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Abstract

The study of spatial (paleo)ecology in mammals is critical to understand how animals adapt

to and exploit their environment. In this work we analysed the 87Sr/86Sr, δ18O and δ13C iso-

tope composition of 65 moose bone and antler samples from Sweden from wild-shot individ-

uals dated between 1800 and 1994 to study moose mobility and feeding behaviour for

(paleo)ecological applications. Sr data were compared with isoscapes of the Scandinavian

region, built ad-hoc during this study, to understand how moose utilise the landscape in

Northern Europe. The 87Sr/86Sr isoscape was developed using a machine-learning

approach with external geo-environmental predictors and literature data. Similarly, a δ18O

isoscape, obtained from average annual precipitation δ18O values, was employed to high-

light differences in the isotope composition of the local environment vs. bone/antler. Overall,

82% of the moose samples were compatible with the likely local isotope composition (n =

53), suggesting that they were shot not far from their year-round dwelling area. ‘Local’ sam-

ples were used to calibrate the two isoscapes, to improve the prediction of provenance for

the presumably ‘non-local’ individuals. For the latter (n = 12, of which two are antlers and ten

are bones), the probability of geographic origin was estimated using a Bayesian approach

by combining the two isoscapes. Interestingly, two of these samples (one antler and one

bone) seem to come from areas more than 250 km away from the place where the animals

were hunted, indicating a possible remarkable intra-annual mobility. Finally, the δ13C data

were compared with the forest cover of Sweden and ultimately used to understand the die-

tary preference of moose. We interpreted a difference in δ13C values of antlers (13C-

enriched) and bones (13C-depleted) as a joint effect of seasonal variations in moose diet

and, possibly, physiological stresses during winter-time, i.e., increased consumption of

endogenous 13C-depleted lipids.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0300867 April 10, 2024 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Armaroli E, Lugli F, Cipriani A, Tütken T

(2024) Spatial ecology of moose in Sweden:

Combined Sr-O-C isotope analyses of bone and

antler. PLoS ONE 19(4): e0300867. https://doi.org/

10.1371/journal.pone.0300867

Editor: Efthymia Nikita, The Cyprus Institute,

CYPRUS

Received: September 27, 2023

Accepted: March 6, 2024

Published: April 10, 2024

Copyright: © 2024 Armaroli et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: For this research SYNTHESYS support

was made available by the European Community –

Research Infrastructure Action under the FP6

Structuring the European Research Area

Programme, SE-TAF-80, grant nr. SE-TAF 3561 to

TT.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0009-0004-6727-7730
https://orcid.org/0000-0002-5642-2216
https://orcid.org/0000-0001-8457-0147
https://doi.org/10.1371/journal.pone.0300867
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300867&domain=pdf&date_stamp=2024-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300867&domain=pdf&date_stamp=2024-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300867&domain=pdf&date_stamp=2024-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300867&domain=pdf&date_stamp=2024-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300867&domain=pdf&date_stamp=2024-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300867&domain=pdf&date_stamp=2024-04-10
https://doi.org/10.1371/journal.pone.0300867
https://doi.org/10.1371/journal.pone.0300867
http://creativecommons.org/licenses/by/4.0/


1. Introduction

The study of species dynamics through space and time, including their movements, feeding

behaviour, interactions and responses to environmental and anthropogenic factors, constitutes

the complex field of spatial ecology [1, 2]. This discipline is increasingly applied to conserva-

tion and management issues to find effective ways to preserve biodiversity in an era of pro-

found environmental change [3–6]. In fact, the changing climate and its consequences (e.g.,

droughts, wildfires, floods, hurricanes), further accelerated by human activities, are causing

disturbance of natural habitats in increasingly unpredictable ways. Therefore, it has become

important to understand how species respond to our changing world and implement ways to

protect our biodiversity [7, 8].

The first step in enabling biodiversity and ecosystem preservation is to study how wildlife

species move across the landscape and to quantify and predict their spatial distribution [9, 10].

Today this is possible through an integrative approach that brings together ecological theory

and statistical modelling [11–14]. At the same time, to interpret present and future environ-

mental changes it is important to understand what changes have occurred over time. This

requires more multidisciplinary research, enabling collaboration among archaeologists, histo-

rians, and natural scientists [15–17].

Animal movements are commonly reconstructed by satellite imaging/GPS tracking [18],

yet this approach requires marking or recapturing individuals, precluding retrospective inves-

tigations from sampled tissues and from archaeological/paleontological specimens. In this

sense, biogeochemical markers can help unravel animal life-histories and migratory behaviour.

Indeed, geochemistry has long been used for provenance and environmental studies, with

applications ranging from food science to ecology, forensics and archaeology [19–23]. It is

now well established that mobility and nutritional patterns are recorded in the geochemical

signature of human and animal skeletal tissues [24–26]. To date, numerous applications of

strontium (87Sr/86Sr), oxygen (δ18O) and carbon (δ13C) isotope analyses have reconstructed

dietary habits, migration events, residential patterns, animal management, exchange of goods

and raw materials in archaeological contexts [27–30].

Studies on modern animals’ spatial ecology are key in understanding how isotopes are

linked with individual mobility. This is due to the fact that modern animal behaviour is known

and can be compared with findings obtained through geochemical analyses [31]. Moreover,

modern samples are not affected by diagenetic modification of bone bioapatite, avoiding the

problems of obtaining pristine isotopic compositions [32, 33]. Altogether, modern tissues are

thus ideal control samples for calibrating our inferences about past mobility from fossil speci-

mens [34, 35].

A key aspect in provenance studies that use isotope analyses, is the determination of bio-

available Sr in the area of interest to determine whether the individual or object under investi-

gation is local or not [36, 37]. However, this is not sufficient to determine where they came

from. In recent years much attention has been focused on the construction of both local and

global isoscapes (i.e. isotope distribution maps) to enable the prediction of the place of origin

of unknown samples using both Sr and O isotope data [38–40].

Here we used modern and historical Alces alces (Linnaeus, 1758) samples (time range

1800–1994) from Sweden to understand the potential of isotope markers in unraveling moose

home-range and migratory behaviour. To this end, we measured Sr, O and C in moose bones

and antlers and compared their values with a novel built isoscape of the Scandinavian region.

Moose is the largest member of the Cervidae family, distributed in the circumpolar boreal

forests of Eurasia and North America [41, 42]. The size of moose populations and their distribu-

tion in Europe has changed over time [43–45]. Today moose are widely distributed in
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Scandinavia and are the dominant large herbivore in Sweden. This animal is currently the focus

of an increasing amount of research on its management and conservation [46, 47]. Monitoring

moose behaviour has proven to be crucial in finding an effective way to control their population

density and detect the effect of their browsing activity on forest damage (including damage to

economically important tree species in the region) [48–51]. The importance of moose browsing

and the need to integrate it into management practices were also recently highlighted by Salis-

bury et al. [52]. They demonstrated the role of moose browsing activity in shaping landscape

structure and boreal forest composition, with a net impact on climate [52]. Overall, monitoring

and predicting moose movements in the landscape are essential for planning both moose and

forest management practices, especially in relation to the growing concern about the effects of

climate change on animal migration and biodiversity conservation [15, 53–55].

Since both migrant and non-migrant individuals are often present within the same popula-

tion [56, 57], much attention has been focused on understanding their movement behaviour,

often using the GPS tracking system. For example, some researchers have studied the interac-

tion between wolves (predator) and moose (prey) [58, 59]. Others have attempted to detect dif-

ferences in the moose home-range and behaviour in relation to age and sex [54, 60], season [54,

61], snow quality and depth [56, 62], foraging strategies [63] and habitat deterioration [64, 65].

Most research on moose has focused on a single population living in a restricted area of

Scandinavia (but see [47]). Here we present a large amount of samples distributed throughout

Sweden. This represents a rare opportunity to study the mobility of a large herbivore such as

moose on a large scale. To date, isotopic analyses on moose samples have been conducted for

ecological studies focused on diet, using mainly N (δ15N) and C (δ13C) stable isotopes [66–70].

To our knowledge, this is the first time that Sr and O isotopes are used together to analyse

moose large-scale mobility in Sweden. Furthermore, no one has yet attempted to build a com-

plete multi-proxy Sr isoscape of Scandinavia, here developed through a machine-learning

model and literature data. In fact, although much attention has been focused on Sr isotope

analysis for past mobility studies in Scandinavia (see among others [71–77]), today only base-

lines of constrained areas (i.e., mainly those characterised by archaeological discoveries) are

available [78–80].

The Sr, C, and O isotope analyses on modern moose samples will be useful as an integrative

approach to modern ecological studies on this animal. They will complement traditional meth-

ods of tracking mobility (e.g., radio-, satellite- and GPS-tracking) as well as genetic analyses

[81, 82], providing a new tool for management and conservation practices. The methodology

used here can also be applied to areas other than Scandinavia and to animals other than

moose, becoming a useful tool for global biodiversity conservation in the current period of

environmental change. Moreover, this approach could be transferred to the study of faunal

and human mobility in the past, implementing the growing research field of geostatistics

applied to archaeological research (see e.g., [83]).

2. Isotopes for tracing mobility and diet

Strontium is an alkaline earth element with four naturally occurring isotopes: 84Sr (*0.56%),
86Sr (*9.87%), 87Sr (*7.04%) and 88Sr (*82.53%). All but 87Sr are stable, while this latter is

radiogenic, forming by the β-decay of 87Rb with a half-life of 4.88 x 1010 years. Strontium

becomes incorporated into the local ecosystem through bedrock weathering, being transferred

to soil, where it mixes with groundwaters, surface waters and atmospheric depositions. Sr is then

transported to the oceans mainly from rivers as dissolved ions in water or through transport of

sediments. Bioavailable Sr is taken up by vegetation through the root uptake and by animals

through food and drinking water, with limited fractionation; moreover, any eventual isotope

PLOS ONE Isotope spatial ecology of moose

PLOS ONE | https://doi.org/10.1371/journal.pone.0300867 April 10, 2024 3 / 29

https://doi.org/10.1371/journal.pone.0300867


effect is corrected after mass bias normalization to an internal stable isotope ratio (i.e. 88Sr/86Sr

or 86Sr/88Sr) [84–87]. Sr substitutes then for calcium in the hydroxylapatite [Ca10(PO4)6OH2] of

vertebrate skeletal tissues. Taken together these characteristics make 87Sr/86Sr a powerful tool to

trace geographically biological [88] and environmental materials [85, 89].

Oxygen has three naturally occurring stable isotopes: 16O (99.757%), 17O (0.038%), 18O

(0.205%). Because of their higher abundance, the ratio between the heavy isotope 18O to the

light isotope 16O of a particular material (δ18O) is commonly determined in geochemistry [90,

91]. The oxygen in mammalian body water comes mainly from drinking water, but also from

oxygen structurally bound to organic compounds in food and atmospheric O2 inhaled by respi-

ration [92–94]. The δ18O (and its fractionation) of these sources is affected by multiple factors

(e.g., precipitation, temperature, humidity, continentality, altitude, latitude), which differ from

one geographical area to the other [26, 38]. The δ18O has thus become key in provenance studies

in archaeology, used for example in the study of seasonal vertical transhumance [95] and

paleoenvironmental reconstruction [96], often in combination with other isotope systems [97].

Carbon has two stable isotopes, 12C (98.93%) and 13C (1.07%). 13C has a mass 8.36% greater

than that of 12C, causing the C isotopes to fractionate in chemical and biological processes [91,

98]. The δ13C value of plant tissues mainly changes depending on the CO2 fixation process

used [99,100], allowing the distinction between C3 and C4 plants [101]. In addition, the δ13C

value can be influenced by the so called “canopy effect”, which causes a depletion of the δ13C

of forest plants due to a number of factors including reduced light levels and re-assimilation of
13C-depleted CO2 [102, 103]. The δ13C is widely used in archaeological research both for die-

tary and paleoenvironmental reconstruction [101, 104], but also for the study of animal man-

agement and faunal migration in combination with δ18O and 87Sr/86Sr values [105, 106].

3. Materials and methods

3.1 Study area

Scandinavia, known as the Scandinavian Peninsula, is a region in Northern Europe character-

ised by diverse lithologies and a complex geological history, which has shaped this landscape

since the Archean. The bedrock is composed of three primary components categorised based

on the timing of rock crystallisation, deposition, and crustal growth: 1) Precambrian crystalline

rocks forming the Baltic Shield also known as the Fennoscandian Shield, 2) the so-called Cale-

donides, rocks of the Caledonian orogeny (0.5–0.4 giga-annum; Ga), and 3) Phanerozoic to

Neoproterozoic sedimentary rocks [107].

The Precambrian basement, primarily composed of granites, gneisses and greenstone belts

forms the core of the Scandinavian Peninsula. It is exposed in large areas of Norway, Sweden

and Finland. The oldest rocks, dated between 2500 and 3100 mega-annum (Ma), are found in

the northeast portion of the Fennoscandian Shield, in the Kola Peninsula, Karelia and north-

eastern Finland. Archean rocks of 2600 to 2800 Ma also outcrop in the northernmost part of

Sweden. Metasedimentary and metavolcanic rocks, as well as multiple generations of grani-

toids, hosting important ore deposits, dated between 1750 and 1900 Ma, formed during the

Svecofennian orogeny and outcrop mainly in northern and central Sweden as well as in the

southwestern part of Finland. Part of the Baltic Shield is also the Transscandinanavian igneous

belt (TIB), consisting of largely undeformed granitoids and associated porphyries, emplaced

between 1850 and 1650 Ma. This is a* 1400 km long belt running across the Scandinavian

Peninsula, from Småland in southern Sweden through Värmland and western Dalarna and

continuing under much of the Caledonian nappes up to northern Scandinavia, cropping out

in small tectonic windows [108, 109].
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The Caledonides were formed during the collisional event between the continents of Baltica

and Laurentia around 450–400 Ma ago, and stretch through most of Norway and in the moun-

tainous northwestern part of Sweden. Sedimentary and volcanic rocks were deposited in the

Iapetus Ocean, between the late Proterozoic and Silurian periods, 700 to 400 Ma ago, and dur-

ing the Caledonian orogeny were thrusted eastwards over the Fennoscandian Shield together

with slices of the crystalline basement. The Caledonian rocks consist of high-grade metamor-

phic rocks and (meta)sedimentary rocks also partially intruded by magmatic rocks [110, 111].

Sedimentary rocks from the Phanerozoic, less than 545 Ma, are found on top of the Pre-

cambrian shield region. Sandstones, shales and limestones dated between 540 and 420 Ma ago

outcrop across extensive areas in southern Sweden, including the islands of Öland and Got-

land. Mesozoic and Tertiary sediments (younger than 250 Ma) are found in southernmost

Sweden (Skåne) and in Denmark [112].

A relatively small outcrop of Permian magmatic rocks ca, 250 Ma old forms the Oslo Gra-

ben, a failed rift system created during the Variscan orogeny [113].

3.2 Sample collection and description

Moose bone and antler specimens of adult individuals were sampled in the zoological collec-

tion of the Naturhistoriska Riksmuseet in Stockholm, Sweden. No permits were required for

the described study, which complied with all relevant regulations. About 50–100 mg powder

of bone or antler were drilled manually using a handheld Proxxon drill with diamond studded

drill bits. Samples were mostly taken from crania (n = 50) and some from antlers (n = 15), col-

lected covering different bedrock types across Sweden (Fig 1). Antlers were sampled in a cm-

size area close to the base (lower part of the antler), representing an estimated period of life

less than one month during spring. Overall, n = 29 samples are males, n = 17 females, and

n = 19 of unknown sex. Details about the sampled specimens such as sample ID, geographic

location, year of death are provided in S1 Table. Bones and antlers have different formation

times (i.e., several years and a few months, respectively; see below). For this reason, we have

interpreted and discussed the results separately. In addition, we acknowledge that because we

are dealing with bone and antler samples from different individuals, our interpretation con-

cerns general aspects of moose ecology, rather than individual-level inferences.

The spatial distribution of the analysed moose samples is reported in Fig 1 and plotted over

a geological map of Scandinavia. Latitude and longitude values for each sample are reported in

S1 Table.

3.3 Isotope analyses

Strontium (87Sr/86Sr), oxygen (δ18O) and carbon (δ13C) were measured on a total of 65 bone

and antler samples of modern and historical wild-shot Alces alces from Sweden. The O and C

isotopes were measured on the carbonate portion of the skeletal tissues by using a Gasbench II

coupled to a Delta Plus XL IRMS at the University of Tübingen (Tübingen, Germany). Prior

to isotope analysis 10 mg of bone powder was pretreated with 2M NaOCl and 0.1 M acetic

acid according to the protocol of Koch et al. [115] in order to remove organic matter [116].

About 2 mg of pretreated bone powder was reacted for 90 mins at 70˚C with phosphoric acid

and normalised to a calibrated Laaser marble standard. As quality controls two international

carbonate reference materials were measured yielding values in line with certified oxygen and

carbon isotope compositions (NBS 18 δ18OVPDB = -23.13±0.09‰, δ13CVPDB = -4.97±0.04‰,

n = 3; NBS 19: δ18OVPDB = -2.22±0.12‰ and δ13CVPDB = +1.93±0.10‰, n = 3). VPDB values

were converted to δ18OVSMOW. Carbonate δ18O values were converted in phosphate (δ18OPO4)

([117]; all mammals; δ18Oc = 1.037*δ18OPO4 + 8.57) and then in δ18O of ingested water
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(δ18Ow) by using the formula for deer of D’Angela and Longinelli [118]. Given the lack of spe-

cies-specific conversion-equations for moose, the deer equation of [118] represents a close

approximation in terms of taxonomy (Cervidae) and dietary behaviour (both ruminant herbi-

vores). Carbon isotope values were corrected for anthropogenically induced variation of CO2

δ13C and reported to a 1994 year-value, by following the workflow of Long et al. [119], but

using a LOESS model to fit the data of Francey et al. [120]. The δ13C data reported to a 1800

year-value are also listed in S1 Table. Sr isotopes were measured at the Geochemistry Lab of

the Department of Chemical and Geological Sciences (University of Modena and Reggio Emi-

lia; https://www.geochem.unimore.it/). About 5 mg of bioapatite powder for each sample was

Fig 1. Samples distribution across Sweden. Moose bones (white dots) and antlers (white triangles) are plotted over the geolithological

map of Scandinavia. Main stratigraphic units by age are reported; type of lithology is indicated when explicitly reported in the USGS

source file: v = volcanic, i = intrusive, m = metamorphic. The map is based on the European geo4_2l shapefile from USGS [114].

https://doi.org/10.1371/journal.pone.0300867.g001
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dissolved in 3M HNO3. The Sr separation from the matrix was performed through chro-

matographic Teflon columns filled with 30 μl of Eichrom Sr spec resin [121, 122]. Once the

columns were cleaned with MilliQ, the dissolved samples were loaded and the cations (not Sr)

were desorbed by percolating 3M HNO3, to eliminate matrix ions. Strontium was then eluted

using MilliQ. The Sr samples were diluted with 4% HNO3 at 50 ppb and analysed with a Nep-

tune MC-ICPMS at Centro Interdipartimentale Grandi Strumenti of the University of Modena

and Reggio Emilia. 82Kr, 83Kr, 84Sr, 85Rb, 86Sr, 87Sr and 88Sr m/z were collected with 1011 and

1012 (for 82Kr, 83Kr and 84Sr) O resistors. Background subtraction and Rb correction was per-

formed with routine methods (see [123]); similarly, mass bias normalisation used an exponen-

tial law and an 88Sr/86Sr ratio of 8.375209 [124]. Samples’ 87Sr/86Sr ratios were reported to an

accepted NIST-SRM 987 value of 0.710248. Repeated analyses of the NIST-SRM 987 yielded

an average 87Sr/86Sr ratio of 0.710228 ± 0.000018 (2 SD, n = 20).

3.4 Geostatistical framework

Several studies have been conducted to determine which materials are most suitable for estab-

lishing the local Sr baseline and building the isoscapes [125]. Today there is general agreement

on the preferential use of archaeological microfauna, snails, modern plant and water samples

[36, 37, 126, 127]. Other natural materials useful for provenance studies include soil leachates

[128] as well as modern and archaeological faunal tooth enamel and bones, provided they are

local to the area under study and free of any contamination or diagenetic modification [36, 129].

Given these assumptions, the first step in building the Sr isoscape was to collect bib-

liographical data of natural samples’ 87Sr/86Sr, including vegetation, waters, soil leachates,

snails, animal bones and teeth (both modern and archaeological) from Sweden and surround-

ing countries (i.e., Norway, Finland and Denmark; see S2 Table). Only local fauna (as

described in the respective paper) was selected, including snails, microfauna, animals with a

small home-range, and domestic animals. Among the natural samples, we preferably selected

plants and waters as the more representative of the local bioavailable Sr pool. Soil leachates

were added only if no other type of sample was available for a given site. Moreover, since as

pointed out earlier the 87Sr/86Sr values are only available for limited areas of Scandinavia, we

added the 87Sr/86Sr values of modern soil leachates from GEMAS project [128] to our database

to cover as many territories as possible. All the further data analyses were carried out in R (ver-

sion 4.0.5).

To build the Sr isoscape map of Scandinavia we used Random Forest regression (RF) with

multiple predictors (randomForest package; [130]), following the method of Bataille et al. [40].

The Random Forest is a supervised tree-based machine learning algorithm that uses a labelled

database including environmental and geological information to predict the isotope ratios in

areas with similar features [39, 40, 131]. Seven external variables, obtained from global raster

maps (see [40]), were selected by VSURF [132] based on their importance in predicting the
87Sr/86Sr ratio. After the map outline, a 10-fold cross-validation was performed to estimate the

power of the prediction, evaluated as RMSE (Root mean square error). To generate a spatial-

uncertainty map, we employed a quantile RF regression (ranger package; [133]), then halving

the RF q0.84 - q0.16 difference (i.e., lower and upper limits of a*68% interval; [134]). The Sr

isoscape and the error map can be found as S1 and S2 Files, respectively. To test the Sr natural

variability vs. the RF error, we gathered all the data with the same coordinates from S2 Table

and calculated the 87Sr/86Sr standard deviations (SD) from each site. As depicted in S1 Fig,

both the observed SDs (S1A Fig; R2 = 0.46, p< 0.01) and the calculated RF error from the

error map (S1B Fig; R2 = 0.74, p< 0.01) are correlated with the mean 87Sr/86Sr of the site. This

suggests that both errors and isotope variability are higher in high-radiogenic areas, as
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expected (see e.g., [39, 131]). The observed SD among the samples and the calculated RF error

from the error map are also correlated with each other (S1C Fig; R2 = 0.36, p< 0.01), with an

average difference of 0.0024 ± 0.0043. The RF error tends to underestimate the observed local

isotopic variability at sites with elevated 87Sr/86Sr ratios (S1C Fig).

The oxygen isoscape (annual average value) was downloaded from waterisotopes.org and

cropped for the area of interest. This represents the mean modelled climatological prediction

based on annual precipitations [20]. A conservative 1‰ constant spatial uncertainty was arbi-

trarily associated with each pixel of the oxygen isoscape. This error is 10-times larger than the

median error associated with the model (*0.1‰) and compatible with the spatial uncertainty

used in other works (e.g., [135–137]).

To assess the ‘local vs non-local’ isotope signature, we checked the difference between the

isotope ratio of the samples themselves and the isoscapes at their position (Δ87Sr/86Srsample-iso-

scape and Δ18Osample-isoscape). To do so, we extracted and averaged pixel values from the maps at

sample location, with a buffer radius of 10 km. The buffer value to be used was chosen, testing

different radius lengths (from 1 km to 250 km) and selecting the resulting linear model (ordi-

nary least square of sample vs. isoscape isotope ratios) with the highest coefficient of determi-

nation (see S3 Table) and compatible with expected moose home ranges from ecological data

(see Discussion). Samples within 1 standard-deviation (1σ thereafter) of the Δ87Sr/86Srsample-iso-

scape and Δ18Osample-isoscape distributions were thus considered as compatible with the local area

(10 km radius buffer), also accounting for the isoscape(s) spatial uncertainty (see Results).

Both the isoscapes were then calibrated using a linear fit with the moose samples within 1σ
(i.e., those likely ‘local’); values outside 1σ-variability of either Δ87Sr/86Srsample-isoscape or

Δ18Osample-isoscape were thus removed from the calibration.

Samples outside 1σ-variability of the isoscape Δs, thus likely different from the local-buffer

area, were compared with the isoscapes using a Bayesian probabilistic approach and the

‘assignR’ package in R [138]. The prior probability assumes that all grid cells are equally likely

locations of origin of these samples. The posterior probability of origin is computed at each

grid cell, returning a raster object which contains one probability density surface per sample

with its likely provenance. In the calculations, raster maps with prediction errors of the mod-

elled isoscapes are also included. The Sr and O obtained posterior probabilities were joint to

obtain a final combined dual-estimation.

To test the effect of forest cover on δ13C of moose samples, pixels of a Sweden forest cover

map (from [139]; time span 0–125 years BP) were extracted with a 10-km buffer radius at the

(moose) sample locations. The forest cover maps of [139] are based on remote-sensing data,

calibrated through (fossil) pollen records and represent a full range of pixel values from 0 to

*90% canopy closure. Then, ordinary least square models of sample δ13C tissues vs. %-forest

cover were calculated; ‘non-local’ moose based on Sr-O were excluded.

The R code is available online on Zenodo: https://zenodo.org/records/10418660.

4. Results

The complete list of isotopic results, along with all the information about the samples, are

available in S1 Table. Strontium, oxygen and carbon data are shown in Fig 2(A)–2(E). Since

bone and antler represent different time averages (i.e., several years and a few months, respec-

tively) [69, 140] we decided to present bone and antler data separately.

Strontium isotopes (87Sr/86Sr) of moose antlers range between 0.71309 and 0.75305 with a

mean value of 0.72631 (± 0.01022, 1 SD, n = 15). Bones yielded also a similarly wide range with

ratios between 0.71192 and 0.75017 but the mean value is more radiogenic and equals 0.73133
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(± 0.00887, 1 SD, n = 50). Such radiogenic values clearly reflect the geology of Scandinavia,

dominated by old rocks.

Oxygen isotopes (δ18OSMOW) of the carbonate moiety structurally bound in the bioapatite

of moose antlers yielded a mean value of +21.6‰ (± 0.9, 1 SD, n = 15), ranging between +20.2

and +23.2‰. Similarly, bones yielded a mean δ18O value of +21.5‰ (± 1.3, 1 SD, n = 50),

ranging between +18.6 and +24.8‰. Once converted in water values, oxygen isotopes agree

with values observed in Scandinavia (see waterisotopes.org and Fig 3B).

Carbon isotopes (δ13CVPDB corrected for CO2, see Materials and Methods) of the carbonate

portion of bioapatite of moose antlers vary between -16.6 and -12.9‰ with a mean value of

-14.9‰ (± 1.1, 1 SD, n = 15). Bones yielded a wider range between -19.3 and -12.1‰ with a

mean of -16.2‰ (± 1.1, 1 SD, n = 50). These values are typical of C3 plants feeders, in agree-

ment with C3 and C4 plants distribution in Europe [21, 100, 141]. No statistically significant

correlation was found between δ13C values of moose tissues and forest cover (bone R2 = 0.001,

p = 0.801; antler R2 = 0.03, p = 0.52; combined R2 = 0.02, p = 0.22).

We tested the correlation between oxygen and strontium isotopes (Fig 2B; R2 = 0.005,

p = 0.570), and the correlation between oxygen and carbon isotopes (Fig 2C; R2 = 0.098,

p = 0.011). In both cases there is no significant linear trend.

The Sr isoscape (Fig 3A) obtained through RF with 7 external predictors (r.srsrq3, r.fert, r.
elevation, r.ssa, r.cec, r.ssaw and r.mat, see [40]) yielded RMSE = 0.0055 and R2 = 0.65. For

additional details about the isoscape see S2 Fig. The modelled isoscape varies between 0.70519

Fig 2. Strontium, oxygen and carbon isotope data of moose antlers and bones. A) Boxplot of strontium, oxygen and carbon isotope data of antlers (green; n = 15) and

bones (orange; n = 50). B) δ18O values of antlers and bones versus their respective 87Sr/86Sr and C) δ13C values; color coding as in (A); grey lines are linear regressions

through the data. D) Voronoi diagram of moose’s Sr isotope values plotted over the map of Sweden. E) Voronoi diagram of moose’s oxygen isotope values plotted over the

map of Sweden.

https://doi.org/10.1371/journal.pone.0300867.g002
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to 0.74820, with a median of 0.71714. Bataille et al. [142]’s model product r.srsrq3 is the more

dominant predictor, indicating that the bedrock geology and rock age impacted the modelled

Sr isotope values. The importance of r.fert (fertilisation rate) in the prediction is likely due to

the fact that GEMAS soils (used in the interpolation) are mainly agricultural soils and thus

potentially affected by the use of N- and P-based fertilisers. Sea salt deposition (r.ssaw and r.
ssa) also strongly contributed to the Sr isotope variability observed in the isoscape (see e.g., the

relatively low Sr isotope ratios along the Norway coastline). Locally, elevation (r.elevation)

seems to drive the isoscape 87Sr/86Sr, with low isotope values at mid-low-elevations (*200 m;

see S2 Fig). This is possibly due to the exposure by tectonic and subsequent erosion of deeper

portions of the crust with different lithologies (e.g., see gradient from Norway coast to the

Caledonides mountain range).

The oxygen isoscape (Fig 3B) varies between -17.3 to -7.1‰, with a median of -12.9‰. As

expected, a latitudinal trend is observed, with the most positive values in the south and the

most negative values in the north. This trend reflects the typical distribution of oxygen isotopes

in precipitation due to the progressive condensation of the vapour during transport to higher

latitudes with lower temperatures. Oxygen isotopes tend to be depleted in 18O as elevation

increases and this can be seen in profiles from sea level to the mountainous areas of Sweden

and Norway.

We calculated the difference between the isotope ratio of the samples and the isoscapes at

their position (Fig 4A). The Δ87Sr/86Srsample-isoscape yielded a median value of 0.0052, ranging

Fig 3. Isoscapes. A) 87Sr/86Sr isoscape built through Random Forest with n = 7 external predictors; B) δ18O isoscape (mean annual

precipitation values) downloaded from waterisotopes.org. Maps are colored through a quantile scale (q0.1, median, q0.9); min and

max values for the 87Sr/86Sr isoscape (A) are: 0.705 and 0.748, respectively; while for the δ18O isoscape (B) are -17.3 and -7.1‰.

https://doi.org/10.1371/journal.pone.0300867.g003
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between -0.0094 to 0.0313. The Δ18Osample-isoscape yielded a median value of 0.3, ranging

between -3.9 to 2.1. No spatial trend is evident plotting the delta over the Scandinavia map (S3

Fig). Overall, this suggests that the Sr isoscape slightly underpredicts the moose Sr isotope bio-

logical values. This could be related to several factors such as: 1) the GEMAS dataset is com-

posed by soil leachates, which may show 87Sr/86Sr shifted to the local carbonate end-member,

i.e., less radiogenic values; 2) the isoscape data density is higher in some specific areas (e.g.,

archaeological sites), and not evenly distributed throughout the region; 3) intrinsic limits of

the modelling method itself (see S2 Fig); 4) moose diet is on average more radiogenic than the

expected local bioavailable Sr (e.g. ingestion of silica dust; reliance on plants with deep rooting

depth); 5) changes in the bioavailable 87Sr/86Sr across time due to e.g. the eventual loss of for-

ested areas [143]. On the other hand, the oxygen isotope values of the isoscape seem to better

predict the sample oxygen isotope values.

We tried to identify any difference in the Δ87Sr/86Srsample-isoscape and Δ18Osample-isoscape

between sexes. We found p = 0.89 and 0.04 (non-parametric Mann-Whitney U test), respec-

tively (S4 Fig). This means that the sexual difference in the Δ87Sr/86Srsample-isoscape is not statis-

tically significant, while the Δ18Osample-isoscape sexual difference is significant at p = 0.05.

Considering bone samples only, the difference is not significant both for the Δ87Sr/86Srsample-

isoscape and the Δ18Osample-isoscape values (p = 0.63 and p = 0.77, respectively), suggesting that the

observed significant Δ18Osample-isoscape sexual difference was driven by the presence of antlers

in the dataset. Overall, this indicates that the sex is not a driving factor in the Δsample-isoscape val-

ues. We indeed found a statistically significant difference in Δ18Osample-isoscape between antler

and bone tissues at p = 0.05 (non-parametric Mann-Whitney U test, p = 0.001 all sample con-

sidered; p = 0.03 male only), with median Δ18Osample-isoscape of antlers higher than bones

(*1‰). This likely reflects the period of antler growth, namely during warm seasons (spring-

summer; [144]), and thus registering relatively higher δ18O values of ingested water.

Since most of the Δ87Sr/86Sr values are positive (Fig 4A) and given the good correlation

between the samples and the isoscapes (Fig 4B and 4C), we choose to linearly calibrate both

the isoscapes using the samples within ± 1σ. After removing the 1σ-outliers, the linear fit

between the 87Sr/86Srsample and the 87Sr/86Srisoscape shows an R2 of 0.35 (p< 0.01; inter-

cept = 0.15 ± 0.10; slope = 0.80 ± 0.15), while the linear fit between the δ18Osample and the

δ18Oisoscape shows an R2 of 0.51 (p< 0.01; intercept = -3.4 ± 1.1; slope = 0.70 ± 0.09). The cali-

brated isoscapes are on average more positive/higher (0.0055 for Sr and 0.50 for oxygen) than

the uncalibrated ones (see S5 Fig). Due to the large spatial uncertainties associated with both

isoscapes (see Figs 4 and S6), we considered individuals within the 1σ-variability as likely com-

patible with the local isotope signature, in a buffer-radius of 10 km.

We used the calibrated isoscapes to test the provenance of the 1σ-outliers and their proba-

bility distance of origin (Figs 5 and 6). Although in some cases the probability distributions

display the highest values at more than 250 km (up to 1000+ km), the most likely distance trav-

elled is perhaps less than 100 km, i.e., compatible areas closest to the place of death, where

increases in probability distributions are already evident (see Discussion below). The only

samples for which a higher degree of mobility can be assumed confidently are G_EL_113 (ant-

ler) and K_EL_127 (bone). In fact, their probability distributions begin to increase at 250 km

of distance.

5. Discussion

5.1 Strontium and oxygen isotopes: Moose mobility

In the current period of environmental change, the study of faunal mobility across the land-

scape has become increasingly important. Quantifying and predicting the spatial distribution
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Fig 4. Data comparison between sample and isoscape. A) Bone (n = 50) symbols are orange; while antler (n = 15)

symbols are green; males (n = 29) are triangles; females (n = 17) are circles; individuals with unknown sex (n = 19) are

squares. One antler is reported as ‘sex unknown’ being labelled as ‘hermaphrodite’ in the museum ID card (see S1 Table).

1σ-outliers are labelled; gray bars on the sides are histograms of univariate sample distribution for Δ87Sr/86Srsample-isoscape

and Δ18Osample-isoscape; rug bars are also sample distributions but classified by sample type (bone and antler). Light grey

areas are approximate median spatial uncertainties of the isoscapes (*0.01 for Sr and 1‰ for oxygen) depicted below and

above Δ = 0. B) The linear fit (1σ-outliers included) between the 87Sr/86Srsample and the 87Sr/86Srisoscape shows an R2 of 0.20,

p< 0.01; C) The linear fit (1σ-outliers included) between the δ18Osample (water) and the δ18Oisoscape shows an R2 of 0.30,

p< 0.01.

https://doi.org/10.1371/journal.pone.0300867.g004
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of species are necessary to enable the conservation of biodiversity and ecosystems [8, 10]. Geo-

chemistry is proving to be a key element in this regard, allowing to track animal movement

across the territory. More and more isotopic landscapes have been built in recent years, both

for archaeological and ecological applications [131, 145–149].

The newly built Sr isoscape of Scandinavia presented here fits in this research framework,

with the goal of tracking moose movements across the landscape. The bedrock age has been

shown to be key in controlling the bioavailable 87Sr/86Sr across Scandinavia. The most radio-

genic Sr isotope compositions correspond to areas where Precambrian rocks, particularly

those of the Svecofennian orogeny, outcrop that is in most of northern and central Sweden

Fig 5. Moose provenance probabilities estimated through a Bayesian approach. Sr and O calibrated isoscapes were

combined to predict the place of origin of the 1σ-outliers (see the Materials and Methods section). Red dots are the places

of death of the individuals. Probability estimates are scaled between 0 (low probability, purple) and 1 (high probability,

yellow). Sample’s names are reported in green for antlers and orange for bones.

https://doi.org/10.1371/journal.pone.0300867.g005
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and in southwestern Finland. The Sr isotope composition gradually becomes less radiogenic

towards the west, across the Caledonides and down to the Norwegian coast line. The rocks of

the Caledonides are clearly not only younger, but also contain ophiolitic sequences that gener-

ally have more depleted isotopic compositions. Along the coast of Norway, a key variable is the

salt deposition through sea spray effects. Salts here are continuously replenished by oceanic

waters. Interestingly, sea salt contribution is none in the Baltic Sea coastal regions most likely

Fig 6. Probability distance of origin. Probability density plots representing the likely distance of movements determined for 1σ-outliers (see the Materials

and Methods section) using assignR on the calibrated isoscapes. Bones are orange; antlers are green. Dashed line is an arbitrary cut-off value of 100 km (see

Discussion).

https://doi.org/10.1371/journal.pone.0300867.g006
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due to the competing and major contribution of high Sr isotope signatures from the erosion of

the outcropping Precambrian rocks.

It is well known that moose display a wide range of movements (migration, nomadism, dis-

persal, home range, sedentary) [47, 54, 150]. Variations in movements are visible at the popu-

lation level (i.e., some individuals migrate while others do not), but also during the lifetime of

a single individual (e.g., in relation to age). Many reasons were identified by scholars for

moose movements in Scandinavia, including seasonality, forage availability and nutritional

needs, climatic factors, snow depth and quality, sex differences (e.g., reproductive status, pres-

ence of calves), habitat deterioration, human presence in the landscape [46, 47, 56, 59, 60, 63,

65, 151]. So far, the usefulness of genetic analysis as an adjunct to ecological research has been

highlighted [81, 82]. Geochemical analyses can add new and complementary information on

moose mobility behaviour, both at a seasonal (antlers) and at annual level (bones).

We first note that the isotopic values of bones (mainly cranial bone) represent a mean of

several years of life of the individual. On the other hand, the antlers provide an isotopic signal

corresponding to their growing season (between spring and summer) [69, 152, 153]. In the

present study, antlers were sampled close to the base, thus likely reflecting *1 month of life in

spring. Sr and O data of most of the moose samples (within 1σ-interval of Δ87Sr/86Srsample-iso-

scape and Δ18Osample-isoscape) are likely compatible with the isotopic signature of the place of

death, thus indicating a narrow home range. The 1σ-outliers whose provenance through the

calibrated Sr-O isoscapes has been estimated include ten bones and two antlers (see Figs 5 and

6). Although in some cases the probability peaks begin to increase around 250 km away from

the place of death and some samples display the highest peaks around 500 km distance, in the

light of the ecological data on this animal (see below) it is reasonable to assume that the likely

distance travelled is represented by the probability peaks between 0 and 100 km (see dashed

line in Fig 6). However, it is possible that at least some individuals travelled longer distances

(i.e., above 100 km; see Fig 6).

Available information on moose annual home range in Scandinavia shows that both migra-

tory and nonmigratory individuals can travel mean maximum distances of approximately 5 to

28 km (diagonal of hypothetical square-shaped home ranges 12.6 and 410 km2) [50, 58–61,

154, 155]. Similar values have also been documented in Canada and the United States, where

the maximum distance travelled, obtained from annual home ranges of 20 to 300 km2, spans

from 6.3 to 24.4 km [156–161]. On the other hand, spring and summer home ranges of both

migratory and nonmigratory moose in Scandinavia are reported to be from less than 1 to

about 30 km2, corresponding to a mean maximum distance travelled of 1.2 to 7.7 km [60, 61,

63, 162]. Higher distances have been reported for Canada and the United States. Here moose

occupy seasonal ranges above 20 km2 and up to 600 km2, corresponding to maximum dis-

tances of 7 to 17.3 km [57, 156, 159].

During spring and fall migrations instead, moose in Sweden have been documented to

travel a minimum of 4.4 up to 217 km [47, 163]. Migratory movements of 100 up to 500 km

have been documented in Alaska, Siberia and Altai mountains [42, 164]. Long-distance dis-

persal of up to 1,500 km has been documented in the central United States [165]. Moose

migrations over long distances have been confirmed by genetic analysis in both Scandinavia

and continental Europe, showing a statistically significant gene flow at 300–400 km and 400–

500 km, respectively [82]. In this sense, our most interesting samples are G_EL_113 (antler)

and K_EL_127 (bone). Their probability distance of origin begins to increase from 250 km,

reflecting larger-scale movements both seasonally (spring/summer) and annually. We empha-

size here that G_EL_113 (non-local) provenance mainly relies on a remarkably high radio-

genic Sr isotope value of the sample. As reported in the geostatistical framework section, the Sr

Scandinavian isoscape shows the highest prediction uncertainties in high radiogenic areas and,
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thus, we interpret the provenance of this sample with caution. Overall, more work is needed to

accurately link the 87Sr/86Sr ratio of moose with Scandinavian bioavailable Sr baselines. This,

in turn, indicates a need for more bioavailable Sr samples from radiogenic areas, as well as bet-

ter statistical methods to estimate uncertainty in such highly variable regions.

Migratory patterns in moose can differ between male and female individuals. In our dataset,

differences between the sexes are negligible. Although female moose are less represented, it is

noteworthy that 6 out of 12 of the 1σ-outliers are males. The others are 1 female and 5 of

unknown sex. This likely higher rate of movement of males than females agrees with the eco-

logical data. Indeed, many scholars have found sexual differences in home range size and

migration distance, both in relation to age and nutritional demand, with males travelling far-

ther than females [47, 54, 60, 155].

Due to the remarkable implications of this approach for paleoecological and archaeological

studies in Scandinavia, we tested our calibrated Sr isoscape on Swedish archaeological materi-

als. We assessed the provenance of two moose samples from the Mesolithic Kanaljorden site in

Motala previously published by Eriksson and colleagues [166]. These samples consist of a

tooth pendant (87Sr/86Sr = 0.72086) and an incisor (87Sr/86Sr = 0.73489) defined as local and

non-local to the site, respectively. The main issue with this assessment is that it was made

using a local Sr baseline defined primarily by soil leachates. The leachable fraction of soils can

be indeed less radiogenic (i.e., shifted to the local carbonate pool) than the local bioavailable
87Sr/86Sr [167]. For this reason, we propose that the 87Sr/86Sr local baseline assessed by Eriks-

son et al. [166] is possibly underestimated. Using our calibrated isoscape the provenance of the

two moose samples changes. The more radiogenic incisor (Kanaljorden_2) appears to be local

to the site, while the less radiogenic tooth pendant (Kanaljorden_1) is probably of non-local

origin and compatible with an area about 100 km south of the site (Fig 7).

5.2 Carbon isotopes: Diet

Other key aspects of moose ecology, feeding habits and habitat selection, can be revealed by

carbon stable isotopes [67, 69]. The mean δ13CVPDB values (corrected for the ‘Suess effect’) of

the carbonate portion of bioapatite of our moose samples was -14.9‰ (±1.1‰) and -16.2‰

(±1.1‰) for antlers and bones, respectively. These values are typical of C3 plants feeders, in

agreement with the dominance of C3 plants in the temperate and boreal environments of

Europe [21, 100, 104, 141]. Since in these areas it is not possible to determine the type of plant

consumed by herbivores (i.e., to discriminate between C3 and C4 plants with different photo-

synthetic pathways), the small differences in the δ13C become crucial in identifying differences

in C3 plant-based diet due to climatic and environmental factors [68, 168], helping to obtain a

more complete picture of moose ecology.

Interestingly, our antler samples display higher δ13C values than bones. The first possible

explanation for this difference can be related to seasonal variation in diet. Similar results were

obtained by Kielland [67] for North American elk (Alces alces gigas) hooves, where winter values

were 13C-depleted compared to summer. Similarly, Walter and Leslie [169] found a relative

increase of δ13C values in the summer-portion of elk hooves (Cervus elaphus) from the Rocky

Mountains and they interpreted this enrichment as a stronger reliance on C4 grasses compared

to winter. This, however, is unlikely for Sweden considering that the proportion of C4 plants is

close to 0% of the total plant species [141, 170, 171]. Moose are selective browsers feeding on a

wide variety of plant species, with geographic and (intra)seasonal differences [41, 158, 172]. The

foraging behaviour has been shown to depend both on food availability (which influences selec-

tivity) and nutritional requirements, two aspects also influencing spring and fall migrations [48,

173–177]. In spring and summer, during the growing season of both plants and antlers, moose
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can rely on more high-quality food than in winter. The main diet components are shoots and

leaves of young trees and shrubs, but also herbs, grasses and aquatic plants when available [158,

172, 178]. Preferred species are deciduous trees such as willow (Salix spp.), birches (Betula

Fig 7. Top 5% probability of origin of two archaeological moose samples based on their Sr isotope ratio. Sample

Kanaljorden_1 is a tooth pendant (enamel 87Sr/86Sr = 0.72086) while Kanaljorden_2 is an incisor (enamel
87Sr/86Sr = 0.73489). Data are from Eriksson et al. [166]. The red dot is the site of Kanaljorden. Yellow represents highly

probable areas of origin (top 5%, see [138]), while purple represents low probable areas of origin.

https://doi.org/10.1371/journal.pone.0300867.g007
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spp.), aspen (Populus tremula) and rowan (Sorbus aucuparia), but also ground vegetation

released from snow such as blueberry (Vaccinummyrtillus) [163, 175, 176, 179]. During winter

(the dormant period) moose preferentially feed on twigs and bark of the same deciduous browse

species (lignin is*3‰ 13C-depleted compared to leaves, [180]), but also rely on conifers, espe-

cially the widely distributed Scots pine (Pinus sylvestris) [42, 50, 61, 63, 173, 177, 179, 181].

The “Canopy effect” [102, 103] could also have contributed to δ13C values in our samples,

which is known to be detectable in the δ13C values of large herbivores dwelling in forested

environments of boreal and temperate ecosystems [182]. Forest cover has been found to be the

main factor influencing the wide variability of δ13C in modern moose samples from Europe

[68]. Our data do not support the canopy effect as the main driving factor for differences in

δ13C values between bones and antlers, and in general to the observed δ13C variability; yet, we

need to stress that the moose samples analysed in this study date between the 1800 and 1994,

so changes in forest cover through time might have biased our estimations. Moreover, an

increased forest cover during warm seasons would have shown an inverse pattern in δ13C val-

ues, i.e., antlers depleted compared to bones. In terms of moose ethology, seeking forest cover

is documented throughout the year to find shelter from both predators (including humans)

and environmental conditions. During winter moose seek forest cover to find shelter from

wind and snow (which in open environments limits access to forage). During summer they

tend to avoid open habitats and use areas with dense canopies to cope with high temperatures,

especially when above 20˚C [158, 183, 184].

Overall, the differences in δ13C between moose bones and antlers likely result from a com-

bination of factors. Moose display a complex foraging behaviour that changes seasonally

according to mobility, nutritional requirements, food availability and environmental factors

[61, 63, 150, 158, 173, 175]. Besides, we cannot exclude eventual sub-annual fluctuations in

atmospheric CO2 isotope composition as a possible driving factor for δ13C in moose tissues

[185]. In addition, the consumption of lipids may shift the δ13C values of tissues toward more

negative values, e.g., during periods of metabolic stress. Assuming possible winter stress of

moose due to limited food resources, lower δ13C values in year-round remodelling bones com-

pared to spring-summer growing antlers and can be partially explained by an increased catab-

olism of endogenous fat reserves during the winter season (see e.g., [186]).

6. Conclusion and future perspectives

We report here a dataset of strontium (87Sr/86Sr), oxygen (δ18O) and carbon (δ13C) isotope val-

ues of modern moose bones and antlers from Sweden. This is the largest database of moose

isotope values presented so far for the area and can be used for future research in Alces sp.

(palaeo)ecology and in general as a modern reference dataset for mammal isotope composi-

tions of Scandinavia. However, our samples and their metadata come from individuals col-

lected during the 19th century and, as such, we cannot be fully confident in their geographic

assignment and dating. This is a common problem when dealing with samples from historic

collections (see e.g. [187]). Nevertheless, most of the moose samples here considered are com-

patible with the local predicted isotope baseline, reinforcing the hypothesis of a correct geo-

graphic assignment.

We compiled bioavailable Sr isotope data from literature and used them to build the first Sr

isoscape of whole Scandinavia using a machine learning approach. Even if additional bioavail-

able Sr isotope samples will further improve its predictive power, the Sr isoscape presented

herein can be a useful tool for provenance studies in the area (both for modern and archaeo-

logical faunal or human samples, but also for foods, artefacts and plant materials).
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After comparison with the constructed isoscapes, the seasonal (antler) and multi-annual

(bone) mobility assessed through the workflow presented in this paper agrees well with eco-

logical data on moose movement behaviour (i.e., home-range, migration). Even if there are

some limiting factors to our interpretation (i.e., errors associated with the isoscape in S6 Fig

and a likely biased representation of moose diet in the isoscape, see Results), the Bayesian

workflow presented here will provide a better understanding of how moose move across the

Scandinavian landscape, and become a useful mean to support traditional mobility tracking

methods (e.g., radio-, satellite- and GPS-tracking) and genetic analyses. Future work combin-

ing animal tracking with isotope analysis will advance our understanding of the relationship

between isotope values and animal behaviour.

The δ13C values are typical of C3 plant feeders, and the differences detected between antlers

(13C-enriched) and bones (13C-depleted) are likely due to seasonal differences in dietary habits

and/or physiological stress during winter. Sub-annual fluctuations of atmospheric CO2 levels

may also have affected the δ13C values of moose. However, further work is needed (i.e., high-

resolution sampling/analyses) to precisely understand winter-summer isotopic differences in

moose hard tissues to interpret their diet and physiology in a comprehensive way.

In our view, especially in light of the growing concern about the effects of climate change

on animal migration and biodiversity conservation, geochemical analyses should become an

integral part of multidisciplinary studies aimed at reconstructing wildlife mobility.
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S1 Fig. (A) Calculated intra-site (i.e. same coordinates’ samples) standard deviations for litera-

ture values used in building the isoscape vs. their mean isotope values. (B) Extrapolated RF

error (from the error map) at the same sites vs. the mean isotope values as in A. (C) Calculated

intra-site standard deviations for literature values vs. extrapolated RF error. See Materials and

Methods for discussion.

(DOCX)

S2 Fig. Random forest model performances. (A) Modelled Sr isotope ratios vs observed Sr

isotope ratios of isoscape samples; the 10-fold cross-validation resulted in an RMSE = 0.0055

and an R2 = 0.65. (B) Variable importance of the seven external predictors (r.srsrq3, r.fert, r.

elevation, r.ssa, r.cec, r.ssaw and r.mat) selected by using the VSURF algorithm. See Bataille

et al. (2020) for details. (C) Partial dependence plot for the VSURF-selected variables.
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of known sex were considered.
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S5 Fig. Difference between calibrated-uncalibrated Sr (A) and O (B) isoscapes. Calibrated iso-

scapes were obtained by using Δs of moose samples within 1σ (see the main text for details).

(DOCX)

S6 Fig. Sr isoscape (RF model) error map. The calculation was carried out as reported in the

Materials and Methods section of the main text.

(DOCX)
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