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Abstract 

Different strategies for stereoselective microbial preparation of various chiral aromatic compounds are described. 

Optically pure 2-methyl-3-phenyl-1-propanol, ethyl 2-methyl-3-phenylpropanoate, 2-methyl-3-phenylpropanal, 2-

methyl-3-phenylpropionic acid and 2-methyl-3-phenylpropyl acetate have been prepared using different microbial 

biotransformations starting from different prochiral and/or racemic substrates. (S)-2-Methyl-3-phenyl-1-propanol and 

(S)-2-methyl-3-phenylpropanal were prepared by biotransformation of 2-methyl cinnamaldehyde using the recombinant 

strain Saccharomyces cerevisiae BY4741DOye2Ks carrying a heterologous OYE gene from Kazachstania 

spencerorum. (R)-2-Methyl-3-phenylpropionic acid was obtained by oxidation of racemic 2-methyl-3-phenyl-1-

propanol with acetic acid bacteria. Kinetic resolution of racemic 2-methyl-3-phenylpropionic acid was carried out by 

direct esterification with ethanol using dry mycelia of Rhizopus oryzae CBS 112.07 in organic solvent, giving (R)-ethyl 

2-methyl-3-phenylpropanoate as major enantiomer. Finally, (R,S)-2-methyl-3-phenylpropyl acetate was 

enantioselectively hydrolysed employing different bacteria and yeasts having cell-bound carboxylesterases with 

prevalent formation of (R)- or (S)-2-methyl-3-phenyl-1-propanol, depending on the strain employed.  
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Introduction 

Biocatalysts have gained importance in different fields of chemical transformations for their high enantio- and regio-

selectivity and as an alternative to chemical catalysts in more environmentally friendly processes, but the number of 

biocatalysts available for preparative transformations is still limited. (Bommarius and Riebel-Bommarius 2004) Thus, 

the availability of new microbial methods for the preparation of optically pure molecule is very attractive for organic 

chemists. Reductive (Hollmann et al. 2011; Toogood et al. 2010), oxidative (Romano et al. 2012) and hydrolytic 

enzymes (Bornscheuer and Kazlauskas 2006) are particularly attractive for the production of stereochemically enriched 

alcohols, aldehydes and carboxylic acids. 

The enantioselective preparation of 2-methyl-3-phenyl-1-propanol, 2-methyl-3-phenylpropanal and 2-methyl-3-

phenylpropionic acid deserves importance since these molecules are valuable chiral building blocks and flavour 

components (Fuganti et al. 1975; Fardelone et al 2004); among previous attempts of preparing optically pure 2-methyl-

3-phenyl-1-propanol and 2-methyl-3-phenylpropanal by biocatalytic methods exploited the use of whole cells of 
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Saccharomyces cerevisiae for the reduction of 2-methyl cinnamaldehyde (D’Arrigo et al 1994). The use of wild-type 

cells of S. cerevisiae gave a mixture of (S)-2-methyl-3-phenyl-1-propanol and 2-methyl cinnamyl alcohol in different 

ratios depending on the strain and conditions employed (Fronza et al. 1996). The enoate reductases (also known as Old 

Yellow Enzymes, OYE) of S. cerevisiae catalyse the formation of (S)-2-methyl-3-phenylpropanal, which is 

subsequently transformed into (S)-2-methyl-3-phenyl-1-propanol; alternatively, aldehyde dehydrogenase(s) of S. 

cerevisiae reduce 2-methyl cinnamaldehyde directly to 2-methyl cinnamyl alcohol. The relative rates of OYEs and 

aldehyde dehydrogenase(s) determine the final ratio of the products.  

An alternative microbial mean for obtaining optically pure aromatic aldehydes and/or carboxylic acids is the 

enantioselective dehydrogenation of racemic mixtures of primary alcohols (Molinari 2006; Romano et al. 2012). Acetic 

acid bacteria can be advantageously used as enantioselective biocatalysts for the oxidation of primary alcohols (Romano 

et al. 2002); the transformation generally lead to carboxylic acids by a two-step dehydrogenation of primary alcohols. 

Achiral (Molinari et al. 1997a; Gandolfi et al 2001a; Pini et al. 2009) or chiral (Molinari et al. 1999a; Borrometi et al. 

2002) aliphatic and aromatic primary alcohols and meso diols (Molinari et al. 2003) are oxidized with high yields and 

stereoselectivity by acetic acid bacteria, depending on the strain and the conditions of growth and biotransformation. 

One-step oxidation leading to aldehyde can be obtained by using different strategies: mutant strains with low aldehyde 

dehydrogenase activity can be used (Manzoni et al 1993, Molinari et al 1995a, Villa et al 2002, Wu et al 2011) and/or 

further oxidation to acid can be avoided by reacting the intermediate aldehyde with condensing agents (Zambelli et al. 

2012) or using two-liquid phase systems (Molinari et al. 1999b, Gandolfi et al. 2001a). The productivity of these 

biotransformations can be dramatically increased by using membrane bioreactors, where aldehyde is promptly and in 

situ removed, avoiding prolonged contact with the biocatalyst (Molinari et al. 1997b).  

Another biocatalytic approach for obtaining optically pure chiral arylpropionic acid is the kinetic resolution of racemic 

substrates by enzymatic direct esterification. A number of extracellular lipases and carboxylesterases are available for 

enantioselective hydrolysis and synthesis of esters, but direct esterification is often hampered by low stability of the 

biocatalyst towards carboxylic acid and unfavourable equilibria (Bornscheuer and Kazlauskas 2006). Mycelium-bound 

carboxylesterases from different strains belonging to the species Rhizopus oryzae and Aspergillus oryzae had previously 

shown the ability of catalysing the direct esterification of different alcohols and acids (Molinari et al. 1995b, Molinari et 

al. 1998a). The optimisation of the reaction conditions showed that mycelium-bound activity of Rhizopus oryzae and 

Aspergillus oryzae have good stability in hydrophobic organic solvents and at relatively high temperature (up to 80-

90°C) and that water partitions inside and outside the mycelia favourably alter the overall equilibrium of the 

biotransformation towards ester formation (Molinari et al. 2000, Converti et al. 2002a, Converti et al. 2002b, Converti 

et al. 2002c). These features were exploited for achieving the kinetic resolution of different chiral alcohols (Molinari et 
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al. 1998b, Romano et al. 2006), sugars (Molinari et al. 1999c) and arylpropionic acids (Gandolfi et al. 2001b; Spizzo et 

al. 2007).  

 Finally, hydrolysis of racemic esters is a well-known mean for obtaining optically pure alcohols, such as 2-methyl-3-

phenyl-1-propanol. Many lipases show high enantioselectivity toward secondary alcohols, but only a few microbial 

ones (i.e. from Burkholderia cepacia and Achromobacter sp.) show high enantioselectivity toward primary alcohols 

(Bornscheuer and Kazlauskas 2006). Instead, carboxylesterases often show much higher stereoselectivity with racemic 

esters of primary alcohols (Bornscheuer 2002; Molinari et al. 1996) and can be advantageously employed for 

performing kinetic resolutions. 

Scheme 1 summarises the different biocatalytic approaches investigated in this work for the obtainment of optically 

pure aromatic molecules.  

 

 

 

Scheme 1. Complementary biocatalytic approaches for the preparation of optically pure 2-methyl-3-phenyl-1-propanol, 

2-methyl-3-phenylpropanal and 2-methyl-3-phenylpropionic acid. 

 
 

Materials and methods 

 

Chemicals were of reagent grade and purchased form Sigma Aldrich, Milano, Italy. 

 

Biotransformation of 2-methyl cinnamaldehyde (1) with yeasts 
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Four strains of Saccharomyces cerevisiae were used for the biotransformation of 1: wild-type S. cerevisiae BY4741, the 

mutant strains S. cerevisiae BY4741ΔOye2 (having the OYE2 gene deleted) and S. cerevisiae BY4741ΔOye3 (having 

the OYE3 gene deleted), and finally the recombinant S. cerevisiae BY4741ΔOye2Ks, which was derived from S. 

cerevisiae BY4741ΔOye2 after cloning of the OYE gene from Kazachstania spencerorum DBVPG6748 (Raimondi et 

al. 2011). The strains were maintained and cultured as described before (Raimondi et al. 2011). Bioreductions of 1 were 

carried out in 100 ml Erlenmeyer flasks incubated in an orbital shaker at 180 rpm and 30°C. Biotransformations were 

performed with growing cells of wild type and recombinant strains: 10 ml of YPD medium  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

 

 

 

 

 

were supplemented with 10 mg of 1 and inoculated with exponential phase precultures, to obtain an initial OD600 of 1.0. 

Samples (0.5 ml) were taken at intervals and extracted with an equal volume of EtOAc; the organic extract was dried 

over Na2SO4 and used for analysis. Conversions and stereochemical outcome of the biotransformations were analysed 

HPLC using a chiral column (Chiralcel OD, 4.6 x 250 mm, Daicel Chemical Industries Ltd., Tokio, Japan) mobile 

phase: n-hexane/2-propanol 90/10, flow 0.5 ml/min, temperature 28°C, detection UV 254 nm. 

 

 

Biotransformations of racemic 2-methyl-3-pheny-1-propanol (3) with acetic acid bacteria 

 

Acetobacter aceti MIM 2000/61 (Zambelli et al. 2012) and Gluconobacter oxydans DSM 2343 were routinely 

maintained on GYC slants (glucose 50 g/l, yeast extract 10 g/l, CaCO3 30 g /l, agar 15 g/l, pH 6.3) at 28°C. The strains, 

grown on GYC slants for 24 h at 28°C, were inoculated into 500 ml Erlenmeyer flasks containing 50 ml of the liquid 

medium containing yeast extract (10 g/l) and glycerol (25 g/l) at pH 5 in distilled water and incubated on a reciprocal 

shaker (100 spm). Biotransformations were directly carried out with growing cells. Neat racemic 3 (2.5 mg/ml) was 

directly added to the suspensions and flasks were shaken on a reciprocal shaker (100 spm) at 28°C. Samples (0.5 ml) 

were taken at intervals, brought to pH 1 by addition of 0.5 M HCl and extracted with an equal volume of EtOAc; the 

organic extract was dried over Na2SO4 and used for analysis. Analysis of the molar conversion was performed on HPLC 

Merck Hitachi 655A, with UV detector (254 nm) Merck Hitachi L-4000 using a Purospher® STAR RP-18e (5 µm) 

column. The solvent system consisted of a solution of water and acetonitrile (1/1) containing 0.1% trifluoroacetic acid. 

The flow-rate was 0.8 mL/min; injection volume was 20 µl. Enantiomeric composition was routinely determined by gas 

chromatographic analysis using a chiral capillary column (column temperature of 120°C, diameter 0.25 mm, length 25 

m, thickness 0.25 µm, DMePeBeta-CDX-PS086, MEGA, Legnano, Italia). 

 

Biotransformations of racemic 2-methyl-3-phenylpropionic acid (4) with Rhizopus oryzae CBS 112.07 
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Rhizopus oryzae CBS 112.07 was routinely maintained on malt extract (8 g/l, agar 15 g/l, pH 5.5) and cultured in 500 

ml Erlenmeyer flasks containing 100 ml of medium and incubated for 48 h at 28°C on a reciprocal shaker (100 spm). 

The liquid media contained a basal medium (Difco yeast extract 1 g/l, (NH4)2SO4 5 g/l, K2HPO4 1 g/l, MgSO4.7H2O 

0.2 g/l, pH 5.8) added with Tween 80 (0.5%). Suspension of spores (1.6 x 104/ml) were used as inoculum. Mycelium 

grown for 48 h in submerged cultures was harvested by filtration at 4°C, washed with phosphate buffer (pH 7.0, 0.1 M) 

and lyophilised. Racemic 4 (30 mg) was dissolved in n-heptane (15.0 ml) and 125 mg lyophilized mycelium of 

Rhizopus oryzae CBS 112.07 were added; after 15 min under stirring, an equimolar amount of ethanol was added. The 

mixture was magnetically stirred at different temperatures; samples  (0.5 ml) were taken at intervals, paper-filtered and 

the organic phase evaporated. The residue was dissolved in EtOAc and used for analysis. Molar conversion and 

enantiomeric composition was determined by gas chromatographic analysis using a chiral capillary column (column 

temperature of 120°C, diameter 0.25 mm, length 25 m, thickness 0.25 µm, DMePeBeta-CDX-PS086, MEGA, Legnano, 

Italia). 

 

Biotransformations of racemic 2-methyl-3-phenylpropyl acetate (6)  

 

Bacillus coagulans NCIMB 9365 (Molinari et al. 1996), Streptomyces violaceus 90852 and Streptomyces 

violaceusniger 90930 (Gandolfi et al. 2000b; Molinari et al. 2005), Corynebacterium casei MAAE 2 and 

Staphylococcus xylosus MAAE 11 (Gandolfi et al. 2000a) and Kluyveromyces marxianus CBS 1553 (Monti et al. 

2008) were maintained and cultured as previously described.  Microbial cells (250 mg dry weight) were harvested by 

centrifugation and suspended in 20 ml of phosphate buffer (pH 6.8, 0.1M); the reaction was started by addition of the 

substrate (2.0 mg). Samples (0.2 ml) were taken at intervals, centrifuged and extracted with an equal volume of 

CH3COOEt containing an internal standard (2-pheny-1-propanol); molar conversion and enantiomeric composition 

was routinely determined by gas chromatographic analysis using a chiral capillary column (column temperature of 

130°C, diameter 0.25 mm, length 25 m, thickness 0.25 µm, DMePeBeta-CDX-PS086, MEGA, Legnano, Italia). 

 

Results 

The first approach investigated for the preparation of optically 2 and 3 was based on the use of Old Yellow Enzymes 

(OYE), which catalyse the chemo- and stereoselective hydrogenation of the C-C double bonds of a-alkyl aldehydes, 

such as 2-methyl cinnamaldehyde (1). It was firstly investigated the biotransformation of 1 with wild-type strain S. 

cerevisiae BY4741 and with the mutant strains S. cerevisiae BY4741ΔOye2 (having the OYE2 gene deleted) and S. 
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cerevisiae BY4741ΔOye3 (having the OYE3 gene deleted) (Raimondi 2011). Wild-type strain S. cerevisiae BY4741 

and S. cerevisiae BY4741ΔOye3 gave a mixture of 3 and unsaturated alcohol 7, while S. cerevisiae BY4741ΔOye2 

furnished 7 as the only detectable product (Scheme 2, Table 1); saturated aldehyde 2 was not observed during the 

reaction.  

 

  

Scheme 2. Biotransformations of 2-methyl cinnamaldehyde (1) with wild-type S. cerevisiae BY4741 and mutant strains 

lacking OYE activities. 

 
 

 Molar conversion (%) Enantiomeric excess (%)  

Strain 3  7   (S)-3  

S. cerevisiae BY4741 (wild type) 78 22 > 98 

S. cerevisiae BY4741DOye2 < 5 > 95 - 

S. cerevisiae BY4741DOye3 79 21 75 

Table 1. Biotransformation of 2-methyl cinnamaldehyde (1) into 2-methyl-3-phenyl-1-propanol (3) and 2-methyl 

cinnamyl alcohol (7). Molar conversions and enantiomeric excess of 3 after 24 hours. 
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S. cerevisiae BY4741DOye2 did not show enoate reductase activity towards 1, therefore indicating that OYE2 is 

actually responsible for the activity observed with S. cerevisiae BY4741 and S. cerevisiae BY4741ΔOye3. The mutant 

strain S. cerevisiae BY4741DOye2 was used as host for the cloning of the OYE gene from Kazachstania spencerorum 

(Raimondi et al. 2011); the recombinant strain (denoted as S. cerevisiae BY4741ΔOye2Ks) was employed for the 

biotransformation of 1 furnishing  (S)-3 with high yield (97% molar conversion) and high enantioselectivity (e.e. > 

98%). The reaction was completed within 8 hours and saturated aldehyde 2 was observed only in traces (4-6%) as 

transient intermediate. This result indicates that the activity and enantioselectivity observed with S. cerevisiae BY4741

ΔOye2Ks are mostly due to the action of the heterologous OYE.  

The biotransformation was also carried out in the presence of a highly hydrophobic phase where 2 can preferentially 

partition, thus possibly delaying its oxidation which takes place in the aqueous phase and allowing its accumulation in 

the organic phase (Molinari et al. 1999b). Biotransformations were carried out in a two-liquid phase system composed 

with water and isooctane (phase ratio = 1); it was previously proven that this two-liquid phase system is suited for 

biotransformations mediated by whole cells of different yeasts (Molinari et al. 1998c) . Under these conditions, 

maximum accumulation of enantiomerically pure S-2 (35-37%) was observed after 1 h under these conditions. The 

biotransformation in two-liquid phase system was optimized taking into accounts different parameters (cell and 

substrate concentrations, phase ratio, pH, temperature): the biotransformation performed with 2 g/l of substrates using 

20 g/l of cells (dry weight) at 28°C, pH 6.5 and a phase ratio = 4 (isooctane 4/water 1) gave the highest accumulation of 

(S)-2 (65% after 30 min). 

The production of 2 was also investigated by oxidation of racemic 3 using two acetic acid bacteria (Acetobacter aceti  

MIM 2000/61 and Gluconobacter oxydans DSM 2343) previously selected for their ability to efficiently perform the 

oxidation of primary alcohols (Gandolfi et al. 2001a; Zambelli et al. 2012) (Scheme 3). 

 

  
 
Scheme 3. Oxidation of 2-methyl-3-phenyl-1-propanol (3) with acetic acid bacteria. 
 

CH2OH CHO COOH
acetic acid bacteria

rac-3 (R)-4(R)-2
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Acetobacter aceti MIM 2000/61 furnished (R)-2-methyl-3-phenyl propionic acid (4) as the only product of 

biotransformation with 97% enantiomeric excess, while Gluconobacter oxydans DSM 2343, which has low expression 

of aldehyde dehydrogenase, gave also 2 as transient product in 30% yields (Figure 1). 

 

 
          A                    B  

Figure 1. Oxidation of racemic 3 (2.5 g/l) with G. oxydans DSM 2343 (A) and A. aceti  MIM 2000/61 (B).  

 

Following the approach C described in Scheme 1, dry mycelium of Rhizopus oryzae CBS 112.07 was employed for 

obtaining the kinetic resolution of (R,S)-4 by direct esterification with ethanol in n-heptane for the preparation of ethyl 

2-methyl-3-phenylpropanoate (5) (Scheme 4). The biotransformation was performed at different temperatures (Table 2), 

since it is known that temperature dramatically influences the stereochemical outcome of enzymatically-catalysed 

esterification ((Bornscheuer and Kazlauskas 2006). 

  
 
 

Scheme 4. Enantioselective esterification of racemic 2-methyl-3-phenylpropionic acid (4) with ethanol in heptane using 

dry mycelium of Rhizopus oryzae CBS 112.07. 
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60 47 68  

 
Table 2. Esterification of (R,S)-4 with ethanol catalysed by dry mycelium of Rhizopus oryzae CBS 112.07 in n-heptane 

at different temperatures. Molar conversion and enantiomeric excess of (R)-5 after 4 days. 
 

The highest enantioselectivity was observed at lower temperatures; the reaction carried out at 40°C gave the best 

compromise between conversion and enantioselectivity, furnishing (R)-5 with 85% enantiomeric excess. 

Finally, hydrolysis of racemic 2-methyl-3-phenylpropyl acetate (6) was studied using different microorganisms with 

cell-bound esterases, previously used for the kinetic resolution of different esters of racemic primary alcohols (Molinari 

et al. 1996, Gandolfi et al 2000a; Gandolfi et al 2000b; Monti et al. 2008) (Scheme 5). 

 

  
 

Scheme 5. Hydrolysis of racemic 2-methyl-3-phenylpropyl acetate (6) catalysed by cell-bound esterases. 

 

Both the enantiomers of 3 could be obtained, depending on the strain employed. Yields and enantiomeric excesses were 

not excellent, but, being a kinetic resolution, optically pure compounds can be obtained depending on the conversion of 

the biotransformation (Table 3). 

 

 

Microorganism Molar conversion (%) e.e. of 3 (%) Time (h) 

Bacillus coagulans NCIMB 9365 22 80 R 24 

Streptomyces violaceus 90852 34 85 S 3 

Streptomyces violaceusniger 90930 39 75 S 5 

Corynebacterium casei MAAE 2 30 25 R 5 

Staphylococcus xylosus MAAE 11 41 83 R 6 

Kluyveromyces marxianus CBS 1553 20 79 S  2 
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Table 3. Hydrolysis of (R,S)-6 with using different microorganisms. Molar conversion and e.e. of (R)-3 at different 

times. 
 
 

Conclusions 

Different biocatalytic approaches for the efficient production of enantio-enriched aromatic molecules (2-methyl-3-

phenyl-1-propanol, ethyl 2-methyl-3-phenylpropanoate, 2-methyl-3-phenylpropanal, 2-methyl-3-phenylpropionic acid 

and 2-methyl-3-phenylpropyl acetate) have been investigated. Overall, the reported strategies ensure the possibility of 

preparing both the enantiomers of these molecules with good yields. The availability of a preparative platform using 

microorganisms for the synthesis of chiral R- or S-aromatic molecules, which are relevant chiral synthetic building 

blocks or flavour/fragrance components, is of general interest for industrial microbiologists and organic chemists. The 

microbial processes herein reported meet the requirement for the need of new selective, green and environmentally 

friendly reactions. 
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