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SUMMARY

Alpha oscillations are a distinctive feature of the awake resting state of the human brain. However, their func-
tional role in resting-state neuronal dynamics remains poorly understood. Here we show that, during resting
wakefulness, alpha oscillations drive an alternation of attenuation and amplification bouts in neural activity.
Our analysis indicates that inhibition is activated in pulses that last for a single alpha cycle and gradually sup-
pressneural activity,while excitation is successively enhancedover a fewalphacycles toamplify neural activity.
Furthermore, we show that long-term alpha amplitude fluctuations—the ‘‘waxing and waning’’ phenomenon—
areanattenuation-amplificationmechanismdescribedbyapower-lawdecayof theactivity rate in the ‘‘waning’’
phase. Importantly, wedo not observe suchdynamics during non-rapid eyemovement (NREM) sleepwithmar-
ginal alpha oscillations. The results suggest that alpha oscillations modulate neural activity not only through
pulses of inhibition (pulsed inhibition hypothesis) but alsoby timely enhancement of excitation (or disinhibition).

INTRODUCTION

The mammalian brain exhibits complex rhythmic dynamics that

span a broad range of frequencies.1 Brain rhythms emerge as

periodic amplitude fluctuations in electrophysiological record-

ings, which result from synchronous activation of large popula-

tions of neurons.2,3 Oscillations in distinct frequency bands

have been associated with different brain functions and physio-

logical states.2,4,5 Among these brain rhythms, oscillations in the

alpha band (8–13 Hz) play a prominent role in human brain activ-

ity. Characteristic of the eyes-closed, awake resting state, alpha

oscillations have been associated with the processes of task

disengagement,6,7 perceptual learning and suppression of visual

activity,8,9 facilitation of periodic sampling of visual information,

and, more generally, propagation of activity throughout the

brain, modulation of communication between brain regions,

and feedback processing within and across brain regions.10–13

Indeed, a number of studies indicate that changes in cognitive

performance are accompanied by rhythmic modulation of alpha

amplitude and power, suggesting in particular an inverse rela-

tionship between alpha activity and neural firing.6,8,14,15 Ampli-

tude fluctuations occur across multiple timescales and show

non-trivial features, such as long-range temporal correlations

(LRTCs)16,17 and non-Gaussian bimodal distributions of po-

wer,18 which suggests the existence of two distinct modes:

higher- and lower-power modes.18 In particular, periodic fluctu-

ations in amplitude, known as ‘‘waxing and waning,’’ have long

been considered a key feature of alpha oscillations.19,20

Several models have been proposed to explain the emergence

of alpha oscillations and their dynamic characteristics, frommutu-

ally coupled excitatory (E) and inhibitory (I) spiking and stochastic

neurons,21,22 to adaptive neural networks23 and more realistic

thalamic and corticothalamic mechanistic models.24–27 In partic-

ular, taking into account corticothalamic loop mechanisms, the
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neural field model by Freyer et al.26 reproduces spontaneous

jumpsbetween lower- and higher-power alphamodes in the pres-

enceofa subcriticalHopfbifurcation.Apart fromtheawake resting

state, alpha oscillations can also be marginally observed in other

physiologic states, such as rapid eye movement (REM) sleep

and stage 1 of non-REM (NREM) sleep, or during electroenceph-

alogram (EEG) arousals that may occur in REM and NREM

sleep.4,28,29

Despite the advances in understanding the generation of the

alpha rhythm and its influence on behavioral performance, the

functional role of alpha oscillations in brain dynamics remains

to a large extent not understood. Recent studies suggest that

alpha oscillationsmediate cortical inhibition. However, the nature

of this inhibition, as well as its effects on collective neural dy-

namics, is still not known.Oneof the hypotheses that has recently

gained consensus is that alpha-mediated inhibition is delivered in

rhythmic pulses,8,13,30,31 a mechanism that could allow selective

information processing during periods of relative excitation.32

Directly verifying this hypothesis requires complex, simulta-

neous multiscale recordings of neural activity. However, we

argue that it should be possible to identify the hallmarks of

alpha-mediated, pulsed inhibition through analysis of neural dy-

namics that are readily accessible. To this end, we note that,

within the pulsed inhibition hypothesis, alternating states of inhi-

bition and excitation should result in periods of attenuation and

enhancement of collective neural activity rhythmically modu-

lated by alpha oscillations. To verify this assumption and, at

the same time, to further clarify the functional role of the alpha

rhythm in collective neural dynamics, we study neural activity

cascades during resting wakefulness and NREM sleep, where

alpha oscillations are only marginally present.4,29 Neural activity

cascades, termed neuronal avalanches, are spatiotemporal pat-

terns of activity with no characteristic size, time, or spatial

scale33–37 that coexist with neural oscillations.17,23,38–41 By dis-

secting the dynamics of neuronal avalanches in relation to the

alpha rhythm, we show that alpha oscillations modulate bouts

of neural activity attenuation and amplification unfolding over

multiple timescales—from hundreds of milliseconds to seconds.

This attenuation-amplification mechanism is not present during

NREM sleep and suggests that the alpha rhythm mediates the

timing of inhibition and excitation periods in the awake resting

state. Importantly, our analysis provides a first quantitative

description of the collective neural dynamics underlying the

‘‘waxing and waning’’ of the alpha rhythm.18,19,42 We show that

‘‘waxing and waning’’ is a long-term mechanism for regulation

of resting-state network excitability, which is intermittent rather

than periodic in nature. The results suggest that, in the awake

resting state, alpha oscillations modulate the intensity of

neural activity not only through pulses of inhibition, as in the

pulsed inhibition hypothesis, but also by timely enhancing exci-

tation (or disinhibition), an effect that has not been described

previously.

RESULTS

Dynamics of neural activity cascades during the awake
resting state
To characterize collective brain dynamics in relation to the alpha

rhythm, we analyzed magnetoencephalogram (MEG) and elec-

troencephalogram (EEG) recordings of awake, eyes-closed,

resting-state brain activity (STAR Methods). First, we proceeded

to identify spatiotemporal cascades of neural activity across the

sensor arrays. To this end, we mapped each continuous, broad-

band sensor signal into a sequence of discrete events. These are

defined as the extremes of large positive and negative signal de-

flections exceeding an amplitude threshold h (Figure 1A). In

practice, for each excursion beyond the threshold, a single event

is identified at the most extreme value (maximum for positive ex-

cursions and minimum for negative excursions; blue dots in Fig-

ure 1A) (STAR Methods). This procedure preserves most of the
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Figure 1. Neural activity cascades in the awake resting state

(A) Representative single-site MEG and EEG time series of resting-state activity in the human brain (top and bottom, respectively). Signals are z-normalized, and

the amplitude (Amp.) is in units of standard deviation (SD) (STARMethods). Themost extreme point in each excursion beyond a threshold h (red lines) is treated as

a discrete event (blue dots).

(B) Representative raster of discrete events across all MEG sensors (n = 273, top). An avalanche ai is defined as a sequence of temporal windows e

ðe = 2Tmeg = 3:3 ms for the MEG; STAR Methods) with at least one event in any of the sensors, preceded and followed by at least one window with no events in

any of the sensors (bottom). The same procedure is used for the EEG (e = Teeg = 4 ms).

(C) Temporal sequence of events (blue dots) that belong to the avalanche ai in (B), which spreads over 12 different sensors. Events are presented in time

ascending order from top to bottom.
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collective features encoded in the continuous signals across the

sensor array.36,37,43

In Figure 1B, we show a representative raster of events ex-

tracted from a MEG sensor array. The raster plot indicates that

events tend to cluster in time across sensors or cortical loca-

tions. We define a neural activity cascade, or avalanche, ai, as

a sequence of consecutive time bins with at least one event in

any of the sensors, preceded and followed by at least one empty

time bin (Figures 1B, bottom, and 1C).33 To each avalanche, we

associate a size, si, which is given by the number of events

occurring in the time bins that belong to it. It has been shown

recently that the distribution PðsÞ of avalanche sizes follows a

power-law behavior—PðsÞfs� t—in MEG and EEG record-

ings.17,36,37 Power-law distributions indicate an absence of char-

acteristic scales, a property in stark contrast with the main

essence of brain rhythms; namely, characteristic times and

amplitudes.1–3

The scale-free power-law distribution of avalanche sizes does

not suggest any potential link with neural oscillations. To charac-

terize the dynamics of avalanches and identify relationships with

coexisting rhythmic patterns, we turn our attention to the correla-

tion properties of the cascading process. First, we analyze the

autocorrelation function CðtÞ of the quantity nðtÞ, the number of

events occurring per unit time during the cascading process.

We note that nðtÞ = 0 during quiet times, Dt, which correspond

to periods with no threshold crossing events across the

sensor array (Figure 1B, bottom). We find that CðtÞ exhibits two

distinct power-law regime for t < 1 s in MEG and EEG recordings

(Figures 2A and 2B). At short timescales (regime (A<)),CðtÞ decays
as t�g< with g<x0:8; for 120< t < 1000 ms (regime (A>)), CðtÞ
shows a slower power law decay with g>x0:2 (Figures 2A–2B).

Importantly, the crossover from regime (A<) to regime (A>) occurs

around tx100ms,which corresponds to the characteristic timeof

the alpha rhythm. The transition is preceded by a short plateau re-

gion between 20�100 ms (Figures 2A and 2B). We observe that

CðtÞ exhibits a further transition to a slower-decaying regime

around t = 1 s, which may be related to delta oscillations.

The transition between distinct scaling regimes indicates a

change in the cascading dynamics at the temporal scale of the

alpha rhythm.46,47 We further investigate this point by analyzing

the distribution of quiet times, PðDtÞ (Figures 2C and 2D). Indeed,

power-law decays in the autocorrelation CðtÞ can be related to

power laws in the quiet time distribution.46–48 In MEG and EEG

data, we observe a close correspondence between short- and

long-timescale regimes in CðtÞ and PðDtÞ, with the transition

from one another occurring consistently around 100 ms. Such

a correspondence, as well as the hallmark of alpha oscillations

onPðDtÞ andCðtÞ, is particularly evident in the analysis of individ-
ual subjects (Figure S1). Specifically, for Dt < 1 s, PðDtÞ is

well described by two distinct power-law regimes with expo-

nents m< and m>, which correspond to (A<) and (A>), defined in

Figures 2A and 2B, for the autocorrelation CðtÞ. The crossover

from one regime to the other is located around Dtx100 ms, as

in CðtÞ (Figures 2C and 2D; see also Figures S1–S3 for individual

subjects and 40-min MEG). Thus, the regime (A<) includes the

quiet times that are shorter than a single alpha cycle (about

100 ms), while (A>) includes the quiet times that span more

than a single alpha cycle. This suggests that the change in the

cascading dynamics marked by the crossover from (A<) to (A<)

is closely connected to underlying properties of the alpha

rhythm, as we shall investigate in the following sections. Such

power-law regimes, (A<) and (A>), are followed by a faster decay

of the probability PðDtÞ for Dts longer than 1 s.

Next, we analyze the conditional distributions PðDtjs > scÞ,
where sc is a minimum threshold on avalanche sizes. In short,

one only considers the Dts between consecutive avalanches of

size s > sc. We examine PðDtjs > scÞ for several sc values. The

analysis shows that, for Dtx100 ms, PðDtÞ is independent of sc,

while PðDtÞ depends on sc for Dt < 100 ms and Dt > 100 ms

(Figures S4 and S5). Specifically, for increasing sc values, we

find that (1) PðDtjs > scÞ decreases for Dt < 100 ms, and the expo-

nent m< decreases and tends to zero, and (2) PðDtjs > scÞ in-

creases for Dt > 100 ms and shows a power law with decreasing

exponents (Figure S4). This shows that, in stark contrast to similar

analyses in rats and zebrafish in the absence of alpha oscilla-

tions,35,49Dtx100msbehaves as a fixedpoint for the transforma-

tion that selectively removes avalanches smaller than a threshold

sc, while the rest of the distribution changes. This further indicates

that alpha oscillations play a key role in shaping the distribution of

quiet times, thus determining the emergent dynamics of ava-

lanches in the resting state.

The double power-law, non-exponential quiet time distribution

as well as the autocorrelation CðtÞ imply that neural cascades of

activity are strongly correlated37,50–54 and indicate that the na-

ture of correlations in the cascading process depends on the

time scales. Indeed, the distribution PðDtÞ calculated after

random phase shuffling (STAR Methods) of the original brain

signals is exponential (Figures 2C and 2D). Furthermore, we

observe that, despite the analogies between avalanches and

earthquakes,54,55 the double power-law behavior in PðDtÞ does
not arise from the non-homogeneity of the avalanche rate (Fig-

ure S6), as found for earthquakes instead.56

The observed functional behavior of PðDtÞ as well as the auto-

correlation function CðtÞ suggest that the relationship between

consecutive avalanches (and, thus, the underlying collective neu-

ral dynamics) undergoes a transition around Dtx100 ms. Here,

we hypothesize that this transition reflects a property of the neural

dynamics associated with generation and propagation of the

alpha rhythm in resting-state brain activity. To verify this hypothe-

sis, we investigate whether the collective neural dynamics en-

coded in avalanche characteristics (e.g., their sizes) exhibit signa-

tures of dynamic transitions that correlate with alpha oscillations.

Attenuation-amplification dynamics (AADs) of neural
activity in the awake resting state
To this end, we consider the avalanche size increments

Ds = si+1 � si between the size of avalanche ai and the size of

the subsequent avalanche ai+1 and analyze their relationship

with the corresponding quiet timesDti (Figure 1). Negative values

of Ds imply attenuation (i.e., the avalanche ai+1 is smaller than

its preceding one, ai), whereas positive values imply amplifica-

tion; namely, the avalanche ai+1 is larger than the preceding

avalanche ai
We first examine the scatter plot between Dss and the corre-

sponding Dts (Figures 2E and 2F). For Ds < 0, we observe that

large negativeDss occur with short quiet-timeDts and vice versa
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in MEG (Figure 2E) and EEG recordings (Figure 2F). The corre-

sponding value of Spearman’s correlation coefficient

rðDs < 0;DtÞ (STAR Methods) is significantly larger than zero

(Figure 2F, inset), indicating that negative size increments are

positively correlated with their corresponding quiet times; i.e.,

themore negative the increment, the shorter the quiet time sepa-

rating two avalanches. In contrast, we find that positive size in-

crements, Ds > 0, tend to be significantly anti-correlated with

the corresponding quiet times in MEG and EEG data (Figure 2F,

inset).

To dissect the dependency of size increments on the time lag

separating consecutive avalanches and identify the connection

with the alpha rhythm, we scrutinize the correlation landscape

hidden in the density distribution across the DtDs plane of the

scatterplots shown in Figures 2E and 2F. To this aim, we system-

atically compare the spatial structure of the density in the plane

DtDs with surrogate densities obtained by randomly reshuffling

avalanche sizes. In this way, the distribution and the temporal or-

der of quiet times are preserved, as well as the size distribution

(Figure 3A).

The local density distribution resulting from the avalanche pro-

cess can be described using the conditional probability Pðs0;
t0Þ h PðDs < s0jDt < t0Þ = NðDs < s0jDt < t0Þ=NðDt < t0Þ, where

the thresholds s0 and t0 delimit the plane region Rðs0; t0Þ

Figure 2. Transition in the dynamics of neural activity cascades at the timescale of the alpha rhythm during resting wakefulness

(A) Autocorrelation CðtÞ of the network activity, nðtÞ, in 4-min MEG recordings. nðtÞ is measured as the number of active sensors in each time bin e. In the short

timescales (regime (A<)),CðtÞ decays as a power law with an exponent g< = 0:7633± 0:0540. After a transition region (20–120 ms), whereCðtÞ is nearly constant
and shows a small peak at t = 100 ms, the autocorrelation follows a power law with an exponent g> = 0:2619± 0:0028 (regime (A>)).

(B) Autocorrelation CðtÞ of the network activity for EEG recordings. Within regime (A<),CðtÞ decays as a power law with an exponent g< = 0:6627± 0:0990, while

within regime (A>), the autocorrelation follows a power law with an exponent g> = 0:2309± 0:0019.

(C) The distribution of quiet times PðDtÞ in 4-min MEG recordings (n = 70) shows a double power-law behavior with regime (A<) for short Dts characterized by an

exponent m< = 0:7897± 0:0144 and regime (A>) for longer Dts with an exponent m> = 1:9690± 0:0394, followed by an exponential cutoff. The transition region

(shaded area) between regime (A<) and (A>) is located around 100 ms. PðDtÞ from surrogate data (STAR Methods) shows an exponential behavior (gray curve). A

similar behavior is observed in 40-min-long MEG recordings (Figure S3).

(D) The distribution of quiet times in EEG recordings (n = 6) of the awake resting state is consistent with the scenario described in (C): regime (A<), m< = 1:0832±

0:0544; regime (A>), m> = 2:0830± 0:1514. As in the MEG, the transition region (shaded area) is located at around 100 ms. PðDtÞ from surrogate data shows an

exponential behavior (gray curve).

(E) Scatter plot betweenDs andDt for all MEG subjects. NegativeDss are positively correlated with their corresponding quiet times, whereas positiveDss are anti-

correlated with their relative quiet times (Spearman’s correlation coefficient: rðDs < 0;DtÞ = 0:1916± 0:0088 and rðDs < 0;DtÞ = 0:1188± 0:0061 in 40-min and

4-min MEG recordings, respectively; rðDs > 0;DtÞ = �0:1064± 0:0065 in 4-min MEG, rðDs > 0;DtÞ = �0:1985± 0:0181 in 40-min MEG).

(F) The scatter plot between Ds and Dt for all EEG subjects exhibits the same behavior as observed in the MEG (rðDs < 0;DtÞ = 0:1301± 0:0135; rðDs >0;

DtÞ = � 0:1765± 0:0111). Inset: rðDs;DtÞ calculated separately for Ds < 0 and Ds > 0 (blue, MEG 40 min; green, MEG 4 min; black, EEG). rðDs;DtÞ from

surrogate data are plotted next to each bar and are very close to zero in all cases. t tests comparing original and surrogate data show that correlations

between Ds and Dt are significant (p < 0:001; STAR Methods). Distributions were calculated using e = 2Tmeg = 3:3 ms and e = 1Teeg = 4 ms for MEG and EEG

data, respectively. Results are independent of e (Figure S2). Power-law fits were performed using a maximum likelihood estimator and compared with

exponential fits via log likelihood ratios (STAR Methods)44,45 (MEG 4-min; regime A<: R = 395, p = 0:03; regime A>, R = 346, p = 2$10� 18. EEG; regime

A<: R = 567 , p = 4$10� 33; regime A>: R = 72, p = 0:0003). In all cases, the power law is more likely to describe the empirical data (STAR Methods). The p

value measures the significance of R and is defined in the STAR Methods.
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under investigation (Figure 3A, top left, blue shaded area).

An analogous quantity P�ðs0; t0Þ can be associated with the

surrogate region resulting from the size reshuffling procedure

(Figure 3A, bottom left, yellow shaded area). The difference

dPðs0; t0Þ h dPðDs < s0jDt < t0Þ = Pðs0; t0Þ � P�ðs0; t0Þ is a mea-

sure of the likelihood that a specific distribution of points in the re-

gion Rðs0; t0Þ results from the actual avalanche dynamics rather

than from random avalanche occurrences and is used to examine

the relationship between sizes of consecutive avalanches as a

function of the quiet times separating them. We indicate with s�

the standard deviation associated with the surrogates P�ðs0; t0Þ.
Thus, if jdPðs0; t0Þj> 2s�, then Pðs0; t0Þ and P�ðs0; t0Þ are signifi-

cantly different (p < 0:05; STAR Methods), and the distribution of

points in the region Rðs0; t0Þ is considered to reflect a specific,

non-random relationship between Ds and Dt.

We study dPðs0; t0Þ as a function of s0 for fixed t0 values.

For each fixed value of t0, there are two possible relevant sce-

narios for the function dPðs0; t0Þ (Figure 3A, right): (1) dPðs0; t0Þ
is positive and monotonically increases for �N< s0 < 0, reaches

a maximum, and then decreases, taking a minimum at some

s0 > 0 (Figure 3A, right, bottom, orange thick line). This is the atten-

uation regime, during which the size increments, Ds = si+1 � si,

tend to be negative, and the avalanche ai+1 tends to be

smaller than the preceding avalanche ai; (2) dPðs0; t0Þ is nega-

tive andmonotonically decreases for �N< s0 < 0, reaches a min-

imum, and then increases, taking a local maximum at some s0 > 0

(Figure 3A, right, bottom, purple dashed line). This is the amplifi-

cation regime. In this dynamic regime, the size increments tend

to be positive, and a given avalanche ai+1 tends to be larger

than its preceding avalanche ai. Following this approach, we

A C

B

Figure 3. The monotonic relationship between consecutive avalanches undergoes a transition from an attenuation to an amplification

regime that correlates with the characteristic time of the alpha rhythm

(A) Schematic definition of the quantity dPðs0; t0ÞhdPðDs < s0jDt < t0Þ. Left: the conditional probabilities Pðs0; t0Þ and the surrogate conditional probabilities

P�ðs0; t0Þ are proportional to the number of points Nðs0; t0Þ and N�ðs0; t0Þ in the region Rðs0; t0Þ of the plane DsDt defined by the thresholds s0 and t0 (blue and

yellow rectangles, respectively). Top right: the quantity dPðs0; t0Þ compares the original and the surrogate density in the region Rðs0; t0Þ of the plane and is defined

as the difference between Pðs0; t0Þ and P�ðs0; t0Þ, the conditional probabilities associated with the density N and N� for original and surrogate data (STAR

Methods). Bottom right: the quantity dPðs0; t0Þ as a function of s0 for a given threshold t0 on Dts exhibits two relevant scenarios. For t0 < 100 ms (attenuation

regime, orange thick line), dPðs0; t0Þ has amaximum for s0 < 0, implying that si+1 tends to be smaller than si forDt < t0. For t0 > 100ms (amplification regime, purple

dashed line), dPðs0; t0Þ has a maximum for s0 > 0, implying that, for Dt < t0, si+1 tends to be larger than si .

(B) dPðs0; t0Þ as a function of the threshold s0 onDs for different values of the threshold t0 onDts for 4-minMEG (left, n = 70) and EEG (center, n = 6) data. The error

bar on each data point is two times the SD s� associated with the surrogate P�ðs0; t0Þ (STAR Methods). For a given t0, the maximum in dPðs0; t0Þ indicates the

preferred relation between consecutive avalanches separated by quiet times shorter than t0. In MEG and EEG recordings (left and center), for t0 smaller thanz

100ms, dPðs0; t0Þ has amaximumat s0 < 0, and, thus, an avalanche tends to be smaller than its preceding one (si+1 < si, attenuation regime). On the contrary, for t0
larger than z100 ms, the maximum moves toward positive s0, implying that a given avalanche tends to be larger than the preceding one (si+1 >si , amplification

regime). For t0z100 ms, dPðs0; t0Þ is very close to zero for each s0, indicating that, at t0x100 ms, there is not a preferred sign for Ds and that Dtx100 ms is a

transition point from one dynamic regime to another—an attenuation-amplification transition. A similar behavior is observed in 40-min MEG recordings (Fig-

ure S7). Right: dPðs0; t0Þ as a function of t0 for s0 = �10 and s0 = 10 in 4-min MEG and EEG. For each s0, dPðt0Þ transitions from positive to negative values in a

range of t0 corresponding to the alpha band (z80 ms and z130 ms). A similar behavior is observed in 40-min MEG (Figure S7).

(C) The scatter plot between fðamaxÞ and fðtmin
0 Þ shows that the attenuation-amplification transition in dPðs0; t0Þ correlates with the maximum in the a band of the

power spectrum. The size of each circle is proportional to the number of points (subjects) in the corresponding region of the plane. The black thick line is a linear fit,

Y = A$X +B, with A = 0:96 and B = 0:26 (r2 = 0:80). Inset: power spectrum SðfÞ for each subject (black lines, MEG 4 min; red lines, MEG 40 min; green lines,

EEG).
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show that the attenuation and amplification regimes correspond

to regimes (A<) and (A>) defined in Figure 2.

We first analyze dPðs0; t0Þ as a function of s0 for several fixed

values of the threshold t0 (Figure 3B). If the relation between

consecutive avalanches depends on their distance in time,

then dPðs0; t0Þ changes as we consider different t0 values. In Fig-

ure 3B, we show the function dPðs0; t0Þ evaluated for t0 values

ranging between 30 and 1,000 ms. We find that dPðs0; t0Þ follows

the attenuation regime for t0s smaller than approximately

100 ms, whereas it conforms to the amplification regime for

larger t0 values. Thus, size increments Ds tend to be negative

when the quiet time between consecutive avalanches is shorter

than 100 ms and positive otherwise. This behavior is also

observed in 40-min MEG data (Figure S7) and is consistent

across subjects (Figure S8). The tendency for negative Dss to

be coupled with Dt < 100 ms implies that avalanche sizes prefer-

entially exhibit a decreasing trend on short timescales, a clear

sign of attenuated bursting activity. On the other hand, the signif-

icant likelihood of positive increments at longer timescales sug-

gests the presence of a regulatory mechanism that, after dis-

charging cycles with decreasing avalanche sizes, amplifies

bursting activity and leads to the appearance of larger ava-

lanches. The transition from the attenuation to the amplification

regime occurs at t0z100 ms, where we observe that

dPðs0; t0Þx0 (Figure 3B). Importantly, dPðs0; t0Þx0 implies that

Pðs0; t0ÞxP�ðs0; t0Þ, which, in turn, implies that, in the plane

DtDs, the local density around Dtz100 ms is comparable with

the density obtained with the reshuffled avalanche sizes.

Crucially, we observe that the attenuation and amplification re-

gimes correspond to regime (A<) and (A>) in the quiet-time distri-

butions and that the attenuation-amplification transition coin-

cides with the crossover from regime (A<) to regime (A>)

(Figures 2C and 2D).

The AAD of the awake resting state correlates with the
alpha rhythm
To identify the transition point tmin

0 from the attenuation to

the amplification regime, we study dPðDs < s0;Dt < t0Þ as a

function of t0 for a range of fixed s0 values; i.e., dPðt0Þ (Fig-

ure 3B, right). We plot dPðt0Þ for s0 = ± 10, where the quantity

dPðDs < s0;Dt < t0Þ is generally non-zero away from the

transition point (Figure 3, left and center panels). A similar

behavior is observed for other s0 values (Figure S7). We find

that the transition from positive to negative dPðt0Þ lies mostly

in the range [70 ms, 130 ms] (Figures 3B and S7), which

approximately corresponds to oscillations in the frequency

range of 8–13 Hz, commonly identified as the alpha band.

Similar results are obtained in 40-min MEG recordings (Fig-

ure S7). Then we define tmin
0 as the t0 that minimizes

jdPðDs < s0jDt < t0Þj over a range of relevant s0 values; namely

tmin
0 = mint0 ð

P30
s0 = � 30jdPðDs < s0jDt < t0ÞjÞ.

Next, we show that the attenuation-amplification transition

correlates with the timescale characteristic of the alpha rhythm

and is consistent across subjects in MEG and EEG recordings

of the awake resting state (Figures S7 and S8). In Figure 3C,

for all subjects, we plot the frequency fðamaxÞ, which corre-

sponds to the maximum power in the alpha band, versus the

transition frequency fðtmin
0 Þ = 1=tmin

0 corresponding to the transi-

tion point tmin
0 from the attenuation regime to the amplification

regime (Figure 3C). We observe that the frequency fðtmin
0 Þ corre-

lates with fðamaxÞ (r2 = 0:80), indicating that the attenuation-

amplification transition is intimately connected to the dynamics

of alpha oscillations. Importantly, the correlation between the

transition frequency fðtmin
0 Þ and fðamaxÞ suggests that the cross-

over in the distribution of quiet times and in the quantity dPðs0; t0Þ
relates to a basic difference in the cascading process within and

between alpha cycles.

Alpha ‘‘waxing and waning’’: A long-term mechanism
that regulates attenuation and amplification bouts
according to the Omori law
We have shown that the AAD of the resting state cascading pro-

cess acts on a timescale of less than a second, with an attenua-

tion-amplification transition that correlates with the character-

istic frequency of alpha oscillations (Figure 3). Importantly,

alpha waves are also known to exhibit long-term alternation be-

tween higher- and lower-amplitude fluctuations over timescales

of several seconds—the so called ‘‘waxing and waning’’ phe-

nomenon.18–20 To characterize the resting-state cascading pro-

cess in relation to alpha ‘‘waxing and waning,’’ we focus on large

cascades of activity, whichwe define as avalanches larger than a

given size s� and label them as main avalanches, A� (Figure 4A,

left top panel). Large avalanches are synchronous events con-

sisting of time-clustered, higher-amplitude signal fluctuations

over a large number of sensors (see the raster plot in Figure 4A,

left bottom panel). We observe that, following a main avalanche

A� (identified by blue arrows in the right panel of Figure 4A), the

sizes of activity cascades tend to rapidly decrease, with fluctua-

tions that also decrease with the time elapsed from A�. We refer

to the activity following a main avalanche as the Omori sequence

(Figure 4A, left panel), in analogy with the sequence of after-

shocks that follows a main earthquake.

Such dynamics follow the attenuation-amplification principle

over timescales ranging between a few seconds and a few

tens of seconds and are strongly reminiscent of alpha ‘‘waxing

and waning.’’20 Following this analogy, we analyze the brain ac-

tivity around the main avalanches A�s. In Figure 4A (right), we

show the analysis of a raster plot segment from an Omori

sequence (marked in magenta in the left panel). We observe

that the main avalanche identified in the raster plot (top) corre-

sponds to higher amplitude alpha bursts (center), with large

peaks in the alpha power SðaÞ (bottom). Furthermore, we notice

that, before and after the main avalanche, the signal amplitude

and the alpha power decrease considerably (Figure 4A, center

and bottom).

Next, we proceed to quantify the Omori sequences by

analyzing the number NðtÞ of avalanches per unit time occurring

after a time t has elapsed from the main avalanches. We find that

NðtÞ decays as t�p across a wide range of ts in 4-min MEG and

EEG recordings (Figure 4B). We observe that the exponent p is

close to one for a range of threshold values s� used to identify

themain avalanches, and its value decreaseswhen the threshold

s� becomes too large (Figure 4B, insets). This behavior is also

observed in 40-min MEG recordings and is consistent across

subjects (Figure S9). The power-law decayNðtÞft�p of the num-

ber of events following a main avalanche is consistent with the
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generalized Omori law, NðtÞfðt+cÞ�p (where c is a parameter

related to onset of the power-law), which describes the temporal

organization of aftershocks following a main earthquake.50,51

The presence of the Omori law indicates that, after a main

avalanche, the occurrence of the following avalanches is corre-

lated over a wide range of timescales—up to several seconds,

the location of the power-law cutoff. In particular, the power-

law decay, NðtÞft� 1, implies that the activity after a large

cascade is characterized by temporal clustering over unusually

long timescales—up to tens of seconds—and that the alterna-

tion between high- and low-amplitude fluctuations does not

have characteristic temporal scales.18 In analogy with the earth-

quake dynamics, the Omori law for avalanches may be related to

the slowbuild up and discharge of synaptic resource across neu-

ral populations following main avalanches.

Importantly, we observe that, within an Omori sequence, the

average Ds between consecutive avalanches is always negative

for t < 100ms (Figure 4C). For t longer than a few hundreds ofmil-

liseconds, the average Ds tends to transitions to positive values,

although larger statistical samples would be needed to make a

robust assessment of CDsD in this region.

Neural activity cascades during sleep do not obey AADs
We demonstrated that collective neural activity during resting

wakefulness is characterized by AAD; namely, alternation of

two distinct dynamical regimes: an attenuation regime within

the alpha cycle and an amplification regime between alpha cy-

cles (Figure 3). The AAD is part of the Omori-type dynamics en-

compassing resting-state brain activity over timescales of

several seconds. To verify that these characteristics of the

cascading dynamics are specific to the awake resting state

dominated by the alpha rhythm, we next investigate the dy-

namics of neural cascades during NREM sleep. In contrast to

the awake resting state, brain activity during NREM sleep shows

A C

B

Figure 4. Alpha ‘‘waxing and waning’’ is described by the Omori law in the underlying neural cascading process

(A) A raster plot of 35 s of activity (left, bottom) and the corresponding avalanche sizes (left, top) showing three Omori sequences of different durations ranging

between about 2 and 15 s and including several alpha cycles. Each sequence starts with a main avalanche A� with a size larger than 30 (blue arrow). Activity

decreases over time until the next main avalanche. The raster plot corresponding to the start of the first Omori sequence (highlighted inmagenta in the left, bottom

panel) is shown in the right, top panel. Brain activity around the main avalanche corresponds to high-amplitude alpha bursts (right, center; yellow shaded area),

preceded and followed by lower-amplitude fluctuations. The instantaneous power at 10 Hz peaks around the main avalanche and then rapidly decreases (right,

bottom).

(B) NðtÞ as a function of the time t elapsed after a main avalanche A� in 4-min MEG resting brain activity (left, individual subject). NðtÞ decreases as

the reciprocal of the time elapsed from the main avalanche A�; i.e., NðtÞft�p with px1 (p = 0:9240± 0:0169. s� = 30; s�=ð#MEGsensorsÞx0:11). Inset: NðtÞ
for different values of the threshold s� defining a main avalanche A�. The exponent p ranges between 0.9773 ± 0.0302 (turquoise line) and 0.8054 ± 0.020

(violet line). Similar results are obtained in 40-min MEG recordings (Figure S9). The Omori law is also verified in the EEG of the resting state (right, individual

subject), with p = 0.9384 ± 0.0321 for s� = 10 (s�=ð#EEGsensorsÞx0:16). Power-law fits were performed using a maximum likelihood estimator and compared

with exponential fits via log likelihood ratios (STAR Methods)44 (MEG 4-min: R = 270, p = 4$10� 17. EEG: = 70 , p = 3$10�5). The p value measures the

significance of R and is defined in the STAR Methods. In all cases, the power law is more likely to describe the empirical data. Inset: NðtÞ for different values of

the threshold s� defining a main avalanche A�. The exponent p describing the power-law decay of NðtÞ ranges between 0:9384± 0:0321 (magenta line) and

0:5289± 0:0471 (violet line). NðtÞ is independent of t in the surrogate data (insets, brown curves).

(C) Average Ds = si+1 � si between consecutive avalanches occurring within two main avalanches as a function of the time t elapsed from the first main

avalanche (4-minMEG, n = 70; EEG, n = 6). Error bars represent the standard error of themean.We note that, for surrogate data,Ds is independent of t and always

close to zero (brown triangles).
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a limited amount of alpha oscillations and instead is largely domi-

nated by slow oscillations in the delta band (1–4 Hz).4

We consider EEG recordings across approximately 8 h of night

sleep (STAR Methods) and analyze the distribution of quiet times

between consecutive avalanches. We observe that, unlike the

awake resting state, the distribution of quiet times during NREM

sleep exhibits a single power-law regime with an exponent msx
1:8, followed by an exponential decay for Dt > 10 s (Figure 5A).

Correspondingly, the autocorrelation functionCðtÞ of the instanta-
neous activity, defined as the sum of the absolute values of all sig-

nals exceeding the threshold in a time bin, shows a power-law

decay with an exponent gx0:3 for 1 s < t < 10 s, followed by a

slower decay for larger ts (Figure 5B). Unlike in the awake resting

state (Figure 2), during NREM sleep, CðtÞ exhibits an exponential

decay at shorter timescales (t < 500ms) (Figure 5B).

Next,we examine the scatter plot between theDssand the cor-

respondingDts (Figure 5C).We find that large negativeDss occur

with short quiet-time Dts, while positive size increments tend to

be anti-correlatedwith the corresponding quiet times (Figure 5C).

This behavior is similar to the behavior we observed during

resting wakefulness (Figures 2E and 2F). However, the relation-

ship between consecutive avalanches as a function of the time

separation exhibits a rather different behavior during NREM

sleep. We analyze the quantity dPðs0; t0Þ defined in Figure 3 as

a function of s0 for a range of t0 values between 30 and

4,000 ms (Figure 5D). We find that dPðs0; t0Þ follows the attenua-

tion regimedefined in Figure 3 for all t0 values (Figure 5D); namely,

the size increments Ds between consecutive avalanches tend to

be always negative. This implies that avalanche sizes preferen-

tially exhibit a decreasing trend, an attenuation effect that is

particularly strong for Dts shorter than 400 ms. Such a behavior

is in stark contrast with our observations during resting wakeful-

ness, where we found a transition from an attenuation regime—

Ds < 0 for Dt < 100 ms—to an amplification regime—Ds > 0 for

Dt > 100 ms—at the characteristic time of the alpha rhythm

(Figure 3).

Figure 5. Neural activity cascades during sleep do not exhibit AAD and do not obey the Omori law

(A) Distributions of quiet times between consecutive avalanches during sleep (pooled data, n = 10). Unlike the resting state, during sleep, quiet-time distributions

show a single power-law regime characterized by an exponent m = 1:8311± 0:0018 (R = 107; STAR Methods) and followed by an exponential cutoff. Inset:

power spectra for individual subjects. The maximum is always in the range of 0.5–2 Hz, within the delta band.

(B) Autocorrelation CðtÞ of the instantaneous activity measured in each time bin e. For t < 500 ms, CðtÞ exhibits an exponential decay, which is followed by a plateau

between 500 and 1,000 ms, corresponding to 1- 2 Hz delta oscillations. For 103 < t < 104 ms, CðtÞ decays as a power law with an exponent g = 0:3017± 0:0011.

(C) Scatter plot between Ds and Dt during sleep (all subjects). Negative Dss are positively correlated with their corresponding quiet times, whereas positive Dss

are anti-correlated with their relative quiet times. The Spearman’s correlation coefficient is positive for Ds < 0 and negative for Ds > 0: rðDs <0;DtÞ = 0:1627±

0:0032; rðDs > 0;DtÞ = �0:1022± 0:0041.

(D) The quantity dPðs0; t0Þ as a function of s0 for different values of the threshold t0 on Dts. The error bar on each data point is 2s� (s� is the SD associated with the

surrogatesP�; STARMethods). For each value of t0, dP is always positive for s0 < 0 and negative for s0 > 0 and takes itsmaximum (minimum) at s0x �10 (s0x 10).

Hence, for successive avalanches, the following avalanche tends to be smaller than the preceding one (attenuation regime), independently of the quiet time that

separates them (cf. Figure 3).

(E) Number of avalanches per unit time, NðtÞ, occurring after a main avalanche A* (gray lines, individual subjects; symbols, pooled data). Unlike resting wake-

fulness, NðtÞ does not obey the Omori law, but is well fitted by a stretched exponential NðtÞfe�ðt=tÞb . Inset: NðtÞ for different values of the threshold s� used

to define a main avalanche. Data for different s�’s collapse onto a single curve when t is rescaled by s�
0:5
. Green line, stretched exponential fit NðtÞf e�ðt=tÞb , with

b = 0:25.

(F) The average Ds = si+1 � si between consecutive avalanches occurring within twomain avalanches is always negative andmonotonically increases with t, the

time elapsed from the main avalanche. Error bars represent the standard error of the mean.
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We next analyze the number NðtÞ of avalanches per unit time

occurring after a time t has elapsed from a main avalanche A�.
We find that, unlike in the awake resting state, NðtÞ decays ac-

cording to a stretched exponential; that is, NðtÞfe�ðt=tÞb with

b = 0:25. This behavior is consistent across subjects (Figure 5E,

gray curves) and does not depend on the threshold s� used to

define the main avalanches A�, as demonstrated by the data

collapse in the inset of Figure 5E. Furthermore, in contrast to

the awake resting state, we find that the average Ds in the

sequence of avalanches between two main shocks is always

negative and slowly approaches zero for t > ð1� 2 s) (Figure 5F).

DISCUSSION

In this paper, we provided a description of resting-state brain ac-

tivity that uncovers the dynamic organization of neural activity

cascades in relation to brain rhythms and offers new insights

into the functional role of alpha oscillations in the awake resting

state. Our analysis shows that the collective neural dynamics un-

derlying resting-state brain activity is characterized by the rhyth-

mic alternation of attenuation-amplification bouts, which is

modulated by the alpha rhythm across multiple timescales. On

a timescale of a few alpha cycles (< 1 s), attenuation of neural ac-

tivity cascades is found within the typical length of the alpha cy-

cle (i.e., about 100 ms),1,2 while amplification of neural activity

cascades occurs over timescales of a few hundreds of millisec-

onds. Significantly, the attenuation-to-amplification transition

consistently correlates with the dominant frequency in the alpha

band. We have shown that these short-term AADs are part of a

large-scale, size-dependent temporal structure of neural cas-

cades that obeys the Omori law50: large avalanches (main ava-

lanches) are followed by increasingly smaller avalanches at a

rate that decays as a power law of the time elapsed from the

main avalanche—long-term AADs regulating brain activity over

a timescale of seconds. Importantly, the short-term AADs and

the Omori law are unique to the awake resting state and are

not present during NREM sleep.

The dynamic structure of neural cascades during the awake

resting state contains the hallmarks of two key functional charac-

teristics of the alpha rhythm: (1) the timing of inhibition and exci-

tation in cortical networks and (2) the fluctuations in amplitude

known as ‘‘waxing and waning.’’6,18–20,42,57,58 The short-term

AAD reported in the present study indicates that inhibition may

be activated to gradually suppress the cascading process within

about 100 ms during the attenuation regime, while excitability is

successively enhanced to amplify neural cascades over the

timescales of a few alpha cycles (a few hundreds of millisec-

onds). Coherently, at the crossover between attenuation and

amplification (i.e., at about the 100 ms characteristic of alpha

waves), there is no clear monotonic relation between consecu-

tive avalanches, which is consistent with a random organization

of avalanche sizes—a clear transition signature. This is consis-

tent with the hypothesis that alpha-mediated inhibition is applied

in rhythmic cycles, a mechanism referred to as ‘‘pulsed inhibi-

tion.’’8,30,31 At the same time, our findings also indicate an active

role of alpha waves in timing the increase in network excitability

(increased excitation or disinhibition), an effect not described

previously. This suggests a dual role of alpha oscillations, going

beyond the pulsed inhibition hypothesis. Furthermore, our anal-

ysis shows that the attenuation-amplification principle governs

resting-state brain activity across scales, revealing a precise

structure in the cascading process underlying the long-term

‘‘waxing and waning’’ phenomenon.20 We found that the high-

amplitude alpha bursts function as main inhibitory events. Be-

tween such events, which we call main avalanches, smaller

and increasingly sparser cascades occur, obeying the short-

term AADs. These observations indicate that the precise short-

term dual role—attenuating and amplifying—of the alpha rhythm

is embedded in a size-time dependent long-term organization

captured by the Omori law. In contrast with the description of

the waxing and waning as a multi-periodic phenomenon,20 the

range of variability implied by the power-law behavior of the

Omori law indicates that the fluctuations associated with

the ‘‘waxing andwaning’’ of the alpha rhythm do not have a char-

acteristic time, as recent studies have also suggested.18,26 This

may provide the brain with the flexibility necessary to organize

complex streams of information while maintaining precise infor-

mation control through timely short-term AADs.

Such findings point to an intermittent rather than periodic na-

ture of alpha waxing and waning. This is in line with recent ana-

lyses of resting-state brain activity18,26 showing that the power in

the alpha band follows a bistable distribution, with large-scale

high- and low-power modes. The dwell time in high- and low-po-

wer modes is distributed according to a stretched exponential,

indicating that the alternation between modes is bursty, or

erratic, in nature rather than periodic. We notice that, unlike

neuronal avalanches, spatiotemporal events unfolding over mul-

tiple sensors across multiple time bins, these quantities are

defined on single-sensor signals. Moreover, avalanches are a

collective measure, and, as such, their dynamics arise from the

complex relationship among all sensor signals (i.e., large and

distinct populations of neurons). However, the building blocks

of neuronal avalanches (i.e., excursions over threshold in individ-

ual signals) obey Weibull-like statistics,23 indicating that, when

constrained to the individual sensors signals that participate in

the avalanches, there are close analogies with the results in

Freyer et al.18

In stark contrast with our observations in the awake resting

state, we found that the cascading process during NREM sleep,

where the alpha rhythm is nearly absent, does not show AADs,

and the avalanche occurrence rate after a large avalanche fol-

lows a stretched exponential decay. The stretched exponential

can be understood as a superposition of exponential decays

with different characteristic times. In this case, the cascading

process can be seen as the superposition of many indepen-

dently acting entities, each with a specific fixed cascading

rate. Thus, the presence of a stretched exponential decay during

sleep suggests that the corresponding emergent cortical pat-

terns may depend on the complex interplay of the multiple brain

regions controlling sleep regulation and on the coupling of

different brain rhythms.59–66 This further confirms that the

AADs and the Omori law are related to the alpha rhythm domi-

nating the awake resting state and suggests distinct generative

mechanisms for the cascading process during NREM sleep.

Despite the difference in avalanche dynamics between sleep

and awake resting state reported here, neuronal avalanches
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during sleep show power-law size and duration distributions

consistent with criticality,67,68 as observed in the awake resting

state.36,37

We have shown that the distribution of quiet times between

consecutive neural cascades, PðDtÞ, exhibits two distinct po-

wer-law regimes and related this behavior to the presence of

dominant alpha oscillations. The quiet time distribution has

been investigated previously in other systems without alpha

oscillations, and its behavior conditioned to the minimum

avalanche size (i.e., PðDtjs > scÞ, with s the avalanche size and

sc a threshold value) has also been studied.35,39,49 In cortex slice

cultures with up and down states and nested theta-gamma oscil-

lations, PðDtÞwas found to follow a non-monotonic behavior with

a power law followed by a hump and a faster decay, with the

hump being located at the characteristic time of the slow up/

down-state oscillations.39,40,52 Furthermore, it was shown that,

because of the presence of up- and down-states, the conditional

distributions PðDtjs > scÞ do not collapse onto a unique scaling

function when quiet times are rescaled by the mean quiet

time, CDtD. Most importantly, and in line with our findings,

PðDtjs > scÞ at the characteristic time of the theta oscillations

(200 ms) has been found to be independent of sc
39. On the other

hand, in freely behaving rats, a double power-law scaling func-

tion has been found to describe the PðDtjs > scÞ for a range of

sc:
35 In contrast with these findings and ours (Figures S4 and

S5), the same analysis in zebrafish, where no oscillations are pre-

sent, has shown that the quiet-time distributions for different

thresholds sc collapse onto a unique scaling function that is

well described by a gamma distribution.49 Overall, these obser-

vations indicate that the presence of prominent neural oscilla-

tions is connected with non-homogeneous forms of the quiet-

time distribution as well as a peculiar relationship between Dt

and avalanche sizes s, where the transition between distinct

scaling behaviors coincides with the characteristic period of

the dominant oscillations.

Our analysis of neural activity cascades in relation to brain

rhythms lays the basis for a unifying view of two complementary

approaches to neural synchronization: neuronal avalanches and

oscillations. On one hand, brain rhythms have characteristic

times and amplitudes and are, by definition, a property of the in-

tegrated electromagnetic signals arising from the superposition

of synaptic currents from large neural populations. On the other

hand, neuronal avalanches exhibit scale-free, power-law statis-

tical properties and show a consistent spatiotemporal organiza-

tion in terms of discrete events, from sequences of spiking neu-

rons49,69–72 to clusters of extreme amplitude fluctuations in local

field potentials (LFP), EEG, andMEG sensor arrays.33,34,36,37 The

coexistence of neuronal avalanches and oscillations has been

investigated previously in mature cortex slice cultures, rodents,

and non-human primates, where nested theta and beta/gamma

oscillations embedded in avalanches have been reported,38,39,41

and a hierarchical organization of theta and gamma oscillations

was identified.39 In line with our observations pointing to sub-

stantial differences between cascading processes during

distinct physiological states (i.e., awake resting state and

NREM sleep), studies of spontaneous activity in mature cortex

slice cultures showed that avalanche dynamics are highly sensi-

tive to the excitation-inhibition balance.52–54 Furthermore, a tem-

poral structure of neuronal avalanches consistent with the Omori

lawwas also identified by Plenz.55 Recently, the relation between

neuronal avalanches, gamma oscillations, and emergent signa-

tures of critical dynamics has been studied in non-human pri-

mates.41 On the other hand, in the human brain, the relationship

between avalanche dynamics and oscillations had not been

scrutinized to date. Indeed, simultaneous investigations of oscil-

lations and avalanches in the human brain selectively focused on

LRTCs in alpha amplitude fluctuations and on avalanche scaling

features.17,73 At the same time, models showing simultaneous

emergence of avalanches and oscillatory behaviors mostly

concentrated on underlying mechanisms or signatures of criti-

cality.22,23,74–77 In particular, a quantitative analysis of awake

resting-state brain activity through a class of adaptive neural net-

works recently linked the coexistence of alpha oscillations and

avalanches to proximity to a non-equilibrium critical point at

the onset of self-sustained oscillations.23,78 In this context, the

present study establishes the first functional and dynamic links

between neural oscillations and avalanches in the awake resting

state, uncovering a deep relationship between two collective

phenomena with antithetic features: scale-free avalanches and

scale-specific brain rhythms.

Overall, the analysis of accessible, near-synchronous collec-

tive behaviors shows that the alpha rhythm functions as a pace-

maker for network excitability during the awake resting state.

The AADs identified here correlate with alpha rhythmicity and

shape neural activity on multiple timescales, from a few hun-

dreds of milliseconds to several seconds, indicating that alpha

regulates the timing of inhibition and excitation bouts in the

awake resting-state brain activity. The results suggest a unifying

view of the pulsed inhibition function and the ‘‘waxing and

waning’’ phenomenon, where the latter is a mechanism that reg-

ulates long-term, resting wakefulness network excitability.

Future work will focus on the role of AADs in information pro-

cessing. In this respect, the approach we put forward will allow

us to (1) directly verify, and potentially extend, the pulsed inhibi-

tion hypothesis8,30 through analysis of the AADs in relation to

processing of sensory stimuli and (2) clarify the functional role

of the ‘‘waxing and waning’’ phenomena. More generally, our

approach outlines a coherent view of the dichotomy of scale-

specific oscillations and scale-free avalanches23,38,39,41,54 and

demonstrates a functional and informative connection between

these two phenomena. This may prove useful to dissect collec-

tive neural dynamics underlying brain oscillations in contexts

where simultaneous recordings of single-cells and coarse-

grained signals are out of reach, harvesting information from

the analysis of neural cascading processes that would not be

accessible otherwise.

Limitations of the study
We identified hallmarks of alpha-mediated pulses of attenuation

and amplification of neural activity cascades fromMEG and EEG

recordings. However, simultaneous multiscale recordings will be

needed to relate the reported large-scale dynamics with the col-

lective behavior of a local neural population, in particular modu-

lation of inhibitory versus excitatory neural population activity.

This is a key step toward assessing whether alpha oscillations

drive alternating pulses of inhibition and excitation, as our results

10 Cell Reports 42, 113162, October 31, 2023

Article
ll

OPEN ACCESS



seem to indicate. To further validate the link between AADs and

alpha rhythm, a future analysis of the alpha-depressed resting

state is needed to be also compared with the reported evidence

of AAD absence during NREM sleep.

In addition, we note that the alpha rhythm is also present dur-

ing REM sleep.4,79 However, here, we limited our investigation to

the functional role of alpha oscillations in resting wakefulness

because we were interested in finding evidence of alpha-medi-

ated pulsed inhibition.30 The presence of AADs in relation to

alpha oscillations during REM sleep should be of great interest

for future work.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DE-

TAILS

B MEG of the eyes-closed awake resting state

B EEG of the eyes-closed awake resting state

B Sleep EEG

d METHOD DETAILS

B Data acquisition and pre-processing

B Analysis of collective neural activity

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2023.113162.

ACKNOWLEDGMENTS

This research was funded in whole or in part by the Austrian Science Fund

(FWF) (grant PT1013M03318 to F.L.). For the purpose of open access, the

author has applied a CC BY public copyright license to any Author Accepted

Manuscript version arising from this submission. The study was supported

by the European Union Horizon 2020 Research and Innovation Program

under the Marie Sklodowska-Curie action (grant agreement 754411 to F.L.)

and in part by the NextGenerationEU through the grant TAlent in

ReSearch@University of Padua – STARS@UNIPD (to F.L.) (project BRAINCIP

[brain criticality and information processing]). L.d.A. acknowledges support

from the Italian MIUR project PRIN2017WZFTZP and partial support from

NEXTGENERATIONEU (NGEU) funded by the Ministry of University and

Research (MUR), National Recovery and Resilience Plan (NRRP), and project

MNESYS (PE0000006)—a multiscale integrated approach to the study of the

nervous system in health and disease (DN. 1553 11.10.2022). O.S. acknowl-

edges support from the Israel Science Foundation, grant 504/17. The work

was supported in part by DIRP ZIAMH02797 (to D.P.).

AUTHOR CONTRIBUTIONS

Conceptualization, F.L., L.d.A., and O.S.; methodology, F.L., L.d.A., and O.S.;

formal analysis, F.L. and S.S.; investigation, all authors; writing – original draft,

F.L.; writing – review & editing, all authors; visualization, F.L.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.

Received: May 16, 2022

Revised: June 7, 2023

Accepted: September 7, 2023

REFERENCES

1. Buzsaki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical net-

works. Science 304, 1926–1929.

2. Berger, H. (1929). Ueber das Elektroenkephalogram des Menschen. Arch.

Psychiatr. Nervenkr. 87, 527–570.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

MEG of the eyes-closed awake resting state
This study uses datasets previously collected at the NIMH. The 4-min MEG data are the same as used in36. The 40-min data are the

same as used in.80 Ongoing brain activity was recorded from 100 healthy participants (38males and 66 females; age, 31:8± 11:8 y) in

theMEG core facility at the NIMH (Bethesda, MD, USA) for a duration of 4min (eyes closed), and from three healthy female (age range

24–29) participants for a duration of 40 min (eyes closed). All experiments were carried out in accordance with NIH guidelines for

human subjects. For the present studies 73 subjects [70 (4 min) + 3 (40 min)] with a dominant alpha peak and AAD transition were

selected.

EEG of the eyes-closed awake resting state
Resting-state EEGwas recorded for 3min (eyes closed) from six right-handed healthy volunteers (age range 22–27). Participants had

no history of neurological or psychiatric diseases and had normal or corrected-to-normal vision. All participants gave written

informed consent, and were paid for their participation. The study was approved by a local ethics committee (Ben-Gurion University)

and was in accordance with the ethical standards of the Declaration of Helsinki.

Sleep EEG
The data analyzed in this study were extracted from overnight polysomnography (PSG) recordings acquired at the Parma Sleep Dis-

orders Center. Ten healthy subjects, 5 males and 5 females (age range 28–53 y; average age was 39,6 y) were selected after an

entrance investigation based on the following inclusion criteria: (i) absence of any psychiatric, medical, and neurological disorders;

(ii) normal sleep/wake habits without any difficulties in falling or remaining asleep at night. A personal interview integrated by a struc-

tured questionnaire confirmed good vigilance level during the daytime; and (III) no drug intake at the time of the PSG or the month

before.

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Humans (MEG) (Shriki et al.)36 https://www.jneurosci.org/content/33/16/7079

Humans (EEG resting wake) This paper N/A

Humans (EEG sleep) This paper N/A

Software and algorithms

MATLAB R2020b Mathworks www.mathworks.com

Python version 3.1 Python Software Foundation www.python.org

powerlaw (Alstott et al.)46 https://github.com/jeffalstott/powerlaw
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METHOD DETAILS

Data acquisition and pre-processing
MEG of the eyes-closed awake resting state

The sampling rate was 600 Hz, and the data were band-pass filtered between 1 and 80 Hz. Power-line interferences were removed

using a 60-Hz notch filter designed in MATLAB (Mathworks). The sensor array consisted of 275 axial first-order gradiometers. Two

dysfunctional sensors were removed, leaving 273 sensors in the analysis. Analysis was performed directly on the axial gradiometer

waveforms.

EEG of the eyes-closed awake resting state

EEGwas recorded using the g.tec HIamp system (g.tec, Austria) with 64 gel-based electrodes (AgCl electrolyte gel). Electrodes were

positioned according to the standard 10/20 system with linked ears reference. Impedances of all electrodes were kept below 5 k U.

Data were pre-processed using a combination of the EEGLABMATLAB toolbox81 routines and custom code. After high-pass filtering

(cut-off 1 Hz), a customized adaptive filter was applied to suppress line-noise. This was followed by Artifact Subspace Reconstruc-

tion,82 re-referencing to the mean, and low-pass filtering (cutoff 60 Hz). Subsequently, an ICA (independent component analysis) al-

gorithm was applied to the data.83 The resulting ICs were evaluated automatically for artifacts by combining spatial, spectral and

temporal analysis of ICs. ICs identified as containing ocular, muscular, or cardiac artifacts were removed from the data

Sleep EEG

Full-night unattended PSG recordings were performed with EOG (2 channels), EEG (19 channels in 7 subjects, Ag/AgCl electrodes

placed according to the 10–20 International System referred to linked-ear lobes: Fp2, F4, C4, P4, O2, F8, T4, T6, Fz, Cz, Pz, Fp1, F3,

C3, P3, O1, F7, T3, T5; 25 channels in 3 subjects: CP3, CP4, C5, C6, C2, C1, FC4, FC3, F4, C4, P4, O2, F8, T4, T6, Fz, Cz, Pz, F3, C3,

P3, O1, F7, T3, T5), EMGof the submentalismuscle, ECG, body positionmonitor, and signal for SpO2 (pulse-oximetry O2-saturation).

Sleep EEG recordings were obtained using a Brain QuickMicromed System 98 (Micromed, SPA) recordingmachine. The institutional

Ethical Committee Area Vasta Emilia Nord approved the study (protocol no. 19750). Sleep was scored visually in 30-s epochs using

standard criteria.4

Analysis of collective neural activity
MEG and EEG of the eyes-closed awake resting state

For eachMEG (EEG) sensor, positive and negative deflections in theMEG (EEG) signal were detected by applying a threshold h at ± n

SD. Comparison of the signal distribution to the best fit Gaussian indicates that the two distributions start to deviate from one another

around 2.7SD.36 Thus, thresholds smaller than 2.7SD will lead to the detection of many events related to noise in addition to real

events, whereas much larger thresholds will miss many of the real events. To avoid noise-related events while preserving most of

relevant events, in this study, we used threshold values h> 2:9 SD. To ensure a similar event rate across different sets of recordings

(4-min MEG, 40-min MEG, 3-min EEG), we used the following h values: 3.3 SD for 4-min MEG; 3 SD for 40-min MEG, and 3 SD for

3-min EEG. In each excursion beyond the threshold, a single event was identified at the most extreme value (maximum for positive

excursions and minimum for negative excursions). Data were binned using a time window e = 2Tmeg = 3:3 ms and e = Teeg = 4 ms

for MEG and EEG data, respectively. Tmeg = 1:67 ms was the sampling interval for MEG recordings, while Teeg = 4 ms was the sam-

pling interval for EEG recordings. A neural activity cascade, or avalanche, was defined as a continuous sequence of time bins inwhich

there was at least one event on any sensor, ending with a time bin with no events on any sensor. The size of an avalanche, s, was

defined as the number of events in the avalanche. For more details, see36. The size of an avalanche can be equivalently defined

as the sum over all channels of the absolute values of the signals exceeding the threshold (Figure S10).

Sleep EEG

To identify avalanches during sleep, positive and negative deflections were detected by applying a threshold h± 2 SD (comparison of

the signal distribution to the best fit Gaussian indicates that the two distributions start to deviate from one another at around 2SD). An

avalanche was then defined as a continuous time interval in which there was at least one EEG channel supra-threshold. Due to the

reduced number of electrodes in EEG sleep recordings, the size of an avalanche was defined as the sum over all channels of the

absolute values of the signals exceeding the threshold. This definition is equivalent to the definition of avalanche size as the number

of electrodes with positive (negative) deflections exceeding the threshold h33 (Figure S10).

Conditional probabilities analysis

Each recording results in a sequence of avalanches ai, and corresponding sizes si (Figure 1). The quantity Ds = si+1 � si is the dif-

ference between the sizes of two consecutive avalanches ai and ai+1, and is used to study their monotonic relation—i.e. whether si is

more likely to be smaller or larger than si+1—as a function of the quiet times Dt occurring in between. To this end, the following con-

ditional probability is defined,

PðDs < s0 j Dt < t0ÞhNðDs < s0;Dt < t0Þ
NðDt < t0Þ ;

where NðDs < s0;Dt < t0Þ is the number of avalanche couples which are separated by a quiet time Dt shorter than a given t0 and

whose size difference Ds is smaller than a given s0, and NðDt < t0Þ is the number of quiet times Dt shorter than t0.

PðDs < s0 j Dt < t0Þ gives the probability that two consecutive avalanches separated by a Dt shorter than t0 are such that Ds < s0,
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with s0 a positive or negative integer. The conditional probability assesses the monotonic relation between consecutive avalanches

as a function of the quiet time separating them, thus, providing a detailed picture of the correlation landscape of the avalanche pro-

cess. To measure the strength and significance of such a relationship, for each given couple of thresholds s0 and t0,

PðDs < s0 j Dt < t0Þ is systematically compared with the same conditional probability evaluated over 104 independent surrogate

avalanche time series. Surrogates are obtained by randomly reshuffling avalanche sizes while keeping fixed their starting and ending

times. PðDs < s0 j Dt < t0Þ are then compared with the average surrogate conditional probabilities, P�ðDs < s0jDt < t0Þ, by analyzing

the quantity

dPðs0; t0ÞhPðDs < s0 j Dt < t0Þ � P�ðDs < s0 j Dt < t0Þ
as a function of s0 for different fixed values of t0 (Figure 3). Being s�ðs0; t0Þ the standard deviation of the surrogate conditional prob-

ability P�ðDs < s0jDt < t0Þ, if jdPðs0;t0Þj> 2s�ðs0;t0Þ, one can conclude that P and P� are significantly different (0.05 significance level),

and that significant correlations exist between Ds < s0 and Dt < t0.

Two cases must be distinguished: dPðs0; t0Þ> 0 and dPðs0; t0Þ< 0. If dPðs0; t0Þ> 0, the number of avalanche couples

NðDs < s0;Dt < t0Þ satisfying both conditions is significantly larger in the original data than in the surrogates; namely, it is more likely

to find couples satisfying both conditions in the original rather than in the surrogate avalanche time series. Hence,Ds andDt are posi-

tively correlated. On the contrary, if dPðs0;t0Þ< 0, the number of couples NðDs < s0;Dt < t0Þ satisfying both conditions is significantly

larger in the surrogates than in the original data; namely, it is more likely to find couples satisfying both conditions in the uncorrelated

surrogates rather than in the real avalanche time series. In this case, one says that Ds and Dt are negatively correlated.

Omori law

The number of avalanches per unit time, NðtÞ, occurring after a time t has elapsed from the main avalanche A� is computed using a

time window dt that increases logarithmically. Denoting a set of window boundaries asW = ðw1;w2;.;wkÞ and fixing w1 = 10 ms,

the logarithmic windows fulfill the relation wi+1 = wi$10
c, which implies that the window size is constant in logarithmic scale, i.e.,

log wi+1 � log wi = c. The following window sizes of c have been used in this study: c = 0:1 for the NðtÞ of the awake resting state

(Figures 3 and S9); c = 0:11 for the NðtÞ during sleep (Figure 4).

Spearman’s correlation coefficient

Given two variables X and Y, the Spearman’s correlation coefficient is defined as

rs =
covðrgX ; rgY Þ

srgXsrgY

;

where rgX and rgY are the tied rankings of X andY, respectively, srgX
and srgY their standard deviations, and covðrgX ; rgY Þ indicates the

covariance between rgX and rgY .

Surrogate signals

Surrogate signals are obtained by randomphase shuffling of the original continuous signals. A Fourier transform of each sensor signal

is performed, and the corresponding phases are randomized while amplitudes are preserved. The surrogate signals are then ob-

tained by performing an inverse Fourier transform. The random phase shuffling destroys phase synchronization across cortical sites

while preserving the linear properties of the original signals, such as power spectral density and two-point correlations.84 Surrogate

signals were used to generate surrogate data for Figures 2, 4, and 5.

Surrogate time series for correlations between Ds and Dt

To test significance of correlations between consecutiveDs andDt, a surrogate sequence of avalanche sizes was generated for each

subject by randomly reshuffling the original order of avalanche sizes. The Spearman’s correlation coefficient rðDs;DtÞ between

consecutive Ds and Dt was calculated for each surrogate. The average Spearman’s correlation coefficient obtained from all surro-

gates was then compared with the average correlation coefficient calculated from the original sequences of avalanche sizes and

quiet times (Figures 1 and 4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Power law exponents were estimated using a maximum likelihood estimator.44,45,85 The power law fit was compared to an exponen-

tial fit by evaluating the log likelihood ratio R = ln Lp=Le, where Lp;e =
Qn

i = 1pp;eðxiÞ is the likelihood. R is positive if the data are more

likely to follow a power law distribution, and negative if the data are more likely to follow exponential distribution. The statistical sig-

nificance for R was estimated as in44,85. Following,85 the p value associated to R is given by

p =
���erfc

�
R
. ffiffiffiffiffiffi

2n
p

s
����;

where s2 is the variance of the data85 and

erfcðzÞ = 1 � erf =
2ffiffiffi
p

p
Z N

z

e� t2dt

is the complementary Gaussian error function.85
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Power-law exponent and fitting parameters for quiet time distributions, PðDtÞ, for the autocorrelationCðtÞ; and for the functionNðtÞ
were evaluated on pooled data, unless otherwise stated (Figures 1, 3, and 4). The corresponding error reported in themain text and in

the figure caption is the error on the fit, unless otherwise stated.

Within each data group (MEG, EEG resting wake, EEG sleep), the Spearman’s correlation coefficients rðDs;DtÞwere evaluated for

each subject. The values reported in the main text and in the figure captions are (mean ± SD) (Figures 1 and 4). Significance of cor-

relations was assessed comparing the average correlation coefficient calculated from the original sequences of avalanche sizes and

quiet times with the correlation coefficient calculated from surrogate time series (Figures 1 and 4). Pairwise comparisons were con-

ducted using two-tailed Student’s t-test.

Cell Reports 42, 113162, October 31, 2023 17

Article
ll

OPEN ACCESS


	CELREP113162_proof_v42i10.pdf
	Beyond pulsed inhibition: Alpha oscillations modulate attenuation and amplification of neural activity in the awake resting ...
	Introduction
	Results
	Dynamics of neural activity cascades during the awake resting state
	Attenuation-amplification dynamics (AADs) of neural activity in the awake resting state
	The AAD of the awake resting state correlates with the alpha rhythm
	Alpha “waxing and waning”: A long-term mechanism that regulates attenuation and amplification bouts according to the Omori law
	Neural activity cascades during sleep do not obey AADs

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Inclusion and diversity
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	MEG of the eyes-closed awake resting state
	EEG of the eyes-closed awake resting state
	Sleep EEG

	Method details
	Data acquisition and pre-processing
	MEG of the eyes-closed awake resting state
	EEG of the eyes-closed awake resting state
	Sleep EEG

	Analysis of collective neural activity
	MEG and EEG of the eyes-closed awake resting state
	Sleep EEG
	Conditional probabilities analysis
	Omori law
	Spearman’s correlation coefficient
	Surrogate signals
	Surrogate time series for correlations between Δs and Δt


	Quantification and statistical analysis




