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1 Introduction

Charmless hadronic decays of beauty hadrons proceed predominantly through tree-level
b — wu and loop-level (penguin) b — s weak transitions. In the Standard Model the
amplitudes of these processes, suppressed compared to the dominant tree b — ¢ transition
governing charmed decays, usually have similar magnitudes and give rise to possibly large
violation of the charge-parity (CP) symmetry. Therefore, charmless decays of B mesons
should be sensitive to additional amplitudes from new, heavy particles, contributing to the
loop-level transitions [1].

Charmless hadronic Bt and B decays' have been the subject of extensive studies, both
experimentally, at hadron and eTe™ colliders, and theoretically. The phenomenological
understanding that has emerged allows predictions to be made for charmless BY decays,
as will be illustrated in the following. In the ongoing effort to test these predictions
experimentally, the LHCb experiment has recently observed the decay? BY — n'n/. The
relatively large measured branching fraction B(B?— n'n’) = (33.147.1) x 1079 is consistent
with Standard Model expectations [2]. However, the knowledge about charmless hadronic
BY decays into light pseudoscalar (P) and vector (V) mesons is still limited. Further
measurements will help to better constrain phenomenological models, the uncertainties of
which often translate into a major contribution to the theoretical uncertainties in searches
for physics beyond the Standard Model.

The decay B? — 1'¢ proceeds predominantly through b — 353 transitions, as illustrated
in figure 1. It is of particular interest in constraining phenomenological models, as predic-
tions for its branching fraction cover a wide range, typically from 0.1 x 1075 to 20 x 1076,
with large uncertainties that reflect the limited knowledge of form factors, penguin contri-
butions, the w— ¢ mixing angle, or the s-quark mass. The decay B?— 7'¢ has been studied

IThe inclusion of charge-conjugate processes is implied throughout.
“The notations ' and ¢ refer to the n'(958) and $(1020) mesons.
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Figure 1. Lowest-order diagrams for the BY — n/¢ decay. The spectator quark can become part
of either the 7’ or the ¢ meson, forming two different amplitudes (called PV and VP in the text).

in the framework of QCD factorisation [3, 4], perturbative QCD [5, 6], soft-collinear effec-
tive theory (SCET) [7], SU(3) flavour symmetry [8], and factorisation-assisted topological
(FAT) amplitude approach [9]. Table 1 presents the available predictions for B(B?— 1/#).

In QCD factorisation, predictions for B(BY — 1/¢) are generally small because the
spectator quark can become part of either the 1’ or the ¢ meson (see figure 1), leading
to a strong cancellation between the PV and VP amplitudes contributing to the n’¢ final
state [3]. Such cancellation does not occur in the symmetric BY — n'n’ (PP) and BY — ¢¢
(VV) decays. However, other values of the form factor for the BY to ¢ transitions can lead
to enhancements of the branching fraction by more than an order of magnitude [4]. The
measurement of B(B? — 1/¢) is therefore important to improve the knowledge of the BY
to ¢ form factor and the accuracy of model predictions.

The comparison of QCD factorisation [3, 4], perturbative QCD [5], and SCET [7] cal-
culations shows that the hierarchy of branching fractions in BY — 1’¢ and BY — n¢ decays
is sensitive to the size of the colour-suppressed QCD penguin loop, which is estimated
to be large in perturbative QCD [5], and to “gluonic charming penguins”, which play an
important role in SCET calculations [7]. Future measurements of both decay modes will
provide useful information on these loop contributions.

This paper presents a search for the BY — n'¢ decay with the LHCb detector. The
results are based on a data sample collected during the 2011 and 2012 pp collision runs of the
Large Hadron Collider at centre-of-mass energies of 7 and 8 TeV, respectively, corresponding
to a total integrated luminosity of 3fb~1.

The signal B? — 7/¢ and normalisation Bt — /KT candidates are reconstructed
through the decays ' — 7t7 =y and ¢ -+ KTK~. The BY — n/¢ branching fraction is
determined with respect to the BT — 7 K™ mode according to

BBY —n/K*) fu  N(BY=ne) (B —yKY)

BB =10 = B KR 1 N5 kD) ¢ qB g Y

where B(BT — n/K*) = (70.6 + 2.5) x 107% [10], B(¢p — K+TK~) = 0.489 4+ 0.005 [10],
fu/fs is the BY/BY production ratio assumed to be equal to the BY/B? production ratio
fa/fs = 1/(0.259 £ 0.015) [11, 12], and e(BY — n'¢) and (BT — n'KT) are the total
efficiencies of the signal and normalisation modes, respectively. The ratio of the observed



Theory approach B (1075)  Reference
QCD factorisation 0.057418 3]
QCD factorisation 2.2791 [4]
Perturbative QCD 0.197039 5]
Perturbative QCD 20.01553 [6]
SCET 4.3152 [7]
SU(3) flavour symmetry 5.5+ 1.8 8]
FAT 13.0+ 1.6 9]

Table 1. Theoretical predictions for the B? — 1’¢ branching fraction.

yields N(B? — n/¢)/N (BT — 1/ KT) is obtained from a two-dimensional fit to the invariant
mass distributions of the 1’ and the B candidates, performed simultaneously on the signal
and normalisation modes.

2 Detector and simulation

The LHCb detector [13, 14] is a single-arm forward spectrometer covering the pseudorapid-
ity range 2 < n < 5, designed for the study of particles containing b or ¢ quarks. The de-
tector includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream of the magnet. The tracking system
provides a measurement of momentum of charged particles with a relative uncertainty that
varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a
track to a pp-collision point (primary vertex), the impact parameter, is measured with a
resolution of (15 + 29/pr) um, where pr is the component of the momentum transverse to
the beam, in GeV/c. Different types of charged hadrons are distinguished using information
from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified
by a calorimeter system consisting of scintillating-pad (SPD) and preshower detectors, an
electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire proportional chambers.

The trigger [15] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies a full event reconstruction.
The B decays of interest are triggered at the hardware stage, either by one of the decay
products depositing a transverse energy greater than 3.5 GeV in the hadron calorimeter,
or by other high-pt particles produced in the pp collision. The software trigger requires a
two-, three- or four-track secondary vertex with a significant displacement from the primary
vertices. At least one charged particle must have a transverse momentum pr > 1.7 GeV/c



and be inconsistent with originating from a primary vertex. A multivariate algorithm [16]
is used for the identification of secondary vertices consistent with the decay of a b hadron.

Simulated decays are used to optimise the event selection and to evaluate the selec-
tion efficiencies. In the simulation, pp collisions are generated using PYTHIA 8 [17, 18]
with a specific LHCb configuration [19]. Decays of hadronic particles are described by
EVTGEN [20], in which final-state radiation is generated using PHOTOS [21]. The interac-
tion of the generated particles with the detector, and its response, are implemented using
the GEANT4 toolkit [22, 23] as described in ref. [24].

3 Event selection

The selection of the signal BY — 1'¢ and normalisation BT — i’ K+ candidates, generically
referred to as B candidates, is optimised for the signal. Wherever possible, the same
selection criteria are applied for the normalisation channel.

Only good-quality tracks identified as pions or kaons [14] and inconsistent with origi-
nating from any primary vertex are used. Tracks used to reconstruct an 7’ or ¢ candidate
are each required to be consistent with coming from a common secondary vertex and to
have pr > 0.4GeV/c. The n77~ invariant mass in the 7’ decay must be larger than
0.52 GeV/c? to reject KO — 777~ decays. Photon candidates must be of good quality [14]
and have py > 0.3 GeV/c. The invariant masses of the ' and ¢ candidates must satisfy
0.88 < Myry < 1.04 GeV/c? and 1.005 < mg i < 1.035GeV/c?. An 7/ candidate is com-
bined with a candidate ¢ meson (or a charged kaon with pt > 1GeV/c) to make a BY
(or B") candidate. Each B candidate is required to have a good-quality vertex, by im-
posing a loose requirement of the x? of the vertex fit (x> < 6), and pr > 1.5GeV/c. The
invariant masses of the B? and BT candidates, computed after constraining the 77~
mass to the nominal 7' mass [10], are required to satisfy 5.0 < m, kxx < 5.6 GeV/c? and
5.0 <my g < 5.5GeV/ c?, respectively.

To further separate signal from background, boosted decision trees (BDTs) based on
the AdaBoost algorithm [25, 26] are used. Different BDTs are used for the signal and
normalisation channels. Each BDT is trained, tested and optimised on fully simulated
signal decays and background taken from data. The background consist of events in the
mass range 5.0 < m, g < 5.6 GeV/c? (5.0 < my < 5.5GeV/c?) excluding the signal re-
gion defined below.

To minimise statistical and systematic uncertainties, the BDT algorithm uses input
variables that provide significant background rejection, are well modelled in simulation,
and are defined for both the signal and normalisation channels. Nine variables are used
as input to each BDT. Two variables are related to the kinematics of the final-state par-
ticles: the transverse momenta of the photon and the 7’ meson. Three variables describe
the topology of the B candidate: the B-candidate flight distance, the cosine of the angle
between the reconstructed B momentum and the vector pointing from the associated pri-
mary vertex to the B decay vertex, and the impact parameter of the B candidate with
respect to its associated primary vertex. The associated primary vertex is the primary
vertex with respect to which the B candidate has the smallest X%P’ where X%P is defined



as the difference in the vertex-fit x? of the selected primary vertex reconstructed with or
without the considered particle. Three variables are related to the B-candidate vertex:
the vertex-fit quality, characterised by its x?, and two vertex isolation variables defined
as the smallest vertex-fit y? values obtained when adding to the vertex in turn either all
single tracks or all pairs of tracks from the set of tracks that are not assigned to the B
candidate. The last variable is the sum of the x% of the charged particles used to form the
B candidate, calculated with respect to the associated primary vertex. The photon pr and
the B-candidate impact parameter provide the best background discrimination. The BDT
is trained for the full data set, irrespective of the pp collision energy. To minimise biases
in the final selection, both the data and simulated samples are randomly divided into two
subsamples and two BDTs are defined. Each BDT is trained, tested and optimised on one
subsample, and then applied to the other subsample for the candidate selection [27]. The
selected candidates from both subsamples are then merged into a single sample for the
next stage of the analysis.

The requirement on the BDT output is chosen to maximise the figure of merit
e(B — n'¢)/(a/2 + /Np) [28], where a = 5 is the target signal significance, and Np
is the number of background events in the signal region estimated from the BS mass
sidebands. The signal region is defined as the BY mass range 5.287-5.446 GeV/c?, corre-
sponding approximately to 7 times the mass resolution. The optimised BDT requirement
has an efficiency of 59% for BY — /¢ decays, while rejecting 93% of the combinatorial
background in the signal region. As a check, an alternative optimisation is performed: for
various values of the B? — /¢ branching fraction, pseudoexperiments are generated with
a model containing only signal and combinatorial background, and then are analysed with
a simple two-dimensional maximum likelihood fit to the B? and 7’ masses. The signal
significance, determined using Wilks’ theorem [29], is found to reach its maximum for a
BDT requirement in agreement with that obtained using the method of ref. [28].

In events containing multiple candidates (< 3%), the candidate with the best identified
photon is kept. The full selection described above retains 430 BY — n'¢ candidates and
22681 BT — /K candidates for further analysis.

Selection efficiencies are evaluated with simulated data, except those of the particle
identification (PID) requirements and the hardware trigger, for which calibration data
are used. Systematic uncertainties on the efficiency ratio e(B* — n'K™)/e(BY — n/¢) are
summarised in table 2. The BDT algorithms are validated using the normalisation chan-
nel as proxy for the signal, and by comparing the distributions obtained with the sPlot
technique [30] of the nine input variables and the BDT output variable. The difference be-
tween the efficiencies in data and simulation of the BDT requirement for the normalisation
channel is used as a measure of the systematic uncertainty on the BDT efficiency. The cor-
relation evaluated in simulation between the BDT variables for BY — n'¢ and BT — n/ K+
is then used to determine the systematic uncertainty on the ratio of the BDT efficiencies.

Another systematic effect on the determination of the efficiency ratio is the uncertainty
on the PID efficiency, which is determined as a function of kinematic parameters using a
clean high-statistics sample of kaons and pions from D** — D%(— K~7)7" decays [31].
The uncertainty on the trigger efficiency, which is mostly due to the computation of the



Source Relative uncertainty [%]
BDT efficiency calibration 2.5
PID efficiency calibration 1.1
Trigger efficiency calibration 2.3
SPD multiplicity (mismodelling) 0.9
Track reconstruction 0.4
Photon reconstruction 0.1
Hadronic interactions 14
Simulation statistics 1.6
Total 4.3

Table 2. Relative systematic uncertainties on the efficiency ratio e(B*— n'K*)/e(B%— n/¢).

hardware-stage trigger efficiency, is estimated with simulated data by varying the value of
the minimum transverse energy requirement used in the trigger decision. An uncertainty is
assigned on the efficiency ratio to take into account the mismodelling of the hit multiplicity
in the SPD, which is used as a discriminant variable at the hardware stage of the trigger.
This uncertainty is evaluated in simulation by varying the requirement on the SPD hit
multiplicity. Corrections determined from control channels are applied to the tracking and
photon reconstruction efficiencies to account for mismodelling effects in the simulation.
The uncertainties on these corrections are quoted as systematic uncertainties. Since the
correction to the tracking efficiency is obtained using muons, an additional uncertainty
is needed to account for hadronic interactions in the detector material [32]. Finally, the
limited statistics of the simulated samples used in the evaluation of the efficiencies is added
as a source of uncertainty. Combining all uncertainties in quadrature, the ratio of the
selection efficiencies is

e(Bt—n'K™)

=1.83+£0.08. 3.1
(B 179) (31)

The selection requirements efficiently reject physics backgrounds such as B — ¢K*0
and modes with resonances decaying strongly to K*7~ 7% but not B? — ¢¢ decays with
one of the two ¢ resonances decaying to 777~ 7 and one of the photons from the 70— ~v
decay not being reconstructed. From simulation studies and known branching fractions [10],
the number of BS — ¢¢ decays passing the selection is expected to be 104 4 34. Hence this
background is included as a specific component in the mass fit described below.

4 Mass fit

The B?— 1/¢ signal yield is determined from a two-dimensional extended unbinned maxi-
mum likelihood fit, where the signal is fitted simultaneously with the normalisation channel
BT — n/KT. The observables used in the fit are the invariant masses My and My g
(myy k) for the sample of BY— /¢ (BT — 1’ K*) candidates.



The sample of B? — /¢ candidates is described with a four-component model: the
signal, the two combinatorial backgrounds with and without a true 7’ resonance, and the
BY — ¢¢ physics background, where one of the two ¢ resonances decays to the 7+7 7"
final state. The sample of BT — 5/ K+ candidates is modelled using three components:
the signal and the two combinatorial backgrounds with and without a true 7’ resonance.
The yields of all components are free to vary in the fit. The peaking components in the
BY, BT and 7/ mass spectra are described using Gaussian functions modified with an
exponential tail on each side. While all the tail parameters are fixed from simulation,
the mean and the widths of the Gaussian functions are free to vary in the fit, but the
ratio of the widths of the peaking components in m, g and m,yk is fixed to the value
obtained in simulation and the difference between the B? and BT masses is constrained
to the known value [10]. The 1’ resonances in the two samples are modelled using a
common function, with mean and width free in the fit. The combinatorial components
are described with linear functions, with the exception of the random combinations in
myy k, Where a parabolic function is used. To account for correlations between m,y gk
and Mgy, the BY — ¢¢ component is described with a superposition of two-dimensional
Gaussian kernel functions [33] determined from simulation. For all other components, in
particular the signal, the correlation is negligible due to the 1’ mass constraint applied
in the computation of the B-candidate mass. The fit procedure is validated on simulated
samples containing the expected proportion of background and signal events, according
to various assumptions on B(BY — n'¢). In particular, for B(B? — n/¢) = 4 x 1076, a
statistical significance corresponding to more than 5 standard deviations is observed in
74% of the pseudoexperiments.

Figure 2 shows the mass distributions observed in data with the projections of the
fit results overlaid. No B? — /¢ signal is observed. The fitted yields are —3.2Jjg:g for
the BY — n'¢ signal, 105 £ 29 for the B — ¢¢ physics background (consistent with
expectation), and 11081 4 127 for the Bt — 1/ K™ normalisation mode. The measured
B and 7’ mass resolutions are 21.8 £ 0.3 MeV/c? and 12.6 & 0.2 MeV/c?, respectively. The
ratio of yields is fitted to be N(BY— /¢)/N(B* — n/K+) = (=2.9732) x 107

Sets of pseudoexperiments are used to evaluate possible fit biases. Fits on samples
generated from the probability density function (PDF) with parameters obtained from the
data are found to be unbiased. The procedure is then repeated using simulated B? — ¢¢
events instead of generating the corresponding background component from the PDF.
Biases of —1.3 4 0.3 on the signal yield and of (—1.16 £ 0.33) x 10~* on the ratio of yields
are observed. The results obtained with data are corrected for these biases and systematic
uncertainties computed as the quadratic sum of the statistical uncertainty on the bias and
half of the bias value are assigned.

Additional systematic uncertainties affect the signal yield and the yield ratio. The
mass fit is repeated with different combinatorial background PDFs: linear functions are
replaced with exponential functions, and the parabolic function is replaced with a third-
order polynomial. The quadratic sum of the differences between the values obtained in these
alternative fits and the nominal result is assigned as a systematic uncertainty. The limited
size of the simulated B? — ¢¢ sample leads to an uncertainty on the determination of
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Figure 2. Distributions of the (top left) 77~ and (top right) n’ K™K~ masses of the selected
BY%— 1/ ¢ candidates, as well as of the (bottom left) 7+ 7=+ and (bottom right) ' K+ masses of the
selected BT — 5/ K+ candidates. The solid blue curves represent the result of the simultaneous two-
dimensional fit described in the text, with the following components: B? — /¢ and BT — n/ K+
signals (red dashed), combinatorial backgrounds (blue dot-dot-dashed), combinatorial backgrounds
with real 7/ (green dotted), and BY — ¢¢ background (black dot-dashed).

the nonparametric PDF for the physics background, which is propagated as a systematic
uncertainty. The effect of fixing some of the model parameters in the fit is studied by
performing a large number of fits on the data, with the fixed parameters sampled randomly
from Gaussian distributions centred on the nominal values and with widths and correlations
as determined in simulated events. The standard deviation of the distribution of the results
is assigned as a systematic uncertainty.

The systematic uncertainties on the B — 1/¢ yield and the yield ratio are summarised
in table 3. The final results from the mass fit, including all corrections, are

N(B? = n/¢) = —1.973%3+1.1, (4.1)

N(BY = 1'¢)
N(Bt = /K+)

= (—1.7732+£1.0) x 1074, (4.2)

where the first (second) quoted uncertainty is statistical (systematic). Bayesian upper
limits zy are determined assuming a uniform prior in the observable = (yield, yield ratio,
or B) as [;V L(x)dx/ [ L(x)dr = «, where L(z) is the likelihood function convolved



Source on (events) op (107%)
Fit bias 0.7 0.7
Combinatorial background modelling 0.6 0.6
B — ¢¢ background modelling 0.4 0.3
Fixed parameters in the fit 0.3 0.3
Total 1.1 1.0

Table 3. Systematic uncertainties on and og on the fitted yield N(B? — n'¢) and on the yield
ratio R = N(BY— n'¢)/N (BT — 1/ K1), respectively. The last line gives the quadratic sum of the
individual uncertainties.

with the systematic uncertainties, and « is the confidence level (CL). The obtained upper

limits are
N(BY = 1'¢) <89 (10.9) at 90% (95%) CL

and
N(B{—=1'¢)

N(B* = /K+T)

<80(9.9) x10™* at 90% (95%) CL.

5 Result and conclusion

A search has been performed for the B? — 7/¢ decay. No signal is found. The branch-
ing fraction B(B? — n/¢) = (—0.18703¢ (stat) + 0.10(syst)) x 1079 is computed from
egs. (1.1), (3.1) and (4.2) using the known value of B(B* — ' K™) [10] and the LHCb
measurement of fs/fg [11, 12], which leads to

B(B?— n/¢) < 0.82(1.01) x 107 at 90% (95%) CL

using the likelihood integration method described above. This is the first upper limit set
on the BY — n/¢ branching fraction.

This result favours the lower end of the range of predictions for this branching fraction,
pointing to form factors consistent with the light-cone sum-rule calculation used in ref. [4],
or with the hypotheses used in refs. [3, 5]. Although large theoretical uncertainties make
most predictions compatible with the result of this analysis, the central values of the
predictions in refs. [6-9] are significantly larger than the upper limit. These discrepancies
should help in constraining the theoretical models used in the prediction of branching
fractions and CP asymmetries for B-meson hadronic charmless decays.
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