

and (27) set the values of ust
s and ust

t to 0 and 1 respectively, for all (s, t) ∈ R. Constraints
(28) impose that the value of yi j must be between 0 and 1, if the value of xi j is nonzero.
The value of xi j is divided by |V | − 1 since (24) xi j ≤ |V | − 1, which would strict the
value of yi j to be between 0 and 1. Finally, constraints (29)-(31) define the domain of the
variables.

2.3.2. Compact-Ut Model

The new model introduced in this section is based on the same network-flow formula-
tion for the MCA problem [12], but adapts the second precedence-enforcing constraints
introduced in Section 2.1.

minimize ∑
(i, j)∈A

ci jyi j (32)

subject to ∑
(i, j)∈A

xi j− ∑
( j,i)∈A

x ji =

{−1 i 
= r
|V |−1 i = r ∀i ∈V (33)

ut
j−ut

i− yi j ≥−1 ∀t ∈V : ∃(s, t) ∈ R,(i, j) ∈ A (34)

ut
s = 0 ∀(s, t) ∈ R (35)

ut
t = 1 ∀t ∈V : ∃(s, t) ∈ R (36)

yi j ≥ xi j

|V |−1
∀(i, j) ∈ A (37)

ut
j ≥ 0 ∀t ∈V : ∃(s, t) ∈ R, j ∈V (38)

yi j ∈ {0,1} ∀(i. j) ∈ A (39)

xi j ∈ Z
+ ∀(i. j) ∈ A (40)

Constraints (33) are the flow-connectivity constraints that enforce the following. For
any vertex i, there must be a unique path which connects r to i. Any feasible solution
must be acyclic, and that there are no arcs entering the root. Constraints (34) propagate
the value of ut

i down to ut
j if yi j = 1. Constraints (35) and (36) fix the values of ut

s and ut
t
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to 0 and 1 respectively, for all (s, t) ∈ R and t ∈ V : ∃(s, t) ∈ R. Constraints (37) restrict
the value of yi j to be between 0 and 1, if the value of xi j is greater than zero. To impose
that, the value of xi j is divided by |V | − 1 since (33) xi j ≤ |V | − 1. Finally, constraints
(38)-(40) define the domain of the variables.

3. Experimental Results

The computational experiments for evaluating and comparing the models discussed in
Section 2 are introduced in this section. Experiments are based on the benchmark in-
stances of TSPLIB [13], SOPLIB [14] and COMPILERS [15] originally proposed for
the Sequential Ordering Problem (SOP) [16]. The benchmark instances are the same
instances previously adopted in [10,11].

All the experiments are performed on an Intel i7 processor running at 1.8 GHz with
8 GB of RAM. CPLEX 12.82 is used for solving the MILP models. CPLEX is run with
its default parameters, and single threaded standard Branch-and-Cut (B&C) algorithm is
applied for solving the MILP models, with BestBound node selection, and MIP emphasis
set to MIPEmphasisOptimality. A time limit of 3 hours is set for the computation time
for each computational method/instance.

In all the models constraints (10)-(13), and (17)-(20) are added dynamically to the
model when they are violated. The same set of constraints are not added dynamically
in the two compact models, as preliminary experiments clearly showed an increase in
the solution time. A violated constraint (10) or (17), can be detected by computing a
minimum-cut in the graph where the weight of an arc is equal to the value of its corre-
sponding xi j variable. On the other hand, a violated constraint (11) or (18), can be de-
tected by finding a violated s− t path using a DFS algorithm. For more details on how
violated constraints are detected and dynamically added to the model, please see [10].

The following tables are split as follows. Tables 1-3 report the computational results
for the linear relaxation of the five models, and Tables 4-6 report the computational re-
sults for the MILP of the four models. In each table we report the following columns
where applicable. Column Name, Size, and z∗, report the name, size, and the cost of
the optimal solution of the instance. Column ρ(P) reports the density of the arcs in the
precedence graph computed as 2·|R|

|V |(|V |−1) . For each computational method, we report the
following columns. Column Cuts reports the number of constraints that are dynamically
added to the model. Column Nodes reports the number of nodes in the search tree of the
B&C algorithm. Column Gap reports the optimality gap of the linear relaxation com-
puted as UB−Cost

UB , where UB is the value of the objective function of the MILP, or the op-
timal solution (z∗) for instances that are solved optimally by the model. Column IP Gap
reports the optimality gap of the MILP and is computed as UB−LB

UB , and is only reported
for the model that does not optimally solve all instances within the time limit. Finally,
column Time [s] reports the solution time in seconds.

2IBM ILOG CPLEX Optimization Studio: https://www.ibm.com/products/

ilog-cplex-optimization-studio
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3.1. Computational Results for the Linear Relaxation of the Models

Tables 1-3 show the results of the linear relaxation models of Ust , Ut , Compact-Ust ,
Compact-Ut , on the three benchmark sets.

Solving the model Compact-Ust results in an average optimality gap of 1.1%, when
considering the instances that are solved optimally by all four models. The model Ut

results in an average optiamlity gap of 1.4% (a 30% increase), the model Ust results in
an average optiamlity gap of 2.1% (a 47% increase), and the model Compact-Ut results
in an average optiamlity gap of 3% (a 63% increase). The results might indicate that
the model Compact-Ust is more efficient at solving the instances, however this is not
generally the case as will be shown later.

In terms of the number of cuts that are dynamically added to the model’s linear
relaxation. The solver adds 81 cuts on average when solving the model Ut , and adds 182
cuts on average (a 55% increase) when solving the model Ust . The smaller number of
cuts that are added to the model, combined with the size of the model, indicates that the
linear relaxation of the model Ut is easier to solve which can be verified by inspecting
the solution times. The solver has an average solution time of 13 seconds when solving
the model Ut , an average solution time of 15 seconds (a 13% increase) when solving
the model Compact-Ut , an average solution time of 18 seconds (a 28% increase) when
solving the model Compact-Ust , and an average solution time of 55 seconds (a 76%
increase) when solving the model Ust . The smaller average solution time of the solver
using the model Ut shows that the model’s linear relaxation is relatively easier to solve.

The results of the solution time and optimality gap, indicate that the two models
Ut and Compact-Ut , are the best two models out of the four models introduced. The
following observations can be derived from the results. The model Ut finds a smaller
optimality gap for 40 instances, their densities are in the range [0.046,0.995], with 83%
of those instances are in the range [0.046,0.840]. On the other hand, the model Com-
pact-Ut finds a smaller optimality gap for 19 instances, their densities are in the range
[0.075,0.980], with 74% of those instances are in the range [0.847,0.980]. Moreover, the
model Ut solves the linear relaxation model faster for 82 instances, their densities are in
the range [0.008,0.997], with 87% of those instances are in the range [0.008,0.633]. On
the other hand, the model Compact-Ut solves the linear relaxation model faster for 31
instances, their densities are in the range [0.008,0.986], with 71% of those instances are
in the range [0.740,0.986]. From these observations, it can be concluded that the model
Compact-Ut generally performs better on instances with very dense precedence graph,
when solving the linear relaxation model. See Tables 1-3 for the complete computational
results.

3.2. Computational Results for the MILP

Tables 4-6 show the results of the MILP models for Ust , Ut , Compact-Ust , Compact-Ut ,
on the three benchmark sets.

In terms of the number of cuts that are dynamically added to the model, the solver
dynamically adds 211 cuts on average when solving the model Ut , and 4755 cuts on
average when solving the model Ust (a 95% increase). This further shows that the solver
is more efficient at solving the problem using the model Ut as the size of the MILP is
relatively smaller.
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Table 1. Computational results for the linear relaxation of the models on TSPLIB instances.

Instance
Extensive Compact

Ust [10] Ut Ust Ut

Name Size ρ(p) z∗ Cuts Time [s] Gap Cuts Time [s] Gap Time [s] Gap Time [s] Gap

br17.10 18 0.314 25 25 0.032 0.000 17 0.047 0.000 0.270 0.140 0.160 0.412
br17.12 18 0.359 25 25 0.047 0.000 19 0.060 0.000 0.230 0.061 0.080 0.454
ESC07 9 0.611 1531 12 0.031 0.000 14 0.047 0.000 0.062 0.000 0.062 0.000
ESC11 13 0.359 1752 5 0.031 0.000 3 0.032 0.000 0.078 0.000 0.110 0.027
ESC12 14 0.396 1138 3 0.016 0.000 3 0.016 0.000 0.094 0.000 0.141 0.000
ESC25 27 0.177 1041 14 0.062 0.000 22 0.078 0.000 0.078 0.000 0.156 0.000
ESC47 49 0.108 703 102 0.484 0.003 105 0.253 0.000 0.812 0.000 1.062 0.000
ESC63 65 0.173 56 14 0.329 0.000 270 2.484 0.000 2.328 0.000 0.609 0.000
ESC78 80 0.139 502 12 0.094 0.000 3 0.050 0.000 1.594 0.000 3.406 0.000
ft53.1 54 0.082 3917 123 1.172 0.004 72 0.760 0.003 0.630 0.024 0.700 0.023
ft53.2 54 0.094 3978 3674 0.281 0.076 49 0.250 0.004 0.580 0.021 0.630 0.021
ft53.3 54 0.225 4242 77 1.890 0.056 51 0.980 0.015 0.560 0.017 0.670 0.021
ft53.4 54 0.604 4882 11 0.156 0.027 8 0.203 0.000 1.032 0.000 1.015 0.000
ft70.1 71 0.036 32846 144 2.891 0.000 136 2.813 0.000 5.375 0.000 4.391 0.000
ft70.2 71 0.075 32930 158 2.985 0.000 129 2.750 0.000 8.562 0.000 9.093 0.000
ft70.3 71 0.142 33431 45 0.750 0.024 131 3.550 0.003 1.500 0.005 1.580 0.004
ft70.4 71 0.589 35179 217 13.015 0.006 21 0.110 0.026 1.060 0.000 13.906 0.000
rbg048a 50 0.444 204 3 0.047 0.000 4 0.047 0.000 0.360 0.000 0.406 0.000
rbg050c 52 0.459 191 35 0.313 0.000 16 0.141 0.000 1.344 0.000 1.609 0.000
rbg109 111 0.909 256 47 11.578 0.000 6 0.109 0.000 0.797 0.000 1.125 0.000
rbg150a 152 0.927 373 6 2.485 0.000 7 0.297 0.000 4.641 0.000 6.734 0.000
rbg174a 176 0.929 365 56 29.610 0.003 32 1.047 0.000 2.750 0.019 3.970 0.019
rbg253a 255 0.948 375 2 13.985 0.000 9 1.094 0.000 8.094 0.000 9.500 0.000
rbg323a 325 0.928 754 16 1.547 0.000 5 1.391 0.000 29.750 0.000 23.890 0.000
rbg341a 343 0.937 610 395 23.344 0.033 30 15.530 0.011 17.390 0.010 12.890 0.010
rbg358a 360 0.886 595 4 0.312 0.000 26 21.343 0.000 40.515 0.000 40.750 0.000
rbg378a 380 0.894 559 464 16.079 0.039 29 31.250 0.000 15.750 0.007 13.860 0.009
kro124p.1 101 0.046 32597 39 0.734 0.060 222 0.520 0.001 11.760 0.026 12.080 0.026
kro124p.2 101 0.053 32851 23 0.578 0.069 228 3.030 0.006 10.300 0.021 12.110 0.023
kro124p.3 101 0.092 33779 225 8.672 0.027 198 6.980 0.023 437.890 0.133 11.170 0.219
kro124p.4 101 0.496 37124 277 41.828 0.014 143 5.926 0.011 6.450 0.028 5.660 0.026
p43.1 44 0.101 2720 112 0.594 0.127 384 5.125 0.000 1.060 0.048 1.060 0.048
p43.2 44 0.126 2720 237 1.016 0.084 471 2.062 0.000 1.140 0.051 1.280 0.036
p43.3 44 0.191 2720 111 0.547 0.144 270 1.531 0.000 1.640 0.033 0.970 0.577
p43.4 44 0.164 2820 132 1.218 0.087 324 5.060 0.000 0.720 0.009 0.750 0.007
prob.100 100 0.048 650 282 11.766 0.013 249 12.141 0.011 5.160 0.011 7.280 0.011
prob.42 42 0.116 143 29 0.125 0.000 32 0.125 0.000 0.407 0.000 0.328 0.000
ry48p.1 49 0.091 13095 118 0.828 0.009 81 1.192 0.009 0.720 0.012 1.000 0.017
ry48p.2 49 0.103 13103 128 1.031 0.006 90 1.110 0.005 1.260 0.011 6.560 0.024
ry48p.3 49 0.193 13886 183 2.109 0.037 121 1.095 0.034 1.230 0.045 5.000 0.051
ry48p.4 49 0.588 15340 65 2.531 0.072 93 0.981 0.034 0.810 0.046 3.300 0.054

Average 187 4.808 0.025 101 3.259 0.005 15.287 0.019 5.392 0.052

Considering the instances that are solved optimally by all four models, the efficiency
of the model Ut can be shown by comparing the solution times of the solver when solving
each model. The solver has an average solution time of 23 seconds when solving the
model Ut , an average solution time of 131 seconds (a 82% increase) when solving the
model Compact-Ut , an average solution time of 173 seconds (a 86% increase) when
solving the model Compact-Ust , and an average solution time of 221 seconds (a 90%
increase) when solving the model Ust . In terms of the number of nodes generated in the
search tree by the solver, and considering the instances that are solved optimally by all
models. The solver generates, 211 nodes on average when solving the model Ut , 1008
nodes on average (a 79% increase) when solving the model Compact-Ust , 1468 nodes
on average (a 86% increase) when solving the model Compact-Ut , and 3387 nodes on
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Table 2. Computational results for the linear relaxation of the models on SOPLIB instances.

Instance
Extensive Compact

Ust [10] Ut Ust Ut

Name Size ρ(p) z∗ Cuts Time [s] Gap Cuts Time [s] Gap Time [s] Gap Time [s] Gap

R.200.100.1 200 0.020 29 1 0.219 0.000 13 1.843 0.000 4.719 0.000 4.578 0.000
R.200.100.15 200 0.847 454 1274 3235.391 0.057 168 13.365 0.048 17.690 0.019 4.050 0.020
R.200.100.30 200 0.957 529 27 12.922 0.112 43 3.051 0.029 1.840 0.017 1.630 0.022
R.200.100.60 200 0.991 6018 0 3.593 0.000 0 0.157 0.000 1.141 0.000 1.016 0.000
R.200.1000.1 200 0.020 887 0 0.203 0.000 2 0.625 0.000 9.562 0.000 9.875 0.000
R.200.1000.15 200 0.876 5891 170 203.234 0.043 30 3.750 0.049 3.280 0.010 2.640 0.010
R.200.1000.30 200 0.958 7653 45 56.000 0.000 7 0.953 0.000 1.520 0.001 1.830 0.002
R.200.1000.60 200 0.989 6666 0 3.797 0.000 0 0.157 0.000 1.469 0.000 1.579 0.000
R.300.100.1 300 0.013 13 0 0.500 0.000 22 5.313 0.000 10.515 0.000 3.360 0.000
R.300.100.15 300 0.905 575 149 3.985 0.103 228 46.330 0.036 9.330 0.026 9.990 0.026
R.300.100.30 300 0.970 756 57 1.672 0.000 8 1.313 0.000 3.630 0.007 4.470 0.005
R.300.100.60 300 0.994 708 57 1.531 0.000 11 1.718 0.000 19.672 0.000 18.656 0.000
R.300.1000.1 300 0.013 715 69 10.546 0.000 69 10.343 0.000 58.562 0.000 62.375 0.000
R.300.1000.15 300 0.905 6660 65 0.812 0.060 75 15.082 0.009 6.020 0.006 7.410 0.006
R.300.1000.30 300 0.965 8693 11 1.531 0.000 1 1.016 0.000 7.328 0.000 10.718 0.000
R.300.1000.60 300 0.994 7678 4 23.234 0.000 0 0.469 0.000 10.672 0.000 11.109 0.000
R.400.100.1 400 0.010 6 1 0.391 0.000 7 1.142 0.000 18.093 0.000 19.515 0.000
R.400.100.15 400 0.927 699 22 0.328 0.108 62 26.167 0.033 24.470 0.011 10.450 0.014
R.400.100.30 400 0.978 712 58 10.156 0.000 2 8.078 0.000 21.110 0.000 24.875 0.000
R.400.100.60 400 0.996 557 2 0.219 0.000 1 0.181 0.000 10.265 0.000 11.031 0.000
R.400.1000.1 400 0.010 780 13 6.734 0.000 17 11.672 0.000 12.953 0.000 13.140 0.000
R.400.1000.15 400 0.930 7382 27 0.625 0.085 42 31.662 0.023 8.380 0.019 7.260 0.019
R.400.1000.30 400 0.977 9368 541 34.531 0.011 36 13.551 0.025 8.190 0.021 11.750 0.023
R.400.1000.60 400 0.995 7167 44 2.016 0.000 3 1.453 0.000 33.078 0.000 36.500 0.026
R.500.100.1 500 0.008 3 579 217.172 0.000 172 35.726 0.000 37.921 0.000 34.469 0.000
R.500.100.15 500 0.945 860 20 1.016 0.085 51 35.192 0.041 31.550 0.017 17.050 0.016
R.500.100.30 500 0.980 710 333 14.453 0.031 16 23.592 0.006 68.609 0.000 61.734 0.000
R.500.100.60 500 0.996 566 0 0.687 0.000 0 0.625 0.000 43.265 0.000 43.234 0.000
R.500.1000.1 500 0.008 297 0 0.609 0.000 0 0.611 0.000 17.469 0.000 17.250 0.000
R.500.1000.15 500 0.940 8063 648 82.015 0.000 37 48.410 0.006 14.520 0.001 88.218 0.000
R.500.1000.30 500 0.981 9409 28 11.141 0.000 2 7.985 0.000 30.516 0.000 32.954 0.000
R.500.1000.60 500 0.996 6163 0 0.671 0.000 0 0.634 0.000 36.984 0.000 40.718 0.000
R.600.100.1 600 0.007 1 858 659.156 0.000 1262 840.446 0.000 81.797 0.000 81.532 0.000
R.600.100.15 600 0.950 568 387 31.516 0.000 10 12.750 0.000 58.094 0.000 63.406 0.000
R.600.100.30 600 0.985 776 263 13.484 0.017 0 15.578 0.000 38.810 0.007 43.580 0.007
R.600.100.60 600 0.997 538 0 0.359 0.000 0 0.265 0.000 24.453 0.000 24.672 0.000
R.600.1000.1 600 0.007 322 0 0.844 0.000 0 0.735 0.000 32.016 0.000 33.969 0.000
R.600.1000.15 600 0.945 9763 216 17.984 0.022 20 55.640 0.000 42.063 0.000 66.703 0.000
R.600.1000.30 600 0.984 9497 14 7.219 0.000 3 3.714 0.000 48.735 0.000 97.906 0.000
R.600.1000.60 600 0.997 6915 1 0.406 0.000 1 0.125 0.000 33.422 0.000 34.578 0.000
R.700.100.1 700 0.006 2 0 1.250 0.000 0 1.152 0.000 117.281 0.000 35.234 0.000
R.700.100.15 700 0.957 675 106 41.000 0.000 7 12.766 0.000 176.047 0.000 86.688 0.000
R.700.100.30 700 0.987 590 0 3.984 0.000 0 2.813 0.000 61.203 0.000 74.266 0.000
R.700.100.60 700 0.997 383 0 0.500 0.000 0 0.435 0.000 46.437 0.000 45.469 0.000
R.700.1000.1 700 0.006 611 3 1.625 0.000 7 5.156 0.000 57.156 0.000 61.797 0.000
R.700.1000.15 700 0.956 2792 3 1.500 0.000 1 1.156 0.000 28.609 0.000 35.828 0.000
R.700.1000.30 700 0.986 2658 0 0.360 0.000 0 0.259 0.000 20.078 0.000 23.500 0.000
R.700.1000.60 700 0.997 1913 0 0.515 0.000 0 0.315 0.000 55.750 0.000 60.719 0.000

Average 127 98.409 0.015 51 27.197 0.006 31.381 0.003 31.152 0.004

average (a 94% increase) when solving the model Ust .
The results of the solution time and the number of nodes generated by the solver,

also indicate that the two models Ut and Compact-Ut , are the best two models out of
the four models introduced, as they balance computation time and memory usage. The
following observations can be derived from the results. The model Ut solves the MILP
model faster for 106 instances, their densities are in the range [0.008,0.996], spread
uniformly across this range. On the other hand, the model Compact-Ut solves the MILP
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Table 3. Computational results for the linear relaxation of the models on COMPILERS instances.

Instance
Extensive Compact

Ust [10] Ut Ust Ut

Name Size ρ(p) z∗ Cuts Time [s] Gap Cuts Time [s] Gap Time [s] Gap Time [s] Gap

gsm.153.124 126 0.970 185 180 0.578 0.000 26 0.297 0.000 1.610 0.000 1.125 0.029
gsm.444.350 353 0.990 1542 2 0.078 0.000 12 0.375 0.000 0.594 0.000 0.454 0.000
gsm.462.77 79 0.840 292 48 3.422 0.000 31 0.296 0.000 2.109 0.000 2.234 0.003
jpeg.1483.25 27 0.484 71 50 0.234 0.000 48 0.082 0.000 1.156 0.000 0.190 0.017
jpeg.3184.107 109 0.887 411 96 14.640 0.006 56 0.660 0.004 1.391 0.000 0.500 0.007
jpeg.3195.85 87 0.740 13 2548 278.844 0.385 661 12.312 0.385 3.390 0.088 3.610 0.000
jpeg.3198.93 95 0.752 140 2093 252.734 0.029 647 13.280 0.021 17.390 0.000 28.203 0.000
jpeg.3203.135 137 0.897 507 104 47.578 0.004 88 1.751 0.004 1.090 0.016 0.980 0.017
jpeg.3740.15 17 0.257 33 72 1.782 0.030 24 0.067 0.030 0.220 0.045 0.240 0.046
jpeg.4154.36 38 0.633 74 52 0.641 0.050 42 0.160 0.051 0.310 0.041 0.220 0.041
jpeg.4753.54 56 0.769 146 154 2.766 0.007 67 0.342 0.010 4.391 0.000 2.641 0.000
susan.248.197 199 0.939 588 75 76.329 0.003 54 2.451 0.002 0.750 0.008 0.610 0.008
susan.260.158 160 0.916 472 20 12.156 0.017 75 2.080 0.006 1.340 0.010 0.780 0.010
susan.343.182 184 0.936 468 201 194.188 0.010 123 6.842 0.009 1.520 0.007 1.470 0.006
typeset.10192.123 125 0.744 241 14 4.859 0.103 103 2.890 0.016 2.740 0.037 1.910 0.041
typeset.10835.26 28 0.349 60 8 0.063 0.000 9 0.047 0.000 0.079 0.000 0.078 0.000
typeset.12395.43 45 0.518 125 37 0.531 0.005 28 0.125 0.000 1.250 0.000 0.280 0.013
typeset.15087.23 25 0.557 89 84 0.297 0.011 25 0.030 0.011 0.170 0.011 0.190 0.011
typeset.15577.36 38 0.555 93 7 0.031 0.000 6 0.062 0.000 0.516 0.000 0.468 0.000
typeset.16000.68 70 0.658 67 787 21.891 0.000 425 17.725 0.000 4.530 0.093 13.560 0.093
typeset.1723.25 27 0.245 54 88 0.203 0.056 52 0.160 0.056 0.340 0.092 0.440 0.989
typeset.19972.246 248 0.993 979 14 0.110 0.000 7 0.069 0.000 0.234 0.000 0.250 0.000
typeset.4391.240 242 0.981 837 131 378.172 0.001 95 3.782 0.000 5.156 0.000 6.359 0.000
typeset.4597.45 47 0.493 133 16 0.437 0.000 16 0.079 0.000 0.234 0.000 0.297 0.000
typeset.4724.433 435 0.995 1819 374 4.000 0.000 68 1.823 0.000 2.030 0.003 1.980 0.003
typeset.5797.33 35 0.748 93 85 0.234 0.000 37 0.125 0.000 0.407 0.000 0.297 0.000
typeset.5881.246 248 0.986 979 49 191.813 0.003 55 1.885 0.003 0.530 0.003 0.810 0.003

Average 274 55.134 0.027 107 2.585 0.023 2.055 0.017 2.599 0.049

model faster for 8 instances, their densities are in the range [0.008,0.752], with 75%
of those instances are in the range [0.008,0.173]. Moreover, The model Ut generates
less nodes for 41 instances, their densities are in the range [0.046,0.997], where 40% of
those instances have a density in the range [0.046,0.359], and 56% of those instances
have a density in the range [0.847,0.997]. On the other hand, the model Compact-Ut

generates less nodes for 16 instances, their densities are in the range [0.048,0.980], with
62% of those instances are in the range [0.484,0.769]. From these observations, it can
be concluded that the model Compact-Ut generally performs better on instances with
medium density precedence graph, when solving the MILP model. It should be noted
that another advantage of the model Compact-Ut , is that it is easier to implement, as
there is no need to handle dynamic constraints in some contexts. See Tables 4-6 for the
complete computational results.

4. Conclusions

This work introduced a formulation of the precedence-enforcing constraints that uses a
smaller number of variables and constraints compared to previous work in the literature.
Moreover, a formulation for the PCMCA is introduced that uses a polynomial set of con-
straints to model both the connectivity of the solution and the precedence relationships.

The computational results show that reducing the number of variables and con-
straints that are used to model the precedence relationships achieves a 77% decrease on
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Table 4. Computational results for MILP models on TSPLIB instances.

Instance
Extensive Compact

Ust [10] Ut Ust Ut

Name Size ρ(p) z∗ Nodes Cuts Time [s] Nodes Cuts Time Nodes Time [s] IP Gap Nodes Time [s] IP Gap

br17.10 18 0.314 25 3 26 0.060 0 17 0.047 1024 0.922 - 483 0.938 -
br17.12 18 0.359 25 3 26 0.063 15 20 0.094 44 1.125 - 516 1.563 -
ESC07 9 0.611 1531 0 12 0.031 0 14 0.047 0 0.062 - 0 0.047 -
ESC11 13 0.359 1752 0 5 0.031 0 3 0.032 0 0.078 - 6 0.078 -
ESC12 14 0.396 1138 0 3 0.016 0 3 0.016 0 0.094 - 0 0.079 -
ESC25 27 0.177 1041 0 14 0.062 0 22 0.078 0 0.078 - 0 0.093 -
ESC47 49 0.108 703 5 106 0.469 0 105 0.253 0 0.812 - 0 0.890 -
ESC63 65 0.173 56 0 14 0.329 0 270 2.484 0 2.328 - 0 0.985 -
ESC78 80 0.139 502 0 12 0.094 0 3 0.050 0 1.594 - 0 1.703 -
ft53.1 54 0.082 3917 7 129 1.172 7 82 0.812 966 10.282 - 1477 10.547 -
ft53.2 54 0.094 3978 104 302 0.688 16 55 0.297 481 17.094 - 1580 19.594 -
ft53.3 54 0.225 4242 122 416 2.547 33 82 1.156 616 10.469 - 361 10.093 -
ft53.4 54 0.604 4882 9 46 0.250 0 8 0.203 0 1.032 - 0 1.015 -
ft70.1 71 0.036 32846 1 144 2.828 0 136 2.813 0 5.375 - 0 4.391 -
ft70.2 71 0.075 32930 2 160 3.016 2 138 2.781 0 8.562 - 0 9.093 -
ft70.3 71 0.142 33431 954 3061 63.171 280 288 6.531 547 113.250 - 462 59.719 -
ft70.4 71 0.589 35179 53 457 13.438 37 217 1.515 6 7.860 - 0 13.906 -
rbg048a 50 0.444 204 0 3 0.047 0 4 0.047 0 0.360 - 0 0.406 -
rbg050c 52 0.459 191 0 35 0.313 0 16 0.141 0 1.344 - 0 1.609 -
rbg109 111 0.909 256 0 47 11.578 0 6 0.109 0 0.797 - 0 1.125 -
rbg150a 152 0.927 373 0 6 2.485 0 7 0.297 0 4.641 - 0 6.734 -
rbg174a 176 0.929 365 2 57 29.609 0 32 1.047 438 20.312 - 16 25.391 -
rbg253a 255 0.948 375 0 2 13.985 0 9 1.094 0 8.094 - 0 9.500 -
rbg323a 325 0.928 754 0 16 1.547 0 5 1.391 0 29.750 - 0 23.890 -
rbg341a 343 0.937 610 376 11958 278.859 60 40 23.547 54 373.516 - 385 499.281 -
rbg358a 360 0.886 595 0 4 0.312 0 26 21.343 0 40.515 - 0 40.750 -
rbg378a 380 0.894 559 543 4390 178.515 0 29 31.250 523 615.093 - 510 181.703 -
kro124p.1 101 0.046 32597 47 312 1.844 6 234 0.703 500 44.594 - 504 43.313 -
kro124p.2 101 0.053 32851 1433 801 11.203 1052 416 9.859 1459 810.547 - 1263 909.469 -
kro124p.3 101 0.092 33779 258648 4253 6599.140 187246 1552 4625.841 821 - 0.105 2966 - 0.094
kro124p.4 101 0.496 37124 198 981 59.359 206 226 8.157 521 212.687 - 994 207.360 -
p43.1 44 0.101 2720 238 1202 4.203 0 384 5.125 487 4.297 - 487 4.250 -
p43.2 44 0.126 2720 119 589 1.781 0 471 2.062 491 9.859 - 496 15.281 -
p43.3 44 0.191 2720 283 1113 2.829 0 270 1.531 508 151.453 - 610 112.109 -
p43.4 44 0.164 2820 198 926 3.516 99 435 5.516 1004 26.844 - 2016 25.437 -
prob.100 100 0.048 650 1428 2555 36.594 3633 2401 119.406 2265 389.265 - 2826 60.641 -
prob.42 42 0.116 143 0 29 0.125 0 32 0.125 0 0.407 - 0 0.328 -
ry48p.1 49 0.091 13095 879 380 1.656 880 183 2.594 1338 85.531 - 1523 40.375 -
ry48p.2 49 0.103 13103 220 450 1.593 37 130 1.296 578 31.500 - 617 60.641 -
ry48p.3 49 0.193 13886 123233 2793 638.344 68658 1006 567.140 58651 3421.736 - 33288 2111.234 -
ry48p.4 49 0.588 15340 8610 1034 24.156 1830 286 4.578 1269 357.203 - 718 79.484 -

Average 9700 948 194.923 6441 236 133.010 1819 170.534 1320 114.876

average in terms of solution time, and a 56% decrease on average in the number of nodes
generated in the search tree generated while solving the model.

The computational results also show that the Extensive models are faster on average
compared to their Compact form, even though they contain an exponential set of con-
strains. The computational results have also shown that the newly proposed model Ut

is the most effective model compared to the models introduced in this work at solving
PCMCA instances in terms of both computation time and memory usage. However, the
model Compact-Ut is generally more effective on specific subset of the instances.
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Table 5. Computational results for MILP models on SOPLIB instances.

Instance
Extensive Compact

Ust [10] Ut Ust Ut

Name Size ρ(p) z∗ Nodes Cuts Time [s] Nodes Cuts Time Nodes Time [s] Nodes Time [s]

R.200.100.1 200 0.020 29 0 1 0.219 0 13 1.843 0 4.719 0 4.578
R.200.100.15 200 0.847 454 382 3314 4034.859 269 729 29.531 1118 677.000 2608 338.312
R.200.100.30 200 0.957 529 59 142 54.828 28 68 3.656 28 19.922 28 17.562
R.200.100.60 200 0.991 6018 0 0 3.593 0 0 0.157 0 1.000 0 1.016
R.200.1000.1 200 0.020 887 0 0 0.203 0 2 0.625 0 9.562 0 9.875
R.200.1000.15 200 0.876 5891 132 731 329.313 74 328 9.360 1156 52.266 997 44.719
R.200.1000.30 200 0.958 7653 2 46 57.141 0 7 0.953 43 6.547 29 8.469
R.200.1000.60 200 0.989 6666 0 0 3.797 0 0 0.157 0 1.469 0 1.579
R.300.100.1 300 0.013 13 0 0 0.500 0 22 5.313 0 10.515 0 3.360
R.300.100.15 300 0.905 575 87859 119299 2220.656 476 1681 114.484 506 199.688 552 208.141
R.300.100.30 300 0.970 756 0 57 1.672 0 8 1.313 481 13.953 61 20.375
R.300.100.60 300 0.994 708 2 57 2.469 0 11 1.718 0 19.672 0 18.656
R.300.1000.1 300 0.013 715 0 69 10.546 0 69 10.343 0 58.562 0 62.375
R.300.1000.15 300 0.905 6660 3304 4165 91.938 66 95 19.203 57 83.328 194 124.828
R.300.1000.30 300 0.965 8693 0 11 1.531 0 1 1.016 0 7.328 0 10.718
R.300.1000.60 300 0.994 7678 0 4 23.234 0 0 0.469 0 10.672 0 11.109
R.400.100.1 400 0.010 6 0 1 0.391 0 7 1.142 0 18.093 0 19.515
R.400.100.15 400 0.927 699 52858 105054 2021.813 499 1979 161.828 1582 1895.359 564 1598.750
R.400.100.30 400 0.978 712 0 58 10.156 0 2 8.078 0 21.110 0 24.875
R.400.100.60 400 0.996 557 0 2 0.219 0 1 0.181 0 10.265 0 11.031
R.400.1000.1 400 0.010 780 0 13 6.734 0 17 11.672 0 12.953 0 13.140
R.400.1000.15 400 0.930 7382 56018 170012 8935.188 328 153 75.516 1199 1265.079 608 1296.484
R.400.1000.30 400 0.977 9368 4797 5545 209.593 58 130 20.547 1979 174.156 2308 417.172
R.400.1000.60 400 0.995 7167 0 44 2.016 0 3 1.453 0 33.078 0 36.500
R.500.100.1 500 0.008 3 0 579 217.172 0 172 35.726 0 37.921 0 34.469
R.500.100.15 500 0.945 860 9879 8120 443.125 186 279 104.687 516 375.407 520 468.468
R.500.100.30 500 0.980 710 11490 19359 696.922 9 16 25.969 0 68.609 0 61.734
R.500.100.60 500 0.996 566 0 0 0.687 0 0 0.625 0 43.265 0 43.234
R.500.1000.1 500 0.008 297 0 0 0.609 0 0 0.611 0 17.469 0 17.250
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Table 6. Computational results for MILP models on COMPILERS instances.

Instance
Extensive Compact

Ust [10] Ut Ust Ut

Name Size ρ(p) z∗ Nodes Cuts Time [s] Nodes Cuts Time Nodes Time [s] Nodes Time [s]

gsm.153.124 126 0.970 185 0 180 0.578 0 26 0.297 0 1.610 0 1.125
gsm.444.350 353 0.990 1542 0 2 0.078 0 12 0.375 0 0.594 0 0.454
gsm.462.77 79 0.840 292 17 79 4.047 0 31 0.296 0 2.109 0 2.234
jpeg.1483.25 27 0.484 71 43 197 0.266 16 55 0.125 0 1.156 8 1.062
jpeg.3184.107 109 0.887 411 24 117 16.844 37 83 0.922 0 1.391 2616 5.765
jpeg.3195.85 87 0.740 13 4041 47994 1366.985 155 4003 120.359 47 87.672 1 55.156
jpeg.3198.93 95 0.752 140 2204 6649 529.781 48 1921 34.329 0 17.390 0 28.203
jpeg.3203.135 137 0.897 507 31 196 56.703 35 132 2.141 495 19.046 485 13.141
jpeg.3740.15 17 0.257 33 231 185 0.234 391 78 0.188 57 3.922 40 4.079
jpeg.4154.36 38 0.633 74 1462 364 2.500 692 156 0.812 321 8.344 251 3.984
jpeg.4753.54 56 0.769 146 11 192 2.984 6 74 0.375 0 4.391 0 2.641
susan.248.197 199 0.939 588 22 178 106.672 9 79 2.922 1984 27.968 1984 25.031
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typeset.10192.123 125 0.744 241 5565 1134 297.859 4537 644 40.766 4674 2267.172 2879 1437.594
typeset.10835.26 28 0.349 60 0 8 0.063 0 9 0.047 0 0.079 0 0.078
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