
University of Modena and Reggio Emilia

Department of
Sciences and Methods for Engineering

PhD Program

INDUSTRIAL INNOVATION ENGINEERING

Precedence-Constrained Minimum
Arborescence Problems

Supervisor:

Prof. Roberto Montemanni

Coordinator:

Prof. Franco Zambonelli

Candidate:

Jafar Jamal

Mat. 148360

Cycle XXXV

Abstract

The Minimum-Cost Arborescence problem is a well-studied problem in the area of

graph theory, with known polynomial algorithms for solving the problem. Since the

problem was introduced, various variations on the problem with different objective

function and/or constraints were introduced in the literature.

In this work we introduce a new variation of the problem called the Precedence-

Constrained Minimum-Cost Arborescence problem, in which precedence constraints

are enforced on pairs of vertices in the graph. The purpose of the precedence con-

straints is to prevent the formation of directed paths in the arborescence that violate

a precedence relationship. A precedence relationship enforced on the pair of ver-

tices (s, t) imply that a directed path that leads from t to s could not appear in

any feasible solution. We show that the Precedence-Constrained Minimum-Cost

Arborescence problem is NP-hard, and propose a set of mixed integer linear pro-

gramming models for formulating the problem, and a branch-and-bound algorithm

that is based on Lagrangian Relaxations. An experimental study is conducted which

compares the performance of the models and the branch-and-bound algorithm.

An extension to the Precedence-Constrained Minimum-Cost Arborescence prob-

lem named the Precedence-Constrained Minimum-Cost Arborescence problem with

Waiting-Times is also introduced in this thesis, that is characterized by an addi-

tional constraint that can be described as follows. Given a weighted directed graph

with arc costs indicating the time required to traverse that arc, and assuming that

1

there is a flow that start at the root and traverses each path of the arborescence.

The additional constraint imposes that for any precedence relationship (s, t) the flow

must enter t at the same time or after entering s. The constraint implies that there is

a waiting time at vertex t, if vertex t is closer to the root compared to vertex s. The

objective of the problem is to find an arborescence that has a minimum total cost,

plus total waiting times. We show that the Precedence-Constrained Minimum-Cost

Arborescence problem with Waiting-Times is also NP-hard, and propose a set of

mixed integer linear programming models and constraint programming models for

describing the problem. An experimental study is conducted which compares the

performance of the models.

Acknowledgements

I am deeply grateful and thankful to my supervisor Prof. Roberto Montemanni,

and Prof. Mauro Dell’Amico who generously provided help and guidance during

the process of this thesis, and throughout my studies. I would also like to thank

Prof. Massimo Paolucci from Università di Genova and Prof. Stefano Gualandi

from Università di Pavia for their feedback and comments that helped improve the

presentation of the material. I would also like to thank my dissertation commit-

tee (in alphabetical order): Prof. Carlo Concari from Università di Parma, Prof.

Anna Maria Ferrari from Università di Modena e Reggio Emilia, Prof. Luca Maria

Gambardella from Università della Svizzera italiana, Prof. Luca Montorsi from

Università di Modena e Reggio Emilia, Prof. Lucia Pallottino from Università di

Pisa, and Prof. Michele Pinelli from Università di Ferrara. Last but not least I am

thankful to my friends and family for their support and encouragement.

3

Contents

1 Introduction 13

1.1 Combinatorial and Integer Optimization 15

1.1.1 Fundamental Concepts of Complexity Theory 16

1.1.2 Heuristic and Relaxation Methods 19

1.2 Fundamental Concepts of Graph Theory 22

1.3 Outline of the Thesis . 24

2 The Minimum-Cost Arborescence Problem 26

2.1 Problem Definition . 26

2.2 Mixed Integer Linear Programming Models 28

2.2.1 Set-Based Model . 28

2.2.2 Flow-Based Model . 29

2.3 Polynomial-Time Algorithms . 31

2.4 Literature Review . 33

2.5 Conclusions . 36

3 The Precedence-Constrained Minimum-Cost Arborescence Prob-

lem 37

3.1 Problem Definition . 38

3.2 Applications . 39

4

3.3 Computational Complexity . 40

3.4 Mixed Integer Linear Programming Models 42

3.4.1 Multicommodity Flow Model 43

3.4.2 Path-Based Models . 46

3.4.2.1 U st Model . 46

3.4.2.2 U t Model . 48

3.4.3 Flow-Based Models . 51

3.4.3.1 Compact-U st Model 51

3.4.3.2 Compact-U t Model 52

3.4.4 Set-Based Model . 54

3.5 A Branch-and-Bound Algorithm . 58

3.5.1 A Lagrangian Relaxation . 58

3.5.1.1 The Relaxed Model 60

3.5.1.2 Solving the Lagrangian Relaxation 61

3.5.2 Branch-and-Bound Algorithm Data Structures 63

3.5.2.1 Search-Tree . 64

3.5.2.2 Search-Tree Node . 64

3.5.3 Lower Bound and Upper Bound Computation 65

3.5.4 Branching Scheme . 65

3.5.5 Reduction, Pruning and Bypass Rules 67

3.6 Computational Results . 68

3.6.1 The MILP Models . 69

3.6.1.1 The Linear Relaxation of the Models 69

3.6.1.2 The IP Models . 72

3.6.1.3 Overall Results . 76

3.6.2 The B&B Algorithm . 84

3.6.2.1 Lagrangian Relaxation 84

3.6.2.2 Overall Results . 87

3.7 Conclusions . 94

4 The Precedence-Constrained Minimum-Cost Arborescence Prob-

lem with Waiting Times 95

4.1 Problem Definition . 96

4.2 Computational Complexity . 97

4.3 Flow-Precedence Constraints . 100

4.4 Mixed Integer Linear Programming Models 102

4.4.1 Multicommodity Flow Model 103

4.4.2 Path-Based Models . 104

4.4.2.1 Complete Model . 105

4.4.2.2 Reduced Model . 107

4.4.3 Distance-Accumulation Model 110

4.4.4 Adjusted Arc-Cost Model . 111

4.5 Constraint Programming Models . 115

4.5.1 Complete Model . 117

4.5.2 Reduced Model . 119

4.6 Computational Results . 120

4.6.1 The MILP Models . 120

4.6.1.1 The Linear Relaxation of the Models 123

4.6.1.2 The IP Models . 124

4.6.1.3 Overall Results . 126

4.6.2 The CP Models . 134

4.7 Conclusions . 141

5 Conclusions 146

List of Figures

2.1 Example of a minimum-cost arborescence. 27

2.2 Example of a feasible MCA solution using a network flow based for-

mulation. 29

3.1 Example of a precedence-constrained minimum-cost arborescence. . . 39

3.2 A PCMCA instance reduced from 3-SAT. 41

3.3 Value propagation demonstration over a violating (t, s)-path. 47

3.4 Value propagation demonstration using the reduced set of variables

over a feasible path and a violating path. 49

3.5 Example of a fractional solution that violates a precedence relation-

ship (s, t) ∈ R, and how the violation cannot be detected by the

Path-Based model. 50

3.6 Example of separation procedure for inequalities (3.44). 57

3.7 Example Comparing the Path-Based with the Set-Based model. . . . 57

3.8 An example of a search-tree node being expanded into 4 new search-

tree nodes. 66

3.9 An example which shows an additional set of arcs that are forbidden

to appear in the solution when a certain path rooted at k is imposed

in the solution. 68

3.10 Distribution of the number of nodes generated for all the 116 instances. 73

7

3.11 Distribution of solution times (in seconds) for all the 116 instances. . 75

3.12 Comparing the value of the objective function at each iteration using

a constant step size αk = 0.1, diminishing step size αk = 1
k
, and

p-diminishing step size αk =
1
p
. 86

3.13 Comparing the increase in the number Lagrangian multipliers for the

root node at each iteration using a constant step size αk = 0.1, di-

minishing step size αk =
1
k
, and p-diminishing step size αk =

1
p
. 88

4.1 Comparing an instance solved as a PCMCA, and solved as a PCMCA-

WT. 96

4.2 Example of an RSA instance with 5 points and 10 Steiner vertices. . . 98

4.3 The PCMCA-WT instance associated with the RSA instance depicted

in Figure 4.2. A RSA solution of minimum cost is given by the blue

arcs. The green arcs have cost 0 and, together with the blue ones,

form an optimal PCMCA-WT solution. 99

List of Tables

3.1 Summary of the average results for the linear relaxation of the models

MCF, Compact-U st, Compact-U t, U st, U t and Set-Based. 71

3.2 Summary of the average results for the MILP modelsMCF, Compact-

U st, Compact-U t, U st, U t and Set-Based. 76

3.3 PCMCA computational results for the linear relaxation of the models

MCF, Compact-U st, Compact-U t, U st, U t and Set-Based for TSPLIB

instances. 78

3.4 PCMCA computational results for the linear relaxation of the models

MCF, Compact-U st, Compact-U t, U st, U t and Set-Based for SOPLIB

instances. 79

3.5 PCMCA computational results for the linear relaxation of the models

MCF, Compact-U st, Compact-U t, U st, U t and Set-Based for COM-

PILERS instances. 80

3.6 PCMCA computational results for the MILP models MCF, Compact-

U st, Compact-U t, U st, U t and Set-Based for TSPLIB instances. . . . 81

3.7 PCMCA computational results for the MILP models MCF, Compact-

U st, Compact-U t, U st, U t and Set-Based for SOPLIB instances. . . . 82

3.8 PCMCA computational results for the MILP models MCF, Compact-

U st, Compact-U t, U st, U t and Set-Based for COMPILERS instances. 83

9

3.9 PCMCA computational results comparing solving the MILP model

Set-Based and the B&B algorithm for TSPLIB instances. 91

3.10 PCMCA computational results comparing solving the MILP model

Set-Based and the B&B algorithm for SOPLIB instances. 92

3.11 PCMCA computational results comparing solving the MILP model

Set-Based and the B&B algorithm for COMPILERS instances. 93

4.1 PCMCA-WT summary of the results of solving the models CPB,

RPB, DA and AAC for SOPLIB instances. 121

4.2 PCMCA-WT summary of the results of solving the linear relaxation

of the modelsMCF, CPB, RPB, DA and AAC for TSPLIB and COM-

PILERS instances. 123

4.3 PCMCA-WT summary of the results of solving the MILP models

MCF, CPB, RPB, DA and AAC for TSPLIB and COMPILERS in-

stances. 125

4.4 PCMCA-WT computational results of the linear relaxation of the

models MCF, CPB, RPB, DA and AAC for TSPLIB instances. . . . 128

4.5 PCMCA-WT computational results of the linear relaxation of the

models MCF, CPB, RPB, DA and AAC for COMPILERS instances. 129

4.6 PCMCA-WT computational results of the linear relaxation of the

models MCF, CPB, RPB, DA and AAC for SOPLIB instances. . . . 130

4.7 PCMCA-WT computational results of the MILP models MCF, CPB,

RPB, DA and AAC for TSPLIB instances. 131

4.8 PCMCA-WT computational results of the MILP models MCF, CPB,

RPB, DA and AAC for COMPILERS instances. 132

4.9 PCMCA-WT computational results of the MILP models MCF, CPB,

RPB, DA and AAC for SOPLIB instances. 133

4.10 PCMCA-WT summary of the results achieved by the MILP and CP

Solvers for the models CPB, RPB, CCP, and RCP. 135

4.11 PCMCA-WT computational results of solving the models CPB and

RPB with the MILP solver, and solving the models CCP and RCP

with the CP Solver for TSPLIB instances. 139

4.12 PCMCA-WT computational results of solving the models CPB and

RPB with the MILP solver, and solving the models CCP and RCP

with the CP Solver for SOPLIB instances. 140

4.13 PCMCA-WT computational results of solving the models CPB and

RPB with the MILP solver, and solving the models CCP and RCP

with the CP Solver for COMPILERS instances. 141

4.14 PCMCA-WT best-known solutions for TSPLIB instances. 143

4.15 PCMCA-WT best-known solutions for SOPLIB instances. 144

4.16 PCMCA-WT best-known solutions for COMPILERS instances. . . . 145

List of Algorithms

1 Edmond’s algorithm for finding a MCA in G. 32

2 Separation Procedure for Equalities (3.3) 45

3 Separation Procedure for Inequalities (3.20) 50

4 Separation Procedure for Inequalities (3.44) 55

5 Subgradient Method for Solving the Lagrangian Relaxation 62

6 Nearest Neighbor Algorithm for Computing Big-M 102

7 An Algorithm that Finds all t that are Part of a Zero-Cost (t, s)-path 108

12

Chapter 1

Introduction

A major problem in the area of distribution network design, is determining the best

way to transfer goods from a supply point to multiple points of demand by choosing

the layout of the network, while minimizing the overall costs. A real-world example

of such a network is a natural gas distribution network, which often relies on the

use of pipelines in order to transfer the natural gas to a set of destination points.

Therefore, choosing the best way to connect the destination points to the source

point greatly impacts the operating and maintenance costs of the network, and

consequently gas prices. In such networks, a primary objective among others, is to

decide the minimum total length of pipelines needed such that every destination

point in the network is reachable from the source point, possibly through a set of

different destination points. In the area of graph theory, the problem of finding

the minimum total length to connect a set of points in a network to a source point

is named the Minimum-Cost Spanning-Tree problem [87], or the Minimum-Cost

Arborescence problem [26] in the case where the goods can travel in a single direction.

In some special cases, it is desired for the commodity (such as natural gas) not

to pass through a transit country on its way to the destination country. Such a

scenario can occur when the two countries have unstable political relations, or high

13

14

cost transit duties that are enforced on the destination or source country by the

transit country, which in turn can considerably increase the commodity price. In

such a case the objective is to decide the minimum total length of pipelines needed

such that every destination point in the network is reachable from the source point,

and the commodity does not pass through a set of transit points on its way to a set

of destination points. A precedence-constraint is constraint which imposes that the

commodity must not pass through point a on its way to point b. The problem of

finding the minimum total length of pipelines required to connect a set of destination

points in a network to a source point, such that the precedence-constraints are re-

spected between a set of points is named the Precedence-Constrained Minimum-Cost

Arborescence problem. In other cases, it might be desired to define a priority level

for the destination points motivated by contract clauses, such that the commod-

ity reaches points with a lower priority once or after the commodity has reached

all points with higher priority while satisfying the precedence-constraints. This

transforms the problem to a Precedence-Constrained Minimum-Cost Arborescence

problem with Waiting-Times.

In this thesis, we study the Precedence-Constrained Minimum-Cost Arborescence

problem and the Precedence-Constrained Minimum-Cost Arborescence problem with

Waiting-Times, and investigates the computational complexity of both problems. In

addition, we use several combinatorial optimization techniques to solve the problems,

and experimentally evaluate the performance of the several techniques used.

The rest of this chapter is organized as follows. Section 1.1 covers fundamental

concepts of combinatorial and integer optimization. Section 1.2 covers basics con-

cepts and terminology from graph theory that are used in this work. Finally, we end

the chapter with an outline of the thesis. For a general overview of combinatorial

optimization techniques, we refer the reader to the following books [72, 77, 88].

1.1. COMBINATORIAL AND INTEGER OPTIMIZATION 15

1.1 Combinatorial and Integer Optimization

Combinatorial optimization can be defined as the process of finding one or more

optimal solutions in a well defined discrete problem space containing a finite set

of possible solutions, that minimizes or maximizes a function called the objective

function. The set of possible solutions can be defined by inequality and/or equal-

ity constraints, and integrality constraints that force the decision variables to be

integers. The set of points that satisfy the defined constraints is called the feasible

solution set.

Combinatorial optimization problems arise in some fields of management and

logistics, such as production planning, scheduling, supply chain, facility location,

and commodity transportation networks, as well as in some fields of engineering,

such as design of bridges, and data networks.

Integer programming models often refer to combinatorial optimization models

where most or all the decision variables can be assigned a finite number of possi-

bilities. In this thesis we consider combinatorial optimization problems where the

objective function and constraints are linear and the variables are integers or con-

tinuous. These problems are called integer linear programming problems and are

defined as follows.

minimize cTx

subject to Ax ≤ b

x ∈ Zn

where Zn is the set of integral n-dimensional vectors, and both x and c are integer

n-vectors. Furthermore, A is an m × n matrix and b is an m-vector, where m is

1.1. COMBINATORIAL AND INTEGER OPTIMIZATION 16

number of inequality constraints. If the model contains another set of variables y

that are continuous (i.e., y ∈ Rn), then we obtain what is called amixed integer linear

programming model (MILP). In chapter 3 and chapter 4 we present several MILP

models for the Precedence-Constrained Minimum-Cost Arborescence problem, and

the Precedence-Constrained Minimum-Cost Arborescence problem with Waiting-

Times.

Solving integer linear programming problems can sometimes be a difficult task,

which arises from the fact that unlike linear problems where the feasible region

is a convex set, in integer problems a lattice of feasible points must be searched,

or in mixed integer problems a set of disjoint line segments must be searched to

find an optimal solution. Therefore, in integer programming we may have many

local optima and finding a global optimum to the problem requires a proof that a

particular solution dominates all feasible points.

When solving combinatorial problems there is always a trade-off between the

quality of the solution and the running time. We can either try to find the optimal

solution to the problem with an exact algorithm, or find a sub-optimal solution using

a heuristic algorithm which usually has a considerably smaller running time.

1.1.1 Fundamental Concepts of Complexity Theory

Complexity theory [15, 60, 66] can be described as the study of what is hard or

easy to solve by a computer. Problem classification is dealt with using complexity

theory, that is to determine the number of steps it takes to solve a problem relative

to the input size. In this subsection we summarize the most important concepts of

complexity theory.

An algorithm is defined as a list of steps or instructions that solve every instance

of a specific problem in a finite number of steps. This also implies that an algorithm

1.1. COMBINATORIAL AND INTEGER OPTIMIZATION 17

can also detect if the problem instance has no solution.

The size of a problem is the amount of information needed to describe the in-

stance, that is encoded by a string of symbols. Thus, the size of the instance is equal

to the number of symbols in the string.

The running time of an algorithm is measured by an upper bound on the number

of elementary arithmetic operations (addition, subtraction, multiplication, division,

and comparison) executed on the input, expressed as a function of the input size.

The input is the data used to encode a problem instance. Assuming that the input

size is measured by n, then the running time of the algorithm is expressed asO(f(n)),

if there exist a constant c and n0 such that the number of steps for any instance with

n ≥ n0 is bounded from above by cf(n). An algorithm is said to be a polynomial

time algorithm when its running time is bounded by a polynomial function f(n),

and an algorithm is said to be an exponential time algorithm when its running time

is bounded by an exponential function such as O(2f(n)).

Complexity theory is mainly concerned with decision problems, that is a problem

that can be answered by either ”yes” or ”no”. In the case of an integer programming

problem the decision problem is described as follows. Given an instance of an integer

programming problem and an integer k, is there a feasible solution x such that

cTx ≤ k? The decision problems that are ”easy” to solve are solvable in polynomial

time and belong to the complexity class denoted by P . This class of problems

includes problems such as: finding the maximum number in a list of numbers, sorting

a list of numbers, and solving linear programs.

On the other hand, the decision problems that are ”hard” to solve are solvable

in exponential time and belong to the complexity class EXP, where the majority of

combinatorial problems belong. In order to distinguish between ”easy” and ”hard”

problems we must first describe a complexity class that contains P .

The complexity class NP is defined as the set of decision problems for which

1.1. COMBINATORIAL AND INTEGER OPTIMIZATION 18

the problem instances has a positive answer that can be verified in polynomial time

by a deterministic algorithm, and the problem can be solved in polynomial time

by a non-deterministic algorithm. The complexity class NP-complete contains the

hardest problems to solve that belong to NP .

Definition 1.1. Polynomial transformation is an algorithm that for every in-

stance α of problem Π1 produces in polynomial time an instance β of problem Π2,

such that for every instance α of problem Π1 the answer is ”yes” if and only if the

answer to instance β of problem Π2 is ”yes”.

Definition 1.2. A decision problem Π is classified as NP-complete if Π in in NP

and every other NP decision problem can be polynomially transformed into Π.

Based on the previous definitions, if an NP-complete problem can be solved in

polynomial time, then all the problems that are in NP can be solved in polynomial

time, and hence P = NP . Note that polynomial transformation is a transitive rela-

tion, that is if problem Π1 is pollynomialy transferable to problem Π2, and problem

Π2 is pollynomialy transferable to problem Π3, then problem Π1 is pollynomialy

transferable to problem Π3. Therefore if we want to prove that a decision problem

Π is NP-complete then we need to show that:

1. Π ∈ NP .

2. Some decision problem that is already known to be NP-complete can be poly-

nomially transformed to Π.

Definition 1.3. An optimization problem Π is classified as NP-hard if there

exists an NP-complete decision problem that can be polynomially reduced to Π.

An optimization problem is NP-hard if the corresponding decision problem is

NP-complete. In particular, the two problems introduced in this thesis areNP-hard

(see section 3.3 and 4.2).

1.1. COMBINATORIAL AND INTEGER OPTIMIZATION 19

1.1.2 Heuristic and Relaxation Methods

In the previous section we have shown that when a combinatorial problem is shown

to be NP-hard , then that means a polynomial algorithm which solves the problem

unlikely exists. However, some techniques can be used to find good solutions for hard

optimization problems which requires the consideration of two issues: 1) calculating

a lower bound that is close to the optimal solution as possible, and 2) calculating

an upper bound that is as close to the optimal solution as possible.

Generating a good upper bound can be achieved by using general techniques

(Metaheuristics) such as Genetic/Evolutionary Algorithms [18, 62], Simulated An-

nealing [24], Tabu Search [41], improvement heuristic such as Local Search [1], and

problem specific heuristics. A key distinction between heuristics and metaheuris-

tics, is that heuristics are designed to solve a particular problem, while the same

metaheuristic algorithm can be used to solve multiple problems by tuning its inputs.

Heuristics and Metaheuristics work well for combinatorial optimization problems,

although they are not usually guaranteed to find a global optimal solution, however

they can often find a sufficiently good solution very quickly, and are an alternative

to exhaustive search, which would take an exponential amount of time relative to

the size of the input. Furthermore, metaheuristics can be easily applied to a large

number of problems. For example, in the case of genetic algorithms, all we need

is a way to encode the possible solutions, but in principle, we can apply genetic

algorithms to a wide range of problems, although they may not always be the best

solution to each of these problems. Moreover, we can incorporate some randomness

in order to escape local minima, which is usually done in genetic algorithms among

others. For more information on metaheuristics the reader can refer to [42, 45, 82].

In this thesis, heuristic methods are not considered. However, every method

we consider can be adapted to generate an upper bound by limiting the computa-

1.1. COMBINATORIAL AND INTEGER OPTIMIZATION 20

tion time and/or explored solution space of each method, which would considerably

reduce the computation time of the solution method.

On the other hand, lower bounds can be computed using relaxation techniques.

Relaxation is an approximation of a difficult problem by a nearby problem that is

easier to solve, where a solution of the relaxed problem provides information about

the original problem. Some of the techniques that are used to generate lower bounds

that are used in this thesis are:

� Linear Programming (LP) relaxation

Linear programming relaxation is a linear programming formulation that takes

an integer programming formulation of a problem, and relaxes the integrality

constraints on the set of integer variables, where the resulting relaxation is

a linear program, hence the name. This relaxation technique transforms an

NP-hard optimization problem (integer programming) into a related problem

that is solvable in polynomial time (linear programming). The linear program

can be solved in polynomial time using standard algorithms such the simplex

method [16] or interior point method [76]. The objective function value that

is obtained by solving the linear programming model is a lower bound on the

optimal objective function value to original minimization problem.

� Lagrangian relaxation

Lagrangian relaxation methods [33] work by relaxing or dualizing a subset or

all the constraints, by adding them to the objective function and associating

each dualized constraint with a Lagrangian multiplier, that is used to penalize

violations of equalities/inequalities, i.e. to impose a cost on the violations.

These added costs are used instead of the strict inequality constraints in the

optimization. In practice, the Lagrangian relaxation problem can often be

solved more easily than the original problem, and the value achieved by solving

1.1. COMBINATORIAL AND INTEGER OPTIMIZATION 21

the Lagrangian relaxation is a lower bound on the original problem. The

quality of the lower bound is mainly affected by the values chosen for the

Lagrangian multipliers.

In more details, suppose we are given the integer linear programming model

with x ∈ {0, 1}n, A ∈ Rm,n, and B ∈ Rm,n of the following form:

minimize cTx (1.1)

subject to Ax ≥ b1 (1.2)

Bx ≥ b2 (1.3)

Now suppose that the problem can be solved in polynomial time by relax-

ing constraints (1.3). Based on that we may introduce constraint (1.3) into

to objective function and associate the constraint with a set of nonnegative

Lagrangian multipliers λ = [λ1, λ2, . . . , λm], which results in the following inte-

ger linear programming model, that is a Lagrangian relaxation of our original

problem.

minimize cTx+ λT (b2 −Bx) (1.4)

subject to Ax ≥ b1 (1.5)

The idea of the new model is that we get penalized if constraint (1.3) is vi-

olated, and rewarded if we satisfy the constraint strictly. In section 3.5 we

will show how we can find appropriate values for the Lagrangian multipliers

such that the solution of the relaxation is an optimal solution to the original

1.2. FUNDAMENTAL CONCEPTS OF GRAPH THEORY 22

problem.

1.2 Fundamental Concepts of Graph Theory

In this section we summarize a set of terminology and definitions related to the

problems introduced in this thesis.

Throughout the thesis we will be focusing only on directed graphs, which is the

general form of graphs. A directed graph (digraph) is an ordered pair G = (V,A),

where V = {1, . . . , n} is a nonempty finite set of vertices, and A ⊆ V × V is a set

of ordered pairs of vertices (i, j) with i, j ∈ V . The set A is called the arcs of the

graph. If (i, j) ∈ A then vertex i and vertex j are adjacent vertices. In such a case

vertex j is called the head or target of (i, j), and vertex i is called the tail or source

of (i, j). Two arcs are adjacent if they share the same source or tail. For example

the two arcs (i, j) and (i, k) are adjacent since they both share the same source

which is vertex i. A vertex j for which (i, j) ∈ A is a neighbor of i, however i is not

a neighbor of j if (j, i) /∈ A. A subgraph G′ = (V ′, A′) is a directed subgraph of G

if V ′ ⊆ V and A′ ⊆ A, and A′ ⊆ V ′ × V ′. A directed weighted graph is a directed

graph where each arc (i, j) ∈ A is associated with a weight cij, and the weight of an

arc set A′ ⊆ A is given by c(A′) =
∑︁

(i,j)∈A′ cij.

We define the following notations to describe a specific set of arcs. Let i ∈ V be

a vertex, and let U ⊆ V be a set of vertices.

1.2. FUNDAMENTAL CONCEPTS OF GRAPH THEORY 23

δ+(i) = {(i, j) ∈ A|j ∈ V } (1.6)

δ−(i) = {(j, i) ∈ A|j ∈ V } (1.7)

δ+(U) = {(i, j) ∈ A|i ∈ U, j /∈ U} (1.8)

δ−(U) = {(i, j) ∈ A|i /∈ U, j ∈ U} (1.9)

The aforementioned sets of arcs can be described as follows. δ+(i) is the set of

arcs leaving vertex i, δ−(i) is the set of arcs entering vertex i, δ+(U) is the set of

arcs leaving the set of vertices U , and δ−(U) is the set of arcs entering the set of

vertices U . Moreover, A′ ⊆ A is called an (s, t)-cut if A′ = δ+(U) such that s ∈ U

and t /∈ U .

For a given directed graph G = (V,A) with s, t ∈ V . A function f : A → R is

called an (s, t)-flow if:

1. f(a) ≥ 0 ∀a ∈ A

2.
∑︂

a∈δ+(v)

f(a) =
∑︂

a∈δ−(v)

f(a) ∀v ∈ V \{s, t}

Then by definition the value of an (s, t)-flow f is c(f) =
∑︂

a∈δ+(s)

f(a) −
∑︂

a∈δ−(s)

f(a).

This implies that the total amount of flow leaving s is equal to the total amount of

flow entering t.

Given a directed graph G = (V,A) and a capacity function c : A → R+ that is

associated with each arc a ∈ A, a flow f is said to be under c if f(a) ≤ c(a) for

all a ∈ A. The Maximum-Flow problem is to find an (s, t)-flow under c that is of

maximum value. The capacity of a cut δ+(U) is defined as c(δ+(U)) =
∑︁

a∈δ+(U) c(a).

The value of a maximum-flow is equal to the capacity of a minimum-cut [34].

Theorem 1.1. Max-Flow Min-Cut [52] For any directed graph G = (V,A),

1.3. OUTLINE OF THE THESIS 24

s, t ∈ V , and c : A → R+, the maximum value of an (s, t)-flow under c is equal to

the minimum capacity of an (s, t)-cut.

Given a directed graph G = (V,A) then the set of arcs P = {(v1, v2), (v2, v3), . . . ,

(vk−1, vk)}, k ≥ 2, vi ∈ V, (vk, vk+1) ∈ A for all i = 1, . . . k, is called a walk

or a (v1, vk)-walk . A walk consisting of vertices that are all pairwise differ-

ent, that is vi ̸= vj for all i ̸= j, is called a path or a (v1, vk)-path. A walk

C = {(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1)} that starts and ends at the same vertex

is called a cycle. A cycle is called a simple cycle if all vertices are pairwise different,

that is vi ̸= vj for all i, j = 1, . . . , k, i ̸= j. A directed graph G = (V,A) is called an

acyclic graph, if its arc set A does not contain a cycle.

Given a directed graph G = (V,A), and vi, vj ∈ V , the two vertices vi, vj are

said to be connected , if there exists an (i, j)-path in G (i.e., G contains a path that

starts from vertex vi and ends in vertex vj).

Given a directed graph G = (V,A), a branching B is an acyclic arc set such that

every vertex in V is the target of at most one arc in B (i.e., each vertex has exactly

one arc entering it). Furthermore, a connected branching is called an arborescence.

For any arborescence there exists one vertex r called the root of the arborescence

that is not the target of any arc in the branching (i.e., δ−(r) = ϕ), from which there

is a unique path from the root to every other vertex in the arborescence.

1.3 Outline of the Thesis

In this thesis we introduce the Precedence-Constrained Minimum-Cost Arborescence

problem (PCMCA), and its variation, the Precedence-Constrained Minimum-Cost

Arborescence problem with Waiting-Times. For both problems we introduced a

proof of complexity, and we apply several techniques of combinatorial optimization

to solve the problems. The rest of this thesis is organized as follows.

1.3. OUTLINE OF THE THESIS 25

Chapter 2 describes the Minimum-Cost Arborescence problem, that is a spe-

cial case of the Precedence-Constrained Minimum-Cost Arborescence problem, and

we mention two efficient algorithm for constructing a minimum-cost arborescence,

namely Edmonds algorithm [26] and a more efficient implementation of the algo-

rithm proposed by Gabow and Tarjan [37]. Finally, we summarize variations of

the Minimum-Cost Arborescence problem and other related work available in the

literature.

Chapter 3 defines the Precedence-Constrained Minimum-Cost Arborescence

(PCMCA) problem. In this chapter we present a proof of complexity for the problem,

and propose several mixed integer linear programming formulation for the problem.

We also propose a Branch-and-Bound algorithm for the PCMCA problem that uses

the Lagrangian Relaxation technique discussed briefly in section 1.1.2, and introduce

the principles of Lagrangian relaxation technique, and how to solve the Lagrangian

relaxation. Finally, computational results and comparison between models and the

different solving methods are presented.

Chapter 4 introduces the Precedence-Constrained Minimum-Cost Arborescence

problem with Waiting-Times, where we present a proof of complexity for the prob-

lem, and propose several mixed integer linear programming, and constraint pro-

gramming formulations for the problem. Computational results and comparisons

between the models are presented. Finally, conclusions and summaries are drawn in

chapter 5.

Chapter 2

The Minimum-Cost Arborescence

Problem

The aim of this chapter is to provide the reader an overview of the classical

Minimum-Cost Arborescence (MCA) problem [26]. In the first section we define

the MCA problem. In the second section we formally present several MILP models

from the literature. In the final section we present an overview of polynomial time

algorithms for the MCA problem and their computational complexity.

2.1 Problem Definition

The MCA problem [26] can be describe as follows. Given a directed weighted graph

and a root vertex, the objective of the problem is to find an arc subset of size n− 1

that has a total minimum-cost, such that there are no arcs entering the root, and

there is a unique path from the root to every other vertex in the graph. The problem

where the root vertex is predefined is often called an r-arborescence. The problem

has many practical applications in telecommunication and computer networks [64, 9],

transportation problems [47], and tracking systems [51], etc. Furthermore, it can be

26

2.1. PROBLEM DEFINITION 27

r

1 2

34

1

1 1

1

1
12

3

4
r

1

2

3

4

1

1

1

1

Figure 2.1: Example of a minimum-cost arborescence.

considered as a subproblem in many routing and scheduling problems [31].

As described in [26], the MCA problem can be defined on a directed graph

G = (V,A) where V = {1, . . . , n} is the set of vertices, and A ⊆ V × V is the set

of arcs, where each arc (i, j) ∈ A represents a connection between a pair of vertices

i, j ∈ V . A cost cij is associated with every arc (i, j) ∈ A, and a root vertex r ∈ V

is normally provided. A feasible solution T is defined as a set of arcs (i.e. T ⊆ A)

of size |V | − 1, that form a connected acyclic graph rooted at r. The objective

function of the MCA can be reduced to the minimization of the following quantity

o(T), given a feasible subset of arcs T :

o(T) =
∑︂

(i,j)∈T

cij (2.1)

Figure 2.1 shows an example of a MCA. The graph on the left is the instance

graph with its respective arc costs, while the graph on the right shows an optimal

arborescence of cost 4. The arcs that are part of the arborescence is the set of arcs

T .

2.2. MIXED INTEGER LINEAR PROGRAMMING MODELS 28

2.2 Mixed Integer Linear Programming Models

In this section we present several MILP models for the MCA problem, that are

either exponential or polynomial in size.

2.2.1 Set-Based Model

Let xij be a variable associated with every arc (i, j) ∈ A such that xij = 1 if xij ∈ T

and 0 otherwise, and let δ−(S) be the set of arcs entering the set of vertices S (see

Section 1.2). The MCA problem can be formulated as the following binary integer

linear program.

minimize
∑︂

(i,j)∈A

cijxij (2.2)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (2.3)

∑︂
(i,j)∈δ−(S)

xij ≥ 1 ∀S ⊆ V \{r} (2.4)

xij ∈ {0, 1} ∀(i, j) ∈ A (2.5)

Constraints (2.3) enforces the first property of an arborescence that every vertex

v ∈ V \{r} must have a single parent. Constraints (2.4) models the connectivity

constraints, that is every vertex v ∈ V \{r}must be reachable from the root. Finally,

constraints (2.5) define the domain of the variables. It should be noted that the set

of constraints (2.3) can be omitted from the model [44]. The set of constraints (2.3)

are left as part of the model as they affect the strength of the linear relaxation of

the models proposed in the following chapters.

The Set-Based model uses an exponential number of connectivity constraints

2.2. MIXED INTEGER LINEAR PROGRAMMING MODELS 29

r

1

2

3

4

3

2

1

1

Figure 2.2: Example of a feasible MCA solution using a network flow based formulation.

(2.4), and is the basis of all polynomial time algorithms proposed for solving the

MCA problem. Moreover, it is the most efficient model at solving the problem, since

in practice, the number of constraints that are dynamically added to the model is

small, and are added only when they are violated. On the other hand, the MCA

problem can be modeled using a polynomial number of constraints, as shown in the

next section.

2.2.2 Flow-Based Model

The MCA problem can alternatively be modeled using a polynomial number of

constraints as a network flow problem [2]. Assuming that a flow of value at least

one must reach every vertex in the graph other than the root, then if arc (i, j) ∈ A

is part of the solution (i.e. (i, j) ∈ T), then the amount of flow passing through

the arc must be equal to the number of vertices reachable from vertex j plus one.

The aforementioned constraints imply that the flow passing through arcs entering

leaf vertices in the arborescence is equal to one, and the flow passing through arcs

entering non-leaf vertices is greater than one. Since there are no arcs entering the

root, and every vertex must be reachable from the root, then the sum of the flow

leaving the root must be equal to n−1. Figure 2.2 shows an example of the amount of

flow passing through every arc in a feasible solution. In the figure each arc (i, j) ∈ T

has a weight equal to the amount of flow passing through that arc.

2.2. MIXED INTEGER LINEAR PROGRAMMING MODELS 30

Let yij be a variable associated with every arc (i, j) ∈ A that is equal to the

amount of flow passing through that arc, then the MCA problem can be formulated

as the following integer linear programming model.

minimize
∑︂

(i,j)∈A

cijxij (2.6)

subject to
∑︂

(i,j)∈A

yij −
∑︂

(j,i)∈A

yji =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 i ̸= r

n− 1 i = r

∀i ∈ V (2.7)

xij ≥
yij

n− 1
∀(i, j) ∈ A (2.8)

xij ∈ {0, 1} ∀(i.j) ∈ A (2.9)

yij ∈ Z+ ∀(i.j) ∈ A (2.10)

Constraints (2.7) are the flow-connectivity constraints that enforce the following:

� The amount of flow entering the root is equal to zero, and hence no arcs enter

the root.

� There is a unique path which connects every vertex in the graph to the root.

� Any feasible solution is a connected acyclic graph (i.e. an arborescence).

Constraints (2.8) impose the that the value of xij must be between zero and one

if the value of yij is greater than zero. The value of yij is divided by n − 1 since

yij ≤ n− 1 from (2.7), which would restrict the value of xij to be between zero and

one. Finally, constraints (2.9) and (2.10) define the domain of the variables.

2.3. POLYNOMIAL-TIME ALGORITHMS 31

2.3 Polynomial-Time Algorithms

In the related literature, the optimization problem of the MCA has been shown to

be solvable in polynomial time. For further reading about the proof we refer the

interested reader to [40, 43, 44].

The first polynomial time algorithm for solving the problem was proposed in-

dependently by Yoeng-Jin Chu and Tseng-Hong Liu [13], and Jack Edmonds [26].

A different polynomial time algorithm that operates directly on the cost matrix

was discussed by Bock [7]. Both Edmond’s and Chu-Liu algorithms have a com-

putational complexity of O(|E||V |). A faster implementation with a computational

complexity of O(|V | log |V | + |A|), using disjoint sets [87] and a special implemen-

tation of Fibonacci heaps [35], was later on proposed by Gabow and Tarjan [37].

Edmond’s algorithm is described in algorithm 1.

2.3. POLYNOMIAL-TIME ALGORITHMS 32

Algorithm 1 Edmond’s algorithm for finding a MCA in G.

1: procedure Find MCA(G, r)

2: δ−(r) = ϕ

3: π(j) = null ∀j ∈ V

4: Construct(G, r, π)

5: end procedure

6:

7: procedure Construct(G, r, π)

8: for j ∈ V \{r} do

9: π(j) = Get Min(G, j)

10: end for

11: P = {(π(j), j|j ∈ V \{r})}
12: C = Contains Cycle(P)

13: if C ̸= null then

14: Construct a directed graph G′ = (V ′, A′) such that:

15: V ′ = {i ∈ V |i /∈ C} ∪ {vC}
16: A′ = {(i, j)|(i, j) ∈ A, (i, j) /∈ C}

17: cij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cij − cπ(j)j, i /∈ C and j ∈ C

cij, i ∈ C and j /∈ C

cij, i /∈ C and j ∈ C

18: Construct(G′, r, π)

19: end if

20: end procedure

Line 1 removes all the arcs entering the root r. Line 2 creates an array which

holds the parent of each vertex. Line 4 calls the function Construct which find a

MCA in G rooted at r. Lines 8-10 assigns the parent of each vertex j as the source

of the minimum weighted arc entering j. Line 11 creates the set P which is all the

arcs currently selected as part of the arborescence. Line 12 checks if P contains a

cycle and returns it. Lines 14-17 constructs a new graph G′ by contracting the cycle

C and adjusting the weights of the arcs as defined. Line 18 calls Construct on the

contracted graph G′. Note that a MCA in G is found once the solution contains no

cycles. The final MCA can be constructed by selecting the arcs in reverse order as

2.4. LITERATURE REVIEW 33

they were selected by the algorithm.

2.4 Literature Review

In this section we provide the reader with an overview of problems related to the

MCA problem.

Since the MCA problem was first proposed, different variations have been intro-

duced such as the Resource-Constrained Minimum-Weight Arborescence problem

[32], where finite resources are associated with each vertex in an input graph. The

objective of the problem is to find an arborescence with minimum total cost where

the sum of the costs of outgoing arcs from each vertex is at most equal to the re-

source of that vertex. The problem is categorized as NP-hard as it generalizes the

Knapsack problem [32].

The Minimum Spanning Tree (MST) problem, is the problem of finding a

minimum-cost tree which spans all the vertices of an undirected graph. The Capaci-

tated Minimum Spanning Tree problem [47] is a variation of the MST problem, where

a non-negative integer node demand qj is associated with each vertex j ∈ V \{r},

and an integer capacity Q is given. The objective is to find a minimum spanning

tree such that the sum of demands of every subtree does not exceed a given capacity

Q. The problem is shown to be NP-hard as the particular case with zero cost arcs

is a bin packing problem [47].

The p-Arborescence Star problem [74] is a relevant problem that is described as

follows. Given a weighted directed graph G = (V,A), a root vertex r ∈ V , and an

integer p, the objective of the problem is to find a minimum-cost reverse arborescence

rooted at r such that the arborescence spans the set of vertices H ⊆ V \{r} of size p,

and each vertex v ∈ V \{H ∪ r} is assigned to one of the vertices in H. The problem

is shown to be NP-hard [70] in the general case by a reduction from the p-median

2.4. LITERATURE REVIEW 34

problem [49].

Frieze and Tkocz [36] study the problem of finding a minimum-cost arborescence

such that the cost of the arborescence is at most c0. The problem is studied on

randomly weighted digraphs where each arc in the graph has a weight w and a cost

c, each being an independent uniform random variable U s where 0 < s ≤ 1, and

U is uniform [0, 1]. The problem is NP-hard [36] through a reduction from the

Knapsack problem.

Another problem of interest is the Maximum Colorful Arborescence problem [30]

that can be described as follows. Given a weighted directed acyclic graph with each

vertex having a specified color from a set of colors C, the objective is to find an

arborescence of maximum weight, in which no color appears more than once. The

problem is known to be NP-hard [8] even when all arcs have a weight of 1.

The Constrained Arborescence Augmentation problem [63] is a different variation

on the MCA problem that can be described as follows. Given a weighted directed

graph G = (V,A), and an arborescence T = (V,Ar) in G rooted at vertex r ∈ V , the

objective of the problem is to find an arc subset A′ from A−Ar such that there still

exists an arborescence in the new graph G′ = (V,Ar ∪ A′ − a) for each arc a ∈ Ar,

where the sum of the weights of the arcs in A′ is minimized. The problem is an

extension on the Augmentation problem [29], and is shown to be NP-hard [63].

TheMinimum k Arborescence with Bandwidth Constraints problem [9] is another

variation, where every arc a ∈ A has an integer bandwidth b(a) that indicates the

number of times such an arc can be used. The objective of the problem is to find

k arborescences of minimum-cost rooted at the k given root vertices, covering every

arc a ∈ A at most b(a) times. It has been shown that the problem can be solved in

polynomial time [9].

The Degree-Constrained Minimal Spanning Tree Problem with Unreliable Links

and Node Outage Costs [59] is modeled as a directed graph with the root vertex

2.4. LITERATURE REVIEW 35

being the central node of a network, and all other vertices being terminal nodes.

The problem consists in finding links in a network to connect a set of terminal

nodes to a central node, while minimizing both link costs and node outage costs.

The node outage cost is the economic cost incurred by the network user whenever

that node is disabled due to failure of a link. The problem is shown to be NP-hard

by reducing the problem to an equivalent Traveling Salesman Problem [39].

The Minimum Changeover Cost Arborescence problem [38] is another variation,

where each arc is labeled with a color out of a set of k available colors. A changeover

cost is defined on every vertex v in the arborescence other than the root. The cost

over a vertex v is paid for each outgoing arc from v and depends on the color of its

outgoing arcs, relative to the color of its incoming arc. The costs are given through a

k× k matrix C, where each entry Cab, specifies the cost to be paid at vertex v when

its incoming arc is colored a and one of its outgoing arcs is colored b. A changeover

cost at vertex v is calculated as the sum of costs paid for every outgoing arc at that

vertex. The objective of the problem is to find an arborescence T with minimum

total changeover cost for every vertex j ∈ V other than the root. The problem is

shown to be NP-hard and very hard to approximate [38].

Finding a pair of arc-disjoint in-arborescence and out-arborescence is another

problem, with the objective of finding a pair of arc-disjoint r-out-arborescence rooted

at r1 and r-in-arborescence rooted at r2 where r1, r2 ∈ V . An r-out-arborescence

has all its arcs directed away from the root, and an r-in-arborescence has all its

arcs directed towards the root. A linear-time algorithm for solving the problem in

directed acyclic graphs is proposed by Bérczi et al. [6]. The problem is shown to be

NP-complete in general graphs even if r1 = r2 [4].

Yingshu et al. [64] study the problem of constructing a strongly connected broad-

cast arborescence with bounded transmission delay. They devise a polynomial time

algorithm for constructing a broadcast network with minimum energy consumption

2.5. CONCLUSIONS 36

that respects the transmission delays of the broadcast tree simultaneously.

The Minimum Spanning Tree Problem with Conflict Pairs is a variation of the

minimum spanning tree problem where given an undirected graph and a set S that

contains conflicting pairs of edges called a conflict pair, the objective of the problem

is to find a minimum-cost spanning tree that contains at most one edge from each

conflict pair in S [10]. The problem is shown to be NP-hard [17].

The Least-Dependency Constrained Spanning Tree problem [86] is another vari-

ation that can be defined as follows. Given a connected graph G = (V,E) and a

directed graph D = (E,A) whose vertices are the edges of G, the directed graph D

is a dependency graph for E, and e1 ∈ E is a dependency of e2 ∈ E if (e1, e2) ∈ A.

The objective of the problem is to decide whether there is a spanning tree T of

G such that each edge in T has either an empty dependency or at least one of its

dependencies is also in T . The All-Dependency Constrained Spanning Tree problem

[86] is a similar problem that consists in deciding whether there is a spanning tree T

of G such that each of its edges either has no dependency or all of its dependencies

are in T . The two problems are shown to be NP-complete [86].

2.5 Conclusions

In this chapter we defined the Minimum-Cost Arborescence problem, and presented

several MILP models for the problem, that are exponential or polynomial in size.

An overview of several polynomial time algorithms for solving the problem are men-

tioned. Finally, we have covered several variations on the MCA problem, and noticed

that the majority of those variations are NP-hard or NP-complete problems.

Chapter 3

The Precedence-Constrained

Minimum-Cost Arborescence

Problem

The aim of this chapter is to introduce the Precedence-Constrained Minimum-Cost

Arborescence (PCMCA) problem (first introduced in [19]), that is an extension to

the MCA problem discussed in chapter 2. In the section 3.1 we define the PCMCA

problem. Section 3.2 covers some applications of the MCA problem. Section 3.3

presents a proof of complexity for the PCMCA problem. In section 3.4 we pro-

pose several MILP models for the PCMCA problem, that use different techniques

to model the precedence constraints. In section 3.5 we present Lagrangian relax-

ation based Branch-and-Bound algorithm for the PCMCA problem. Section 3.6

discusses computational results and experimentally compares the different models

and methods proposed, while some conclusions are outlined in section 3.7. The work

presented in this chapter has appeared in [12, 19, 21, 20].

37

3.1. PROBLEM DEFINITION 38

3.1 Problem Definition

The PCMCA problem can be described by extending the definition of the MCA

problem (see section 2.1). Given a directed weighted graph, a set R of ordered pairs

of vertices, and a root vertex, the objective of the problem is to find a minimum-cost

r-arborescence, such that for any (s, t) ∈ R with s, t ∈ V , a feasible solution is an

arborescence that does not contain a directed path from t to s. Alternatively, given

a set R of ordered pairs of vertices, then for each precedence (s, t) ∈ R any path of

the arborescence covering both vertices s and t must visit s before visiting t.

The PCMCA problem can be formally defined on a directed graph G = (V,A,R),

where V = {1, . . . , n} is the set of vertices, A ⊆ V × V is the set of arcs, with each

arc (i, j) ∈ A representing a connection from a vertex i ∈ V to a vertex j ∈ V , and

R ⊂ V ×V is the set of precedence relationships. The set of precedence relationships

has to be acyclic, otherwise the problem instance does not contain a feasible solution.

A cost cij is associated with every arc (i, j) ∈ A, and a root vertex r ∈ V is provided.

A feasible solution T is defined as a set of arcs (i.e. T ⊆ A) of size |V | − 1, that

form a connected acyclic graph rooted at r, such that for each (s, t) ∈ R, t must

not belong to the unique path that connects r to s. The objective function of the

PCMCA can be reduced to the same objective function (2.1) for the MCA, given

the additional constraints.

Figure 3.1 shows an example of a PCMCA. The graph on top is the instance

graph with its respective arc costs, and the precedence relationship (3, 1) ∈ R is

marked as a dashed arrow. The graph on the bottom left shows an optimal MCA

of cost 4, while the graph on the bottom right shows an optimal PCMCA of cost

5. The MCA solution is infeasible for the PCMCA since (3, 1) ∈ R, and vertex

1 belongs to the directed path connecting r to vertex 3. To make the solution a

feasible PCMCA, then vertex 1 must succeed vertex 3 on the same directed path,

3.2. APPLICATIONS 39

r

1 2

34

1

1 1

1

1
12

3

4

r

1

2

3

4

1

1

1

1

R

r

2

3

4

1

1

1

1

2

Figure 3.1: Example of a precedence-constrained minimum-cost arborescence.

or the two vertices must reside on two disjoint paths.

3.2 Applications

The PCMCA problem has practical applications in designing commodity distribu-

tion networks [19]. As an example, assume there is a main reservoir r that is filled

with a commodity such as oil or gas, and we would like to connect r to a set of

destination reservoirs (located in other countries/cities) in order to distribute the

commodity, while at the same time minimizing the cost of the distribution infras-

tructure. The structure of the distribution network follows the definition of a MCA,

where the main reservoir is the root vertex, and the destination reservoirs are the re-

maining vertices of the graph. The reason why the distribution is an arborescence,

is because the flow always travels in a single direction away from the root (main

reservoir). Now assume that a flow from r to a destination vertex t cannot pass

3.3. COMPUTATIONAL COMPLEXITY 40

through another vertex s. Such a scenario can occur if two countries (s and t) have

unstable political relations, therefore destination point t might not want to use des-

tination point s as a transit point. In other cases, transit duties that are higher than

the travel cost might be required to be paid in order to utilize that country’s dis-

tribution infrastructure. Such a case occurred when Belarusian president Alexander

Lukashenka has threatened to slap new duties on Russian oil transit unless Russian

oil companies agree to sell Belarus oil at a lower price [81]. To avoid the aforemen-

tioned situations (and possibly others), then we can enforce a precedence-constraint

on s and t (i.e., (t, s) ∈ R), and therefore the flow from r to t will not pass through

s.

3.3 Computational Complexity

In this section we present a proof that the PCMCA problem is NP-hard by a

reduction from the 3-SAT problem [60]. The proof is inspired by the one introduced

in [61] for the Path Avoiding Forbidden Pairs problem.

The 3-SAT problem can be described as follows. Let X = {x1, x2, . . . , xn} be a

set of variables. A literal in a boolean formula is an occurrence of a variable or its

negation. A boolean formula is in conjunctive normal form (CNF), if its expressed as

an AND (∧) of clauses, each of which is the OR (∨) of one or more literals. A boolean

formula is in 3-conjunctive normal form, or 3-CNF, if each clause has exactly three

distinct literals. For example, the boolean formula (x1 ∨¬x1 ∨x2)∧ (x2 ∨x3 ∨x4) is

in 3-CNF. In 3-SAT, we are asked whether a given boolean formula ϕ in 3-CNF is

satisfiable. A boolean formula ϕ is satisfiable if there exists a truth assignment for

ϕ which evaluates to true. The 3-SAT problem is known to be NP-complete [60].

Theorem 3.1. The PCMCA problem is NP-hard

3.3. COMPUTATIONAL COMPLEXITY 41

r s

s′

v11

v12

v13

. . .

. . .

. . .

vm1

vm2

vm3

t

Figure 3.2: A PCMCA instance reduced from 3-SAT.

Proof. By reduction from 3-SAT: Let X = {x1, x2, . . . , xt} be a set of variables.

Let Φ = C1 ∧ C2 ∧ · · · ∧ Cm be a boolean expression in 3-conjunctive normal form,

such that each clause Ci, i = 1, . . . ,m, is denoted by (vi1 ∨ vi2 ∨ vi3), where each

literal vik, 1 ≤ k ≤ 3, is associated to one variable in X or its negation. We will

construct a graph G and a set of precedence constraints R such that there exists a

feasible solution of the PCMCA problem in G if and only if Φ is satisfiable, i.e. if

and only if the the underlying 3-SAT problem is satisfiable.

Let G = (V,A) where V = {r} ∪ {s} ∪ {s′} ∪ {t} ∪ C, with C, A and R defined

as follows.

C = {vik : 1 ≤ i ≤ m, 1 ≤ k ≤ 3}

A = {(r, s), (r, s′)} ∪ {(s, v1j), 1 ≤ j ≤ 3)} ∪ {(vmj, t), 1 ≤ j ≤ 3}

∪ {(vij, vi+1,k), 1 ≤ i < m, 1 ≤ j, k ≤ 3} ∪ {(s′, vij), 1 ≤ i ≤ m, 1 ≤ j ≤ 3}

R = {(t, s′)} ∪ {(vhk, vij) : h > i, vhk and vij refer to the same variable, but

exactly one of the two literals is negated}

Note that C contains 3m vertices, one for each literal of each clause Ci, with all

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 42

arcs having an equal positive cost. The three sets C, A, and R induce the graph

shown in Figure 3.2. The set of precedence constraints, besides (t, s′), is between two

vertices that refer to the same literal, but exactly one of the two literals is negated.

If a feasible solution T of the PCMCA problem can be found in G, this implies that:

1. no path from s′ to t exists in T

2. in any (rooted) path there is no pair of vertices corresponding to a variable

and its negation

3. there is a unique path P from r to t which passes through s and through a

vertex of each clause

The formula can be satisfied by assigning true values to all the literals corre-

sponding to the vertices in P ∩C, and assigning false values to all the variables not

associated with these literals. This satisfies all the clauses.

Conversely, if the formula is satisfied then each clause has at least one literal with

true value, and no variable is assigned to both true and false (in different clauses).

We construct a PCMCA feasible solution as follows. We start by building a path P

from r to t which includes s and exactly one vertex from each clause, corresponding

to a literal with true value. We complete the arborescence by adding (r, s′) and

(s′, v) for each v ̸∈ P .

3.4 Mixed Integer Linear Programming Models

In this section we propose several MILP models for the PCMCA problem, using

different techniques to model the precedence relationships between vertex pairs.

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 43

3.4.1 Multicommodity Flow Model

In this section we introduce a MILP model with a polynomial number of constraints

for the PCMCA which modifies the flow conservation constraints of a Multicom-

modity flow model [11, 25].

The PCMCA problem can be modeled as a Multicommodity flow problem by

modifying the flow conservation constraints, such that the flow originating from the

root, that reaches every vertex k in the graph, cannot pass through a successor of k

before reaching k (i is a successor of k if (k, i) ∈ R). The PCMCA problem can be

modeled as a Multicommodity flow problem as follows.

Let xij be a variable associated with every arc (i, j) ∈ A such that xij = 1

if (i, j) ∈ T , and 0 otherwise. Let ykij be a variable associated with every vertex

k ∈ V \{r} and every arc (i, j) ∈ A, such that ykij = 1 if arc (i, j) ∈ T on the path

from r to k, and 0 otherwise. The PCMCA problem can be modeled as the following

MILP model.

minimize
∑︂

(i,j)∈A

cijxij (3.1)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (3.2)

∑︂
(i,j)∈A:
(k,j)/∈R

ykij −
∑︂

(j,i)∈A:
(k,j)/∈R

ykji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = r

−1 if i = k

0 otherwise

∀k ∈ V \{r},
∀i ∈ V : (k, i) /∈ R

(3.3)

ykij ≤ xij ∀k ∈ V \{r}, (i, j) ∈ A (3.4)

ykij ∈ {0, 1} ∀k ∈ V \{r}, (i, j) ∈ A (3.5)

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 44

xij ∈ {0, 1} ∀(i, j) ∈ A (3.6)

Constraints (3.2) impose the first property of an arborescence namely that every

vertex v ∈ V \{r} must have a single parent. Constraints (3.3) are the connectivity

constraints (flow conservation constraints) which ensure that any feasible solution

is an arborescence rooted at r ∈ V . The constraints also impose the precedence

relationships, such that every path connecting vertex k to the root r does not include

vertex j if (k, j) ∈ R. Constraints (3.4) enforce that arc (i, j) ∈ A is part of the

path from r to k if xij > 0. Finally, constraints (3.5) and (3.6) define the domain of

the variables.

The set of constraints (3.3) can be added dynamically to the model when vio-

lated, which would reduce the number of constraints included in the model. This

is beneficial since the set of constraints for a certain k1 ∈ V could satisfy the con-

straints for a certain k2 ∈ V , thus making the model smaller and easier to solve in

theory.

The separation procedure for the set of equalities (3.3) is described in Algorithm

2. Let x̄ ∈ {0, 1}n correspond to the value of the x variables. A set of equalities

(3.3) for some k ∈ V \{r} that is violated by the solution x̄, can be detected by

checking if vertex k is not reachable from the root, or by checking if a (t, k)-path

exists in the solution x̄ for (k, t) ∈ R. Such paths are checked in a directed graph

G′ = (V,A′), where A′ = {(i, j) ∈ A | x̄ij = 1}.

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 45

Algorithm 2 Separation Procedure for Equalities (3.3)

1: procedure Find Violated Flow Conservation Equality(G, x̄)

2: Construct a directed graph G′ = (V,A′) such that:

3: A′ = {(i, j) ∈ A | x̄ij = 1}
4: for k ∈ V \{r} do

5: Find a (r, k)-path P in G′

6: if P = ϕ then

7: return the set of violated equalities (3.3) for k

8: end if

9: for (k, t) ∈ R do

10: Find a (t, k)-path P in G′

11: if P ̸= ϕ then

12: return the set of violated equalities (3.3) for k

13: end if

14: end for

15: end for

16: end procedure

A (r, k)-path in G′ can be found by traversing the path backwards starting from

k, since there is only one unique path that can reach k from r in an integral solution.

In this case, if vertex k is unreachable from r, then some vertex that has already been

visited during the traversal will be visited again showing that the solution contains

a cycle. If a cycle is detected (i.e. (r, k)-path /∈ A) then the set of equalities (3.3) for

k are added to the model. The same approach can be used to detect if a precedence

violating (t, k)-path exists in G′. A (t, k)-path in G′ can be found by traversing the

path backwards starting from k, since there is only one unique path from r that

can reach k in an integral solution. If vertex t is reachable by traversing the path

backwards from k, and (k, t) ∈ R, then P contains a precedence violating (t, k)-path

in G′, otherwise P is an empty set. In this case the set of equalities (3.3) for k are

added to the model.

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 46

3.4.2 Path-Based Models

In this section we describe two similar MILP models for the PCMCA problem that

extend the Set-Based model introduced for the MCA problem (see section 2.2.1).

The Set-Based model for the MCA problem is extended by adding polynomial sets

of constraints that model the precedence relationships. In the two models, the

precedence relationships are enforced by propagating a value through every path in

the arborescence in order to check if the solution contains a precedence violating

path. The two models are formally defined in the following two sections.

3.4.2.1 U st Model

Let xij be a variable associated with every arc (i, j) ∈ A such that xij = 1 if

(i, j) ∈ T and 0 otherwise. Let ust
j be a variable associated with every vertex

j ∈ V and precedence relationship (s, t) ∈ R, such that ust
s = 0 and ust

t = 1 for all

(s, t) ∈ R. A precedence relationship (s, t) ∈ R can be satisfied by propagating the

value of ust
t along every path starting from t, and if a (t, s)-path exists in T , then

we are propagating a value of one to vertex s and imposing that ust
s ≥ 1. However,

we enforce ust
s = 0, and therefore the solution is infeasible. Using the approach

described previously the PCMCA problem can be modeled as the following MILP

model.

minimize
∑︂

(i,j)∈A

cijxij (3.7)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (3.8)

∑︂
(i,j)∈δ−(S)

xij ≥ 1 ∀S ⊆ V \{r} (3.9)

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 47

ust
s = 0 ∀(s, t) ∈ R (3.10)

ust
t = 1 ∀(s, t) ∈ R (3.11)

ust
j − ust

i − xij ≥ −1 ∀(s, t) ∈ R, (i, j) ∈ A (3.12)

ust
j ≥ 0 ∀(s, t) ∈ R, j ∈ V (3.13)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.14)

Constraints (3.8) enforce that every vertex other than the root must have exactly

one incoming arc. Constraints (3.9) are the connectivity constraints that enforce

every set of vertices S ⊆ V \{r} must be reachable from the root r. Constraints

(3.10) and (3.11) set the values of ust
s and ust

t to 0 and 1 respectively, for all (s, t) ∈ R.

Constraints (3.12) impose ust
j ≥ ust

i if xij = 1. Finally, constraints (3.13) and (3.14)

define the domains of the variables.

t

(3.11)→ ust
t = 1

1

ut
1 ≥ 1

2

ut
2 ≥ 1

3

ut
3 ≥ 1

s

(3.10) → ust
s = 0

(3.12) → ust
s ≥ 1

xt1 = 1 x12 = 1 x23 = 1 x3s = 1

R

Figure 3.3: Value propagation demonstration over a violating (t, s)-path.

Figure 3.3 shows an example on how the value propagation occurs, where each

black arc is weighted with its corresponding xij value, and the black dashed arrow

is a precedence relationship (s, t) ∈ R. The ust
j variable range is written above each

vertex based on constraints (3.12). The figure shows an example of a precedence

violating (t, s)-path, since constraints (3.12) impose that ust
s ≥ 1, while constraints

(3.10) impose that ust
s = 0 which means that the solution is infeasible.

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 48

3.4.2.2 U t Model

Alternatively, the model described in the previous section can reformulated using a

smaller number of variables and constraints following the same idea of propagating

a value down every path starting from t in order to satisfy a precedence relationship

(s, t) ∈ R. Let xij be a variable associated with every arc (i, j) ∈ A such that

xij = 1 if (i, j) ∈ T and 0 otherwise. Let ut
j be a variable associated with every

vertex j ∈ V , and vertex t ∈ V where t is part of a precedence relationship (i.e.

∃(s, t) ∈ R). Using the new set of variables ut
j, the PCMCA problem can modeled

as the following MILP model.

minimize
∑︂

(i,j)∈A

cijxij (3.15)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (3.16)

∑︂
(i,j)∈δ−(S)

xij ≥ 1 ∀S ⊆ V \{r} (3.17)

ut
s = 0 ∀(s, t) ∈ R (3.18)

ut
t = 1 ∀t ∈ V : ∃(s, t) ∈ R (3.19)

ut
j − ut

i − xij ≥ −1 ∀t ∈ V : ∃(s, t) ∈ R, (i, j) ∈ A (3.20)

ut
j ≥ 0 ∀t ∈ V : ∃(s, t) ∈ R, j ∈ V (3.21)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.22)

Constraints (3.16) impose that every vertex other than the root must have a

single parent. Constraints (3.17) are the connectivity constraints which enforce that

for any set of vertices S ⊆ V \{r}, there must be a path which connects r to S.

Constraints (3.18) and (3.19) fix the values of ut
s and ut

t to 0 and 1 respectively, for

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 49

all (s, t) ∈ R, and t ∈ V : ∃(s, t) ∈ R. Constraints (3.20) impose ut
j ≥ ut

i, if xij = 1.

Finally, constraints (3.21) and (3.22) define the domains of the variables.

s1

ut
s1
= 0

1

ut
1 ≥ 0

t

(3.19) → ut
t = 1

(3.20) → ut
t ≥ 0

2

ut
2 ≥ 1

3

ut
3 ≥ 1

4

ut
4 ≥ 1

s2

(3.18) → ut
s2
= 0

(3.20) → ut
s2
≥ 1

xs11 = 1 x1t = 1 xt2 = 1 x23 = 1 x34 = 1 x4s2 = 1

R

R

Figure 3.4: Value propagation demonstration using the reduced set of variables over a
feasible path and a violating path.

Figure 3.4 shows an example on how the value propagation occurs using the

reduced set of variables and constraints. In the figure, each black arc is weighted

with its corresponding xij value, and black dashed arrow is a precedence relationship

(s, t) ∈ R. The ut
j variable range or value is written above each vertex based on

constraints (3.20). The figure shows a feasible (s1, t)-path, since constraints (3.20)

impose that ut
t ≥ 0, and constraints (3.19) impose that ut

t = 1. The figure also shows

a precedence violating (t, s2)-path, since constraints (3.20) impose that ust
s ≥ 1, while

constraints (3.18) impose that ut
s2
= 0 which means that the solution is infeasible.

Note that the set of inequalities (3.12) and (3.20) sometimes fail to detect a vi-

olating (t, s)-path in a fractional solution due to the diminishing of the propagated

value along that path, but are always able to detect violating paths for integer so-

lutions. An example of a fractional solution containing a violating path that cannot

be detected by the set on inequalities (3.12) and (3.20) is shown in figure 3.5. The

figure shows a fractional solution, where each arc is weighted by its corresponding

xij variable value, and the black dashed arc represents the precedence relationship

(s, t) ∈ R. The value of the variable ust
j or ut

j is shown next to each vertex. We

can see in the figure that the violating path is not detected because a value of 0 is

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 50

propagated down to vertex s from t.

r

t 1

1 0.520.5

s 0

1.0
0.5

0.50.5

0.5

0.5 0.5

Figure 3.5: Example of a fractional solution that violates a precedence relationship
(s, t) ∈ R, and how the violation cannot be detected by the Path-Based model.

The set of constraints (3.20) can be initially relaxed and iteratively added to the

model when they are violated. The separation procedure for the set of constraints

(3.20) is described in Algorithm 3. Let x̄ ∈ {0, 1}n correspond to the value of the x

variables. An inequality (3.20) that is violated by the solution x̄ for some (s, t) ∈ R

can be detected by finding a (t, s)-path in a directed graph G′ = (V,A′), where

A′ = {(i, j) ∈ A | x̄ij = 1}.

Algorithm 3 Separation Procedure for Inequalities (3.20)

1: procedure Find Violated ut Value Propagation Inequality(G, x̄)

2: Construct a directed graph G′ = (V,A′) such that:

3: A′ = {(i, j) ∈ A | x̄ij = 1}
4: for (s, t) ∈ R do

5: Find a (t, s)-path P in G′

6: if P ̸= ϕ then

7: return the set of violated inequalities ut
j − ut

i − xij ≥ −1 ∀(i, j) ∈ P

8: end if

9: end for

10: end procedure

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 51

A (t, s)-path in G′ can be detected by traversing the path backwards starting

from s, as there is only one unique path that can reach t in a solution that is an

arborescence. If vertex t is reached starting from s and (s, t) ∈ R then P contains a

precedence violating (t, s)-path in G′, otherwise P is an empty set. In this case the

set of violated inequalities (3.20) are added to the model for all (i, j) ∈ P .

Note that the same separation procedure can be applied to detect a violated

inequality (3.12) by replacing the inequality at line 7, by inequality the ust
j − ust

i −

xij ≥ −1.

3.4.3 Flow-Based Models

In this section we describe two similar MILP models for the PCMCA problem that

extend the flow-based model for the MCA problem described in section 2.2.2. The

two models described utilizes the two sets of precedence-enforcing constraints de-

scribed in the previous section.

3.4.3.1 Compact-U st Model

Let xij be a variable associated with every arc (i, j) ∈ A such that xij = 1 if

(i, j) ∈ T and 0 otherwise. Let yij be a variable associated with every arc (i, j) ∈ A

that is equal to the amount of flow passing through that arc. Let ust
j be a variable

associated with every vertex j ∈ V and precedence relationship (s, t) ∈ R, such that

ust
s = 0 and ust

t = 1 for all (s, t) ∈ R. The PCMCA problem can be modeled as the

following MILP model.

minimize
∑︂

(i,j)∈A

cijxij (3.23)

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 52

subject to
∑︂

(i,j)∈A

yij −
∑︂

(j,i)∈A

yji =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 i ̸= r

n− 1 i = r

∀i ∈ V (3.24)

xij ≥
yij

n− 1
∀(i, j) ∈ A (3.25)

ust
s = 0 ∀(s, t) ∈ R (3.26)

ust
t = 1 ∀(s, t) ∈ R (3.27)

ust
j − ust

i − xij ≥ −1 ∀(s, t) ∈ R, (i, j) ∈ A (3.28)

ust
j ≥ 0 ∀(s, t) ∈ R, j ∈ V (3.29)

xij ∈ {0, 1} ∀(i.j) ∈ A (3.30)

yij ∈ Z+ ∀(i.j) ∈ A (3.31)

Constraints (3.24) are the flow-connectivity constraints which enforce every ver-

tex to be reachable from the root r, no arcs enter the root r, and that any feasible

solution is an arborescence. Constraints (3.25) impose that the value of xij must be

between 0 and 1, if the value of yij is nonzero. The value of yij is divided by n− 1

since (3.24) yij ≤ n− 1, which would restrict the value of xij to be between 0 and 1.

Constraints (3.26) and (3.27) set the values of ust
s and ust

t to 0 and 1 respectively, for

all (s, t) ∈ R. Constraints (3.28) propagate the value of ust
i down to ust

j if xij = 1.

Finally, constraints (3.29)-(3.31) define the domain of the variables.

3.4.3.2 Compact-U t Model

Alternatively, the model described in the previous section can reformulated using a

smaller number of variables and constraints following the idea described previously

in section 3.4.2.2. Let ut
j be a variable associated with every vertex j ∈ V , and

vertex t ∈ V where t is part of a precedence relationship (i.e. ∃(s, t) ∈ R). Using

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 53

the reduced set of variables ut
j, the PCMCA problem can modeled as the following

MILP model.

minimize
∑︂

(i,j)∈A

cijxij (3.32)

subject to
∑︂

(i,j)∈A

yij −
∑︂

(j,i)∈A

yji =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 i ̸= r

n− 1 i = r

∀i ∈ V (3.33)

xij ≥
yij

n− 1
∀(i, j) ∈ A (3.34)

ut
s = 0 ∀(s, t) ∈ R (3.35)

ut
t = 1 ∀t ∈ V : ∃(s, t) ∈ R (3.36)

ut
j − ut

i − xij ≥ −1 ∀t ∈ V : ∃(s, t) ∈ R, (i, j) ∈ A (3.37)

ut
j ≥ 0 ∀t ∈ V : ∃(s, t) ∈ R, j ∈ V (3.38)

xij ∈ {0, 1} ∀(i.j) ∈ A (3.39)

yij ∈ Z+ ∀(i.j) ∈ A (3.40)

Constraints (3.33) are the flow-connectivity constraints that enforce the follow-

ing. For any vertex i, there must be a unique path which connects r to i. Any feasi-

ble solution must be a connected acyclic graph rooted at r (i.e. an r-arborescence).

Constraints (3.34) restrict the value of xij to be between 0 and 1, if the value of yij

is greater than zero. To impose that, the value of yij is divided by n− 1 since (3.33)

yij ≤ n − 1. Constraints (3.35) and (3.36) fix the values of ut
s and ut

t to 0 and 1

respectively, for all (s, t) ∈ R and t ∈ V : ∃(s, t) ∈ R. Constraints (3.37) propagate

the value of ut
i down to ut

j if xij = 1. Finally, constraints (3.38)-(3.40) define the

domain of the variables.

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 54

3.4.4 Set-Based Model

In this section we describe a MILP model for the PCMCA problem that extend the

set-based model for the MCA problem described in section 2.2.1.

The precedence relationships between pairs of vertices can be formulated by ex-

tending the connectivity constraints (2.4) for the MCA problem. When considering

the set S ⊆ V \{r}, we can extend the constraint for each j ∈ S, and enforce that

at least one active arc must enter S, originating from the set of vertices that are

allowed to precede j (i.e. (j, i) /∈ R) on the path connecting r to j. The set of

vertices Vj that are allowed to precede j on the same directed path connecting r to

j is defined as:

Vj = {i ∈ V | (j, i) /∈ R} (3.41)

The PCMCA problem can be formally modeled as follows. Let xij be a variable

associated with every arc (i, j) ∈ A such that xij = 1 if (i, j) ∈ T and 0 otherwise.

The PCMCA problem can be modeled as the following MILP model, after extending

the connectivity constraints (2.4) for the MCA problem.

minimize
∑︂

(i,j)∈A

cijxij (3.42)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (3.43)

∑︂
(i,k)∈δ−(S)

xik ≥ 1 ∀j ∈ V \{r},∀S ⊆ Vj\{r} : j ∈ S (3.44)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.45)

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 55

Constraints (3.43) implies the first property of an arborescence namely that

every vertex v ∈ V \{r} must have a single parent. Constraints (3.44) model the

connectivity constraints, that is every vertex j ∈ V \{r} must be reachable from

the root. The same set of constraints also impose the precedence relationships.

The inequalities imply that the resulting arborescence will not include a (t, s)-path

in the resulting arborescence when (s, t) ∈ R. Finally, constraints (3.45) define the

domain of the variables. Note that Vj\S contains at least r, while S contains at least

j. Moreover, the set of constraints (3.44) reduce to the connectivity constraints (2.4)

for the MCA problem when the set R of precedence relationships is empty. This

is because when R = ϕ, then Vj = V for all j ∈ V \{r}. The inequality (3.44) is

the same inequality named weak σ-inequality considered by Ascheuer, Jünger and

Reinelt [3] for the Sequential Ordering problem (SOP).

The separation procedure for the set of constraints (3.44) is described in Algo-

rithm 4. Let x̄ ∈ [0, 1]n correspond to the value of the x variables. An inequality

(3.44) that is violated by the solution x̄ can be detected by computing a minimum

(r, j)-cut C in a directed graph Dj = (Vj, A
′), where A′ = {(i, k) ∈ A | i, k ∈ Vj}.

The cost cik of an arc (i, k) ∈ A′ is equal to x̄ik.

Algorithm 4 Separation Procedure for Inequalities (3.44)

1: procedure Find Violated Precedence Inequality(G, x̄)

2: for j ∈ V \{r} do

3: Construct a directed graph Dj = (Vj, A
′) such that:

4: Vj = {i ∈ V : (j, i) /∈ R}
5: A′ = {(i, k) ∈ A | i, k ∈ Vj}
6: cik = x̄ik ∀ (i, k) ∈ A′

7: Calculate a minimum (r, j)-cut C in Dj

8: if the cost of C < 1 then

9: return the violated inequality
∑︁

(i,k)∈C xik ≥ 1

10: end if

11: end for

12: end procedure

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 56

The value of a minimum (r, j)-cut C in Dj can reveal the following about the

given solution x̄:

1. If the cost of a minimum cut is equal to 0, then Dj does not contain a (r, j)-

path. In this case, the solution does not contain a (r, j)-path, or contains a

single or multiple (r, j)-paths, all of which pass through a successor of j.

2. If the cost of a minimum cut is in the range (0, 1), then Dj contains a (r, j)-

path. In this case, the solution contains multiple (r, j)-paths, and at least one

of them passes through a successor of j.

3. If the cost of a minimum cut is equal to 1, then Dj contains a single or multiple

(r, j)-paths, although possibly some of them pass through a successor of j.

Note that if x̄ contains fractional values, then in the first two cases, the minimum

cut C defines an inequality (3.44) violated by x̄. However, in the last case, a violated

inequality (3.44) does not exist even if the solution x̄ contains a precedence violating

path. Therefore, although inequalities (3.44) are valid inequalities for the PCMCA

problem, there are solutions that contain precedence violating paths, but satisfy

inequalities (3.44).

A drawback of using the inequalities (3.44) in formulating the PCMCA problem,

is the high computational complexity of the separation procedure, which has a com-

plexity of O(n4), assuming it uses an O(n3) algorithm for computing a minimum

(s, t)-cut in Dj [50].

Figure 3.6 shows an example on how the separation procedure works, where the

figure on the left shows the solution graph, and the figure on the right shows the

graph Dj that has a minimum (r, s)-cut of value one indicated by the black dashed

curve. In both graphs, every arc cost is associated with the value of its respective

xij variable. The example shows a candidate solution that contains a precedence

3.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 57

r

t

1 2 3

s

1.0

0.5

1.0

0.5

0.5

0.5

0.5 0.5

r

1 2 3

s

0.5 1.0

0.5

0.5 0.5

Figure 3.6: Example of separation procedure for inequalities (3.44).

violating path that violates the precedence relationship (s, t) ∈ R, but does not

violate an inequality (3.44), since the value of the minimum cut is equal to one.

r

t 1

1 0.520.5

s 0

1.0
0.5

0.50.5

0.5

0.5 0.5

r

12

s

0.5

0.5

0.5 0.5

Figure 3.7: Example Comparing the Path-Based with the Set-Based model.

In section 3.4.2, we have shown an example of a fractional solution that contains

a violating path that cannot be detected by the Path-Based model. However, the vi-

olating path can be detected for the same fractional solution by the Set-Based model

after applying the separation procedure described in Algorithm 4 to the solution as

shown in figure 3.7. The figure on the right shows how the Set-Based inequalities

3.5. A BRANCH-AND-BOUND ALGORITHM 58

are able to detect the violating path, since the graph has a minimum (r, s)-cut in

Dj with value less than one.

3.5 A Branch-and-Bound Algorithm

In this section we present a Branch-and-Bound (B&B) algorithm for the PCMCA

problem. The B&B algorithm is based on a Lagrangian relaxation [33] of the Set-

Based Model discussed in section 3.4.4. The solving approach we propose is inspired

by that discussed in Lucena [65] and Escudero et al. [28]. In particular, in [28]

a Lagrangian relax-and-cut approach for the Sequential Ordering Problem was in-

troduced. The algorithm proposed works by relaxing some of the constraints in a

Lagrangian fashion. This reduces the overall problem to a MCA problem (see chap-

ter 3). Later, Toth and Vigo [84] proposed a Lagrangian relax-and-cut algorithm

for the Capacitated Shortest Spanning Arborescence, where a Lagrangian relaxation

reduced the main problem again to a MCA problem.

The rest of this section is organized as follows. First we introduce a Lagrangian

relaxation of the Set-Based model. Next, we describe the B&B algorithm we propose

to solve the PCMCA problem.

3.5.1 A Lagrangian Relaxation

In this section we present a relaxation of the PCMCA obtained by relaxing the

precedence-enforcing constraints (3.44), and leaving only the classical connectivity

constraints of the MCA, and thus making the dual problem solvable in polynomial

time.

Formally, the set of constraints (3.44) can be split into two sets. The first set

enforces that every vertex is reachable from the root (connectivity constraints). Con-

versely, for any vertex s that is part of a precedence relationship (i.e. ∃(i, s) ∈ R),

3.5. A BRANCH-AND-BOUND ALGORITHM 59

the second set of constraints enforces that vertex s is reachable from the root through

a path not containing vertex t if (s, t) ∈ R (precedence-enforcing constraints). Split-

ting constraints (3.44) into the two sets of constraints results in the following model

for the PCMCA problem.

minimize
∑︂

(i,j)∈A

cijxij (3.46)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (3.47)

∑︂
(i,j)∈δ−(S)

xij ≥ 1 ∀S ⊆ V \{r} (3.48)

∑︂
(i,j)∈δ−(S)

xij ≥ 1 ∀k ∈ V \{r} : ∃(s, k) ∈ R, ∀S ⊆ Vk : k ∈ S (3.49)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.50)

Constraints (3.48) are now the connectivity constraints that enforce every ver-

tex to be reachable from the root. Constraints (3.49) are the precedence-enforcing

constraints which enforce every vertex k to be reachable from the root through a

path not containing t if (k, t) ∈ R.

An immediate relaxation of the PCMCA can be obtained by removing the

precedence-enforcing constraints (3.49), thus reducing the problem to a MCA. The

MCA can be solved in polynomial time using different algorithms (see section 2.3).

A stronger lower bound can however be obtained by adding constraints (3.49)

to the objective function (3.46) in a Lagrangian relaxation fashion (see [33]).

3.5. A BRANCH-AND-BOUND ALGORITHM 60

3.5.1.1 The Relaxed Model

Let λk
S ≥ 0 be a Lagrangian multiplier for each k ∈ V \{r} : ∃(s, k) ∈ R and

S ⊆ Vk\{r} : k ∈ S. A Lagrangian relaxation of the PCMCA can be obtained

by introducing the precedence-enforcing constraints (3.49) in the objective func-

tion, with their corresponding Lagrangian multipliers λ. The following Lagrangian

relaxation of the PCMCA can be obtained.

minimize
∑︂

(i,j)∈A

cijxij +
∑︂

k∈V \{r}:
∃(s,k)∈R

∑︂
S⊆Vk\{r}:

k∈S

λk
S

⎛⎜⎜⎝ ∑︂
(i,j)∈A:

i∈Vk\S,j∈S

1− xij

⎞⎟⎟⎠ (3.51)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (3.52)

∑︂
(i,j)∈δ−(S)

xij ≥ 1 ∀S ⊆ V \{r} (3.53)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.54)

Using a modified cost matrix c′ defined as:

c′ij = cij −
∑︂

k∈V \{r}:
i∈Vk

∑︂
S⊆Vk\{r}:
k,j∈S,i/∈S

λk
S (3.55)

the objective function (3.51) can be rewritten as the following.

minimize
∑︂

(i,j)∈A

c
′

ijxij +
∑︂

k∈V \{r}

∑︂
S⊆Vk\{r}:

k∈S

λk
S (3.56)

For any given set of nonnegative multipliers λ, the optimal solution of the La-

3.5. A BRANCH-AND-BOUND ALGORITHM 61

grangian relaxation is a valid lower bound for the PCMCA [33]. Moreover, since

the Lagrangian relaxation calls for finding a MCA of the modified cost matrix c′, it

can be optimally solved in polynomial time using one of the algorithms mentioned

in section 2.3.

3.5.1.2 Solving the Lagrangian Relaxation

In this section we describe a subgradient optimization procedure for the set of La-

grangian multipliers λ.

In our implementation of the subgradient optimization procedure, the set of

Lagrangian multipliers λ is passed as a parameter, as it is possible to solve the

relaxation starting from an empty or a precomputed set of multipliers, possibly

with a non-zero value. Using a set of precomputed Lagrangian multipliers is useful

when the procedure is being used inside a B&B algorithm (see section 3.5.2), as

the Lagrangian multipliers constructed for a parent node in the search-tree can be

passed down to that node’s children which in turn could speed up the convergence

of the procedure.

Algorithm 5 describes the optimization procedure used for computing values for

the set of Lagrangian multipliers λ, and therefore calculating a lower bound for the

original PCMCA instance. Let M be a user-defined parameter which represents the

maximum number of iterations, and m is the iterations counter, starting from 0. Let

xλ be the optimal solution of the MCA problem based on the modified cost matrix

c′ relative to λ. Let P̄ be the set of all violating paths in xλ, such that each p ∈ P̄

is a sequence of vertices belonging to a violating path that starts with t and ends

with s such that (s, t) ∈ R. Let α ∈ R+ be the step size, which is a step taken in the

direction of a positive subgradient. Different procedures for computing the step size

α are possible and a few of them will be described in section 3.6.2. Let L(c, λ) be a

function which returns the optimal solution of the Lagrangian relaxation based on

3.5. A BRANCH-AND-BOUND ALGORITHM 62

cost matrix c and the current set of Lagrangian multipliers λ. Let Separate(xλ) be a

function which returns a set of violating paths in the solution xλ. Finally, let g be the

value of a subgradient. The function Separate(xλ) has a computational complexity

of O(|V |2), and can be briefly summarized as follows. Given an arborescence T , for

each vertex s ∈ V we traverse the arborescence T in a backward direction starting

from s. If vertex t ∈ V is reached during the traversal and (s, t) ∈ R, then the path

from t to s is added to the set of violating paths returned by the function.

Algorithm 5 Subgradient Method for Solving the Lagrangian Relaxation

1: procedure ComputeLB(λ, c, M , α)

2: m = 0

3: LB = 0

4: do

5: xλ = L(c, λ)

6: LB = max(LB, c′xλ + λ)

7: P̄ = Separate(xλ)

8: for all p = {t, 1, 2, . . . , s} ∈ P̄ do

9: S = p\{t}
10: λs

S = 0

11: λ = λ ∪ λs
S

12: end for

13: for all λk
S ∈ λ do

14: g = 1−
∑︁

(i,j)∈A:
i∈Vk\S,j∈S

xλ
ij

15: λk
S = max(0, λk

S + αg)

16: end for

17: m = m+ 1

18: while P̄ ̸= ϕ and m < M

19: end procedure

Step 5 finds an optimal solution of the MCA instance based on the objective

function (3.56). Step 6 updates the value of the lower bound as the maximum

between the current LB value, and the value of the objective function (3.56). Step 7

finds the set of all violating paths in the solution xλ. A path is considered violating

3.5. A BRANCH-AND-BOUND ALGORITHM 63

if it starts with t and ends with s such that (s, t) ∈ R. Step 9 finds the set of

vertices belonging to the set S, which are all the vertices in p without t. Step 10

creates the Lagrangian multiplier λs
S and sets its initial value to zero, however it

can be initialized to any non-negative initial value. Step 11 adds the corresponding

Lagrangian multiplier λs
S to the set of multipliers λ. Steps 14 and 15 update the

value of the Lagrangian multiplier λk
S. The value of step size α ∈ R+ is a user-defined

value, and is passed as a parameter.

A common practice is to remove the subset of Lagrangian multipliers in λ that

had a value of 0 during the last k iterations. This process can be added to Algo-

rithm 5 before optimizing the Lagrangian multipliers at step 12. However, adding

this step might not be beneficial when the number of Lagrangian multipliers that

get a 0 value is very small compared to the total number of multipliers. Some pre-

liminary experiments suggested that this is the case for our problem. We observed

only around 10-15% of the multipliers were going to 0, so the overhead required

to periodically check them was not justified. At the same time, the total memory

footprint was in fact not substantially reduced. Therefore, we decided to remove

multipliers with value 0 only during branching (see section 3.5.4).

3.5.2 Branch-and-Bound Algorithm Data Structures

In this section we describe the data-structures used inside the B&B algorithm pro-

posed for the exact solution of the PCMCA problem.

The proposed B&B algorithm contains two main data structures, the search-

tree, and the search-tree node. The search-tree represents the set of all possible

MCA solutions of the original instance, but only a subset of those solutions are

feasible PCMCA solutions. Note that a feasible PCMCA solution is not necessarily

a leaf node in the search-tree, as solving the Lagrangian relaxation might result in

3.5. A BRANCH-AND-BOUND ALGORITHM 64

a feasible, but suboptimal, PCMCA solution. The search-tree node denoted as v

represents a feasible MCA solution or a feasible PCMCA solution and contains infor-

mation about that solution. The following sections describe the type of information

that is stored inside the search-tree and the search-tree node.

3.5.2.1 Search-Tree

The following information is stored inside the search-tree data structure:

� LB: is the current lower bound value for the optimal solution of the PCMCA

instance.

� UB: is the current upper bound value for the PCMCA instance, which is the

best known solution value, according to objective function (3.46).

� SearchTreeNodes : is a minimum priority queue that contains the set of all

search-tree nodes that are currently unexplored in the search-tree, and is or-

dered by the lower bound value of the elements it contains.

3.5.2.2 Search-Tree Node

The following information is stored inside the search-tree node data structure:

� λ: is the set of Lagrangian multipliers related to this search-tree node.

� c′: is the modified cost matrix of the graph G relative to the set of Lagrangian

multipliers λ.

� Pred : is a vector of size |V |, where V [j] = i if i is the parent of j in the optimal

MCA solution associated with the search-tree node. To indicate the root of

the arborescence we set V [r] = −1.

� LB: is a lower bound value for the optimal PCMCA solution under the search-

tree node, that is the value of objective function (3.56) associated with the

solution represented by Pred.

3.5. A BRANCH-AND-BOUND ALGORITHM 65

� c̄ : is the reduced cost matrix of G relative to the MCA solution of the search-

tree node. The MCA is solvable as a linear program, and thus the reduced

costs can be computed.

3.5.3 Lower Bound and Upper Bound Computation

A lower bound on the optimal solution of node v in the search-tree, named LB(v),

is computed using Algorithm 5, based on the set of Lagrangian multipliers λ and

cost matrix c′ that are stored in node v. The lower bound on the optimal solution

of the PCMCA instance (global lower bound) named LB is equal to LB(v), where

v is the search-tree node on the top of the priority queue SearchTreeNodes.

An upper bound on the optimal solution of the PCMCA instance is found once

a node v in the search-tree contains a feasible PCMCA solution (an MCA solution

that does not contain a violating path). The UB value is updated if the cost of the

solution value is less than the current value of UB.

3.5.4 Branching Scheme

In the proposed B&B algorithm the tree is traversed according to a best-first search

strategy, that is the node with the lowest lower bound value (LB) is expanded first.

The search-tree node with the lowest lower bound value can be found in constant

time as it resides on the top of the priority queue SearchTreeNodes, that is stored

inside the Search-tree data structure. Note that a depth-first search strategy, which

explores the search tree as far as possible along each branch of the search-tree before

backtracking, was considered. However, the computational results obtained while

using such a strategy produced an overall increase in the solution time. This was

due on the one hand to the slow convergence of the lower bounds, and on the other

hand to the worse incumbent solution encountered in the beginning of the search,

3.5. A BRANCH-AND-BOUND ALGORITHM 66

t 1 2 3 s

t

1

2

3

s

t

1

2

3

s

t

1

2

3

s

t

1

2

3

s

Figure 3.8: An example of a search-tree node being expanded into 4 new search-tree
nodes.

that led to a less effective pruning and consequently to the exploration of a larger

portion of the solution space.

At each node v of the search-tree, let P ′ ⊂ A be a violating path that belongs to

the solution at node v. Recall that a path is violating if it starts with vertex t and

ends with vertex s such that (s, t) ∈ R. For each (i, j) ∈ P ′, we create a new search-

tree node which forbids arc (i, j), and imposes all the arcs that precede arc (i, j) in

the path P ′. In our implementation, an arc is forbidden to appear in the solution

by setting cij = ∞, and an arc (i, j) is imposed to appear in the solution by setting

ckj = ∞ for each k ̸= i. The Lagrangian multipliers related to node v that have a

non-zero value, are copied to the newly created nodes from v. Note that this strategy

removes, as a side effect, multipliers with value 0. Finally, the search-tree nodes that

are created from node v are added to the priority queue after computing their LB

value, and the value of LB is eventually updated accordingly. Once a search-tree

node is expanded, it is removed from the priority queue SearchTreeNodes.

Figure 3.8 shows an example of how a search-tree node is expanded. Each search-

3.5. A BRANCH-AND-BOUND ALGORITHM 67

tree node is represented by a rectangle, dashed arcs indicate forbidden arcs, and blue

arcs indicate arcs that are imposed in the solution. In this example, we have the

violating path {(t, 1), (1, 2), (2, 3), (3, s)}. For each arc in the violating path, we

forbid that arc to appear in the solution, and all the arcs preceding that arc on

the path are imposed to be part of the solution. By doing so, the search-tree node

containing a violating path is expanded into |A′| search-tree nodes, where |A′| is the

number of arcs in the selected violating path.

3.5.5 Reduction, Pruning and Bypass Rules

Once a new search-tree node is created, it is possible to forbid another set of arcs

(other than the ones removed during branching) that creates a violating path as

follows. If a directed path p ⊂ A rooted at k ∈ V is imposed in the solution, then

cik = ∞ for all (i, k) ∈ A such that (j, i) ∈ R and j appears in the path p. An

example of this is illustrated in Figure 3.9. In the figure, dashed arrows indicate

a precedence relationship, blue arrows indicate imposed arcs, and all green arrows

indicate forbidden arcs. Based on the set of precedence relationships R, arc (5, k)

is forbidden to appear in the solution as (1, 5) ∈ R and arc (k, 1) is imposed in the

solution. Arc (6, k) is forbidden to appear in the solution as (3, 6) ∈ R, and a path

rooted at k is imposed in the solution that includes vertex 3. Furthermore, an arc

(i, j) ∈ A is forbidden to appear in the solution, if ⌈LB(v) + c̄ij⌉ ≥ UB, where

c̄ is the reduced cost matrix at node v, and UB is the upper bound or the best-

known solution. Finally, a search-tree node v can be pruned from the search-tree if

LB(v) ≥ UB, or if the node does not contain feasible MCA solution rooted at r.

In the B&B algorithm, a bypass rule is also enforced as follows. If the number of

nodes generated (already explored) in the search tree reaches 2000 nodes, the MILP

model introduced in Section 3.4.4 is solved for the original problem instance. The

3.6. COMPUTATIONAL RESULTS 68

k 1 2 3 4

5

6

R

R

Figure 3.9: An example which shows an additional set of arcs that are forbidden to
appear in the solution when a certain path rooted at k is imposed in the solution.

bypass rule is enforced in order to avoid the size of the search-tree from growing too

large and going out of count, since once the search-tree grows too large, the lower

bound on the optimal solution improves very slowly, and feasible solutions are found

less and less frequently.

3.6 Computational Results

In this section we present the experiments conducted to evaluate the several models

proposed in section 3.4, and the B&B algorithm introduced in section 3.5. The

computational experiments are based on the benchmark instances of TSPLIB [75],

SOPLIB [69], and COMPILERS [79] originally proposed for the Sequential Ordering

Problem [27]. The benchmark sets contain a total of 116 instances, ranging in

size between 9 and 700 vertices, with an average of 248 vertices. A subset of the

benchmark instances has been however modified to avoid a 0-cost solution. Such a

solution exists because in the original instances there is a 0-cost arc from the root

to every other node, and therefore we can connect every node directly to the root to

achieve such a solution. The instances have been modified by randomly generating

the weight of those arcs to be between 1 and the maximum weighted arc in the

original graph.

All the experiments are performed on a laptop with an Intel i7-8550U processor

3.6. COMPUTATIONAL RESULTS 69

running at 1.8 GHz with 8 GB of RAM. The MILPs are solved using CPLEX 12.8

[53]. CPLEX is run with the two parameters NodeSelect and MIP emphasis set to

BestBound (same as the branch selection strategy used by the B&B algorithm) and

MIPEmphasisOptimality respectively, and single threaded standard Branch-and-Cut

(B&C) algorithm is applied for solving the MILP models, as the B&B algorithm also

uses a single thread. A time limit of 3 hours is set for the computation time for each

computational method/instance. The models have been implemented in C++ 11,

and are compiled with Microsoft C/C++ Optimizing Compiler v19.

For the rest of this chapter we will be referring to the Mutlicommodity Flow

Model from section 3.4.1 as MCF. The Flow-Based model from section 3.4.3.1, that

uses the set of ust
j variables is referred to as Compact-U st. The Flow-Based model

from section 3.4.3.2, that uses the set of ut
j variables is referred to as Compact-U t.

The Path-Based model from section 3.4.2.1, that uses the set of ust
j variables is

referred to as U st. The Path-Based model from section 3.4.2.2, that uses the set of

ut
j variables, is referred to as U t. Finally, the Set-Based model from section 3.4.4 is

referred to as Set-Based.

3.6.1 The MILP Models

In this section we discuss the experiments conducted to evaluate the several models

proposed in section 3.4. In section 3.6.1.1 we discuss the performance of the linear

relaxation of the MILP models introduced in section 3.4, while in section 3.6.1.2 we

discuss the performance of the integer program (IP) of those models.

3.6.1.1 The Linear Relaxation of the Models

An overview of the results shows that the solver optimally solves 98% of the in-

stances, with a 0.002% average optimality gap using the model MCF. Such a results

3.6. COMPUTATIONAL RESULTS 70

is to be expected from a model that uses a Multicommodity flow formulation, how-

ever such models are generally computationally expensive to solve as will be shown

later. Considering the rest of the models, the solver optimally solves 57% of the

instances, with an average optimality gap of 1.2% using the model Compact-U st.

Using the model Compact-U t the solver optimally solves 55% of the instances, with

an average optimality gap of 3.1%. Using the model U st the solver optimally solves

47% of the instances, with an average optimality gap of 2.1%. Using the model U t

the solver optimally solves 61% of the instances, with an average optimality gap of

0.9%. Finally, using the model Set-Based the solver optimally solves 68% of the

instances, with an average optimality gap of 1.7%.

In terms of the number of cuts that are dynamically added to the model’s linear

relaxation, the solver adds 2846 cuts on average, with a median of 548, and a

standard deviation of 6014, when solving the model MCF. Solving the model U st,

the solver adds 182 cuts on average (a 93.6% decrease), with a median of 46, and a

standard deviation of 477. Solving the model U t, the solver adds 81 cuts on average

(a 97.2% decrease), with a median of 26, and a standard deviation of 162. Finally,

solving the model Set-Based, the solver adds 71 cuts on average (a 97.5% decrease),

with a median of 21, and a standard deviation of 228. For the two models Compact-

U st and Compact-U t, the same set of precedence-enforcing constraints are not added

dynamically in the two compact models, as preliminary experiments clearly showed

an increase in the solution time.

In terms of computation time, solving the model MCF has an average solution

time of 219 seconds, with a median of 3.1, and a standard deviation of 651.2 seconds.

Solving the model Compact-U st has an average solution time of 18 seconds (a 91.7%

decrease), with a median of 4.4, and a standard deviation of 46.8 seconds. Solving

the model Compact-U t has an average solution time of 15 seconds (a 93.2% decrease),

with a median of 4.5, and a standard deviation of 22.5 seconds. Solving the model

3.6. COMPUTATIONAL RESULTS 71

U st has an average solution time of 55 seconds (a 74.9% decrease), with a median

of 1.5, and a standard deviation of 309.6 seconds. Solving the model U t has an

average solution time of 13 seconds (a 94.1% decrease), with a median of 1.2, and

a standard deviation of 78.2 seconds. Finally, solving the model Set-Based has an

average solution time of 16 seconds (a 92.7% decrease), with a median 0.3, and a

standard deviation of 93.1 seconds. The summary of the results is shown in table

3.1, where column Optimal reports the percentage of instances (for a total of 116

instances) that where solving the linear relaxation results in an optimal integer

solution.

Table 3.1: Summary of the average results for the linear relaxation of the models MCF,
Compact-U st, Compact-U t, U st, U t and Set-Based.

Model Gap Cuts Time [s] Optimal

MCF 0.002% 2846 219 98.3%

Compact-Ust 1.200% - 18 57.8%

Compact-U t 3.100% - 15 55.2%

Ust 2.100% 182 55 47.4%

U t 0.900% 81 13 61.2%

Set-Based 1.700% 71 16 68.1%

The results of optimality gap clearly shows that the model MCF has the smallest

average optimality gap, and is able to optimally solve the majority of the instances

at the root node of the search decision-tree. However, the average solution time of

the model MCF and the number of cuts that are dynamically added to the model

are much larger compared to the rest of the models. On the other hand, the model

U t achieves the second smallest average optimality gap, and the smallest average

solution time. It is worth noting that the results of a model’s linear relaxation

generally does not fully show the performance of the IP of the same model, as will

be shown in the next section. It is worth noting that the results of a model’s linear

3.6. COMPUTATIONAL RESULTS 72

relaxation generally does not fully show the performance of the IP of the same

model, as will be shown in the next section.

3.6.1.2 The IP Models

An overview of the results shows that the solver optimally solves all the instances

within the time limit using the models MCF, U st, U t, and Set-Based. However,

using the two models Compact-U st and Compact-U t, the solver fails to solve a single

instance (kro124p.3) within the time limit of 3 hours.

In terms of the number of cuts that are dynamically added to the model, the

solver adds 2849 cuts on average, with a median of 548, and a standard deviation

of 6013, when solving the model MCF. Solving the model U st, the solver adds 4751

cuts on average (a 66.8% increase), with a median of 106, and a standard deviation

21809. Solving the model U t, the solver adds 222 cuts on average (a 92.2% decrease),

with a median of 30, and a standard deviation of 548. Solving the model Set-Based,

the solver adds 361 cuts on average (an 87.3% decrease), with a median of 26, and

a standard deviation of 1622. For the two models Compact-U st and Compact-U t

the same set of precedence-enforcing constraints are not added dynamically in the

two compact models, as preliminary experiments clearly showed an increase in the

solution time.

In terms of the number of nodes generated by the solver in the search decision-

tree, solving the model MCF generates 0 nodes on average as the majority of the

instances are solved at the root node of the search decision-tree. Solving the model

Compact-U st, the solver generates 1007 nodes on average, with a median of 0, and

a standard deviation of 5663.6 nodes. Solving the model Compact-U t, the solver

generates 1480 nodes on average, with a median of 0, and a standard deviation of

8255.9 nodes. Solving the model U st, the solver generates 5588 nodes on average,

with a median of 2, and a standard deviation of 28372.2 nodes. Solving the model

3.6. COMPUTATIONAL RESULTS 73

U t, the solver generates 2432 nodes on average, with a median of 0, and a standard

deviation of 18465.2 nodes. Finally, Solving the model Set-Based, the solver gen-

erates 77 nodes on average, with a median of 0, and a standard deviation of 529.1

nodes.

Figure 3.10: Distribution of the number of nodes generated for all the 116 instances.

Figure 3.10 shows the distribution of the number of nodes generated by the solver

for each model, where the figure on the right excludes outlier points. We can see in

the figure, that in general the Set-Based model generates the least amount of nodes

3.6. COMPUTATIONAL RESULTS 74

after the MCF model, even when we consider or exclude outliers points. However,

the U t model sometimes generates a smaller number of nodes, which depends on

the structure of the solutions encountered after solving the linear relaxation, where

each model is able to detect the violating path where another model fails.

In terms of solution time, solving the model MCF has an average solution time

of 220 seconds, with a median of 3.3, and a standard deviation of 651.3 seconds.

Solving the model Compact-U st has an average solution time of 173 seconds (a

21.4% decrease), with a median of 19.9, and a standard deviation of 562.0 seconds.

Solving the model Compact-U t has an average solution time of 131 seconds (a 40.5%

decrease), with a median of 23.7, and a standard deviation of 387.1 seconds. Solving

the model U st has an average solution time of 276 seconds (a 25.5% increase), with

a median of 2.9, and a standard deviation of 1120.7 seconds. Solving the model U t

has an average solution time of 64 seconds (a 70.9% decrease), with a median of 1.5,

and a standard deviation of 437.9 seconds. Finally, solving the model Set-Based has

an average solution time of 27 seconds (a 87.7% decrease), with a median 0.8, and

a standard deviation of 129.3 seconds.

3.6. COMPUTATIONAL RESULTS 75

Figure 3.11: Distribution of solution times (in seconds) for all the 116 instances.

Figure 3.11 shows the distribution of solution times for each model, where the

figure on the right excludes outlier points. We can see in the figure that the Set-

Based model is in general the most efficient at solving the instances, also when

considering the number of nodes generated in the search decision-tree, even when

we consider or exclude outliers. However, the U t model sometimes performs better

on relatively large sized instances with either high or low density precedence rela-

tionships where the the separation procedure of the model becomes computationally

3.6. COMPUTATIONAL RESULTS 76

expensive (see instances prob.100, R.200.100.15, jpeg.3195.85). The summary of the

average results is shown in table 3.2.

Table 3.2: Summary of the average results for the MILP models MCF, Compact-U st,
Compact-U t, U st, U t and Set-Based.

Model Nodes Cuts Time [s]

MCF 0 2849 220

Compact-Ust 1007 - 173

Compact-U t 1480 - 131

Ust 5588 4751 276

U t 2432 222 63

Set-Based 77 361 27

In conclusion, the Set-Based model in general outperforms the models considered.

Indeed, it provides optimal solutions in substantially less time, and memory usage

for the majority of the instances considered. The same cannot be said about the

Set-Based model when linear relaxations only are considered, as the Path-Based

(U st and U t models) can be solved much faster in most cases because of the fewer

number of constraints, although it sometimes generates a looser estimate on the

value of the optimal solution.

3.6.1.3 Overall Results

In this section we report the overall results of the models discussed throughout

section 3.6.1. The overall results can be found in tables 3.3-3.8 where we report

the following. Columns Name and Size report the name and size of the instance,

ρ(R) reports the density of arcs in the set of precedence relationships R, and is

computed as 2·|R|
|V |(|V |−1)

. Column z∗ reports the value of the optimal solution for

that instance. For each model we report the following columns where applicable.

Column Cuts reports the number of model-dependent cuts (inequalities) that are

3.6. COMPUTATIONAL RESULTS 77

dynamically added to the model, column Nodes reports the number of nodes in the

search decision-tree, Time [s] reports the solution time in seconds. Column Gap

reports the percentage relative difference between the optimal solution (z∗) of the

PCMCA instance and the objective function value of the model’s linear relaxation

(z), computed as z∗−z
z∗

. Finally, column IP Gap reports the optimality gap of the

MILP model and is computed as UB−LB
UB

, where LB is the best found lower bound

on the optimal solution for that instance using the respective model, and UB is the

best found solution for that instance using the respective model. The column is only

reported for the model that does not optimally solve all instances within the time

limit.

3.6. COMPUTATIONAL RESULTS 78

Table 3.3: PCMCA computational results for the linear relaxation of the models MCF,
Compact-U st, Compact-U t, U st, U t and Set-Based for TSPLIB instances.

Model

Instance MCF Compact-U st Compact-U t U st U t Set-Based

Name Size ρ(R) z∗ Cuts Time [s] Gap Time [s] Gap Time [s] Gap Cuts Time [s] Gap Cuts Time [s] Gap Cuts Time [s] Gap

br17.10 18 0.314 25 90 0.078 0.0000 0.270 0.140 0.160 0.412 25 0.032 0.000 17 0.047 0.000 21 0.015 0.000

br17.12 18 0.359 25 108 0.094 0.0000 0.230 0.061 0.080 0.454 25 0.047 0.000 19 0.060 0.000 22 0.016 0.000

ESC07 9 0.611 1531 9 0.031 0.0000 0.062 0.000 0.062 0.000 12 0.031 0.000 14 0.047 0.000 13 0.031 0.000

ESC11 13 0.359 1752 13 0.047 0.0000 0.078 0.000 0.110 0.027 5 0.031 0.000 3 0.032 0.000 1 0.031 0.000

ESC12 14 0.396 1138 14 0.031 0.0000 0.094 0.000 0.141 0.000 3 0.016 0.000 3 0.016 0.000 1 0.016 0.000

ESC25 27 0.177 1041 81 0.328 0.0000 0.078 0.000 0.156 0.000 14 0.062 0.000 22 0.078 0.000 31 0.063 0.000

ESC47 49 0.108 703 98 0.375 0.0000 0.812 0.000 1.062 0.000 102 0.484 0.003 105 0.253 0.000 142 0.547 0.000

ESC63 65 0.173 56 455 3.672 0.0000 2.328 0.000 0.609 0.000 14 0.329 0.000 270 2.484 0.000 42 0.218 0.000

ESC78 80 0.139 502 80 0.234 0.0000 1.594 0.000 3.406 0.000 12 0.094 0.000 3 0.050 0.000 1 0.047 0.000

ft53.1 54 0.082 3917 486 7.219 0.0000 0.630 0.024 0.700 0.023 123 1.172 0.004 72 0.760 0.003 78 0.328 0.002

ft53.2 54 0.094 3978 756 19.360 0.0000 0.580 0.021 0.630 0.021 3674 0.281 0.076 49 0.250 0.004 57 0.188 0.028

ft53.3 54 0.225 4242 648 9.766 0.0000 0.560 0.017 0.670 0.021 77 1.890 0.056 51 0.980 0.015 96 0.453 0.000

ft53.4 54 0.604 4882 378 1.750 0.0000 1.032 0.000 1.015 0.000 11 0.156 0.027 8 0.203 0.000 13 0.047 0.000

ft70.1 71 0.036 32846 497 11.422 0.0000 5.375 0.000 4.391 0.000 144 2.891 0.000 136 2.813 0.000 158 2.750 0.000

ft70.2 71 0.075 32930 568 10.641 0.0000 8.562 0.000 9.093 0.000 158 2.985 0.000 129 2.750 0.000 163 2.719 0.000

ft70.3 71 0.142 33431 1278 159.188 0.0000 1.500 0.005 1.580 0.004 45 0.750 0.024 131 3.550 0.003 66 0.265 0.020

ft70.4 71 0.589 35179 781 6.047 0.0000 1.060 0.000 13.906 0.000 217 13.015 0.006 21 0.110 0.026 30 0.094 0.021

rbg048a 50 0.444 204 50 0.110 0.0000 0.360 0.000 0.406 0.000 3 0.047 0.000 4 0.047 0.000 5 0.031 0.000

rbg050c 52 0.459 191 676 4.516 0.0000 1.344 0.000 1.609 0.000 35 0.313 0.000 16 0.141 0.000 11 0.047 0.000

rbg109 111 0.909 256 222 0.219 0.0000 0.797 0.000 1.125 0.000 47 11.578 0.000 6 0.109 0.000 14 0.094 0.000

rbg150a 152 0.927 373 304 0.359 0.0000 4.641 0.000 6.734 0.000 6 2.485 0.000 7 0.297 0.000 14 0.187 0.000

rbg174a 176 0.929 365 176 0.171 0.0000 2.750 0.019 3.970 0.019 56 29.610 0.003 32 1.047 0.000 22 0.297 0.000

rbg253a 255 0.948 375 765 4.828 0.0000 8.094 0.000 9.500 0.000 2 13.985 0.000 9 1.094 0.000 22 1.125 0.000

rbg323a 325 0.928 754 975 1.391 0.0000 29.750 0.000 23.890 0.000 16 1.547 0.000 5 1.391 0.000 26 1.047 0.000

rbg341a 343 0.937 22 3430 22.156 0.0000 17.390 0.010 12.890 0.010 395 23.344 0.033 30 15.530 0.011 89 3.031 0.000

rbg358a 360 0.886 595 1080 2.234 0.0000 40.515 0.000 40.750 0.000 4 0.312 0.000 26 21.343 0.000 67 5.812 0.000

rbg378a 380 0.894 559 3420 16.250 0.0000 15.750 0.007 13.860 0.009 464 16.079 0.039 29 31.250 0.000 21 1.829 0.045

kro124p.1 101 0.046 32597 1414 340.265 0.0000 11.760 0.026 12.080 0.026 39 0.734 0.060 222 0.520 0.001 95 1.782 0.000

kro124p.2 101 0.053 32851 1919 561.187 0.0000 10.300 0.021 12.110 0.023 23 0.578 0.069 228 3.030 0.006 109 1.828 0.006

kro124p.3 101 0.092 33779 2828 1531.000 0.0000 437.890 0.133 11.170 0.219 225 8.672 0.027 198 6.980 0.023 69 0.844 0.035

kro124p.4 101 0.496 37124 1818 50.015 0.0000 6.450 0.028 5.660 0.026 277 41.828 0.014 143 5.926 0.011 128 1.672 0.000

p43.1 44 0.101 2720 396 4.531 0.0000 1.060 0.048 1.060 0.048 112 0.594 0.127 384 5.125 0.000 68 0.187 0.104

p43.2 44 0.126 2720 528 9.297 0.0000 1.140 0.051 1.280 0.036 237 1.016 0.084 471 2.062 0.000 33 0.079 0.110

p43.3 44 0.191 2720 616 10.703 0.0000 1.640 0.033 0.970 0.577 111 0.547 0.144 270 1.531 0.000 77 0.188 0.075

p43.4 44 0.164 2820 440 2.157 0.0000 0.720 0.009 0.750 0.007 132 1.218 0.087 324 5.060 0.000 11 0.047 0.083

prob.100 100 0.048 649 827 276.521 0.0022 5.160 0.011 7.280 0.011 282 11.766 0.013 249 12.141 0.011 1840 622.437 0.002

prob.42 42 0.116 143 42 0.171 0.0000 0.407 0.000 0.328 0.000 29 0.125 0.000 32 0.125 0.000 2 0.032 0.000

ry48p.1 49 0.091 13092 203 2.093 0.0003 0.720 0.012 1.000 0.017 118 0.828 0.009 81 1.192 0.009 31 0.094 0.019

ry48p.2 49 0.103 13103 245 2.438 0.0000 1.260 0.011 6.560 0.024 128 1.031 0.006 90 1.110 0.005 58 0.235 0.000

ry48p.3 49 0.193 13886 784 26.594 0.0000 1.230 0.045 5.000 0.051 183 2.109 0.037 121 1.095 0.034 34 0.078 0.069

ry48p.4 49 0.588 15340 343 1.969 0.0000 0.810 0.046 3.300 0.054 65 2.531 0.072 93 0.981 0.034 65 0.172 0.058

Average 728 75.645 0.0001 15.287 0.019 5.392 0.052 187 4.808 0.025 101 3.259 0.005 94 15.878 0.017

3.6. COMPUTATIONAL RESULTS 79

Table 3.4: PCMCA computational results for the linear relaxation of the models MCF,
Compact-U st, Compact-U t, U st, U t and Set-Based for SOPLIB instances.

Model

Instance MCF Compact-U st Compact-U t U st U t Set-Based

Name Size ρ(R) z∗ Cuts Time [s] Gap Time [s] Gap Time [s] Gap Cuts Time [s] Gap Cuts Time [s] Gap Cuts Time [s] Gap

R.200.100.1 200 0.020 29 200 1.781 0.000 4.719 0.000 4.578 0.000 1 0.219 0.000 13 1.843 0.000 11 0.875 0.000

R.200.100.15 200 0.847 454 8600 713.657 0.000 17.690 0.019 4.050 0.020 1274 3235.391 0.057 168 13.365 0.048 85 1.079 0.139

R.200.100.30 200 0.957 529 2600 8.375 0.000 1.840 0.017 1.630 0.022 27 12.922 0.112 43 3.051 0.029 39 0.266 0.093

R.200.100.60 200 0.991 6018 0 0.031 0.000 1.141 0.000 1.016 0.000 0 3.593 0.000 0 0.157 0.000 0 0.094 0.000

R.200.1000.1 200 0.020 887 200 3.625 0.000 9.562 0.000 9.875 0.000 0 0.203 0.000 2 0.625 0.000 3 0.656 0.000

R.200.1000.15 200 0.876 5891 6000 102.359 0.000 3.280 0.010 2.640 0.010 170 203.234 0.043 30 3.750 0.049 35 0.766 0.056

R.200.1000.30 200 0.958 7653 1000 3.172 0.000 1.520 0.001 1.830 0.002 45 56.000 0.000 7 0.953 0.000 9 0.234 0.000

R.200.1000.60 200 0.989 6666 0 0.047 0.000 1.469 0.000 1.579 0.000 0 3.797 0.000 0 0.157 0.000 0 0.094 0.000

R.300.100.1 300 0.013 13 1200 84.782 0.000 10.515 0.000 3.360 0.000 0 0.500 0.000 22 5.313 0.000 14 2.25 0.000

R.300.100.15 300 0.905 575 16800 893.625 0.000 9.330 0.026 9.990 0.026 149 3.985 0.103 228 46.330 0.036 20 1.171 0.077

R.300.100.30 300 0.970 756 1800 8.125 0.000 3.630 0.007 4.470 0.005 57 1.672 0.000 8 1.313 0.000 27 0.562 0.000

R.300.100.60 300 0.994 708 300 0.390 0.000 19.672 0.000 18.656 0.000 57 1.531 0.000 11 1.718 0.000 2 0.297 0.000

R.300.1000.1 300 0.013 715 900 297.563 0.000 58.562 0.000 62.375 0.000 69 10.546 0.000 69 10.343 0.000 8 2.094 0.000

R.300.1000.15 300 0.905 6660 10800 421.860 0.000 6.020 0.006 7.410 0.006 65 0.812 0.060 75 15.082 0.009 136 2.61 0.008

R.300.1000.30 300 0.965 8693 1800 4.110 0.000 7.328 0.000 10.718 0.000 11 1.531 0.000 1 1.016 0.000 6 0.391 0.000

R.300.1000.60 300 0.994 7678 600 0.672 0.000 10.672 0.000 11.109 0.000 4 23.234 0.000 0 0.469 0.000 2 0.297 0.000

R.400.100.1 400 0.010 6 0 0.688 0.000 18.093 0.000 19.515 0.000 1 0.391 0.000 7 1.142 0.000 42 5.781 0.000

R.400.100.15 400 0.927 699 22400 2291.765 0.000 24.470 0.011 10.450 0.014 22 0.328 0.108 62 26.167 0.033 24 0.906 0.100

R.400.100.30 400 0.978 712 4800 8.172 0.000 21.110 0.000 24.875 0.000 58 10.156 0.000 2 8.078 0.000 14 1.656 0.000

R.400.100.60 400 0.996 557 0 0.234 0.000 10.265 0.000 11.031 0.000 2 0.219 0.000 1 0.181 0.000 0 0.328 0.000

R.400.1000.1 400 0.010 780 2400 1256.485 0.000 12.953 0.000 13.140 0.000 13 6.734 0.000 17 11.672 0.000 4 2.797 0.000

R.400.1000.15 400 0.930 7382 16000 569.484 0.000 8.380 0.019 7.260 0.019 27 0.625 0.085 42 31.662 0.023 78 5.375 0.022

R.400.1000.30 400 0.977 9368 3600 8.828 0.000 8.190 0.021 11.750 0.023 541 34.531 0.011 36 13.551 0.025 20 1.14 0.044

R.400.1000.60 400 0.995 7167 400 0.563 0.000 33.078 0.000 36.500 0.026 44 2.016 0.000 3 1.453 0.000 1 0.5 0.000

R.500.100.1 500 0.008 3 3000 1687.547 0.000 37.921 0.000 34.469 0.000 579 217.172 0.000 172 35.726 0.000 29 11.812 0.000

R.500.100.15 500 0.945 860 27000 1934.063 0.000 31.550 0.017 17.050 0.016 20 1.016 0.085 51 35.192 0.041 100 7.406 0.039

R.500.100.30 500 0.980 710 8000 197.953 0.000 68.609 0.000 61.734 0.000 333 14.453 0.031 16 23.592 0.006 19 0.797 0.066

R.500.100.60 500 0.996 566 500 1.078 0.000 43.265 0.000 43.234 0.000 0 0.687 0.000 0 0.625 0.000 1 0.844 0.000

R.500.1000.1 500 0.008 297 0 1.203 0.000 17.469 0.000 17.250 0.000 0 0.609 0.000 0 0.611 0.000 0 4.469 0.000

R.500.1000.15 500 0.940 8063 24000 1270.750 0.000 14.520 0.001 88.218 0.000 648 82.015 0.000 37 48.410 0.006 119 15.063 0.000

R.500.1000.30 500 0.981 9409 3500 4.922 0.000 30.516 0.000 32.954 0.000 28 11.141 0.000 2 7.985 0.000 11 3.125 0.000

R.500.1000.60 500 0.996 6163 500 1.360 0.000 36.984 0.000 40.718 0.000 0 0.671 0.000 0 0.634 0.000 1 0.875 0.000

R.600.100.1 600 0.007 1 3600 3397.079 0.000 81.797 0.000 81.532 0.000 858 659.156 0.000 1262 840.446 0.000 1455 733.375 0.000

R.600.100.15 600 0.950 568 19200 534.797 0.000 58.094 0.000 63.406 0.000 387 31.516 0.000 10 12.750 0.000 23 5.312 0.000

R.600.100.30 600 0.985 776 4200 46.375 0.000 38.810 0.007 43.580 0.007 263 13.484 0.017 0 15.578 0.000 24 2.375 0.000

R.600.100.60 600 0.997 538 0 0.610 0.000 24.453 0.000 24.672 0.000 0 0.359 0.000 0 0.265 0.000 0 0.906 0.000

R.600.1000.1 600 0.007 322 0 1.969 0.000 32.016 0.000 33.969 0.000 0 0.844 0.000 0 0.735 0.000 0 8.625 0.000

R.600.1000.15 600 0.945 9763 30600 1977.250 0.000 42.063 0.000 66.703 0.000 216 17.984 0.022 20 55.640 0.000 69 12.766 0.000

R.600.1000.30 600 0.984 9497 4200 24.015 0.000 48.735 0.000 97.906 0.000 14 7.219 0.000 3 3.714 0.000 13 2.969 0.000

R.600.1000.60 600 0.997 6915 0 0.625 0.000 33.422 0.000 34.578 0.000 1 0.406 0.000 1 0.125 0.000 0 0.922 0.000

R.700.100.1 700 0.006 2 4900 4327.026 0.000 117.281 0.000 35.234 0.000 0 1.250 0.000 0 1.152 0.000 616 314.875 0.000

R.700.100.15 700 0.957 675 12600 206.344 0.000 176.047 0.000 86.688 0.000 106 41.000 0.000 7 12.766 0.000 23 6.875 0.000

R.700.100.30 700 0.987 590 700 1.656 0.000 61.203 0.000 74.266 0.000 0 3.984 0.000 0 2.813 0.000 1 1.25 0.000

R.700.100.60 700 0.997 383 0 0.703 0.000 46.437 0.000 45.469 0.000 0 0.500 0.000 0 0.435 0.000 0 1.422 0.000

R.700.1000.1 700 0.006 611 0 3.031 0.000 57.156 0.000 61.797 0.000 3 1.625 0.000 7 5.156 0.000 0 13.891 0.000

R.700.1000.15 700 0.956 2792 2100 7.094 0.000 28.609 0.000 35.828 0.000 3 1.500 0.000 1 1.156 0.000 4 1.875 0.000

R.700.1000.30 700 0.986 2658 0 0.516 0.000 20.078 0.000 23.500 0.000 0 0.360 0.000 0 0.259 0.000 0 0.828 0.000

R.700.1000.60 700 0.997 1913 0 0.640 0.000 55.750 0.000 60.719 0.000 0 0.515 0.000 0 0.315 0.000 0 1.375 0.000

Average 5229 464.771 0.000 31.381 0.003 31.152 0.004 127 98.409 0.015 51 27.197 0.006 64 24.7135625 0.013

3.6. COMPUTATIONAL RESULTS 80

Table 3.5: PCMCA computational results for the linear relaxation of the models MCF,
Compact-U st, Compact-U t, U st, U t and Set-Based for COMPILERS instances.

Model

Instance MCF Compact-U st Compact-U t U st U t Set-Based

Name Size ρ(R) z∗ Cuts Time [s] Gap Time [s] Gap Time [s] Gap Cuts Time [s] Gap Cuts Time [s] Gap Cuts Time [s] Gap

gsm.153.124 126 0.970 185 378 0.375 0.000 1.610 0.000 1.125 0.029 180 0.578 0.000 26 0.297 0.000 49 0.125 0.011

gsm.444.350 353 0.990 1542 0 0.078 0.000 0.594 0.000 0.454 0.000 2 0.078 0.000 12 0.375 0.000 0 0.094 0.000

gsm.462.77 79 0.840 292 474 0.875 0.000 2.109 0.000 2.234 0.003 48 3.422 0.000 31 0.296 0.000 14 0.031 0.000

jpeg.1483.25 27 0.484 71 54 0.172 0.000 1.156 0.000 0.190 0.017 50 0.234 0.000 48 0.082 0.000 21 0.031 0.000

jpeg.3184.107 109 0.887 411 981 1.953 0.000 1.391 0.000 0.500 0.007 96 14.640 0.006 56 0.660 0.004 32 0.093 0.000

jpeg.3195.85 87 0.740 13 1392 6.328 0.000 3.390 0.088 3.610 0.000 2548 278.844 0.385 661 12.312 0.385 45 0.125 0.385

jpeg.3198.93 95 0.752 140 27343 15.531 0.000 17.390 0.000 28.203 0.000 2093 252.734 0.029 647 13.280 0.021 29 0.141 0.036

jpeg.3203.135 137 0.897 507 1918 4.109 0.000 1.090 0.016 0.980 0.017 104 47.578 0.004 88 1.751 0.004 18 0.094 0.022

jpeg.3740.15 17 0.257 33 34 0.125 0.000 0.220 0.045 0.240 0.046 72 1.782 0.030 24 0.067 0.030 17 0.031 0.000

jpeg.4154.36 38 0.633 74 228 0.734 0.000 0.310 0.041 0.220 0.041 52 0.641 0.050 42 0.160 0.051 43 0.063 0.000

jpeg.4753.54 56 0.769 146 224 0.469 0.000 4.391 0.000 2.641 0.000 154 2.766 0.007 67 0.342 0.010 38 0.062 0.007

susan.248.197 199 0.939 688 2587 8.110 0.000 0.750 0.008 0.610 0.008 75 76.329 0.003 54 2.451 0.002 21 0.125 0.000

susan.260.158 160 0.916 472 2400 4.860 0.000 1.340 0.010 0.780 0.010 20 12.156 0.017 75 2.080 0.006 33 0.141 0.000

susan.343.182 184 0.936 468 2760 6.829 0.000 1.520 0.007 1.470 0.006 201 194.188 0.010 123 6.842 0.009 47 0.203 0.010

typeset.10192.123 125 0.744 241 1500 10.359 0.000 2.740 0.037 1.910 0.041 14 4.859 0.103 103 2.890 0.016 93 0.5 0.000

typeset.10835.26 28 0.349 60 112 0.407 0.000 0.079 0.000 0.078 0.000 8 0.063 0.000 9 0.047 0.000 14 0.031 0.000

typeset.12395.43 45 0.518 125 270 1.000 0.000 1.250 0.000 0.280 0.013 37 0.531 0.005 28 0.125 0.000 27 0.078 0.000

typeset.15087.23 25 0.557 89 50 0.250 0.000 0.170 0.011 0.190 0.011 84 0.297 0.011 25 0.030 0.011 24 0.047 0.000

typeset.15577.36 38 0.555 93 76 0.204 0.000 0.516 0.000 0.468 0.000 7 0.031 0.000 6 0.062 0.000 4 0.015 0.000

typeset.16000.68 70 0.658 67 490 1.219 0.000 4.530 0.093 13.560 0.093 787 21.891 0.000 425 17.725 0.000 643 3.281 0.090

typeset.1723.25 27 0.245 54 216 1.375 0.000 0.340 0.092 0.440 0.989 88 0.203 0.056 52 0.160 0.056 19 0.031 0.056

typeset.19972.246 248 0.993 979 0 0.046 0.000 0.234 0.000 0.250 0.000 14 0.110 0.000 7 0.069 0.000 0 0.062 0.000

typeset.4391.240 242 0.981 837 2178 2.735 0.000 5.156 0.000 6.359 0.000 131 378.172 0.001 95 3.782 0.000 18 0.094 0.000

typeset.4597.45 47 0.493 133 94 0.235 0.000 0.234 0.000 0.297 0.000 16 0.437 0.000 16 0.079 0.000 7 0.031 0.000

typeset.4724.433 435 0.995 1819 3045 3.578 0.000 2.030 0.003 1.980 0.003 374 4.000 0.000 68 1.823 0.000 8 0.172 0.000

typeset.5797.33 35 0.748 93 35 0.094 0.000 0.407 0.000 0.297 0.000 85 0.234 0.000 37 0.125 0.000 9 0.032 0.000

typeset.5881.246 248 0.986 979 496 0.484 0.000 0.530 0.003 0.810 0.003 49 191.813 0.003 55 1.885 0.003 52 0.343 0.000

Average 1827 2.686 0.000 2.055 0.017 2.599 0.050 274 55.134 0.027 107 2.585 0.023 49 0.225 0.023

3.6. COMPUTATIONAL RESULTS 81

Table 3.6: PCMCA computational results for the MILP models MCF, Compact-U st,
Compact-U t, U st, U t and Set-Based for TSPLIB instances.

Model

Instance MCF Compact-U st Compact-U t U st U t Set-Based

Name Size ρ(R) z∗ Nodes Cuts Time [s] Nodes Time [s] IP Gap Nodes Time [s] IP Gap Nodes Cuts Time [s] Nodes Cuts Time [s] Nodes Cuts Time [s]

br17.10 18 0.314 25 0 90 0.078 1024 0.922 - 483 0.938 - 3 26 0.060 0 17 0.047 0 21 0.015

br17.12 18 0.359 25 0 108 0.094 44 1.125 - 516 1.563 - 3 26 0.063 15 20 0.094 0 22 0.016

ESC07 9 0.611 1531 0 9 0.031 0 0.062 - 0 0.047 - 0 12 0.031 0 14 0.047 0 13 0.031

ESC11 13 0.359 1752 0 13 0.047 0 0.078 - 6 0.078 - 0 5 0.031 0 3 0.032 0 1 0.031

ESC12 14 0.396 1138 0 14 0.031 0 0.094 - 0 0.079 - 0 3 0.016 0 3 0.016 0 1 0.016

ESC25 27 0.177 1041 0 81 0.328 0 0.078 - 0 0.093 - 0 14 0.062 0 22 0.078 0 31 0.063

ESC47 49 0.108 703 0 98 0.375 0 0.812 - 0 0.890 - 5 106 0.469 0 105 0.253 0 142 0.547

ESC63 65 0.173 56 0 455 3.672 0 2.328 - 0 0.985 - 0 14 0.329 0 270 2.484 0 42 0.218

ESC78 80 0.139 502 0 80 0.234 0 1.594 - 0 1.703 - 0 12 0.094 0 3 0.050 0 1 0.047

ft53.1 54 0.082 3917 0 486 7.219 966 10.282 - 1477 10.547 - 7 129 1.172 7 82 0.812 5 84 0.375

ft53.2 54 0.094 3978 0 756 19.360 481 17.094 - 1580 19.594 - 104 302 0.688 16 55 0.297 55 211 0.547

ft53.3 54 0.225 4242 0 648 9.766 616 10.469 - 361 10.093 - 122 416 2.547 33 82 1.156 0 96 0.453

ft53.4 54 0.604 4882 0 378 1.750 0 1.032 - 0 1.015 - 9 46 0.250 0 8 0.203 0 13 0.047

ft70.1 71 0.036 32846 0 497 11.422 0 5.375 - 0 4.391 - 1 144 2.828 0 136 2.813 0 158 2.750

ft70.2 71 0.075 32930 0 568 10.641 0 8.562 - 0 9.093 - 2 160 3.016 2 138 2.781 0 163 2.719

ft70.3 71 0.142 33431 0 1278 159.188 547 113.250 - 462 59.719 - 954 3061 63.171 280 288 6.531 145 2077 38.250

ft70.4 71 0.589 35179 0 781 6.047 6 7.860 - 0 13.906 - 53 457 13.438 37 217 1.515 369 1070 6.281

rbg048a 50 0.444 204 0 50 0.110 0 0.360 - 0 0.406 - 0 3 0.047 0 4 0.047 0 5 0.031

rbg050c 52 0.459 191 0 676 4.516 0 1.344 - 0 1.609 - 0 35 0.313 0 16 0.141 0 11 0.047

rbg109 111 0.909 256 0 222 0.219 0 0.797 - 0 1.125 - 0 47 11.578 0 6 0.109 0 14 0.094

rbg150a 152 0.927 373 0 304 0.359 0 4.641 - 0 6.734 - 0 6 2.485 0 7 0.297 1 14 0.219

rbg174a 176 0.929 365 0 176 0.171 438 20.312 - 16 25.391 - 2 57 29.609 0 32 1.047 1 22 0.313

rbg253a 255 0.948 375 0 765 4.828 0 8.094 - 0 9.500 - 0 2 13.985 0 9 1.094 0 22 1.125

rbg323a 325 0.928 754 0 975 1.391 0 29.750 - 0 23.890 - 0 16 1.547 0 5 1.391 0 26 1.047

rbg341a 343 0.937 22 0 3430 22.156 54 373.516 - 385 499.281 - 376 11958 278.859 60 40 23.547 0 89 3.031

rbg358a 360 0.886 595 0 1080 2.234 0 40.515 - 0 40.750 - 0 4 0.312 0 26 21.343 0 67 5.812

rbg378a 380 0.894 559 0 3420 16.250 523 615.093 - 510 181.703 - 543 4390 178.515 0 29 31.250 36 282 19.047

kro124p.1 101 0.046 32597 0 1414 340.265 500 44.594 - 504 43.313 - 47 312 1.844 6 234 0.703 0 95 1.782

kro124p.2 101 0.053 32851 0 1919 561.187 1459 810.547 - 1263 909.469 - 1433 801 11.203 1052 416 9.859 27 238 3.281

kro124p.3 101 0.092 33779 0 2828 1531.000 821 - 0.105 2966 - 0.094 258648 4253 6599.140 187246 1552 4625.841 98 656 7.469

kro124p.4 101 0.496 37124 0 1818 50.015 521 212.687 - 994 207.360 - 198 981 59.359 206 226 8.157 0 128 1.672

p43.1 44 0.101 2720 0 396 4.531 487 4.297 - 487 4.250 - 238 1202 4.203 0 384 5.125 128 692 1.765

p43.2 44 0.126 2720 0 528 9.297 491 9.859 - 496 15.281 - 119 589 1.781 0 471 2.062 237 1164 4.359

p43.3 44 0.191 2720 0 616 10.703 508 151.453 - 610 112.109 - 283 1113 2.829 0 270 1.531 134 598 1.437

p43.4 44 0.164 2820 0 440 2.157 1004 26.844 - 2016 25.437 - 198 926 3.516 99 435 5.516 353 1065 2.797

prob.100 100 0.048 649 11 1000 334.328 2265 389.265 - 2826 60.641 - 1428 2555 36.594 3633 2401 119.406 4 1962 743.969

prob.42 42 0.116 143 0 42 0.171 0 0.407 - 0 0.328 - 0 29 0.125 0 32 0.125 0 2 0.032

ry48p.1 49 0.091 13092 4 294 4.531 1338 85.531 - 1523 40.375 - 879 380 1.656 880 183 2.594 54 177 0.609

ry48p.2 49 0.103 13103 0 245 2.438 578 31.500 - 617 60.641 - 220 450 1.593 37 130 1.296 0 58 0.235

ry48p.3 49 0.193 13886 0 784 26.594 58651 3421.736 - 33288 2111.234 - 123233 2793 638.344 68658 1006 567.140 146 634 2.156

ry48p.4 49 0.588 15340 0 343 1.969 1269 357.203 - 718 79.484 - 8610 1034 24.156 1830 286 4.578 32 153 0.313

Average 0 734 77.115 1819 170.53405 1320 114.876 9700 948 194.923 6441 236 133.010 45 300 20.855

3.6. COMPUTATIONAL RESULTS 82

Table 3.7: PCMCA computational results for the MILP models MCF, Compact-U st,
Compact-U t, U st, U t and Set-Based for SOPLIB instances.

Model

Instance MCF Compact-U st Compact-U t U st U t Set-Based

Name Size ρ(R) z∗ Nodes Cuts Time [s] Nodes Time [s] Nodes Time [s] Nodes Cuts Time [s] Nodes Cuts Time [s] Nodes Cuts Time [s]

R.200.100.1 200 0.020 29 0 200 1.781 0 4.719 0 4.578 0 1 0.219 0 13 1.843 0 11 0.875

R.200.100.15 200 0.847 454 0 8600 713.657 1118 677.000 2608 338.312 382 3314 4034.859 269 729 29.531 177 2395 64.812

R.200.100.30 200 0.957 529 0 2600 8.375 28 19.922 28 17.562 59 142 54.828 28 68 3.656 10 77 0.875

R.200.100.60 200 0.991 6018 0 0 0.031 0 1.000 0 1.016 0 0 3.593 0 0 0.157 0 0 0.094

R.200.1000.1 200 0.020 887 0 200 3.625 0 9.562 0 9.875 0 0 0.203 0 2 0.625 0 3 0.656

R.200.1000.15 200 0.876 5891 0 6000 102.359 1156 52.266 997 44.719 132 731 329.313 74 328 9.360 87 557 7.860

R.200.1000.30 200 0.958 7653 0 1000 3.172 43 6.547 29 8.469 2 46 57.141 0 7 0.953 0 9 0.297

R.200.1000.60 200 0.989 6666 0 0 0.047 0 1.469 0 1.579 0 0 3.797 0 0 0.157 0 0 0.094

R.300.100.1 300 0.013 13 0 1200 84.782 0 10.515 0 3.360 0 0 0.500 0 22 5.313 0 14 2.250

R.300.100.15 300 0.905 575 0 16800 893.625 506 199.688 552 208.141 87859 119299 2220.656 476 1681 114.484 139 1111 55.734

R.300.100.30 300 0.970 756 0 1800 8.125 481 13.953 61 20.375 0 57 1.672 0 8 1.313 0 27 0.562

R.300.100.60 300 0.994 708 0 300 0.390 0 19.672 0 18.656 2 57 2.469 0 11 1.718 0 2 0.375

R.300.1000.1 300 0.013 715 0 900 297.563 0 58.562 0 62.375 0 69 10.546 0 69 10.343 0 8 2.515

R.300.1000.15 300 0.905 6660 0 10800 421.860 57 83.328 194 124.828 3304 4165 91.938 66 95 19.203 73 819 16.531

R.300.1000.30 300 0.965 8693 0 1800 4.110 0 7.328 0 10.718 0 11 1.531 0 1 1.016 0 6 0.453

R.300.1000.60 300 0.994 7678 0 600 0.672 0 10.672 0 11.109 0 4 23.234 0 0 0.469 0 2 0.297

R.400.100.1 400 0.010 6 0 0 0.688 0 18.093 0 19.515 0 1 0.391 0 7 1.142 2 45 9.750

R.400.100.15 400 0.927 699 0 22400 2291.765 1582 1895.359 564 1598.750 52858 105054 2021.813 499 1979 161.828 109 548 44.922

R.400.100.30 400 0.978 712 0 4800 8.172 0 21.110 0 24.875 0 58 10.156 0 2 8.078 0 14 2.031

R.400.100.60 400 0.996 557 0 0 0.234 0 10.265 0 11.031 0 2 0.219 0 1 0.181 0 0 0.328

R.400.1000.1 400 0.010 780 0 2400 1256.485 0 12.953 0 13.140 0 13 6.734 0 17 11.672 0 4 2.797

R.400.1000.15 400 0.930 7382 0 16000 569.484 1199 1265.079 608 1296.484 56018 170012 8935.188 328 153 75.516 91 362 24.000

R.400.1000.30 400 0.977 9368 0 3600 8.828 1979 174.156 2308 417.172 4797 5545 209.593 58 130 20.547 38 97 6.563

R.400.1000.60 400 0.995 7167 0 400 0.563 0 33.078 0 36.500 0 44 2.016 0 3 1.453 0 1 0.500

R.500.100.1 500 0.008 3 0 3000 1687.547 0 37.921 0 34.469 0 579 217.172 0 172 35.726 0 29 11.812

R.500.100.15 500 0.945 860 0 27000 1934.063 516 375.407 520 468.468 9879 8120 443.125 186 279 104.687 38 286 21.156

R.500.100.30 500 0.980 710 0 8000 197.953 0 68.609 0 61.734 11490 19359 696.922 9 16 25.969 15 51 3.562

R.500.100.60 500 0.996 566 0 500 1.078 0 43.265 0 43.234 0 0 0.687 0 0 0.625 0 1 0.844

R.500.1000.1 500 0.008 297 0 0 1.203 0 17.469 0 17.250 0 0 0.609 0 0 0.611 0 0 4.469

R.500.1000.15 500 0.940 8063 0 24000 1270.750 289 109.625 0 88.218 57 819 100.640 7 43 54.422 0 119 15.063

R.500.1000.30 500 0.981 9409 0 3500 4.922 0 30.516 0 32.954 0 28 11.141 0 2 7.985 0 11 3.125

R.500.1000.60 500 0.996 6163 0 500 1.360 0 36.984 0 40.718 0 0 0.671 0 0 0.634 0 1 0.875

R.600.100.1 600 0.007 1 0 3600 3397.079 0 81.797 0 81.532 0 858 659.156 0 1262 840.446 0 1455 733.375

R.600.100.15 600 0.950 568 0 19200 534.797 0 58.094 0 63.406 1 387 34.985 0 10 12.750 0 23 5.312

R.600.100.30 600 0.985 776 0 4200 46.375 1059 152.672 116 180.375 659 8656 298.109 0 13 15.578 0 24 2.375

R.600.100.60 600 0.997 538 0 0 0.610 0 24.453 0 24.672 0 0 0.359 0 0 0.265 0 0 0.906

R.600.1000.1 600 0.007 322 0 0 1.969 0 32.016 0 33.969 0 0 0.844 0 0 0.735 0 0 8.625

R.600.1000.15 600 0.945 9763 0 30600 1977.250 0 42.063 0 66.703 31 2092 159.515 4 20 56.547 0 69 12.766

R.600.1000.30 600 0.984 9497 0 4200 24.015 0 77.047 0 97.906 0 14 7.219 0 3 3.714 0 13 2.969

R.600.1000.60 600 0.997 6915 0 0 0.625 0 33.422 105 34.578 0 1 0.406 0 1 0.125 0 0 0.922

R.700.100.1 700 0.006 2 0 4900 4327.026 0 117.281 0 116.328 0 0 1.250 0 0 1.152 0 616 314.875

R.700.100.15 700 0.957 675 0 12600 206.344 0 176.047 0 86.688 0 106 41.000 0 7 12.766 0 23 6.875

R.700.100.30 700 0.987 590 0 700 1.656 0 61.203 0 74.266 0 0 3.984 0 0 2.813 0 1 1.250

R.700.100.60 700 0.997 383 0 0 0.703 0 46.437 0 45.469 0 0 0.500 0 0 0.435 0 0 1.422

R.700.1000.1 700 0.006 611 0 0 3.031 0 57.156 0 61.797 0 3 1.625 0 7 5.156 0 0 13.891

R.700.1000.15 700 0.956 2792 0 2100 7.094 0 28.609 0 35.828 0 3 1.500 0 1 5.156 0 4 1.875

R.700.1000.30 700 0.986 2658 0 0 0.516 0 20.078 0 23.500 0 0 0.360 0 0 0.259 0 0 0.828

R.700.1000.60 700 0.997 1913 0 0 0.640 0 55.750 0 60.719 0 0 0.515 0 0 0.315 0 0 1.375

Average 0 5229 464.771 209 133.130 181 128.707 4740 9368 431.352 42 149 34.780 16 184 29.494

3.6. COMPUTATIONAL RESULTS 83

Table 3.8: PCMCA computational results for the MILP models MCF, Compact-U st,
Compact-U t, U st, U t and Set-Based for COMPILERS instances.

Model

Instance MCF Compact-U st Compact-U t U st U t Set-Based

Name Size ρ(R) z∗ Nodes Cuts Time [s] Nodes Time [s] Nodes Time [s] Nodes Cuts Time [s] Nodes Cuts Time [s] Nodes Cuts Time [s]

gsm.153.124 126 0.970 185 0 378 0.375 0 1.610 0 1.125 0 180 0.578 0 26 0.297 3 53 0.140

gsm.444.350 353 0.990 1542 0 0 0.078 0 0.594 0 0.454 0 2 0.078 0 12 0.375 0 0 0.094

gsm.462.77 79 0.840 292 0 474 0.875 0 2.109 0 2.234 17 79 4.047 0 31 0.296 0 14 0.031

jpeg.1483.25 27 0.484 71 0 54 0.172 0 1.156 8 1.062 43 197 0.266 16 55 0.125 4 34 0.047

jpeg.3184.107 109 0.887 411 0 981 1.953 0 1.391 2616 5.765 24 117 16.844 37 83 0.922 0 32 0.093

jpeg.3195.85 87 0.740 13 0 1392 6.328 47 87.672 1 55.156 4041 47994 1366.985 155 4003 120.359 5674 16979 897.312

jpeg.3198.93 95 0.752 140 0 27343 15.531 0 17.390 0 28.203 2204 6649 529.781 48 1921 34.329 401 1686 9.704

jpeg.3203.135 137 0.897 507 0 1918 4.109 495 19.046 485 13.141 31 196 56.703 35 132 2.141 7 41 0.125

jpeg.3740.15 17 0.257 33 0 34 0.125 57 3.922 40 4.079 231 185 0.234 391 78 0.188 0 17 0.031

jpeg.4154.36 38 0.633 74 0 228 0.734 321 8.344 251 3.984 1462 364 2.500 692 156 0.812 0 43 0.063

jpeg.4753.54 56 0.769 146 0 224 0.469 0 4.391 0 2.641 11 192 2.984 6 74 0.375 6 59 0.109

susan.248.197 199 0.939 688 0 2587 8.110 1984 27.968 1984 25.031 22 178 106.672 9 79 2.922 0 21 0.125

susan.260.158 160 0.916 472 0 2400 4.860 1534 180.062 6909 55.953 570 461 123.594 261 111 4.578 0 33 0.141

susan.343.182 184 0.936 468 0 2760 6.829 516 44.016 3567 72.703 776 896 474.391 318 399 12.812 19 89 0.359

typeset.10192.123 125 0.744 241 0 1500 10.359 4674 2267.172 2879 1437.594 5565 1134 297.859 4537 644 40.766 0 93 0.500

typeset.10835.26 28 0.349 60 0 112 0.407 0 0.079 0 0.078 0 8 0.063 0 9 0.047 0 14 0.031

typeset.12395.43 45 0.518 125 0 270 1.000 0 1.250 29 1.594 10 64 0.437 0 28 0.125 0 27 0.078

typeset.15087.23 25 0.557 89 0 50 0.250 23 0.985 16 2.250 32 148 0.297 67 51 0.109 0 24 0.047

typeset.15577.36 38 0.555 93 0 76 0.204 0 0.516 0 0.468 0 7 0.031 0 6 0.062 0 4 0.015

typeset.16000.68 70 0.658 67 0 490 1.219 16981 3872.728 6317 2532.500 0 787 21.891 0 425 17.725 144 1316 7.172

typeset.1723.25 27 0.245 54 0 216 1.375 4237 95.156 82554 65.891 7660 781 4.094 9000 283 7.094 21 99 0.110

typeset.19972.246 248 0.993 979 0 0 0.046 0 0.234 0 0.250 0 14 0.110 0 7 0.069 0 0 0.062

typeset.4391.240 242 0.981 837 0 2178 2.735 0 5.156 0 6.359 46 1291 6.250 0 95 3.782 0 18 0.094

typeset.4597.45 47 0.493 133 0 94 0.235 0 0.234 0 0.297 0 16 0.437 0 16 0.079 0 7 0.031

typeset.4724.433 435 0.995 1819 0 3045 3.578 10 17.109 22 23.704 0 374 4.000 0 68 1.823 0 8 0.172

typeset.5797.33 35 0.748 93 0 35 0.094 0 0.407 0 0.297 0 85 0.234 0 37 0.125 0 9 0.032

typeset.5881.246 248 0.986 979 0 496 0.484 1289 34.547 1258 38.062 191 184 356.218 394 137 7.031 0 52 0.343

Average 0 1827 2.686 1191 247.972 4035 162.255 849 2318 125.095 591 332 9.606 233 769 33.965

3.6. COMPUTATIONAL RESULTS 84

3.6.2 The B&B Algorithm

In this section we discuss the computational results of the B&B algorithm, and

compare it with solving the Set-Based Model (see section 3.4.4) with an MILP

solver.

3.6.2.1 Lagrangian Relaxation

Step Size

In the subgradient method there are many different types of step size rules, and

the selection of which rule to use can substantially affect the performance of the

algorithm [5]. In this section we compare the convergence of the method using three

step size rules from the literature: constant step size, diminishing step size, and

p-diminishing step size.

The constant step size is a positive real number that does not change with each

iteration.

The diminishing step size is a positive real value which decreases with each

iteration. The formula for calculating a diminishing step size is αk =
a
k
, where αk is

the step size at iteration k, and a is a real positive value.

The p-diminishing step size is similar to the diminishing step size rule, however

it does not decrease at each iteration. The step size value decreases every time the

value of the objective function decreases compared to the previous iteration. The

formula for calculating a p-diminishing step size is αk = a
p
, where αk is the step

size at iteration k, a is a real positive value, and p is an integer positive value. The

value of p starts at 1, and every time the value of the objective function decreases

compared to the previous iteration the value of p is incremented by 1, and the new

step size value is calculated using the beforementioned formula.

Figure 3.12 compares the value of objective function (3.56) at the root node for a

3.6. COMPUTATIONAL RESULTS 85

subset of the representative instances using a constant step size αk = 0.1, compared

to using a diminishing step size as explained earlier with a = 1, and a p-diminishing

step size as explained earlier also with a = 1. Each case is run for a total of 100

iterations. The results suggests that using a constant step size, the value of the

objective function typically tends to oscillate, which sometimes gives the advantage

of escaping a local optima, and the value of the objective function is increased at a

faster rate in the first few iterations. On the other hand, using a diminishing step

size, convergence is sometimes faster, and feasible solutions are found much quicker

compared to using a fixed step size. This in turn helps in pruning the search-tree,

and reducing the size of the explored solution space. This is the case since the value

of the objective function oscillates less frequently compared to a fixed step size, and

thus feasible solutions are retrieved with a relatively small optimality gap. The p-

diminishing step size rule has a very similar behavior to the diminishing step size

rule in most cases, but convergence happens at a higher rate, with feasible solutions

found more frequently.

In general, the p-diminishing step size rule is expected to perform better when

compared to the other two step size rules, as it behaves similar to a constant step

size as long as the value of the objective function is increasing at each iteration,

and once the value of the objective function decreases compared to the previous

iteration, the step size is decreased which helps to prevent the value of the objective

function from oscillating over time.

Number of Iterations

Increasing the number of iterations M in the subgradient method could potentially

tighten the lower bound value computed for a search-tree node. However, that would

likely lead to increasing the number of multipliers in the objective function (3.56),

in addition to the MCA being computed at each iteration, and thus increasing the

3.6. COMPUTATIONAL RESULTS 86

Figure 3.12: Comparing the value of the objective function at each iteration using a
constant step size αk = 0.1, diminishing step size αk = 1

k , and p-diminishing step size
αk = 1

p .

3.6. COMPUTATIONAL RESULTS 87

computation time per node. Figure 3.12 shows also the value of the lower bound

at the root node of the B&B tree at each iteration for three step size rules of

the subgradient method. In the three subfigures, the curve starts to plateau around

iteration 20. The value of M = 10 is chosen as it balances well between the tightness

of the lower bound and computation time, and so that the number of multipliers

does not grow too large.

The rate of increase of the number of the Lagrangian multipliers at the root

node using different step size rules can be seen in Figure 3.13. For the majority of

the instances, preliminary experiments clearly suggested an increase in the solution

time (sometimes considerable) and a slight reduction in the number of generated

nodes. This leads to the conclusion that setting M = 10 provides a good balance

between computation time and performance.

3.6.2.2 Overall Results

In this section, the results of the B&B algorithm with different step size rules are

presented and compared with the current state-of-the-art results reported in section

3, that are obtained by solving the MILP model (Set-Based model) introduced in

section 3.4.4. The results of the others methods/models discussed in chapter 3 are

not compared against, as they are generally dominated with computation times that

are 906.2% and 131.6% higher on average.

Tables 3.9-3.11 report the results for the three benchmark sets. The tables

compare the performance of the current state-of-the-art solver/model described in

section 3.4.4, with the B&B algorithm introduced in section 3.5.2 using different step

size rules. In all the tables, column Name reports the name of the instance, column

Size reports the number of vertices in the instance graph, and column ρ(R) reports

the density of arcs in the set of precedence relationships R, and is computed as

2·|R|
|V |(|V |−1)

. Column z∗ reports the value of the optimal solution of each instance. For

3.6. COMPUTATIONAL RESULTS 88

Figure 3.13: Comparing the increase in the number Lagrangian multipliers for the root
node at each iteration using a constant step size αk = 0.1, diminishing step size αk = 1

k ,
and p-diminishing step size αk = 1

p .

3.6. COMPUTATIONAL RESULTS 89

each computational method considered, we report the following columns: Column

Nodes contains the number of nodes generated in the search-tree; Column Time [s]

contains the solution time in second. The maximum number of iterations M = 10

is used for the B&B algorithm.

An overview of the results show that the B&B algorithm optimally solves the

three benchmark sets. Solving the MILP has an average solution time of 27.5 sec-

onds, while the B&B algorithm has an average solution time of 8.9 (a 67.6% decrease)

seconds with αk = 0.1, an average solution time of 5.9 (a 78.5% decrease) seconds

with αk = 1
k
, and an average solution time of 6.2 (a 77.5% decrease) seconds with

αk =
1
p
. To solve the MILP, 77 search-tree nodes are generated on average, while the

B&B algorithm generates 96 (a 24.7% increase) nodes on average with αk = 0.1, 74

(a 3.9% decrease) nodes with αk =
1
k
, and 73 (a 5.2% decrease) nodes with αk =

1
p
.

The bypass rule described in Section 3.5.5 is invoked for three outlier instances

(highlighted in the tables): kro124p.3, ry48p.3, and R.400.100.15, once the size of

the search tree grows larger than 2000 nodes. Without applying the bypass rule

on these instances, and enforcing a time limit of 1 hour on the computation time,

the results for the three instances were as follows. The instance kro124p.3 times

out with an optimality gap of 0.951% with αk = 0.1, 3.125% with αk = 1
k
, and

3.029% αk = 1
p
. Instance ry48p.3 is solved to optimality with an average (among

the B&B methods) solution time of 23.014 seconds, and 2530 nodes are generated

on average. The instance R.400.100.15 is solved optimally with αk =
1
k
and αk =

1
p
,

with an average solution time of 300.396 seconds, and 4542 nodes are generated on

average. With αk = 0.1 the B&B times out on the instances with an optimality gap

of 0.855%.

Excluding from the statistics the three outlier instances where the bypass rule is

invoked, solving the MILP takes on average 27.7 seconds, while the B&B algorithm

has an average solution time of 2.4 (a 91.3% decrease) seconds with αk = 0.1, an

3.6. COMPUTATIONAL RESULTS 90

average solution time of 0.9 (a 96.8% decrease) seconds with αk =
1
k
, and an average

solution time of 1.1 (a 96.0% decrease) seconds with αk =
1
p
. In terms of the number

of nodes generated in the search-tree, solving the MILP requires 75 nodes on average,

while the B&B algorithm generates 45 (a 40.0% decrease) nodes on average with

αk = 0.1, 23 (a 69.3% decrease) nodes with αk = 1
k
, and 22 (a 70.7% decrease)

nodes with αk = 1
p
. In summary, when excluding the three outlier instances, the

B&B algorithm is on average 94.7% faster, with 60% less nodes generated in the

search-tree.

In conclusion, the results show that using a B&B algorithm that is based on a

Lagrangian relaxation of the problem is generally faster than current state-of-the-art

methods, except on a very small subset of the instances.

3.6. COMPUTATIONAL RESULTS 91

Table 3.9: PCMCA computational results comparing solving the MILP model Set-Based
and the B&B algorithm for TSPLIB instances.

Instance Set-Based Model B&B \w αk = 0.1 B&B \w αk =
1
k

B&B \w αk =
1
p

Name Size ρ(R) z∗ Nodes Time [s] Nodes Time [s] Nodes Time [s] Nodes Time [s]

br17.10 18 0.314 25 0 0.015 1 0.004 0 0.001 0 0.004

br17.12 18 0.359 25 0 0.016 1 0.004 0 0.006 0 0.006

ESC07 9 0.611 1531 0 0.031 0 0.000 0 0.001 0 0.000

ESC11 13 0.359 1752 0 0.031 0 0.000 0 0.001 0 0.000

ESC12 14 0.396 1138 0 0.016 0 0.001 0 0.001 0 0.001

ESC25 27 0.177 1041 0 0.063 0 0.001 0 0.002 0 0.001

ESC47 49 0.108 703 0 0.547 1 0.013 1 0.009 0 0.018

ESC63 65 0.173 56 0 0.218 4 0.095 3 0.036 1 0.052

ESC78 80 0.139 502 0 0.047 0 0.019 0 0.008 0 0.012

ft53.1 54 0.082 3917 5 0.375 6 0.051 3 0.028 1 0.021

ft53.2 54 0.094 3978 55 0.547 19 0.158 11 0.128 8 0.107

ft53.3 54 0.225 4242 0 0.453 7 0.116 39 0.384 11 0.102

ft53.4 54 0.604 4882 0 0.047 9 0.064 7 0.096 6 0.067

ft70.1 71 0.036 32846 0 2.750 2 0.043 2 0.043 1 0.039

ft70.2 71 0.075 32930 0 2.719 4 0.143 4 0.099 5 0.122

ft70.3 71 0.142 33431 145 38.250 170 6.622 75 2.607 92 2.789

ft70.4 71 0.589 35179 369 6.281 45 0.662 136 2.371 14 0.395

rbg048a 50 0.444 204 0 0.031 0 0.010 1 0.007 0 0.005

rbg050c 52 0.459 191 0 0.047 3 0.034 3 0.031 1 0.011

rbg109 111 0.909 256 0 0.094 0 0.025 0 0.019 0 0.017

rbg150a 152 0.927 373 1 0.219 0 0.041 0 0.028 0 0.031

rbg174a 176 0.929 365 1 0.313 1 0.083 0 0.044 0 0.046

rbg253a 255 0.948 375 0 1.125 0 0.162 0 0.162 11 0.636

rbg323a 325 0.928 754 0 1.047 0 0.265 0 0.204 0 0.235

rbg341a 343 0.937 610 0 3.031 13 1.706 7 0.634 5 0.579

rbg358a 360 0.886 595 0 5.812 1 0.595 0 0.259 0 0.262

rbg378a 380 0.894 559 36 19.047 597 77.582 12 3.342 223 32.326

kro124p.1 101 0.046 32597 0 1.782 2 0.064 2 0.064 2 0.062

kro124p.2 101 0.053 32851 27 3.281 151 5.268 224 8.884 137 5.440

kro124p.3 101 0.092 33779 98 7.469 2000 308.242 2000 294.649 2000 279.382

kro124p.4 101 0.496 37124 0 1.672 16 0.669 66 3.399 12 0.531

p43.1 44 0.101 2720 128 1.765 0 0.002 0 0.003 0 0.003

p43.2 44 0.126 2720 237 4.359 0 0.002 0 0.004 0 0.039

p43.3 44 0.191 2720 134 1.437 1 0.056 1 0.066 1 0.065

p43.4 44 0.164 2820 353 2.797 2 0.041 0 0.011 0 0.009

prob.100 100 0.048 650 4 743.969 125 5.565 48 2.377 37 1.560

prob.42 42 0.116 143 0 0.032 0 0.002 0 0.002 0 0.007

ry48p.1 49 0.091 13095 54 0.609 132 1.289 159 1.386 107 1.073

ry48p.2 49 0.103 13103 0 0.235 15 0.197 13 0.138 10 0.099

ry48p.3 49 0.193 13886 146 2.156 2000 24.712 2000 20.654 1961 18.655

ry48p.4 49 0.588 15340 32 0.313 77 0.664 126 1.049 43 0.409

Average 45 20.855 132 10.616 121 8.372 114 8.420

3.6. COMPUTATIONAL RESULTS 92

Table 3.10: PCMCA computational results comparing solving the MILP model
Set-Based and the B&B algorithm for SOPLIB instances.

Instance Set-Based Model B&B \w αk = 0.1 B&B \w αk =
1
k

B&B \w αk =
1
p

Name Size ρ(R) z∗ Nodes Time [s] Nodes Time [s] Nodes Time [s] Nodes Time [s]

R.200.100.1 200 0.020 29 0 0.875 0 0.040 0 0.031 0 0.030

R.200.100.15 200 0.847 454 177 64.812 1585 61.350 719 20.733 739 21.166

R.200.100.30 200 0.957 529 10 0.875 8 0.181 21 0.348 10 0.200

R.200.100.60 200 0.991 6018 0 0.094 0 0.049 0 0.048 0 0.056

R.200.1000.1 200 0.020 887 0 0.656 0 0.031 0 0.028 0 0.029

R.200.1000.15 200 0.876 5891 87 7.860 50 1.006 71 1.267 29 0.653

R.200.1000.30 200 0.958 7653 0 0.297 7 0.178 13 0.230 6 0.147

R.200.1000.60 200 0.989 6666 0 0.094 0 0.064 0 0.046 0 0.051

R.300.100.1 300 0.013 13 0 2.250 0 0.077 0 0.064 0 0.097

R.300.100.15 300 0.905 575 139 55.734 517 22.353 94 4.739 190 9.592

R.300.100.30 300 0.970 756 0 0.562 3 0.236 1 0.165 1 0.168

R.300.100.60 300 0.994 708 0 0.375 1 0.196 1 0.184 0 0.159

R.300.1000.1 300 0.013 715 0 2.515 0 0.067 0 0.062 0 0.062

R.300.1000.15 300 0.905 6660 73 16.531 13 0.695 52 2.366 9 0.474

R.300.1000.30 300 0.965 8693 0 0.453 14 0.648 10 0.299 3 0.205

R.300.1000.60 300 0.994 7678 0 0.297 2 0.249 2 0.193 2 0.211

R.400.100.1 400 0.010 6 2 9.750 0 0.141 0 0.122 0 0.115

R.400.100.15 400 0.927 699 109 44.922 2000 425.474 2000 268.596 2000 291.932

R.400.100.30 400 0.978 712 0 2.031 2 0.481 3 0.397 5 0.633

R.400.100.60 400 0.996 557 0 0.328 0 0.379 0 0.285 0 0.322

R.400.1000.1 400 0.010 780 0 2.797 0 0.130 0 0.106 0 0.119

R.400.1000.15 400 0.930 7382 91 24.000 702 41.821 199 10.402 168 9.102

R.400.1000.30 400 0.977 9368 38 6.563 27 2.376 51 4.411 31 2.510

R.400.1000.60 400 0.995 7167 0 0.500 0 0.351 0 0.354 0 0.348

R.500.100.1 500 0.008 3 0 11.812 0 0.194 0 0.179 0 0.189

R.500.100.15 500 0.945 860 38 21.156 31 2.873 15 1.442 5 0.896

R.500.100.30 500 0.980 710 15 3.562 7 1.278 11 1.714 13 1.726

R.500.100.60 500 0.996 566 0 0.844 0 0.685 0 0.639 0 0.632

R.500.1000.1 500 0.008 297 0 4.469 0 0.214 0 0.177 0 0.192

R.500.1000.15 500 0.940 8063 0 15.063 5 1.256 6 0.860 6 0.823

R.500.1000.30 500 0.981 9409 0 3.125 9 1.217 17 1.749 6 0.891

R.500.1000.60 500 0.996 6163 0 0.875 0 0.773 0 0.613 0 0.632

R.600.100.1 600 0.007 1 0 733.375 0 0.314 0 0.248 0 0.303

R.600.100.15 600 0.950 568 0 5.312 0 1.302 1 0.973 0 0.983

R.600.100.30 600 0.985 776 0 2.375 5 2.080 3 1.207 2 1.132

R.600.100.60 600 0.997 538 0 0.906 0 0.225 0 0.981 0 1.076

R.600.1000.1 600 0.007 322 0 8.625 0 0.303 0 0.260 0 0.299

R.600.1000.15 600 0.945 9763 0 12.766 4 1.155 5 1.238 1 1.143

R.600.1000.30 600 0.984 9497 0 2.969 3 1.184 7 1.375 2 1.228

R.600.1000.60 600 0.997 6915 0 0.922 0 0.336 0 0.987 0 1.089

R.700.100.1 700 0.006 2 0 314.875 0 0.446 0 0.336 0 0.380

R.700.100.15 700 0.957 675 0 6.875 8 2.587 1 1.544 2 1.734

R.700.100.30 700 0.987 590 0 1.250 0 0.975 0 0.973 0 0.961

R.700.100.60 700 0.997 383 0 1.422 0 0.994 0 0.982 0 0.991

R.700.1000.1 700 0.006 611 0 13.891 0 0.440 0 0.358 0 0.402

R.700.1000.15 700 0.956 2792 0 1.875 0 0.825 0 0.889 0 0.881

R.700.1000.30 700 0.986 2658 0 0.828 0 0.926 0 0.952 0 0.911

R.700.1000.60 700 0.997 1913 0 1.375 0 0.935 0 0.962 0 0.952

Average 16 29.494 104 12.127 69 7.023 67 7.476

3.6. COMPUTATIONAL RESULTS 93

Table 3.11: PCMCA computational results comparing solving the MILP model
Set-Based and the B&B algorithm for COMPILERS instances.

Instance Set-Based Model B&B \w αk = 0.1 B&B \w αk =
1
k

B&B \w αk =
1
p

Name Size ρ(R) z∗ Nodes Time [s] Nodes Time [s] Nodes Time [s] Nodes Time [s]

gsm.153.124 126 0.970 185 3 0.140 0 0.019 0 0.012 0 0.016

gsm.444.350 353 0.990 1542 0 0.094 0 0.246 0 0.204 0 0.198

gsm.462.77 79 0.840 292 0 0.031 0 0.037 1 0.052 0 0.039

jpeg.1483.25 27 0.484 71 4 0.047 0 0.042 0 0.007 0 0.003

jpeg.3184.107 109 0.887 411 0 0.093 0 0.057 1 0.036 4 0.040

jpeg.3195.85 87 0.740 13 5674 897.312 9 2.992 6 2.940 6 3.062

jpeg.3198.93 95 0.752 140 401 9.704 27 0.334 68 0.551 162 2.742

jpeg.3203.135 137 0.897 507 7 0.125 6 0.075 1 0.028 0 0.022

jpeg.3740.15 17 0.257 33 0 0.031 33 0.099 31 0.098 5 0.019

jpeg.4154.36 38 0.633 74 0 0.063 0 0.014 4 0.036 65 0.526

jpeg.4753.54 56 0.769 146 6 0.109 0 0.010 0 0.011 0 0.004

susan.248.197 199 0.939 588 0 0.125 1 0.063 0 0.048 0 0.053

susan.260.158 160 0.916 472 0 0.141 4 0.142 8 0.178 7 0.137

susan.343.182 184 0.936 468 19 0.359 12 0.355 8 0.203 13 0.365

typeset.10192.123 125 0.744 241 0 0.500 42 0.909 103 1.371 96 1.159

typeset.10835.26 28 0.349 60 0 0.031 0 0.002 0 0.001 0 0.001

typeset.12395.43 45 0.518 125 0 0.078 0 0.004 0 0.003 0 0.003

typeset.15087.23 25 0.557 89 0 0.047 4 0.013 3 0.022 2 0.012

typeset.15577.36 38 0.555 93 0 0.015 0 0.002 0 0.002 0 0.017

typeset.16000.68 70 0.658 67 144 7.172 424 5.393 3 1.123 9 0.151

typeset.1723.25 27 0.245 54 21 0.110 127 0.888 117 0.558 106 0.528

typeset.19972.246 248 0.993 979 0 0.062 0 0.093 0 0.078 0 0.083

typeset.4391.240 242 0.981 837 0 0.094 2 0.105 1 0.083 1 0.087

typeset.4597.45 47 0.493 133 0 0.031 0 0.009 0 0.051 0 0.004

typeset.4724.433 435 0.995 1819 0 0.172 0 0.038 0 0.372 0 0.405

typeset.5797.33 35 0.748 93 0 0.032 0 0.037 0 0.003 0 0.009

typeset.5881.246 248 0.986 979 0 0.343 14 0.255 5 0.133 19 0.295

Average 233 33.965 26 0.453 13 0.304 18 0.370

3.7. CONCLUSIONS 94

3.7 Conclusions

In this chapter we introduced a new variation on the Minimum-Cost Arborescence

problem named the Precedence-Constrained Minimu-Cost Arborescence problem, and

presented a proof that the problem belongs to theNP-hard complexity class through

a reduction to the 3-SAT problem.

We proposed several MILP models for the PCMCA problem, that are either

exponential or polynomial in size. The computational results has shown that the

Set-Based model generally outperforms the rest of the models proposed. However, in

certain cases the U t model is more effective than the Set-Based model on instances

with dense precedence graphs. The computational results has shown that the two

models U t and Set-Based are able to optimally solve all 116 benchmark instances,

however the model Set-Based is 57.1% faster on average.

A Branch-and-Bound algorithm for the PCMCA problem is proposed that is

based on a Lagrangian relaxation of the Set-Based model. A set of pruning tech-

niques are proposed where some of them takes advantage of problem specific struc-

tures in order to reduced the size of the explored solution space. The computational

results has shown that the proposed B&B algorithm is 94% faster on average at

solving the instances, compared to solving the original model with a MILP solver.

Chapter 4

The Precedence-Constrained

Minimum-Cost Arborescence

Problem with Waiting Times

The aim of this chapter is to introduce the Precedence-Constrained Minimum-Cost

Arborescence Problem with Waiting-Times (PCMCA-WT), that is an extension to

the PCMCA problem introduced in chapter 3. In section 4.1 we define the PCMCA-

WT problem. In section 4.2 we present a proof of complexity to the PCMCA-WT

problem. In section 4.3 we propose a formulation to model waiting-times in an

arborescence. In section 4.4 we propose several MILP models for the PCMCA-WT,

while in section 4.5 we propose two constraint programming (CP) models for the

PCMCA-WT. Finally, section 4.6 discusses computational results and compares the

different models presented, while conclusions are drawn in section 4.7. The work

presented in this chapter has appeared in [12, 22].

95

4.1. PROBLEM DEFINITION 96

4.1 Problem Definition

The Precedence-Constrained Minimum-Cost Arborescence problem with Waiting-

Times [12] can be described by extending the definition of the PCMCA problem

(see section 3.1) as follows. Assume there is a flow which starts at the root vertex

r at time 0, and traverses each path of the arborescence. The cost cij of an arc

(i, j) ∈ A represents the time required to traverse that arc. Let dj be the time at

which the flow enters vertex j ∈ V . For any (s, t) ∈ R, dt ≥ ds, which means that

the flow must enter vertex t at the same time step or after entering vertex s, but can

stop at any vertex and wait. Let wj be the waiting time before the flow enters vertex

j required to respect the aforementioned constraint. The objective of the problem

is to find an arborescence T that has a minimum total cost plus total waiting time,

where the flow never enters t earlier than entering s for all (s, t) ∈ R. Note that

any feasible solution does not contain a unique path covering s and t, that visits t

before visiting s, otherwise the flow enters t before entering s, therefore any feasible

PCMCA-WT solution is also a feasible PCMCA solution.

r

1 2

3

1 3

1

1

4

2

32

r

0

11

22

31

1 1

1

R

r

0

1 1

22

3 2w3 = 1

1 1

1

R

Figure 4.1: Comparing an instance solved as a PCMCA, and solved as a PCMCA-WT.

Figure 4.1 presents an example that shows the difference between the PCMCA

problem and the PCMCA-WT problem. The graph on the left shows the instance

graph with the precedence relationship (2, 3) ∈ R represented as a dashed arrow.

4.2. COMPUTATIONAL COMPLEXITY 97

The graphs in the middle and on the left respectively show an optimal PCMCA

solution and an optimal PCMCA-WT solution, where next to each vertex we have

its corresponding dt value. The two solutions depicted are valid solutions for the

PCMCA problem, since they both satisfy the precedence constraints, that is t never

precede s on the same directed path for all (s, t) ∈ R. The solution in the middle

shows the optimal PCMCA solution with a total cost of 3 (sum of all the arcs). We

can see that the solution in the middle is not a feasible PCMCA-WT solution since

(2, 3) ∈ R but d3 < d2. The solution on the right shows an optimal PCMCA-WT

solution with a cost of 4 (sum of all the arcs plus waiting time at each vertex). The

solution results in a waiting time of 1 at vertex 3, since the time from r to 2 is 2,

and the time from r to 3 is 1.

4.2 Computational Complexity

In this section we present a proof that the PCMCA-WT problem is NP-hard by a

reduction from the Rectilinear Steiner Arborescence problem (RSA) [78].

The RSA problem is an NP-hard problem [78] formally defined as follows. Let

P = {p1, p2, . . . , pn} be a set of points in the first quadrant of the Cartesian plane,

where pi = (xi, yi) with xi, yi ≥ 0, and p1 = (0, 0). A complete grid can be created,

where the points in P are on the intersections of vertical and horizontal lines. A set

S of Steiner vertices can be added, corresponding to the O(|P |2) intersection points

not overlapping with the points in P . The arcs of the problem are the right-directed

horizontal segments and the up-directed vertical segments between two adjacent

points of the grid P ∪ S. The cost associated with each arc (pi, pj) is defined as

|xi − xj|+ |yi − yj|.

4.2. COMPUTATIONAL COMPLEXITY 98

p1 p2

p3

p4p5

s1

s2

s3

s4 s5

s6

s7

s8

s9

s10

Figure 4.2: Example of an RSA instance with 5 points and 10 Steiner vertices.

Figure 4.2 shows an example of an RSA instance with 5 points, and the relative

Steiner vertices, while the dashed lines represent the arcs of the instance. Given

a positive value k, the decision version of the RSA problem consists in deciding

whether there is an arborescence with total length not greater than k such that

the arborescence is rooted at p1 and it contains a unique path from p1 to pi for

all i ∈ {1, 2, . . . , n}. Note that the length of each path from p1 to pi is xi + yi by

construction.

Theorem 4.1. The PCMCA-WT is NP-hard

Proof. By a reduction from the decision version of the RSA problem: we construct

a graph G = (V,A) and a set R of precedence constraints such that there exist a

PCMCA-WT solution of cost at most k if and only if a RSA of cost at most k exists.

Given an instance of the RSA problem with a set of points P and a set of Steiner

points S, consider the PCMCA-WT instance defined as follows:

V = P ∪ S

A′ = {(i, j) : j is immediately on the top of i in the grid, or j is immediately

on the right of i in the grid}

4.2. COMPUTATIONAL COMPLEXITY 99

p1 p2

p3

p4p5

s1

s2

s3

s4 s5

s6

s7

s8

s9

s10

Figure 4.3: The PCMCA-WT instance associated with the RSA instance depicted in
Figure 4.2. A RSA solution of minimum cost is given by the blue arcs. The green arcs
have cost 0 and, together with the blue ones, form an optimal PCMCA-WT solution.

A = A′ ∪ {(PFAR, si), si ∈ S}, with PFAR ∈ argmax
pi∈P

{xi + yi}

R = {(p, PFAR) : p ∈ P \ {PFAR}}

cij = (xj − xi) + (yj − yi) for (i, j) ∈ A′

cPFAR,si = 0 for si ∈ S

r = p1

If the instance of RSA has a solution of cost k, then a solution of cost k for

the instance of PCMCA-WT can be obtained. Starting from the solution of the

RSA problem, it is possible to complete the solution of the associated PCMCA-WT

problem by adding 0-cost arcs (green arcs) to connect the node PFAR to the Steiner

nodes not used in the RSA solution. The solution of an RSA instance and a solution

of the associated PCMCA-WT problem are depicted in Figure 4.3.

Conversely, assume that there is a feasible solution of PCMCA-WT with cost at

4.3. FLOW-PRECEDENCE CONSTRAINTS 100

most k. Without loss of generality suppose that such a solution is optimal. Note

that a path starting at PFAR and passing through a vertex in P cannot exist due

to the precedence constraints. Besides, every leaf of the arborescence that is in

S must have PFAR as parent; otherwise, making PFAR its parent would reduce the

cost. Therefore, removing all the leaves of the PCMCA-WT arborescence connected

through PFAR results in a tree that uses only arcs in A′ and whose leaves are all in

P . It follows that the resulting tree is a feasible solution for the RSA.

4.3 Flow-Precedence Constraints

Flow-Precedence Constraints are a set of constraints which enforce that for any

precedence relationship (s, t) ∈ R the flow must never enter vertex t before entering

vertex s. Such a constraint can be enforced by either enforcing that if both s and t

belong to the same directed path, then s must precede t on that path. However, if s

and t belong to two disjoint paths, then a waiting time must be enforced on t, that

is equal to the the difference between the time at which the flow reaches t and the

time at which the flow enters s. Let dj be the time at which the flow enters vertex

j ∈ V , and let wj be the waiting time before the flow enters vertex j. Let xij be

a variable associated with every arc (i, j) ∈ A such that xij = 1 if (i, j) ∈ T and 0

otherwise. The aforementioned constraints can be modeled as the following sets of

inequalities.

dr = 0 (4.1)

wr = 0 (4.2)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (4.3)

wj ≥ dj − di −M + (M − cij)xij ∀(i, j) ∈ A (4.4)

4.3. FLOW-PRECEDENCE CONSTRAINTS 101

dt ≥ ds ∀(s, t) ∈ R (4.5)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.6)

di, wi ≥ 0 ∀i ∈ V (4.7)

Constraint (4.1) sets the time at which the flow enters the root r to 0. Constraint

(4.2) set the waiting time at the root vertex r to 0. Constraints (4.3) impose that

when arc (i, j) ∈ A is selected to be part of the arborescence, then the time at which

the flow enters vertex j is greater than or equal to the time at which the flow enters

vertex i plus cij. Constraints (4.4) enforce that the waiting time at each vertex j

is greater than or equal to the difference between the time at which the flow enters

vertex j and the time at which the flow enters vertex i plus cij, where i is the parent

of j in the arborescence. Constraints (4.5) enforce that the time at which the flow

enters vertex t must be greater than or equal to the time at which the flow enters

vertex s, for all (s, t) ∈ R. Finally, constraints (4.6) and (4.7) define the domain of

the variables.

The set on inequalities (4.3) and (4.4) uses a Big-M [14] in order to turn the

constraint off when vertex i is not the parent of vertex j in the current solution (i.e.

xij = 0). The value of M is an upper bound on the value of the optimal solution,

which is a sufficiently large integer. However, having the value of M as close as

possible to the value of the integer solution would affect how hard or easy it is to

solve the model.

One way to approximate the value of M is to compute a simple directed path

rooted at r which covers all the vertices of V , and does not contain a (t, s)-path for

all (s, t) ∈ R. Such a path can be efficiently constructed using a Nearest Neighbor

algorithm as described in Algorithm 6.

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 102

Algorithm 6 Nearest Neighbor Algorithm for Computing Big-M

1: procedure ComputeBig-M(G, r)

2: P = [r]

3: M = 0

4: while |P | < |V | do
5: Let i be the last element in P

6: Let N be an empty set of vertices.

7: for j ∈ V do

8: if NotViolating(P, j) then

9: N = N ∪ {j}
10: end if

11: end for

12: Sort N according to the distance of each vertex from i

13: Let j be the first element in N

14: P = P ∪ [j]

15: M = M + cij
16: end while

17: end procedure

The second line of the algorithm initializes a list that contains only the root

vertex r, while the third line initializes the value of M to zero. The while loop on

line 4 stops executing when the path P contains all the vertices of the graph G.

Lines 6-11 create a list of vertices ordered by the their distance from the last vertex

in the path P (i.e. vertex i). A vertex j is added to N if and only if adding vertex

j to P does not create a violating path. The function NotViolating returns true if

vertex s ∈ P for all (s, j) ∈ R. Finally, lines 12-14 append the nearest neighbor of

vertex i to P and increments the value of M by cij.

4.4 Mixed Integer Linear Programming Models

In this section we introduce several MILP models for the PCMCA-WT problem that

extend the models proposed for the PCMCA problem by adding the Flow-Precedence

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 103

Constraints to them.

4.4.1 Multicommodity Flow Model

In this section we describe a MILP model for the PCMCA-WT that extends the

Multicommodity flow model for the PCMCA problem previously described in section

3.4.1.

minimize
∑︂

(i,j)∈A

cijxij +
∑︂
j∈V

wj (4.8)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (4.9)

∑︂
(i,j)∈A:
(k,j)/∈R

ykij −
∑︂

(j,i)∈A:
(k,j)/∈R

ykji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = r

−1 if i = k

0 otherwise

∀k ∈ V \{r},
∀i ∈ V : (k, i) /∈ R

(4.10)

dr = 0 (4.11)

wr = 0 (4.12)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (4.13)

wj ≥ dj − di −M + (M − cij)xij ∀(i, j) ∈ A (4.14)

dt ≥ ds ∀(s, t) ∈ R (4.15)

ykij ≤ xij ∀k ∈ V \{r}, (i, j) ∈ A (4.16)

ykij ∈ {0, 1} ∀k ∈ V \{r}, (i, j) ∈ A (4.17)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.18)

di, wi ≥ 0 ∀i ∈ V ‘ (4.19)

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 104

Constraints (4.10) impose the first property of an arborescence namely that

every vertex v ∈ V \{r} must have a single parent. Constraints (4.10) are the

Multicommodity flow constraints: every vertex k ∈ V must be reachable from the

root, and any path from r to k must not pass through the successors of k in the set

of precedence relationships R (otherwise this would violate a precedence relation).

Constraint (4.11) sets the time at which the flow enters the root to 0. Constraints

(4.12) set the waiting time at the root r to 0. Constraints (4.13) impose that when

arc (i, j) ∈ A is selected to be part of the arborescence, then the time at which the

flow enters vertex j is greater than or equal to the time at which the flow enters

vertex i plus cij. Constraints (4.14) enforce that the waiting time at each vertex j

is greater than or equal to the difference between the time at which the flow enters

vertex j and the time at which the flow enters vertex i plus cij, where i is the parent

of j in the arborescence. Constraints (4.15) enforce that the time at which the flow

enters vertex t must be greater than or equal to the time at which the flow enters

vertex s, for all (s, t) ∈ R. Finally, constraints (4.16)-(4.19) define the domain of the

variables. Constraints (4.10) are dynamically added to the model using the same

separation procedure described by algorithm 2 in section 3.4.1.

4.4.2 Path-Based Models

In this section we describe two MILP models for the PCMCA-WT that are polyno-

mial in size, but use a smaller number of variables and constraints compared to the

Multicommodity flow model described in the previous section, that suffers from com-

putational limitations because of the large number of variables and constraints (see

section 3.6.1.2). The models proposed in this section are based on the U t model (see

section 3.4.2.2) proposed for the PCMCA, but replacing the connectivity constraints

(3.17) with a modified version of the subtour elimination constraints for the Travel-

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 105

ing Salesman Problem proposed by Miller, Tucker, and Zemlin in [67]. The rest of

this section is organized as follows. Section 4.4.2.1 introduces a complete model for

the PCMCA-WT that extends the U t model proposed for the PCMCA, but uses a

polynomial set of constraints to eliminate subtours and ensure the connectivity of

the solution. Section 4.4.2.2 introduces a reduced model for the PCMCA-WT that

uses a smaller number of variables and constraints compared to the complete model,

by exploiting a special property of the PCMCA-WT.

4.4.2.1 Complete Model

Let xij be a variable associated with every arc (i, j) ∈ A such that xij = 1 if

(i, j) ∈ T , and 0 otherwise. Let yi be a variable associated with every vertex i ∈ V

that indicates the order in which vertex i is visited on the path connecting vertex i

to the root r. Let ut
j be a variable associated with every vertex j ∈ V , and vertex

t ∈ V where t is part of a precedence relationship (i.e. ∃(s, t) ∈ R). Let dj be the

time at which the flow enters vertex j ∈ V , and let wj be the waiting time before

the flow enters vertex j. The PCMCA-WT can be modeled as the following MILP

model.

minimize
∑︂

(i,j)∈A

cijxij +
∑︂
i∈V

wi (4.20)

subject to:
∑︂

(r,j)∈A

xrj ≥ 1 (4.21)

∑︂
(i,j)∈A

xij = 1 ∀j ∈ V \{r} (4.22)

yi − yj + 1 ≤ n(1− xij) ∀(i, j) ∈ A : j ̸= r (4.23)

ut
s = 0 ∀(s, t) ∈ R (4.24)

ut
t = 1 ∀t ∈ V : ∃(s, t) ∈ R (4.25)

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 106

ut
j − ut

i − xij ≥ −1 ∀t ∈ V : ∃(s, t) ∈ R, (i, j) ∈ A (4.26)

dr = 0 (4.27)

wr = 0 (4.28)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (4.29)

wj ≥ dj − di −M + (M − cij)xij ∀(i, j) ∈ A (4.30)

dt ≥ ds ∀(s, t) ∈ R (4.31)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.32)

yi ≥ 0 ∀i ∈ V (4.33)

ut
j ≥ 0 ∀t ∈ V : ∃(s, t) ∈ R, j ∈ V (4.34)

di, wi ∈ R+
≤M ∀i ∈ V (4.35)

Constraint (4.21) enforces that there must be at least one arc leaving the root

that enters a vertex other than the root. The set of constraints (4.22) enforces that

every vertex other than the root must have exactly one incoming arc. Constraints

(4.23) are the subtour elimination constraints, which enforce that any feasible solu-

tion must not contain any cycles. The set of constraints (4.21)-(4.23) work together

in order to guarantee that any feasible solution is an arborescence rooted at vertex

r. Constraints (4.24) and (4.25) fix the values of ut
s and ut

t to 0 and 1 respectively,

for all (s, t) ∈ R, and t ∈ V : ∃(s, t) ∈ R. Constraints (4.26) impose that ut
j ≥ ut

i if

xij = 1. Constraint (4.27) sets the distance from the root r to itself to be equal to 0.

Constraint (4.28) sets the waiting time at the root r to be equal to 0. Constraints

(4.29) impose that when arc (i, j) ∈ A is selected to be part of the arborescence,

then the time at which the flow enters vertex j is greater than or equal to the time

at which the flow enters vertex i plus cij. Constraints (4.30) enforce that the waiting

time at vertex j is greater than or equal to the difference between the time at which

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 107

the flow enters vertex j and the time at which the flow enters vertex i plus cij.

Constraints (4.31) enforce that the time at which the flow enters vertex t is greater

than or equal to the time at which the flow enters vertex s for all (s, t) ∈ R. Finally,

constraints (4.32)-(4.35) define the domain of the variables.

4.4.2.2 Reduced Model

Removing the set of constraints (4.24)-(4.26) from the model described in section

4.4.2.1, enforces the precedence relationships between s and t with (s, t) ∈ R, except

for a special case. A directed path which visits t before visiting s, implies that

dt ≥ ds, which violates the set of constraints (4.31). However, the set of constraints

(4.31) might fail to enforce a precedence relationship between s and t, if there exists

a zero-cost (t, s)-path in G. Therefore, we only need to define the set of constraints

(4.24)-(4.26) for all t, where there exists a zero-cost (t, s)-path in G.

A zero-cost (t, s)-path in G for some (s, t) ∈ R can be found using a Depth-

First-Search (DFS) algorithm [83] with backtracking [85] as described in Algorithm

7, and it is explained as follows. Line 2 creates an empty set K which will eventually

contain every vertex t ∈ V such that t is part of a precedence relationship, and s

can be reached from t through a zero-cost path for all (s, t) ∈ R. Line 3 creates an

array of size |V | and marks every vertex v ∈ V as not visisted. The purpose of this

array is to avoid visiting a vertex more than once on the same path if the graph

G contain cycles. Lines 4-7 calls the Check Path procedure for all (s, t) ∈ R and

initializes the current cost of the path to zero. Line 8 returns the set K. Line 12 sets

the state of the current vertex u as visited. Lines 13-17 add vertex t to the set K if

the current vertex u is the target vertex s, and the cost of the current path is equal

to zero. Lines 18-22 call the Check Path procedure for the neighboring vertices of

the current vertex u that are not visited, and if the cost of the current path is equal

to zero. The condition at line 19 avoids visiting a neighboring vertex whenever the

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 108

Algorithm 7 An Algorithm that Finds all t that are Part of a Zero-Cost (t, s)-path

1: procedure Find t(R)

2: K = ϕ

3: visited[v] = false ∀v ∈ V

4: for all (s, t) ∈ R do

5: cost = 0

6: Check Path(G, t, t, s, cost)

7: end for

8: return K

9: end procedure

10:

11: procedure Check Path(G, u, t, s, cost)

12: visited[u] = true

13: if u = s AND cost = 0 then

14: visited[u] = false

15: K = K ∪ t

16: return

17: end if

18: for all (u, v) ∈ A do

19: if cost = 0 AND visited[v] = false then

20: Check Path(G, v, t, s, cost+ cuv)

21: end if

22: end for

23: visited[t] = false

24: end procedure

cost of the current path is greater than zero, which means that it is impossible for t

to be part of a zero-cost path that reaches s as the current cost of the path is greater

than zero. Algorithm 7 has a computational complexity of O(|V |!). However, the

instances for the problem analyzed normally contain a very small number of zero

weight arcs due to their nature, and the procedure tend to terminate in the first few

iterations for the majority of t ∈ V . This is true for all the instances considered in

the experiments reported in section 4.6.

Compared to the model introduced in section 4.4.2.1 the Reduced model uses

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 109

a smaller number of variables and constraints, thus reducing its memory footprint.

This model is much easier to solve in theory, but has the weakness of potentially pro-

viding a weaker linear relaxation, on top of having the drawback of a preprocessing

phase.

Let Pij ⊂ A be a simple directed (i, j)-path, and let c(Pij) =
∑︁

(i,j)∈P cij be

the cost of that path. Let Vs = {t ∈ V \{r} | ∃(s, t) ∈ R, c(Pts) = 0}. Applying

the aforementioned reduction would results in the following MILP model for the

PCMCA-WT.

minimize
∑︂

(i,j)∈A

cijxij +
∑︂
i∈V

wi (4.36)

subject to:
∑︂

(r,j)∈A

xrj ≥ 1 (4.37)

∑︂
(i,j)∈A

xij = 1 ∀j ∈ V \{r} (4.38)

yi − yj + 1 ≤ n(1− xij) ∀(i, j) ∈ A : j ̸= r (4.39)

ut
s = 0 ∀(s, t) ∈ R : t ∈ Vs (4.40)

ut
t = 1 ∀t ∈ Vs (4.41)

ut
j − ut

i − xij ≥ −1 ∀(s, t) ∈ R : t ∈ Vs, (i, j) ∈ A (4.42)

dr = 0 (4.43)

wr = 0 (4.44)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (4.45)

wj ≥ dj − di −M + (M − cij)xij ∀(i, j) ∈ A (4.46)

dt ≥ ds ∀(s, t) ∈ R (4.47)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.48)

yi ≥ 0 ∀i ∈ V (4.49)

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 110

ut
j ≥ 0 ∀t ∈ Vs, j ∈ V (4.50)

di, wi ∈ R+
≤M ∀i ∈ V (4.51)

4.4.3 Distance-Accumulation Model

In this section we describe a MILP model for the PCMCA-WT that extends the Set-

Based model for the PCMCA problem previously described in section 3.4.4. The

model is called distance-accumulation model as it computes the distance of each

vertex from the root by accumulating the value over the path.

minimize
∑︂

(i,j)∈A

cijxij +
∑︂
j∈V

wj (4.52)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (4.53)

∑︂
(i,k)∈δ−(S)

xik ≥ 1 ∀j ∈ V \{r},∀S ⊆ Vj\{r} : j ∈ S (4.54)

dr = 0 (4.55)

wr = 0 (4.56)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (4.57)

wj ≥ dj − di −M + (M − cij)xij ∀(i, j) ∈ A (4.58)

dt ≥ ds ∀(s, t) ∈ R (4.59)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.60)

di, wi ≥ 0 ∀i ∈ V (4.61)

Constraints (4.53) impose the first property of an arborescence, namely that

every vertex v ∈ V \{r} must have a single parent. Constraints (4.54) model the

connectivity constraint, that is every vertex v ∈ V \{r} must be reachable from

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 111

the root, and they also impose the precedence constraints where the resulting ar-

borescence should not include a (t, s)-path for all (s, t) ∈ R. This will lead to an

arborescence such that the flow never enters t before entering s, if s and t belong

to the same directed path. Constraint (4.55) sets the distance from the root r to

itself to be equal to 0. Constraint (4.56) set the waiting time at the root vertex

to 0. Constraints (4.57) impose that when arc (i, j) ∈ A is selected to be part of

the arborescence, then the time at which the flow enters vertex j is greater than

or equal to the time at which the flow enters vertex i plus cij. Constraints (4.58)

enforce that the waiting time at vertex j is greater than or equal to the difference

between the time at which the flow enters vertex j and the time at which the flow

enters vertex i plus cij. Constraints (4.59) enforce that the time at which the flow

enters vertex t is greater than or equal to the time at which the flow enters vertex

s for all (s, t) ∈ R. Finally, constraints (4.60) and (4.61) define the domain of the

variables. Constraints (4.54) are dynamically added to the model using the same

separation procedure described by algorithm 4 in section 3.4.4.

4.4.4 Adjusted Arc-Cost Model

In this section we propose a MILP model that originates from removing inequalities

(4.58) from the model introduced in section 4.4.3 and representing the value of wj

by the nonlinear term

wj =
∑︂

i:(i,j)∈A

(dj − di − cij)xij (4.62)

A different MILP model is then derived as follows.

Proposition 1. The waiting time at vertex j ∈ V can be expressed by the nonlinear

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 112

equality (4.62).

Proof. Inequalities (4.58) can be rewritten as wj ≥ dj−di−cij−M(1−xij)∀(i, j) ∈

A. If xij = 0 then wj has to be greater than or equal to a negative value, however

the value of wj should be greater than or equal to zero by definition. Accordingly,

the inequality would be active and affect the solution only when xij = 1. Therefore,

we can represent the waiting time at vertex j using equality (4.62).

Based on Proposition 1, we can replace the second term in the objective function

(4.52) as follows:

∑︂
j∈V

wj =
∑︂
j∈V

∑︂
i:(i,j)∈A

(dj − di − cij)xij =
∑︂

(i,j)∈A

(dj − di − cij)xij

This means that inequalities (4.58) are no longer necessary as the objective

function no longer depends on w, which results in the following nonlinear model.

minimize
∑︂

(i,j)∈A

cijxij +
∑︂

(i,j)∈A

(dj − di − cij)xij (4.63)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (4.64)

∑︂
(i,k)∈A:

i∈Vj\S, k∈S

xik ≥ 1 ∀j ∈ V \ {r},∀S ⊆ Vj\{r} : j ∈ S (4.65)

dr = 0 (4.66)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (4.67)

dt ≥ ds ∀(s, t) ∈ R (4.68)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.69)

di ≥ 0 ∀i ∈ V (4.70)

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 113

Proposition 2. Using a new set of |A| variables z and 2|A| new constraints, the

objective function (4.63) can be linearized as follows:

minimize
∑︂

j∈V \{r}

dj −
∑︂

(i,j)∈A

zij

Proof. The objective function (4.63) can be rewritten as follows:

∑︂
(i,j)∈A

cijxij +
∑︂

(i,j)∈A

(dj − di − cij)xij =

∑︂
(i,j)∈A

djxij −
∑︂

(i,j)∈A

dixij =
∑︂

j∈V \{r}

dj −
∑︂

(i,j)∈A

dixij

(4.71)

We use the fact that
∑︁

(i,j)∈A djxij =
∑︁

j∈V \{r} dj as each j ∈ V \{r} has exactly one

xij assigned to 1 in an arborescence, as imposed by (4.53).

Since the term dixij is summed over each arc (i, j) ∈ A, then we need at least 2|A|

constraints to linearize the product. We can substitute each term dixij by a new

continuous variable zij and the following two inequalities:

zij ≤ Mxij ∀(i, j) ∈ A (4.72)

zij ≤ di ∀(i, j) ∈ A (4.73)

Inequalities (4.72) ensure that if xij = 0 then zij = 0. On the other hand, if xij = 1,

then inequalities (4.72) ensure that zij is less than the upper bound on the optimal

solution which is further tightened by inequalities (4.73). This results in a total of

2|A| new constraints and (4.63) can now be expressed as
∑︁

j∈V \{r} dj −
∑︁

(i,j)∈A zij

by elaborating on (4.71).

Based on Proposition 2, we can derive the following MILP model.

4.4. MIXED INTEGER LINEAR PROGRAMMING MODELS 114

minimize
∑︂

j∈V \{r}

dj −
∑︂

(i,j)∈A

zij (4.74)

subject to
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (4.75)

∑︂
(i,k)∈A:

i∈Vj\S, k∈S

xik ≥ 1 ∀j ∈ V \ {r},∀S ⊆ Vj\{r} : j ∈ S (4.76)

dr = 0 (4.77)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (4.78)

dt ≥ ds ∀(s, t) ∈ R (4.79)

zij ≤ di ∀(i, j) ∈ A (4.80)

zij ≤ Mxij ∀(i, j) ∈ A (4.81)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.82)

zij ≥ 0 ∀(i, j) ∈ A (4.83)

di ≥ 0 ∀i ∈ V (4.84)

Proposition 3. The following inequalities are valid for the Adjusted Arc-Cost

model:

∑︂
i∈V :(i,j)∈A

zij ≤ dj −
∑︂

(i,j)∈A

cijxij ∀j ∈ V \{r} (4.85)

Proof. Since for each vertex j ∈ V \{r} there is only one active arc (i, j) ∈ A entering

j (from inequalities (4.75)), from inequalities (4.78) we can derive the following new

4.5. CONSTRAINT PROGRAMMING MODELS 115

quadratic inequalities:

dj ≥
∑︂

i∈V :(i,j)∈A

dixij +
∑︂

(i,j)∈A

cijxij ∀j ∈ V \{r} (4.86)

From inequalities (4.80) and (4.81) we have zij ≤ dixij (see Proposition 2), then

inequality (4.85) can be derived from inequality (4.86) as follows.

dj ≥
∑︂

i∈V :(i,j)∈A

dixij +
∑︂

(i,j)∈A

cijxij =⇒
∑︂

i∈V :(i,j)∈A

dixij ≤ dj −
∑︂

(i,j)∈A

cijxij

=⇒
∑︂

i∈V :(i,j)∈A

zij ≤ dj −
∑︂

(i,j)∈A

cijxij

=⇒ dj ≥
∑︂

i∈V :(i,j)∈A

zij +
∑︂

(i,j)∈A

cijxij

It should be noted that inequalities (4.85) are not an integral part of the Adjusted

Arc-Cost model, but are added to have a stronger linear relaxation. If the inequal-

ities are not included in the model, then the value of the zijs can be substantially

larger than the value of the djs in order to minimize the value of the objective func-

tion. This could result in feasible solutions of the linear relaxation with a negative

objective function. This would make the MILP much harder to solve. Therefore,

inequalities (4.85) are considered for all the experiments reported section 4.6.

4.5 Constraint Programming Models

In this section we introduce two CP models for the PCMCA-WT that are based

on the same intuitions behind the Complete and Reduced Path-Based MILP models

described previously in sections 4.4.2.1 and 4.4.2.2. The two Path-Based MILP

models are reformulated as CP models for the following reasons. Unlike MILP

4.5. CONSTRAINT PROGRAMMING MODELS 116

solvers, the CP solver used in this work does not allow us to dynamically add

constraints to the model once they are violated. This means that using a model with

an exponential set of constraints requires a substantial amount of preprocessing time.

Furthermore, the Path-Based MILP models perform substantially better on the

benchmark instances compared to the the Multicommodity flow model introduced

in section 4.4.1 (see section 4.6).

The two Path-Based MILP models use a big-M formulation in order to describe

the nonlinear relation between the variable xij and the set of variables {yi, ut
j, dj, wj}

in order to turn the constraints off whenever the value of xij is equal to zero. Such

formulations add an extra layer of complexity, which is finding a feasible value for M

that is large enough to guarantee the correctness of the optimal solution. Moreover,

M is part of the coefficient matrix, and mixing very large coefficients (i.e. M) with

much smaller coefficients can create numerical instability, leading the solver to spend

more time computing linear program pivots.

A feature that is available in some MILP solvers and CP solvers, is that they

support logical constraints, that allows us to devise a model for the PCMCA-WT

which does not use a big-M formulation. However, unlike MILP solvers which

uses a combination of relaxations (strengthened by cutting-planes) and branch-and-

bound, a CP solver makes decisions on variables and values, and after each decision,

performs a set of logical inferences to reduce the available options for the remaining

variables domains. For many problem classes, logical inferencing is less powerful

than solving a continuous relaxation of the model, since the solution of a continuous

relaxation can guide the search and provide dual bounds. However, the propagation

schemes can be effective when the relaxation is extremely time consuming to solve

or when the combinatorial structure of the model gets lost in the relaxation [46].

Preliminary results have clearly shown that the CP solver takes advantage of logical

constraints, while this does not happen for the MILP solver, especially on large

4.5. CONSTRAINT PROGRAMMING MODELS 117

sized instances where the value of big-M is considerably larger than the value of the

optimal solution.

4.5.1 Complete Model

Using a set of logical constraints, and implication constraints which force the implied

constraint if the value of the variable is true, the Complete Path-Based MILP model

introduced in section 4.4.2.1 for the PCMCA-WT can be modeled as the following

CP model.

minimize
∑︂

(i,j)∈A

cijxij +
∑︂
i∈V

wi (4.87)

subject to:
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (4.88)

xij =⇒ yj = yi + 1 ∀(i, j) ∈ A : j ̸= r (4.89)

ut
s = 0 ∀(s, t) ∈ R (4.90)

ut
t = 1 ∀t ∈ V : ∃(s, t) ∈ R (4.91)

xij =⇒ ut
j ≥ ut

i ∀t ∈ V : ∃(s, t) ∈ R, (i, j) ∈ A (4.92)

dr = 0 (4.93)

wr = 0 (4.94)

xij =⇒ dj = di + wj + cij ∀(i, j) ∈ A (4.95)

dt ≥ ds ∀(s, t) ∈ R (4.96)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.97)

yi ≥ 0 ∀i ∈ V (4.98)

ut
j ≥ 0 ∀t ∈ V : ∃(s, t) ∈ R, j ∈ V (4.99)

di, wi ∈ Z+
≤M ∀i ∈ V (4.100)

4.5. CONSTRAINT PROGRAMMING MODELS 118

Constraints (4.88) enforce that every vertex other than the root must have ex-

actly one arc entering it. Constraints (4.88) plus (4.89) are the subtour elimination

constraints that model the nonlinear relationship yj = (yi + 1)xij, by setting the

value of yj to yi + 1 iff xij = 1 (true). Constraints (4.92) are the precedence en-

forcing constraints, that set the value of ut
j to be greater than or equal to ut

j iff

xij = 1, and model the nonlinear relationship ut
j ≥ ut

ixij. Constraints (4.95) set

the value of dj, to di + wj + cij iff xij = 1. The set of constraints (4.95) model the

nonlinear relationship (dj − di − wj − cij)xij = 0. Note that by using a channeling

constraints [46] we are able to combine the two constraints (4.29) and (4.30) into a

single equality which computes the value of dj. Constraints (4.96) enforce that the

flow enters vertex t at a time step which is greater than or equal to the time step at

which the flow enters vertex s for all (s, t) ∈ R. Finally, constraints (4.97)-(4.100)

define the domain of the variables.

Note that variables di and wi are defined as integers (compared to the MILP

model), since a CP solver only accepts integer variables and coefficients. This means

that cij for all (i, j) ∈ A should be integer or to be discretized before solving the

model. The value of cij can be discretized by multiplying every cij by a constant k,

and then considering only the integer part of the result. In order to compute the

correct solution cost, the objective function value should be divided by k. A higher

k value leads to higher numerical precision, whereas a low k value leads to a lower

numerical precision and thus faster execution. Therefore, a k value which balances

the two factors should be considered.

The difference between the Complete Path-Based MILP model introduced in

Section 4.4.2.1 and the CP model introduced here, is the set of constraints (4.89),

(4.92), and (4.95) that eliminate the use of big-M , and combine the two constraints

(4.29) and (4.30) into one single equality constraint.

4.5. CONSTRAINT PROGRAMMING MODELS 119

4.5.2 Reduced Model

Using the same reasoning explained in section 4.4.2.2, the size of the set of ut
j

variables and the size of the set of constraints (4.92) can be reduced, resulting in

the following Reduced CP model.

minimize
∑︂

(i,j)∈A

cijxij +
∑︂
i∈V

wi (4.101)

subject to:
∑︂

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (4.102)

xij =⇒ yj = yi + 1 ∀(i, j) ∈ A : j ̸= r (4.103)

ut
s = 0 ∀(s, t) ∈ R : t ∈ Vs (4.104)

ut
t = 1 ∀t ∈ Vs (4.105)

xij =⇒ ut
j ≥ ut

i ∀(s, t) ∈ R : t ∈ Vs, j ∈ V \{r} (4.106)

dr = 0 (4.107)

wr = 0 (4.108)

xij =⇒ dj = di + wj + cij ∀(i, j) ∈ A (4.109)

dt ≥ ds ∀(s, t) ∈ R (4.110)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.111)

yi ≥ 0 ∀i ∈ V (4.112)

ut
j ≥ 0 ∀t ∈ Vs, j ∈ V (4.113)

di, wi ∈ Z+
≤M ∀i ∈ V (4.114)

4.6. COMPUTATIONAL RESULTS 120

4.6 Computational Results

In this section we present the experiments conducted to evaluate the several mod-

els proposed in sections 4.4 and 4.5. In section 4.6.1 we evaluate and discuss the

performance of the MILP models introduced in section 4.4. In section 4.6.2 we eval-

uate and discuss the performance of the CP models introduced in section 4.5, and

compare them to the performance of the Path-Based models introduced in section

4.4.2.

The computational experiments are based on the benchmark instances of

TSPLIB [75], SOPLIB [69], and COMPILERS [79] originally proposed for the Se-

quential Ordering Problem [27], and are modified as explained in section 3.6. The

benchmark sets contain a total of 116 instances, ranging in size between 9 and 700

vertices, with an average of 248 vertices.

4.6.1 The MILP Models

All the experiments in this section are performed on a laptop with an Intel i7-

8550U processor running at 1.8 GHz with 8 GB of RAM. The MILPs are solved

using CPLEX 12.8 [53]. CPLEX is run with the two parameters NodeSelect and

MIP emphasis set to BestBound and MIPEmphasisOptimality respectively, and

single threaded standard Branch-and-Cut (B&C) algorithm is applied for solving

the MILP models. A time limit of one hour is set on the computation time of each

computational method/instance. The models have been implemented in C++ 11,

and are compiled with Microsoft C/C++ Optimizing Compiler v19.

For the rest of this section we will be referring to the Mutlicommodity Flow model

from section 4.4.1 as (MCF), the Complete Path-Based model from section 4.4.2.1 as

(CPB), the Reduced Path-Based model from section 4.4.2.1 as (RPB), the Distance-

Accumulation model from section 4.4.3 as (DA), and the Adjusted Arc-Cost model

4.6. COMPUTATIONAL RESULTS 121

Table 4.1: PCMCA-WT summary of the results of solving the models CPB, RPB, DA
and AAC for SOPLIB instances.

Model

CPB RPB DA AAC

Average LR optimality gap 62.9% 63.2% 62.6% 63.0%

Average IP optimality gap 78.2% 68.5% 68.1% 67.7%

Average LR solution time 223.6 184.6 161.4 677.3

Average IP solution time - 132.5 287.2 45.7

Best LR solution 22 15 27 16

Best lower bound 5 32 1 1

Best upper bound 2 17 10 10

Optimal solution 4 8 10 9

from section 4.4.4 as (AAC).

In this section, we omit the results of the PCMCA-WT for SOPLIB instances

from the discussion. However, we can draw the following conclusions on these in-

stances. The model MCF is unable to solve large sized instances due to memory

issues (building the model consumes around 5GB of memory on average) or time

out while solving the model’s linear relaxation. Since the linear relaxation of the

model MCF is unable to solve a single instance from SOPLIB benchmark set, we

concluded that it is highly unsuitable for solving such instances, and therefore the

results are omitted from the discussion. The results for the rest of the models are

summarized in table 4.1, where we report the following. The Average LR optimality

gap reports the average optimality gap achieved by solving the linear relaxation of

the respective model, and is computed as 100 · CostBest−CostLR

CostBest
, where CostBest is the

best known upper bound for the instances, and CostLR is the value of the objective

function of the respective linear relaxation model. The Average IP optimality gap

reports the average optimality gap achieved by solving the integer program (IP) of

the respective model. The Average LR solution time reports the average solution

4.6. COMPUTATIONAL RESULTS 122

time in seconds of solving the linear relaxation of the respective model, for a total

of 68 instances. The Average IP solution time reports the average solution time in

seconds for the instances that are optimally solved by the three models RPB, DA,

and AAC (6 instances out of a total of 48 instances). The Average IP solution time

for the model CPB is omitted, as it optimally solves only 4 of those instances and

is 152.7% slower on average compared to the model RPB. The Best LR solution

reports the number of instances where solving the linear relaxation of the respective

model results in the highest solution cost (best lower bound). The Best lower bound

reports the number of instances where the IP model was able to find the best lower

bound estimate on the value of the optimal solution. The Best upper bound reports

the number of instances where the IP model was able to find the best new solution

cost, and does not include the instances where an optimal solution is found. Finally,

Optimal solution reports the number of instances that were solved optimaly by the

IP model.

Considering the linear relaxation of the models, all five models achieve a similar

average optimality gap, however the model DA has the lowest average solution time

and finds the best solution cost for 56% of the instances. This shows that on average,

the model DA has the strongest linear relaxation out of the five models considered.

On the other hand, when considering the IP models, the model AAC is 84.1% faster

on average, and achieves better solutions for 45.8% of the instances compared to the

model DA. More specifically, the model AAC performs better than the model DA at

solving large sized instances with dense precedence graphs. However, the model RPB

has the best overall performance on SOPLIB instances, as it has an average solution

time that falls in between the two models DA and AAC, and is able to find the

best lower and upper bounds for a larger number of instances, with a slightly higher

average optimality gap. The aforementioned results are generally worse compared

to the other two benchmark sets as will be shown later, which indicates that large-

4.6. COMPUTATIONAL RESULTS 123

Table 4.2: PCMCA-WT summary of the results of solving the linear relaxation of the
models MCF, CPB, RPB, DA and AAC for TSPLIB and COMPILERS instances.

Model

MCF CPB RPB DA AAC

Average optimality gap 19.4% 23.2% 23.2% 18.3% 18.5%

Average solution time 889.9 4.6 3.6 19.6 38.4

Average number of cuts - 11 - 97 105

Best LR solution 5 22 20 20 6

sized instances with a highly dense precedence graph are outside the reach of the

models proposed due to the intrinsic complexity of the problem.

4.6.1.1 The Linear Relaxation of the Models

Table 4.2 summarizes the results of solving the models’ linear relaxation considering

58 out of a total of 68 instances that are solved by all five models. The Average

optimality gap reports the average optimality gap achieved by solving the linear

relaxation of the respective model. The Average solution time reports the average

solution time in seconds spent at solving the respective model’s linear relaxation.

The Average number of cuts reports the average number of model specific inequalities

that are dynamically added to the model. The Best LR solution reports the number

of instances where solving the respective model’s linear relaxation results in the

highest lower bound estimate.

In summary, the linear relaxation of the model MCF is unable to solve instances

larger than 240 vertices. Compared to the model MCF, the model CPB results in

a 19.6% increase in the average optimality gap, the model RPB results in a 19.1%

increase in the average optimality gap, the model DA results in a 5.7% decrease in

the average optimality gap, and the model AAC results in a 4.6% decrease in the

average optimality. Furthermore, compared to the model MCF, the model CPB is

4.6. COMPUTATIONAL RESULTS 124

99.5% faster on average, the model RPB is 99.6% faster on average, the model DA is

97.8% faster on average, and the model AAC is 95.7% faster on average. Considering

all factors, the results show that the model DA has the strongest linear relaxation

out of the five models considered. However, when excluding the model MCF, and

considering 67 out of 68 instances that are solved by all four models, the same

conclusion holds, which is that the model DA has the strongest linear relaxation,

and achieves the smallest average optimality gap of 22.1% with an average solution

time of 19.6 seconds. In terms of the number of cuts that are dynamically added to

the model, the model DA generates 781.8% more cuts compared to the model CPB,

while the model AAC generates 854.5% more cuts compared to the model CPB.

A major problem that we can notice in the model MCF is that the solution times

are considerably larger when compared to the other four models. For example, the

model MCF finds the optimal solution of the instance ESC78 within 9 minutes

compared to 6.7, 4.8, 4.5 and 6.0 seconds of computing time by the models CPB,

RPB, DA, and AAC respectively. The same increased solution time can be noticed

in other instances, sometimes reaching almost an hour to solve the linear relaxation

compared to few seconds. Comparing the two models DA and AAC, the AAC

model finds better estimates on the symmetrical COMPILERS instances which have

symmetric costs.

In general, it is hard to decide which linear relaxation would perform better on

some instances, however the model DA seems to be the most suitable, as its linear

relaxation is stronger on average the other models.

4.6.1.2 The IP Models

Table 4.3 summarizes the results of solving the IP models, where we report the

following. The Average optimality gap reports the average optimality gap achieved

by solving the respective model when considering 58 out of a total of 68 instances

4.6. COMPUTATIONAL RESULTS 125

Table 4.3: PCMCA-WT summary of the results of solving the MILP models MCF,
CPB, RPB, DA and AAC for TSPLIB and COMPILERS instances.

Model

MCF CPB RPB DA AAC

Average optimality gap 29.4% 19.4% 15.5% 13.8% 15.7%

Average solution time 483.3 561.9 55.8 213.7 98.0

Average number of cuts - 0 - 434 1680

Best lower bound 1 5 22 21 6

Best upper bound 2 8 22 17 15

Optimal solution 11 13 16 17 16

that are solved by all five models within the time limit. The Average solution time

reports the average solution time in seconds of the instances that are optimally solved

by all five models (a total of 11 out of 68). The Average number of cuts reports

the average number of model specific inequalities that are dynamically added to

the model for the instances that are optimally solved by all five models (a total of

12 out of 68). The Best lower bound reports the number of instances where the

respective model was able to find the best lower bound estimate on the value of the

optimal solution. The Best upper bound reports the number of instances where the

respective model was able to find the best solution cost. Finally, Optimal solution

reports the number of instances that were solved optimaly by the respective model.

Compared to the model MCF, the model CPB results in a 34.0% improvement

in the average optimality gap, the model RPB results in a 47.3% improvement in

the average optimality gap, the model DA results in a 53.1% improvement in the

average optimality gap, and the model AAC results in a 46.6% improvement in

the average optimality. In terms of average solution time, and compared to the

model MCF, the model CPB is 16.3% slower on average, the model RPB is 88.5%

faster on average, the model DA is 55.8% faster on average, and the model AAC is

4.6. COMPUTATIONAL RESULTS 126

79.7% faster on average. Furthermore, The model AAC generates 287.1% more cuts

compared to the model DA, while the model CPB does not dynamically adds any

cuts on average to the model, which shows that the precedence-enforcing constraints

are rarely violated for in the model.

Finally, we compare the average number of nodes that are generated in the

search-decision tree for a total of 9 instances that are optimally solved by all five

models. Compared to the model MCF, the model CPB generates 3034.94% more

nodes, the model RPB generates 341.1% more nodes, the model DA generates 96.7%

more nodes, and the model AAC generates 406.3% more nodes. We can conclude

that the two models RPB and DA overall perform the best out of the five proposed

models.

Based on the computational results, the following conclusions can be drawn. The

model DA performs better compared to the model AAC, except on symmetrical

instances and/or instances with extreme high densities larger than 0.9. Out of a

total of 68 instances, and considering the overall best two models (RPB and DA) in

terms of achieved average optimality gap and solution time, the model RPB was able

to find the best lower bound for 22 instances, the best upper bound for 22 instances,

and the optimal solution for 16 instances. On the other hand, the model DA was

able to find the the best lower bound for 21 instances, the best upper bound for 17

instances, and the optimal solution for 17 instances. This shows that on average,

the model RPB performs better than the model DA. However, the model DA often

performs better on instances with medium density precedence graphs.

4.6.1.3 Overall Results

In this section we report the overall results of the models discussed in section 4.6.1.

The overall results can be found in tables 4.4-4.9 where we report the following.

Columns Name and Size report the name and size of the instance, ρ(R) reports the

4.6. COMPUTATIONAL RESULTS 127

density of arcs in the set of precedence relationships R, and is computed as 2·|R|
|V |(|V |−1)

.

For each model we report the following columns. Column Cost reports the value of

the objective function of the linear relaxation of the model. Columns LB and UB

report the lower and upper bound on the value of the optimal solution obtained from

solving the respective MILP model. Column Cuts reports the number of model-

dependent cuts (inequalities) that are dynamically added to the model. Column

Nodes reports the number of nodes generated in the search decision-tree. Column

Gap indicates the percentage relative difference between the cost of the best-known

integer solution of the instance (CostBest), and the objective function cost of the

model’s linear relaxation (Cost), computed as 100 · CostBest−Cost
CostBest

. Column IP Gap

measures the percentage relative difference between the upper and lower bound

obtained from solving the respective model, calculated as 100 · UB−LB
UB

. Column

Time [s] reports the solution time in seconds. The solution time is not reported

in the tables for the instances that are not optimally solved within the time limit.

Furthermore, the solution information is not reported for instances where it was

not possible to solve the model’s linear relaxation. Finally, bold numbers indicate

the best lower bound and upper bound on the value of the optimal solution for the

respective instance.

4.6.
C
O
M
P
U
T
A
T
IO

N
A
L
R
E
S
U
L
T
S

128
Table 4.4: PCMCA-WT computational results of the linear relaxation of the models MCF, CPB, RPB, DA and AAC for

TSPLIB instances.

Model

Instance MCF CPB RPB DA AAC

Name Size ρ(R) Cost Time [s] Gap Cost Cuts Time [s] Gap Cost Time [s] Gap Cost Cuts Time [s] Gap Cost Cuts Time [s] Gap

br17.10 18 0.314 25.08 1.437 43.000 12.00 0 0.114 72.727 16.23 0.192 63.115 25.17 15 0.265 42.795 25.15 18 0.203 42.841

br17.12 18 0.359 25.12 1.032 42.909 17.00 11 0.136 61.364 16.23 0.224 63.115 25.17 15 0.265 42.795 25.15 18 0.203 42.841

ESC07 9 0.611 1887.50 0.204 0.971 1569.42 0 0.071 17.659 1612.21 0.061 15.414 1890.75 3 0.110 0.800 1782.07 7 0.031 6.502

ESC11 13 0.359 2127.00 0.297 2.162 2012.85 0 0.116 7.413 2061.27 0.114 5.186 2067.00 10 0.187 4.922 2040.30 8 0.312 6.150

ESC12 14 0.396 1138.00 0.109 0.000 1138.00 0 0.031 0.000 1138.00 0.021 0.000 1138.00 0 0.063 0.000 1138.00 1 0.078 0.000

ESC25 27 0.177 1043.05 3.297 9.927 1091.04 0 0.592 5.782 1078.72 0.315 6.846 1082.41 37 0.672 6.528 1064.20 40 0.890 8.100

ESC47 49 0.108 703.14 36.969 5.871 702.43 42 2.401 5.966 697.04 1.123 6.688 703.12 257 9.250 5.874 703.14 80 3.625 5.871

ESC63 65 0.173 56.00 266.610 0.000 56.00 0 2.030 0.000 56.00 2.024 0.000 56.00 6 1.594 0.000 56.00 67 20.937 0.000

ESC78 80 0.139 502.16 523.810 58.013 794.29 0 6.691 33.588 718.08 4.842 39.960 721.93 8 4.453 39.638 718.00 6 5.969 39.967

ft53.1 54 0.082 3953.05 188.391 3.325 3869.52 0 3.477 5.368 3887.09 3.084 4.938 3962.45 34 5.594 3.095 3949.66 25 8.297 3.408

ft53.2 54 0.094 3997.50 180.250 6.688 3922.54 0 4.251 8.437 3926.08 3.148 8.355 3998.74 40 5.531 6.659 3993.84 52 8.547 6.773

ft53.3 54 0.225 4286.90 171.203 20.006 4282.78 0 3.890 20.082 4228.38 3.246 21.098 4388.35 69 7.640 18.113 4249.72 97 13.562 20.699

ft53.4 54 0.604 5026.27 52.062 21.709 5123.04 0 3.282 20.202 5046.29 2.856 21.397 5149.40 18 4.875 19.791 5010.26 21 5.250 21.959

ft70.1 71 0.036 32801.04 1021.590 1.492 32588.06 0 4.900 2.132 32571.22 3.413 2.183 32980.40 148 16.610 0.954 32851.51 130 39.453 1.341

ft70.2 71 0.075 32895.06 1523.523 2.360 32601.02 0 3.537 3.232 32618.16 2.525 3.181 33016.60 160 22.235 1.999 32939.71 171 48.172 2.227

ft70.3 71 0.142 33441.93 2048.220 11.935 33074.18 0 5.055 12.903 32925.27 2.726 13.295 33641.84 402 47.500 11.408 33672.54 264 63.344 11.327

ft70.4 71 0.589 35433.67 113.969 11.533 34981.21 0 4.971 12.663 34837.52 3.817 13.021 35805.55 132 18.188 10.605 35427.98 156 31.813 11.547

rbg048a 50 0.444 231.57 335.875 11.951 224.60 0 2.925 14.601 225.74 1.604 14.169 228.06 11 1.703 13.285 221.84 11 3.985 15.650

rbg050c 52 0.459 215.12 124.781 4.391 218.16 0 1.502 3.040 214.13 2.233 4.833 214.35 36 2.485 4.733 217.24 26 3.422 3.449

rbg109 111 0.909 293.13 590.328 29.196 324.47 0 12.916 21.625 323.71 9.826 21.809 314.83 19 8.609 23.954 314.79 5 13.531 23.964

rbg150a 152 0.927 373.34 1417.090 27.927 425.50 0 21.793 17.858 423.14 9.936 18.314 417.14 12 10.969 19.471 416.17 7 32.969 19.658

rbg174a 176 0.929 365.40 2096.480 37.000 414.52 0 21.448 28.531 411.47 16.238 29.056 405.03 10 21.984 30.167 401.07 9 65.828 30.850

rbg253a 255 0.948 - - - 480.38 61 63.931 37.855 484.67 53.056 37.300 458.28 11 60.750 40.714 467.20 7 248.812 39.560

rbg323a 325 0.928 - - - 916.81 0 94.302 77.278 907.37 94.136 77.513 920.95 23 210.250 77.176 892.63 19 719.109 77.878

rbg341a 343 0.937 - - - 722.76 465 163.337 80.980 683.37 128.922 82.017 677.73 52 365.250 82.165 672.90 44 725.343 82.292

rbg358a 360 0.886 - - - 676.09 730 154.703 79.488 688.67 131.636 79.106 699.25 77 429.547 78.785 666.92 29 1395.735 79.766

rbg378a 380 0.894 - - - - - - - 607.47 186.618 77.982 644.63 107 422.203 76.635 605.73 61 1787.078 78.045

kro124p.1 101 0.046 32597.08 3482.940 7.476 32252.78 0 17.338 8.453 32212.80 10.305 8.567 32657.90 106 47.765 7.304 32603.69 123 89.266 7.457

kro124p.2 101 0.053 32761.06 3482.630 13.687 32574.70 0 17.972 14.178 32563.94 13.025 14.206 33053.63 135 48.688 12.916 32922.44 171 134.109 13.262

kro124p.3 101 0.092 33715.31 3490.750 34.000 32677.93 0 20.615 36.031 32852.59 17.095 35.689 33951.74 270 76.703 33.537 33826.66 303 212.000 33.782

kro124p.4 101 0.496 37386.23 2552.250 32.255 36774.18 0 16.331 33.364 36829.31 13.136 33.265 38025.91 132 35.250 31.096 37233.59 174 88.859 32.532

p43.1 44 0.101 2825.00 864.844 31.098 769.00 0 0.087 81.244 760.00 0.716 81.463 2825.00 49 2.140 31.098 2797.37 53 3.797 31.771

p43.2 44 0.126 2759.38 1036.547 33.268 880.00 0 0.800 78.718 970.00 1.220 76.542 2825.00 98 2.672 31.681 2722.91 140 9.422 34.150

p43.3 44 0.191 2759.53 573.968 43.452 1015.50 57 1.992 79.191 937.50 1.950 80.789 2845.00 113 3.469 41.701 2722.79 197 10.407 44.205

p43.4 44 0.164 2925.07 11.937 36.687 1229.82 20 1.774 73.380 1180.06 1.448 74.458 2930.08 115 2.984 36.578 2822.27 93 4.968 38.912

prob.100 100 0.048 643.00 3484.390 36.210 648.09 0 10.011 35.706 662.58 22.080 34.268 668.13 1225 598.594 33.717 657.65 1009 999.453 34.757

prob.42 42 0.116 148.90 57.672 12.924 150.45 0 1.380 12.018 150.03 1.821 12.264 153.18 107 4.813 10.421 148.26 52 5.469 13.298

ry48p.1 49 0.091 13134.08 99.141 4.285 12864.17 0 3.162 6.252 12842.68 2.000 6.408 13133.93 62 4.953 4.286 13115.36 54 8.391 4.421

ry48p.2 49 0.103 13195.09 95.937 8.943 12913.66 0 3.231 10.885 12906.53 2.669 10.934 13243.77 48 4.703 8.607 13206.48 34 5.203 8.864

ry48p.3 49 0.193 13926.14 136.859 11.904 13320.56 0 3.665 15.735 13236.22 2.747 16.269 13979.71 207 12.469 11.566 13925.41 191 19.016 11.909

ry48p.4 49 0.588 16168.48 16.781 16.735 15369.21 0 2.426 20.851 15399.42 1.800 20.695 16316.13 60 5.344 15.974 16186.84 93 9.406 16.640

Average 835.671 18.758 35 17.080 28.919 18.535 30.139 108 61.691 23.745 99 166.982 24.601

4.6.
C
O
M
P
U
T
A
T
IO

N
A
L
R
E
S
U
L
T
S

129

Table 4.5: PCMCA-WT computational results of the linear relaxation of the models MCF, CPB, RPB, DA and AAC for
COMPILERS instances.

Model

Instance MCF CPB RPB DA AAC

Name Size ρ(R) Cost Time [s] Gap Cost Cuts Time [s] Gap Cost Time [s] Gap Cost Cuts Time [s] Gap Cost Cuts Time [s] Gap

gsm.153.124 126 0.970 221.14 135.500 28.894 233.37 0 1.715 24.961 230.70 1.265 25.821 222.23 15 0.610 28.543 223.41 15 3.312 28.164

gsm.444.350 353 0.990 - - - 2195.86 0 16.133 23.569 2237.31 6.861 22.126 1914.83 6 4.531 33.351 2042.75 4 5.156 28.898

gsm.462.77 79 0.840 377.54 231.625 19.329 379.40 0 2.417 18.933 364.79 2.231 22.053 384.41 27 6.016 17.861 380.96 29 5.375 18.598

jpeg.1483.25 27 0.484 84.00 1.844 3.448 77.45 0 0.521 10.979 80.23 0.475 7.783 78.97 17 0.406 9.230 76.89 16 0.719 11.621

jpeg.3184.107 109 0.887 419.22 254.187 36.959 453.39 0 4.782 31.821 451.48 3.341 32.108 441.65 60 2.875 33.586 451.07 76 16.047 32.170

jpeg.3195.85 87 0.740 13.04 3595.590 47.840 9.26 137 1.890 62.964 8.98 1.566 64.083 9.00 126 7.875 64.000 13.00 195 9.130 48.000

jpeg.3198.93 95 0.752 140.26 3594.700 31.245 161.30 293 3.122 20.934 153.90 4.133 24.561 151.87 214 9.296 25.554 152.79 152 11.730 25.103

jpeg.3203.135 137 0.897 524.22 1217.125 30.104 573.41 0 7.197 23.546 566.77 4.948 24.431 564.03 58 3.234 24.796 568.97 122 21.063 24.137

jpeg.3740.15 17 0.257 33.00 0.313 0.000 31.00 0 0.100 6.061 31.00 0.091 6.061 33.00 5 0.093 0.000 33.00 3 0.125 0.000

jpeg.4154.36 38 0.633 86.88 7.843 3.467 82.00 0 0.801 8.889 81.01 0.475 9.988 85.06 26 2.125 5.489 84.01 21 0.765 6.656

jpeg.4753.54 56 0.769 150.20 76.875 8.415 153.16 0 1.386 6.609 149.40 0.915 8.899 153.08 30 3.500 6.659 150.19 40 2.250 8.421

susan.248.197 199 0.939 613.41 3519.028 48.192 683.20 0 7.412 42.297 705.47 3.715 40.416 658.84 108 9.672 44.355 682.70 138 34.656 42.340

susan.260.158 160 0.916 494.65 1681.391 43.533 526.81 0 7.326 39.861 524.74 5.916 40.098 519.01 116 7.796 40.752 534.43 244 55.359 38.992

susan.343.182 184 0.936 469.79 1488.110 43.399 549.14 0 5.902 33.839 554.29 4.246 33.218 539.47 72 6.156 35.004 554.04 94 20.234 33.248

typeset.10192.123 125 0.744 246.52 3579.440 40.598 258.30 0 8.340 37.758 259.05 5.594 37.579 264.30 131 22.078 36.313 260.60 90 23.328 37.205

typeset.10835.26 28 0.349 93.55 2.187 15.721 82.57 0 0.501 25.609 93.11 0.490 16.121 81.83 7 0.328 26.279 92.34 9 0.625 16.811

typeset.12395.43 45 0.518 139.02 57.437 4.781 133.04 0 0.794 8.880 133.04 0.797 8.875 137.85 110 3.094 5.582 137.27 107 4.484 5.979

typeset.15087.23 25 0.557 92.27 2.046 4.876 92.00 0 0.170 5.155 93.00 0.261 4.124 93.00 13 0.157 4.124 93.00 30 0.516 4.124

typeset.15577.36 38 0.555 120.01 4.141 3.992 121.01 0 0.642 3.196 121.00 0.566 3.199 120.69 21 0.531 3.448 120.01 14 1.015 3.992

typeset.16000.68 70 0.658 70.00 2051.330 12.500 63.00 71 1.940 21.250 61.00 0.784 23.750 70.07 121 4.062 12.413 69.48 486 32.735 13.150

typeset.1723.25 27 0.245 56.00 5.516 6.667 51.00 0 0.620 15.000 52.00 0.535 13.333 55.33 93 1.062 7.783 55.50 90 2.047 7.500

typeset.19972.246 248 0.993 - - - 1317.00 0 5.927 31.726 1326.34 2.227 31.242 1229.52 4 1.891 36.261 1234.43 11 4.328 36.007

typeset.4391.240 242 0.981 - - - 1060.08 0 8.852 24.923 1034.89 5.677 26.707 1006.12 31 2.812 28.745 1057.66 64 10.281 25.095

typeset.4597.45 47 0.493 144.01 23.484 7.090 141.03 0 1.230 9.012 141.98 1.142 8.398 143.13 89 3.282 7.658 141.18 169 9.281 8.916

typeset.4724.433 435 0.995 - - - 2440.98 0 20.665 28.897 2433.39 5.485 29.118 2351.03 29 12.016 31.517 2351.76 33 21.531 31.495

typeset.5797.33 35 0.748 105.93 2.843 6.257 105.00 0 0.431 7.082 104.60 0.315 7.434 106.00 9 0.625 6.195 104.21 21 0.891 7.779

typeset.5881.246 248 0.986 - - - 1266.38 0 5.192 25.507 1261.92 3.811 25.769 1204.29 27 5.234 29.159 1229.51 28 9.422 27.676

Average 978.753 20.332 19 4.297 22.195 2.513 22.122 58 4.495 22.395 85 11.348 21.188

4.6.
C
O
M
P
U
T
A
T
IO

N
A
L
R
E
S
U
L
T
S

130
Table 4.6: PCMCA-WT computational results of the linear relaxation of the models MCF, CPB, RPB, DA and AAC for

SOPLIB instances.

Model

Instance CPB RPB DA AAC

Name Size ρ(R) Cost Cuts Time [s] Gap Cost Time [s] Gap Cost Cuts Time [s] Gap Cost Cuts Time [s] Gap

R.200.100.1 200 0.020 29.00 0 17.648 0.000 29.00 24.012 0.000 29.00 7 20.078 0.000 29.00 11 110.821 0.000

R.200.100.15 200 0.847 427.33 710 14.583 58.146 421.56 10.216 58.711 482.25 889 201.797 52.767 466.32 950 642.971 54.327

R.200.100.30 200 0.957 571.47 399 15.301 69.891 541.45 8.875 71.473 593.41 61 21.703 68.735 580.69 58 30.857 69.405

R.200.100.60 200 0.991 7105.17 0 22.940 60.952 7090.42 14.885 61.033 7361.79 0 17.750 59.542 7052.76 0 30.974 61.240

R.200.1000.1 200 0.020 887.00 0 31.516 0.000 887.00 14.601 0.000 887.00 2 22.029 0.000 887.00 1 53.906 0.000

R.200.1000.15 200 0.876 5702.41 464 11.143 65.432 5589.61 8.812 66.115 6108.43 490 144.953 62.970 6040.07 439 110.852 63.385

R.200.1000.30 200 0.958 8199.45 168 15.640 66.114 8004.66 9.216 66.919 8445.47 23 14.281 65.097 8133.32 28 20.904 66.387

R.200.1000.60 200 0.989 9511.48 0 25.658 56.515 9504.42 16.776 56.547 9854.45 0 22.125 54.947 9217.41 0 37.501 57.859

R.300.100.1 300 0.013 13.00 0 37.862 0.000 13.00 42.470 0.000 13.00 16 23.625 0.000 13.00 2 636.572 0.000

R.300.100.15 300 0.905 574.77 1716 31.446 83.759 543.25 16.375 84.649 610.77 239 105.640 82.742 609.37 422 266.235 82.781

R.300.100.30 300 0.970 884.72 251 39.810 76.514 870.57 23.970 76.890 903.36 18 23.235 76.019 847.94 20 66.692 77.490

R.300.100.60 300 0.994 750.82 0 58.215 69.441 769.16 45.044 68.695 814.56 13 45.469 66.848 750.10 306 409.733 69.471

R.300.1000.1 300 0.013 715.00 0 172.601 0.000 715.00 125.470 0.000 715.00 9 179.203 0.000 715.00 13 621.532 0.000

R.300.1000.15 300 0.905 6739.79 3859 33.435 71.354 6490.54 10.516 72.414 7068.59 186 87.157 69.957 6793.90 117 111.910 71.124

R.300.1000.30 300 0.965 9905.82 1082 31.780 75.515 9848.70 20.710 75.656 10157.39 15 28.562 74.893 9718.07 18 68.687 75.979

R.300.1000.60 300 0.994 8512.35 166 68.361 72.232 8463.01 42.675 72.393 9084.57 5 66.421 70.365 8337.93 3 76.061 72.801

R.400.100.1 400 0.010 6.00 0 87.580 0.000 6.00 95.971 0.000 6.00 9 27.281 0.000 6.00 15 17.130 0.000

R.400.100.15 400 0.927 679.92 2718 70.521 92.280 661.02 29.854 92.494 720.09 1335 122.000 91.824 720.59 679 689.301 91.818

R.400.100.30 400 0.978 797.69 1182 103.335 88.987 763.91 42.011 89.453 779.09 33 35.220 89.244 758.85 26 75.670 89.523

R.400.100.60 400 0.996 726.63 0 146.972 86.896 734.00 107.754 86.763 728.42 0 109.391 86.863 705.97 3 165.734 87.268

R.400.1000.1 400 0.010 780.00 0 160.195 0.000 780.00 172.120 0.000 780.00 4 313.641 0.000 780.00 1 1734.093 0.000

R.400.1000.15 400 0.930 7394.06 7119 72.876 91.390 7199.06 26.483 91.617 7591.79 294 99.682 91.160 7645.09 159 207.935 91.098

R.400.1000.30 400 0.977 9698.42 708 65.620 89.847 9704.55 43.370 89.841 9896.44 51 53.220 89.640 9935.48 61 157.717 89.599

R.400.1000.60 400 0.995 8438.38 0 141.884 84.918 7965.04 80.234 85.764 8098.89 1 62.223 85.525 7705.27 5 189.445 86.228

R.500.100.1 500 0.008 3.00 0 149.530 0.000 3.00 163.800 0.000 3.00 23 57.094 0.000 3.00 172 2655.970 0.000

R.500.100.15 500 0.945 869.55 3473 100.042 92.407 863.36 37.030 92.461 913.85 152 189.031 92.020 913.44 372 563.330 92.024

R.500.100.30 500 0.980 751.87 537 106.410 93.850 751.05 76.237 93.856 744.60 31 67.500 93.909 763.08 43 172.505 93.758

R.500.100.60 500 0.996 719.97 0 12.872 91.456 751.04 150.756 91.088 668.50 5 141.844 92.067 619.95 2 292.819 92.643

R.500.1000.1 500 0.008 297.00 0 232.851 0.000 297.00 210.791 0.000 297.00 0 37.731 0.000 297.00 0 2493.358 0.000

R.500.1000.15 500 0.940 8307.61 7467 107.512 92.292 8017.67 43.890 92.561 8295.58 116 99.593 92.303 8401.04 150 320.520 92.205

R.500.1000.30 500 0.981 10604.67 2289 123.602 93.218 10191.19 54.800 93.482 10417.63 18 82.078 93.337 10181.27 14 150.795 93.489

R.500.1000.60 500 0.996 7301.75 837 211.220 78.046 7419.38 217.383 77.693 7082.38 2 112.516 78.706 6857.44 5 425.744 79.382

R.600.100.1 600 0.007 1.00 0 283.590 99.736 1.00 243.910 99.736 1.00 203 914.453 99.736 1.00 5 2131.340 99.736

R.600.100.15 600 0.950 682.84 7593 148.082 88.522 659.76 86.221 88.910 642.09 54 116.891 89.207 668.95 81 333.780 88.755

R.600.100.30 600 0.985 828.68 786 186.485 93.564 825.32 105.291 93.590 843.46 19 100.235 93.449 821.79 30 288.335 93.617

R.600.100.60 600 0.997 743.32 0 415.432 90.583 756.86 281.033 90.411 736.24 0 182.078 90.672 677.55 1 703.480 91.416

R.600.1000.1 600 0.007 322.00 0 486.591 0.000 322.00 445.056 0.000 322.00 0 65.987 0.000 322.00 0 368.367 0.000

R.600.1000.15 600 0.945 10180.92 12384 186.856 91.647 9993.92 57.327 91.800 10180.54 99 178.547 91.647 10043.27 93 390.536 91.760

R.600.1000.30 600 0.984 10425.14 1747 215.730 93.096 10380.56 103.210 93.126 10109.02 38 114.531 93.306 10017.22 40 365.387 93.367

R.600.1000.60 600 0.997 7935.40 477 353.340 90.959 7878.47 303.187 91.024 7603.46 1 251.484 91.337 7366.04 9 962.126 91.608

R.700.100.1 700 0.006 2.00 0 409.661 0.000 2.00 256.541 0.000 2.00 84 1770.352 0.000 2.00 153 2538.536 0.000

R.700.100.15 700 0.957 834.06 7210 302.340 87.288 794.58 78.135 87.889 753.83 38 162.406 88.510 797.99 76 509.298 87.837

R.700.100.30 700 0.987 831.15 659 355.100 95.902 732.60 297.645 96.388 719.89 9 140.344 96.450 760.97 11 531.510 96.248

R.700.100.60 700 0.997 537.21 0 1491.985 92.360 535.36 1287.950 92.387 515.11 0 329.750 92.675 493.32 0 3119.500 92.985

R.700.1000.1 700 0.006 611.00 0 1885.827 0.000 611.00 2135.741 0.000 611.00 0 121.523 0.000 611.00 0 2451.536 0.000

R.700.1000.15 700 0.956 4613.29 5500 165.668 57.201 4579.24 125.875 57.517 4449.04 52 137.802 58.725 4586.78 12 434.986 57.447

R.700.1000.30 700 0.986 4377.11 678 465.670 55.467 3921.48 204.601 60.103 4276.02 3 243.160 56.496 4295.71 1 498.860 56.296

R.700.1000.60 700 0.997 2885.34 0 857.787 81.479 2936.36 859.320 81.152 2844.27 0 280.932 81.743 2845.67 0 3276.520 81.734

Average 1504 223.565 62.901 184.545 63.179 97 161.345 62.613 96 677.341 63.002

4.6.
C
O
M
P
U
T
A
T
IO

N
A
L
R
E
S
U
L
T
S

131
Table 4.7: PCMCA-WT computational results of the MILP models MCF, CPB, RPB, DA and AAC for TSPLIB instances.

Model

Instance MCF CPB RPB DA AAC

Name Size ρ(R) LB UB IP Gap Nodes Time [s] LB UB IP Gap Nodes Cuts Time [s] LB UB IP Gap Nodes Time [s] LB UB IP Gap Nodes Cuts Time [s] LB UB IP Gap Nodes Cuts Time [s]

br17.10 18 0.314 35 44 20.455 192505 - 31 44 29.545 3276683 30 - 35 44 20.455 1247254 - 34 44 22.727 2767833 3799 - 34 44 22.727 2074173 3893 -

br17.12 18 0.359 35 44 20.455 291653 - 35 44 20.455 3717500 34 - 38 44 13.636 1286779 - 35 45 22.222 3376744 2519 - 35 44 20.455 2845672 2265 -

ESC07 9 0.611 1906 1906 0.000 7 0.109 1906 1906 0.000 17 0 0.081 1906 1906 0.000 16 0.071 1906 1906 0.000 17 5 0.078 1906 1906 0.000 0 3 0.078

ESC11 13 0.359 2174 2174 0.000 20 0.265 2174 2174 0.000 250 0 0.555 2174 2174 0.000 72 0.236 2174 2174 0.000 22 13 0.172 2174 2174 0.000 33 12 0.219

ESC12 14 0.396 1138 1138 0.000 0 0.078 1138 1138 0.000 0 0 0.031 1138 1138 0.000 0 0.021 1138 1138 0.000 0 0 0.063 1138 1138 0.000 0 1 0.078

ESC25 27 0.177 1158 1158 0.000 1158 26.625 1158 1158 0.000 1302 0 17.351 1158 1158 0.000 1399 6.652 1158 1158 0.000 1450 698 3.922 1158 1158 0.000 1098 452 4.812

ESC47 49 0.108 747 747 0.000 2776 3154.140 747 747 0.000 10129 42 600.111 747 747 0.000 10248 99.119 747 747 0.000 750 31743 2230.171 704 783 10.089 2 37495 -

ESC63 65 0.173 56 61 8.197 165 - 56 56 0.000 3000 0 329.581 56 56 0.000 15325 293.443 56 56 0.000 4100 287 53.281 56 56 0.000 3177 14118 1223.313

ESC78 80 0.139 922 1346 31.501 920 - 1044 1196 12.709 24186 0 - 1196 1196 0.000 484412 1969.757 1196 1196 0.000 11177 267 159.093 1196 1196 0.000 15734 943 301.625

ft53.1 54 0.082 3984 4089 2.568 790 - 3989 4190 4.797 28963 0 - 4033 4089 1.370 162065 - 4089 4089 0.000 134416 2932 1430.797 4089 4089 0.000 56905 1433 1195.875

ft53.2 54 0.094 4054 4659 12.986 1055 - 4087 4439 7.930 28421 0 - 4134 4509 8.317 68193 - 4135 4284 3.478 200163 6053 - 4112 4318 4.771 57840 8393 -

ft53.3 54 0.225 4472 6071 26.338 1030 - 4585 5491 16.500 29027 0 - 4729 5359 11.756 147869 - 4623 5457 15.283 168357 6749 - 4545 5734 20.736 92513 5778 -

ft53.4 54 0.604 5409 6871 21.278 6531 - 5756 6561 12.269 45600 0 - 5835 6420 9.112 324443 - 5657 6439 12.145 564462 2361 - 5559 6668 16.632 340573 1588 -

ft70.1 71 0.036 32937 37078 11.168 807 - 32737 33308 1.714 13726 0 - 32779 33519 2.208 18918 - 33117 33298 0.544 23240 11362 - 33128 33714 1.738 27834 6322 -

ft70.2 71 0.075 33084 43282 23.562 408 - 32951 35076 6.058 12497 0 - 33036 33690 1.941 36056 - 33357 34450 3.173 11000 13238 - 33297 34713 4.079 11474 10171 -

ft70.3 71 0.142 33693 66153 49.068 287 - 33888 38744 12.534 13008 0 - 34298 37974 9.680 44598 - 33914 42732 20.636 8574 15867 - 33830 49116 31.122 9040 11611 -

ft70.4 71 0.589 35912 44507 19.312 1969 - 36445 40053 9.008 20400 0 - 36538 40248 9.218 141064 - 36517 40404 9.620 121796 3615 - 36188 40701 11.088 78814 3008 -

rbg048a 50 0.444 259 267 2.996 596 - 259 264 1.894 49765 42 - 260 263 1.141 285696 - 261 263 0.760 666476 15025 - 260 266 2.256 62610 14794 -

rbg050c 52 0.459 225 236 4.661 847 - 225 225 0.000 494 0 39.219 225 225 0.000 2210 78.845 225 225 0.000 1260 326 10.469 225 225 0.000 24050 432 210.562

rbg109 111 0.909 320 699 54.220 529 - 353 437 19.222 14472 0 - 362 430 15.814 86695 - 354 414 14.493 150506 219 - 349 428 18.458 85685 601 -

rbg150a 152 0.927 403 972 58.539 384 - 452 563 19.716 6819 0 - 456 518 11.969 33910 - 447 541 17.375 59431 232 - 441 650 32.154 34702 618 -

rbg174a 176 0.929 400 1121 64.318 326 - 452 678 33.333 4408 177 - 461 606 23.927 23056 - 446 580 23.103 42286 302 - 441 627 29.665 24226 113 -

rbg253a 255 0.948 - - - - - 517 1446 64.246 1402 61 - 529 1033 48.790 9502 - 477 773 38.292 12700 152 - 475 971 51.081 5427 231 -

rbg323a 325 0.928 - - - - - 969 4035 75.985 616 0 - 930 4035 76.952 779 - 926 4367 78.796 4536 86 - 903 4035 77.621 2845 78 -

rbg341a 343 0.937 - - - - - 758 5390 85.937 369 465 - 727 3800 80.868 1094 - 681 3832 82.229 3963 116 - 680 3800 82.105 2300 90 -

rbg358a 360 0.886 - - - - - 717 11088 93.534 153 1695 - 694 4109 83.110 416 - 706 3296 78.580 3408 698 - 674 4109 83.597 1779 144 -

rbg378a 380 0.894 - - - - - - - - - - - 624 4112 84.825 411 - 649 2759 76.477 2831 110 - 613 6701 90.852 1128 106 -

kro124p.1 101 0.046 32598 45652 28.595 1 - 32510 38880 16.384 4697 0 - 32545 40370 19.383 3343 - 32858 35438 7.280 3389 139 - 32827 35231 6.824 6926 5724 -

kro124p.2 101 0.053 32762 55265 40.718 1 - 32822 42140 22.112 4549 0 - 32950 48188 31.622 6840 - 33190 37956 12.557 14237 5920 - 33163 38002 12.734 8410 3458 -

kro124p.3 101 0.092 33716 329579 89.770 1 - 33337 63394 47.413 4595 0 - 33739 51084 33.954 10938 - 34217 53988 36.621 20016 6098 - 33991 77266 56.008 3313 9747 -

kro124p.4 101 0.496 37395 103491 63.866 2 - 38512 63496 39.347 7376 0 - 38856 56026 30.646 55450 - 39413 55187 28.583 71246 2652 - 38269 62162 38.437 32120 2746 -

p43.1 44 0.101 2825 4470 36.801 779 - 904 4775 81.068 54093 0 - 2660 4100 35.122 339789 - 2827 4585 38.342 160185 19944 - 2825 4615 38.787 51091 11280 -

p43.2 44 0.126 2760 4845 43.034 430 - 941 5025 81.274 50209 61 - 1475 4135 64.329 437665 - 2826 4275 33.895 162580 18401 - 2826 5025 43.761 55765 15014 -

p43.3 44 0.191 2828 6955 59.339 511 - 1056 5280 80.000 54587 129 - 1126 4880 76.926 541080 - 2864 6105 53.088 85658 16311 - 2847 5375 47.033 26582 10567 -

p43.4 44 0.164 2991 5415 44.765 5826 - 3001 4985 39.799 93774 280 - 3073 4620 33.485 531258 - 3101 4900 36.714 875030 2702 - 2981 4970 40.020 408540 1620 -

prob.100 100 0.048 643 3611 82.193 1 - 665 1055 36.967 4582 0 - 669 1053 36.467 5123 - 674 1047 35.626 3718 9961 - 661 1008 34.425 1533 7323 -

prob.42 42 0.116 163 171 4.678 2746 - 168 171 1.754 73225 0 - 171 171 0.000 442628 869.732 171 171 0.000 112468 7561 945.203 167 171 2.339 157734 11472 -

ry48p.1 49 0.091 13278 15362 13.566 1339 - 13038 15762 17.282 29428 0 - 13119 14413 8.978 29480 - 13356 13854 3.595 158744 8620 - 13371 13722 2.558 85005 6664 -

ry48p.2 49 0.103 13403 17833 24.842 585 - 13135 14734 10.852 29191 0 - 13243 14491 8.612 64977 - 13507 16968 20.397 82990 10129 - 13508 14659 7.852 63149 6161 -

ry48p.3 49 0.193 13984 21379 34.590 773 - 13598 16173 15.922 32347 0 - 13828 15808 12.525 90705 - 14371 16337 12.034 70000 8508 - 14299 16326 12.416 38332 6103 -

ry48p.4 49 0.588 16922 20030 15.517 10691 16664 19418 14.183 55351 0 - 16939 19444 12.883 245943 - 17339 19649 11.756 699363 921 - 17136 20915 18.068 398622 992 -

Average 28.164 14679 636.243 25.794 195030 75 140.990 22.440 176529 368.653 20.742 264905 5772 483.325 23.719 175531 5453 367.070

4.6.
C
O
M
P
U
T
A
T
IO

N
A
L
R
E
S
U
L
T
S

132

Table 4.8: PCMCA-WT computational results of the MILP models MCF, CPB, RPB, DA and AAC for COMPILERS instances.

Model

Instance MCF CPB RPB DA AAC

Name Size ρ(R) LB UB IP Gap Nodes Time [s] LB UB IP Gap Nodes Cuts Time [s] LB UB IP Gap Nodes Time [s] LB UB IP Gap Nodes Cuts Time [s] LB UB IP Gap Nodes Cuts Time [s]

gsm.153.124 126 0.970 234 331 29.305 936 - 255 312 18.269 142388 0 - 256 311 17.685 862140 - 246 313 21.406 357665 413 - 243 319 23.824 270962 405 -

gsm.444.350 353 0.990 - - - - - 2334 3353 30.391 20400 0 - 2406 4896 50.858 21364 - 1996 2873 30.526 50228 209 - 2103 2905 27.608 27606 216 -

gsm.462.77 79 0.840 392 707 44.554 1150 - 400 479 16.493 82005 0 - 408 468 12.821 355976 - 396 493 19.675 462000 1734 - 391 488 19.877 185939 2399 -

jpeg.1483.25 27 0.484 87 87 0.000 2338 71.610 87 87 0.000 17000 0 161.464 87 87 0.000 1943 22.499 87 87 0.000 20708 583 11.254 87 87 0.000 33035 553 72.907

jpeg.3184.107 109 0.887 430 811 46.979 992 - 504 665 24.211 55602 0 - 508 859 40.861 341998 - 488 684 28.655 315065 1051 - 489 684 28.509 121292 744 -

jpeg.3195.85 87 0.740 14 76 81.579 0 - 14 187 92.513 70215 5008 - 17 25 32.000 377784 - 22 25 12.000 27085 9849 - 21 30 30.000 2955 3273 -

jpeg.3198.93 95 0.752 141 353 60.057 0 - 180 248 27.419 51600 5218 - 179 249 28.112 41417 - 172 213 19.249 89431 2584 - 161 204 21.078 16822 3448 -

jpeg.3203.135 137 0.897 535 1539 65.237 14 - 607 840 27.738 30808 0 - 616 841 26.754 245218 - 600 755 20.530 179785 2533 - 595 750 20.667 120417 1332 -

jpeg.3740.15 17 0.257 33 33 0.000 0 0.266 33 33 0.000 692 0 2.648 33 33 0.000 316 1.335 33 33 0.000 0 5 0.093 33 33 0.000 0 3 0.125

jpeg.4154.36 38 0.633 90 90 0.000 10271 139.579 90 90 0.000 303926 0 1459.161 90 90 0.000 31852 114.724 90 90 0.000 15705 461 25.766 90 90 0.000 4242 298 12.562

jpeg.4753.54 56 0.769 157 174 9.770 1826 - 161 164 1.829 295042 0 - 163 165 1.212 965367 - 163 165 1.212 1128020 1079 - 164 164 0.000 594353 911 2231.235

susan.248.197 199 0.939 614 3014 79.628 0 - 791 1648 52.002 23456 0 - 804 1660 51.566 51785 - 718 1184 39.358 62265 1519 - 736 1353 45.602 39582 1511

susan.260.158 160 0.916 498 2530 80.316 74 - 566 1046 45.889 25041 0 - 576 988 41.700 85169 - 541 1149 52.916 163071 3999 - 564 876 35.616 49000 1510 -

susan.343.182 184 0.936 527 1433 63.224 5 - 612 830 26.265 28313 0 - 621 855 27.368 169618 - 586 862 32.019 111339 901 - 591 887 33.371 55306 1143 -

typeset.10192.123 125 0.744 247 774 68.088 0 - 272 473 42.495 16827 56 - 278 423 34.279 113747 - 280 415 32.530 92153 3643 - 280 456 38.596 59000 1924 -

typeset.10835.26 28 0.349 99 114 13.158 119310 - 98 112 12.500 1623454 0 - 99 111 10.811 697710 - 99 112 11.607 986681 7100 - 99 113 12.389 577573 5961 -

typeset.12395.43 45 0.518 141 148 4.730 5556 - 139 146 4.795 83710 0 - 139 146 4.795 374260 - 143 146 2.055 392093 4782 - 141 147 4.082 175106 4776 -

typeset.15087.23 25 0.557 97 97 0.000 10917 - 97 97 0.000 159259 0 366.055 97 97 0.000 31637 69.139 97 97 0.000 24721 1082 29.235 97 97 0.000 13225 759 32.094

typeset.15577.36 38 0.555 125 125 0.000 12472 1738.422 125 125 0.000 64560 0 1259.265 125 125 0.000 18210 106.197 125 125 0.000 18600 1467 51.688 125 125 0.000 106552 3042 834.797

typeset.16000.68 70 0.658 71 102 30.392 2 - 66 82 19.512 82175 2119 - 66 80 17.500 446480 - 77 86 10.465 13917 28566 - 77 80 3.750 29319 6506 -

typeset.1723.25 27 0.245 60 60 0.000 682 84.750 60 60 0.000 534739 0 2118.056 60 60 0.000 67379 203.365 60 60 0.000 1212 281 3.391 60 60 0.000 5533 481 29.734

typeset.19972.246 248 0.993 - - - - - 1420 3313 57.139 39254 0 - 1427 2898 50.759 275575 - 1325 1963 32.501 68601 48 - 1307 1929 32.245 33530 45 -

typeset.4391.240 242 0.981 - - - - - 1122 2786 59.727 33219 0 - 1132 2476 54.281 118813 - 1067 1419 24.806 100406 332 - 1093 1412 22.592 43577 388 -

typeset.4597.45 47 0.493 147 167 11.976 3247 - 149 155 3.871 135384 0 - 149 156 4.487 421938 - 150 155 3.226 501643 4681 - 149 159 6.289 107981 3505 -

typeset.4724.433 435 0.995 - - - - - 2576 7013 63.268 16285 0 - 2537 5493 53.814 118853 - 2378 5376 55.766 29538 214 - 2460 3433 28.343 15907 211 -

typeset.5797.33 35 0.748 113 113 0.000 2872 100.234 113 113 0.000 342279 0 - 113 113 0.000 20506 59.900 113 113 0.000 15172 652 24.250 113 113 0.000 10733 341 24.953

typeset.5881.246 248 0.986 - - - - - 1393 2232 37.590 36700 0 - 1411 2054 31.305 60603 - 1258 1877 32.978 105414 318 - 1305 1700 23.235 44716 183 -

Average 31.318 7848 355.810 24.589 159790 459 894.441 21.962 233987 82.451 17.907 197501 2966 20.811 16.951 101639 1699 404.801

4.6.
C
O
M
P
U
T
A
T
IO

N
A
L
R
E
S
U
L
T
S

133
Table 4.9: PCMCA-WT computational results of the MILP models MCF, CPB, RPB, DA and AAC for SOPLIB instances.

Model

Instance CPB RPB DA AAC

Name Size ρ(R) LB UB IP Gap Nodes Cuts Time [s] LB UB IP Gap Nodes Time [s] LB UB IP Gap Nodes Cuts Time [s] LB UB IP Gap Nodes Cuts Time [s]

R.200.100.1 200 0.020 29 29 0.000 1768 0 3213.574 29 29 0.000 0 24.012 29 29 0.000 1451 3261 848.387 29 29 0.000 50 74 139.643

R.200.100.15 200 0.847 497 1746 71.535 7842 1805 - 527 1021 48.384 53119 - 499 2080 76.010 33850 2316 - 505 1271 60.268 23601 3229 -

R.200.100.30 200 0.957 697 2763 74.774 15201 1170 - 787 1898 58.535 17855 - 650 2485 73.843 79488 358 - 669 2011 66.733 65134 393 -

R.200.100.60 200 0.991 8362 18659 55.185 7667 0 - 8649 18196 52.468 10968 - 8070 18990 57.504 61665 13 - 7938 18761 57.689 48348 10 -

R.200.1000.1 200 0.020 887 887 0.000 0 0 31.516 887 887 0.000 0 14.601 887 887 0.000 0 2 22.029 887 887 0.000 0 1 53.906

R.200.1000.15 200 0.876 6595 21624 69.501 9253 1876 - 6975 22059 68.380 10893 - 6665 16496 59.596 40385 1638 - 6507 16912 61.524 35789 1527 -

R.200.1000.30 200 0.958 9845 25261 61.027 13673 168 - 10369 24197 57.148 12336 - 9340 30664 69.541 82262 328 - 8841 30351 70.871 64647 258 -

R.200.1000.60 200 0.989 11320 24785 54.327 7800 80 - 11612 21873 46.912 11980 - 10508 28507 63.139 64769 21 - 10364 23748 56.358 29186 23 -

R.300.100.1 300 0.013 13 68 80.882 809 0 - 13 13 0.000 487 537.607 13 13 0.000 200 73 211.776 13 13 0.000 200 576 993.472

R.300.100.15 300 0.905 645 6334 89.817 4837 5196 - 661 3539 81.322 15553 - 625 15979 96.089 23389 1657 - 619 12903 95.203 19199 1646 -

R.300.100.30 300 0.970 1008 4737 78.721 5352 510 - 1075 4179 74.276 3168 - 948 7458 87.289 29523 483 - 889 3767 76.400 26005 186 -

R.300.100.60 300 0.994 895 5080 82.382 3400 0 - 919 2457 62.597 3697 - 824 5013 83.563 21330 129 - 804 3005 73.245 12659 486 -

R.300.1000.1 300 0.013 715 715 0.000 0 0 172.601 715 715 0.000 47 1061.380 715 715 0.000 1032 1809 1889.116 715 719 0.556 308 4592 -

R.300.1000.15 300 0.905 7435 58340 87.256 4827 6870 - 7597 23528 67.711 24212 - 7213 134017 94.618 17525 1599 - 7013 112424 93.762 17304 1452 -

R.300.1000.30 300 0.965 11119 88485 87.434 4600 1204 - 11457 42659 73.143 11512 - 10385 85785 87.894 26988 277 - 10255 40457 74.652 17698 210 -

R.300.1000.60 300 0.994 9815 65180 84.942 2400 166 - 10061 34144 70.534 3970 - 9413 33198 71.646 20904 15 - 9031 30655 70.540 15933 91 -

R.400.100.1 400 0.010 6 376 98.404 231 0 - 6 6 0.000 274 2623.634 6 6 0.000 72 52 162.866 6 6 0.000 24 39 2474.545

R.400.100.15 400 0.927 757 38671 98.042 2436 9344 - 836 8807 90.508 2341 - 722 47117 98.468 10860 810 - 729 47117 98.453 6714 1070 -

R.400.100.30 400 0.978 890 39022 97.719 2279 2373 - 976 12693 92.311 1409 - 780 9434 91.732 14841 128 - 760 7243 89.507 11406 112 -

R.400.100.60 400 0.996 807 17435 95.371 1298 0 - 847 8319 89.818 2310 - 731 5545 86.817 9144 5 - 709 17435 95.933 6586 2 -

R.400.1000.1 400 0.010 780 12643 93.831 47 0 - 780 10025 92.219 60 - 780 780 0.000 0 6 239.929 780 780 0.000 0 1 1734.093

R.400.1000.15 400 0.930 7986 120315 93.362 2614 12923 - 8545 85878 90.050 3956 - 7647 501543 98.475 11229 1013 - 7760 501543 98.453 8643 809 -

R.400.1000.30 400 0.977 10665 267620 96.015 2209 1490 - 11910 127290 90.643 761 - 9927 97441 89.812 13546 183 - 10076 95523 89.452 10687 206 -

R.400.1000.60 400 0.995 9185 212880 95.685 1005 0 - 10199 160443 93.643 598 - 8103 68205 88.120 8847 7 - 7933 55950 85.821 6653 6 -

R.500.100.1 500 0.008 3 384 99.219 100 0 - 3 276 98.913 109 - 3 3 0.000 5 172 233.564 3 3 0.000 10 288 2837.404

R.500.100.15 500 0.945 947 21558 95.607 1408 13214 - 1011 11452 91.172 2816 - 924 81226 98.862 6785 519 - 919 11452 91.975 3610 799 -

R.500.100.30 500 0.980 843 19642 95.708 1661 2897 - 980 14723 93.344 587 - 745 12225 93.906 7690 51 - 773 21749 96.446 5650 111 -

R.500.100.60 500 0.996 811 22047 96.321 0 245 - 771 21032 96.334 658 - 669 8427 92.061 4367 5 - 629 21032 97.009 3294 9 -

R.500.1000.1 500 0.008 297 299 0.669 64 0 - 297 297 0.000 34 1646.009 297 297 0.000 0 0 37.731 297 297 0.000 0 0 2493.358

R.500.1000.15 500 0.940 8831 138150 93.608 1384 14583 - 8825 107776 91.812 3923 - 8297 667814 98.758 5092 560 - 8420 107776 92.188 4280 463 -

R.500.1000.30 500 0.981 11555 156359 92.610 1147 2647 - 12419 156359 92.057 488 - 10431 213239 95.108 6719 138 - 10182 181835 94.400 5880 91 -

R.500.1000.60 500 0.996 7806 43878 82.210 441 837 - 8770 43878 80.013 610 - 7094 104889 93.237 4231 6 - 6929 33260 79.167 3348 11 -

R.600.100.1 600 0.007 1 664 99.849 63 0 - 1 379 99.736 54 - 1 379 99.736 5 1161 - 1 379 99.736 2 79 -

R.600.100.15 600 0.950 743 13272 94.402 702 17651 - 831 13272 93.739 530 - 646 5949 89.141 4985 222 - 670 13272 94.952 3743 223 -

R.600.100.30 600 0.985 905 18932 95.220 658 1350 - 1106 18932 94.158 482 - 873 12875 93.219 4591 58 - 822 18932 95.658 3216 78 -

R.600.100.60 600 0.997 805 26732 96.989 313 16 - 782 26732 97.075 427 - 751 7893 90.485 2696 0 - 694 26732 97.404 1234 1 -

R.600.1000.1 600 0.007 322 322 0.000 0 0 486.591 322 322 0.000 0 445.056 322 322 0.000 0 0 65.987 322 322 0.000 0 0 368.367

R.600.1000.15 600 0.945 10600 121877 91.303 434 19985 - 10464 121877 91.414 542 - 10181 899457 98.868 3120 576 - 10067 121877 91.740 2093 502 -

R.600.1000.30 600 0.984 11252 190145 94.082 194 4117 - 11668 190145 93.864 525 - 10151 151010 93.278 4124 90 - 10088 190145 94.695 3195 93 -

R.600.1000.60 600 0.997 7966 256464 96.894 10 966 - 8027 256464 96.870 251 - 7604 96359 92.109 1952 12 - 7468 87770 91.491 1109 18 -

R.700.100.1 700 0.006 2 447 99.553 24 0 - 2 447 99.553 40 - 2 2 0.000 3 196 1788.796 2 2 0.000 5 273 3216.253

R.700.100.15 700 0.957 877 14478 93.943 130 11401 - 962 6976 86.210 483 - 768 6561 88.294 3262 117 - 799 6977 88.548 2432 207 -

R.700.100.30 700 0.987 843 22673 96.282 709 22 - 819 22673 96.388 520 - 721 20281 96.445 3180 29 - 762 22673 96.639 2125 35 -

R.700.100.60 700 0.997 544 20083 97.291 16 8 - 567 7032 91.937 423 - 516 9030 94.286 1627 0 - 498 27116 98.163 10 0 -

R.700.1000.1 700 0.006 611 631 3.170 4 22 - 611 611 0.000 0 2135.741 611 621 1.610 231 8 - 611 1657 63.126 4 26 -

R.700.1000.15 700 0.956 4844 147321 96.712 394 6364 - 5075 10779 52.918 718 - 4456 147321 96.975 4043 153 - 4636 147321 96.853 2365 60 -

R.700.1000.30 700 0.986 4546 208461 97.819 108 678 - 4777 9829 51.399 510 - 4277 252128 98.304 2848 19 - 4303 50000 91.394 1677 11 -

R.700.1000.60 700 0.997 2901 277619 98.955 9 0 - 3004 277619 98.918 178 - 2855 29769 90.409 1236 1 - 2857 15579 81.661 3 0 -

Average 78.221 2323 2962 976.071 68.509 4300 1061.005 68.109 13460 422 550.018 67.681 9918 425 1590.116

4.6. COMPUTATIONAL RESULTS 134

4.6.2 The CP Models

In this section we evaluate and discuss the performance of the CP models proposed

in section 4.5, and compare them with the Path-Based models proposed in section

4.4.2 that the CP models are based on.

For the rest of this section we will be referring to the Complete Path-Based model

introduced in section 4.4.2.1 as CPB, the Reduced Path-Based model introduced in

section 4.4.2.2 as RPB, the Complete CP model introduced in section 4.5.1 as CCP,

and the Reduced CP model introduced in section 4.5.2 as RCP.

All the experiments in this section are performed on an Intel Xeon Platinum

8375C processor with 8 cores running at 2.9 GHz with 16 GB of RAM. The two

Path-Based MILP models are solved using CPLEX v12.8 [53], with 8 thread stan-

dard B&C algorithm is applied for solving the models, and the two parameters

NodeSelect and MIP emphasis are set to BestBound and MIPEmphasisOptimality

respectively. On the other hand, the two CP models are solved using Google OR-

Tools [46] v9.5 CP-SAT solver (preliminary results have shown that CPLEX CP

solver performs considerably worse compared to OR-Tools CP-SAT solver), with

all 8 threads available are allocated for the solver. A time limit of 1 hour is set

on the computation time of both solvers, where the preprocessing time required to

compute zero-cost paths for the Reduced Path-Based and Reduced CP model are

not considered, being negligible for all the instances considered. The best-known

solutions are obtained from the results appeared in tables 4.7-4.9 (containing 87

open instances), that were performed on an Intel i7-8550U processor running at 1.8

GHz with 8 GB of RAM. CPLEX v12.8 is used for solving the models, configured

with the same parameters mentioned previously, but a single thread is allocated for

the solver, and a time limit of 1 hour is set on the computation time of the solver.

The comparison between the computational results introduced in this section and

4.6. COMPUTATIONAL RESULTS 135

Table 4.10: PCMCA-WT summary of the results achieved by the MILP and CP Solvers
for the models CPB, RPB, CCP, and RCP.

Model

CPB RPB CCP RCP

Average optimality gap 20.4% 15.3% 15.7% 12.0%

Average solution time 690.5 297.6 187.1 38.7

New best-known lower bounds 3 21 15 31

New best-known upper bounds 2 12 6 51

New optimal solutions 0 0 6 6

the best-known results is not fair, however preliminary results have shown that the

Path-Based models (more specifically the Reduced Path-Based model) outperform

the rest of the models introduced in section 4.4 on average even when 8 threads are

allocated for the solver.

Table 4.10 summarizes the performance of each model in terms of solution time,

and the quality of the obtained solutions. In the table, the average optimality gap

reports the average optimality gap for all the instances where all four models are

able to find a feasible/optimal solution before reaching the time limit (a total of 79

out of 116 instances). The average solution time reports the average solution time

in seconds of all the instances that are optimally solved by all four models within

the time limit (a total of 27 out of 116 instances).

Comparing the average optimality gap of each model, the model CPB achieves

an average optimality gap of 20.4% (41.7% across 114 instances), but fails to solve

two instance (R.700.100.1 and typeset.4724.433) as it runs out of memory while

solving the linear relaxation of the model. The model RPB achieves an average

optimality gap of 15.3% (a 25% improvement), and an average optimality gap of

33.8% (a 18.9% improvement across 114 instances) when excluding the instance

4.6. COMPUTATIONAL RESULTS 136

that is not solved by the model CPB, and an average optimality gap of 34.0% (an

18.7% improvement) across all the instances. The model RPB also fails to solve

a single instance (R.700.100.1) as it runs out of memory while solving the linear

relaxation of the model. On the other hand, the model CCP achieves an average

optimality gap of 15.7% (a 23.0% improvement), but fails to solve the instances with

size larger than 200 with a very dense precedence graph, as it runs out of memory

while building the model due to the large number of constraints (4.26). Finally, the

model RCP achieves an average optimality gap of 12.0% (a 41.2% improvement),

and an average optimality gap of 28.6% across all the instances.

In terms of solution time, and comparing the instances that are optimally solved

by all models (27 instances), the model CPB has an average solution time of 690.5

seconds, while the model RPB has an average solution time of 297.6 seconds (a

56.9% improvement). On the other hand, the model CCP has an average solution

time of 187.1 seconds (a 72.9% improvement), while the model RCP has an average

solution time of 38.7 seconds (a 94.4% improvement). We should note that the

model RPB generally finds the optimal solution in less time compared to the model

CPB, however there is no clear pattern which instances fall in that criteria. On

the other hand, the model RCP finds the optimal solution in less time compared

to the model CCP on instances with low to medium density precedence graphs.

Finally, comparing the MILP and CP models, the CP models generally outperform

the MILP models on instances with medium to high density precedence graphs.

In terms of solution costs, the model RPB finds new best-known lower bounds for

21 out of 87 instances (24.1%) compared to the model CPB which finds a new best-

known lower bound for 3 out of 87 instances (3.5%). Furthermore, the model RPB

finds new best-known upper bounds for 12 out of 87 instances (13.8%) compared to

the model CPB which finds a new best-known upper bound for 2 out of 87 instances

(2.3%). This indicates that the strength of the linear relaxation of the model is not

4.6. COMPUTATIONAL RESULTS 137

drastically affected after removing a subset of the variables and constraints from the

model. Furthermore, this shows that the model RPB is generally easier to solve, and

therefore the solver is able to find new bounds more frequently compared to solving

the model CPB. On the other hand, the model RCP finds new best-known lower

bounds for 31 out of 87 instances (35.6%) compared to the model CCP which finds

new lower bounds for 15 out of 87 instances (17.2%). Furthermore, the model RCP

finds new best-known upper bounds for 51 out of 87 instances (58.6%) compared to

the model CCP which finds a new best-known upper bound for 6 out of 87 instances

(6.9%). This indicates that the model RCP is generally more effective compared to

the model CCP. Moreover, the two proposed CP models are able to find the optimal

solution for 6 out of 87 open instances. Generally, the MILP models are better at

finding tighter estimates on the lower bounds (when accounting for previous results),

while the CP models are better at finding lower cost solutions.

In summary, the computational results shows that the reduced models have an

overall better performance compared to the complete models, in both average so-

lution time, achieved average optimality gap, and solution cost. This is due to the

fact that the reduced models have a smaller number of variables and constraints,

which makes them much easier to solve in theory compared to the complete models.

More specifically, the CP models outperform the MILP models on average, in both

the quality of the solutions, the average solution time, and average optimality gap.

Furthermore, the CP models find new best-known lower/upper bounds for a larger

number of instances. The complete results of each model can be found in tables

4.11-4.13, where we report the following for each instance. Columns Name and Size

report the name and size of the instance. Column ρ(R) reports the density of arcs in

the set of precedence relationships computed as 2·|R|
|V |(|V |−1)

. Column Best-Known re-

ports the best-known bounds on the optimal solution for each instance as [LB,UB],

where LB is the lower bound on the optimal solution, and UB is the best-known

4.6. COMPUTATIONAL RESULTS 138

solution. For each model solved, we report the following columns. Columns LB

and UB report the lower and upper bound on the optimal solution achieved by the

corresponding solving method of that model. Column Gap reports the optimality

gap computed as UB−LB
UB

. Column Time reports the solution time in seconds, and

is only reported for the instances that are solved optimally within the time limit.

In the tables, bold numbers indicate that a new best-known lower/upper bound is

established.

We should note that the SOPLIB instances with a very small ρ(R) have an

optimal solution with wj = 0 for all j ∈ V . This means that the optimal solution of

these instance can be found much more efficiently by dropping the set of constraints

(4.27)-(4.31) or their equivalent constraints from the other models. The CP solver

is able to find the optimal solution faster on average compared to the MILP solver.

However, neither solvers is able to inference the implied bounds on wj.

4.6. COMPUTATIONAL RESULTS 139

Table 4.11: PCMCA-WT computational results of solving the models CPB and RPB
with the MILP solver, and solving the models CCP and RCP with the CP Solver for

TSPLIB instances.

MILP Solver CP Solver

Instance CPB RPB CCP RCP

Name Size ρ(R) Best-Known LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s]

br17.12 18 0.359 [38, 44] 41 44 6.818 - 41 44 6.818 - 44 44 0.000 22.604 44 44 0.000 44.550

ESC07 9 0.611 1906 1906 1906 0.000 0.028 1906 1906 0.000 0.070 1906 1906 0.000 0.023 1906 1906 0.000 0.025

ESC11 13 0.359 21274 2174 2174 0.000 0.125 2174 2174 0.000 0.114 2174 2174 0.000 0.107 2174 2174 0.000 0.077

ESC12 14 0.396 1138 1138 1138 0.000 0.035 1138 1138 0.000 0.030 1138 1138 0.000 0.034 1138 1138 0.000 0.037

ESC25 27 0.177 1158 1158 1158 0.000 6.185 1158 1158 0.000 1.945 1158 1158 0.000 0.910 1158 1158 0.000 0.833

ESC47 49 0.108 747 747 747 0.000 59.760 747 747 0.000 22.153 747 747 0.000 3.886 747 747 0.000 2.708

ESC63 65 0.173 56 56 56 0.000 24.600 56 56 0.000 57.347 56 56 0.000 1.517 56 56 0.000 2.465

ESC78 80 0.139 1196 1196 1196 0.000 2410.483 1196 1196 0.000 257.609 1196 1196 0.000 100.511 1196 1196 0.000 18.971

ft53.1 54 0.082 4089 4089 4089 0.000 1764.235 4089 4089 0.000 2023.553 4089 4089 0.000 215.480 4089 4089 0.000 291.099

ft53.2 54 0.094 [4135, 4284] 4112 4317 4.749 - 4161 4334 3.992 - 4102 4284 4.248 - 4103 4284 4.225 -

ft53.3 54 0.225 [4729, 5359] 4746 5425 12.516 - 4799 5279 9.093 - 4493 5358 16.144 - 4508 5484 17.797 -

ft53.4 54 0.604 [5835, 6420] 5922 6420 7.757 - 5923 6420 7.741 - 5338 6502 17.902 - 5357 6420 16.558 -

ft70.1 71 0.036 [33128, 33298] 32777 33308 1.594 - 32827 33308 1.444 - 32669 33472 2.399 - 33101 33298 0.592 -

ft70.2 71 0.075 [33357, 33690] 33057 33977 2.708 - 33089 33916 2.438 - 32938 33670 2.174 - 32897 33670 2.296 -

ft70.3 71 0.142 [34298, 37974] 34152 38546 11.399 - 34423 38351 10.242 - 33825 36939 8.430 - 33813 36932 8.445 -

ft70.4 71 0.589 [36538, 40053] 36737 39145 6.151 - 36850 38771 4.955 - 33825 36939 8.430 - 35664 39843 10.489 -

rbg048a 50 0.444 [261, 263] 260 265 1.887 - 259 264 1.894 - 263 263 0.000 9.442 263 263 0.000 25.294

rbg050c 52 0.459 225 225 225 0.000 863.662 225 225 0.000 36.673 225 225 0.000 2.575 225 225 0.000 1.234

rbg109 111 0.909 [362, 414] 354 426 16.901 - 366 407 10.074 - 357 488 26.844 - 359 401 10.474 -

rbg150a 152 0.927 [456, 518] 447 511 12.524 - 461 509 9.430 - 463 591 21.658 - 461 517 10.832 -

rbg174a 176 0.929 [461, 580] 452 601 24.792 - 463 553 16.275 - 457 571 19.965 - 461 572 19.406 -

rbg253a 255 0.948 [529, 773] 523 1252 58.227 - 532 718 25.905 - - - - - 527 722 27.008 -

rbg323a 325 0.928 [969, 4035] 981 10111 90.298 - 974 2466 60.503 - - - - - 1009 1891 46.642 -

rbg341a 343 0.937 [758, 3800] 764 9313 91.796 - 761 2907 73.822 - - - - - 780 1457 46.465 -

rbg358a 360 0.886 [717, 3296] 950 11528 91.759 - 755 2453 69.221 - - - - - 788 1150 31.478 -

rbg378a 380 0.894 [649, 2759] 672 10242 93.439 - 648 2191 70.424 - - - - - 678 1126 39.787 -

kro124p.1 101 0.046 [32858, 35231] 32651 37120 12.039 - 32630 36099 9.610 - 32504 34100 4.680 - 32561 33962 4.125 -

kro124p.2 101 0.053 [33190, 37956] 32886 42573 22.754 - 33006 39931 17.342 - 32764 37074 11.625 - 32799 35860 8.536 -

kro124p.3 101 0.092 [34217, 51084] 33813 54183 37.595 - 34005 46764 27.284 - 33561 43910 23.569 - 33488 42416 21.049 -

kro124p.4 101 0.496 [39413, 55187] 39969 58944 32.192 - 39333 53456 26.420 - 38433 50910 24.508 - 37676 49590 24.025 -

p43.1 44 0.101 [2827, 4100] 2660 4085 34.884 - 2656 3955 32.845 - 2860 3955 27.686 - 2851 3990 28.546 -

p43.2 44 0.126 [2826, 4135] 991 4450 77.730 - 2705 4210 35.748 - 2856 4160 31.346 - 2870 4180 31.340 -

p43.3 44 0.191 [2864, 4880] 1067 5015 78.724 - 1383 4440 68.851 - 2966 4450 33.348 - 2897 4255 31.915 -

p43.4 44 0.164 [3101, 4620] 2995 5035 40.516 - 3125 4605 32.139 - 3090 4495 31.257 - 3094 4620 33.030 -

prob.100 100 0.048 [674, 1008] 668 2125 68.565 - 677 741 8.637 - 666 784 15.051 - 667 738 9.621 -

prob.42 42 0.116 171 171 171 0.000 396.458 171 171 0.000 230.506 171 171 0.000 79.667 171 171 0.000 34.245

ry48p.1 49 0.091 [13371, 13722] 13114 14272 8.114 - 13200 13670 3.438 - 13036 13670 4.638 - 13061 13670 4.455 -

ry48p.2 49 0.103 [13508, 14491] 13299 14415 7.742 - 13336 14305 6.774 - 13216 14305 7.613 - 13185 14305 7.829 -

ry48p.3 49 0.193 [14371, 15808] 13882 16193 14.272 - 13994 15840 11.654 - 13764 15546 11.463 - 13728 15477 11.301 -

ry48p.4 49 0.588 [17339, 19418] 17162 19744 13.077 - 17180 19583 12.271 - 16550 19837 16.570 - 16483 19495 15.450 -

Average 23.988 552.557 16.741 263.000 10.321 37.184 12.774 36.782

4.6. COMPUTATIONAL RESULTS 140

Table 4.12: PCMCA-WT computational results of solving the models CPB and RPB
with the MILP solver, and solving the models CCP and RCP with the CP Solver for

SOPLIB instances.

MILP Solver CP Solver

Instance CPB RPB CCP RCP

Name Size ρ(R) Best-Known LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s]

R.200.100.1 200 0.020 29 29 29 0.000 18.394 29 29 0.000 6.017 29 29 0.000 28.271 29 29 0.000 31.403

R.200.100.15 200 0.847 [527, 1021] 497 1431 65.269 - 525 1033 49.177 - 381 1864 79.560 - 589 979 39.837 -

R.200.100.30 200 0.957 [787, 1898] 686 3252 78.905 - 774 1761 56.048 - 451 3001 84.972 - 838 1871 55.211 -

R.200.100.60 200 0.991 [8649, 18196] 8760 17004 48.483 - 8861 16930 47.661 - 6018 31561 80.932 - 8440 16197 47.892

R.200.1000.1 200 0.020 887 887 887 0.000 1288.092 887 887 0.000 15.635 887 887 0.000 649.979 887 887 0.000 26.0915

R.200.1000.15 200 0.876 [6975, 16496] 6769 16336 58.564 - 6895 12601 45.282 - 5318 25196 78.893 - 7231 12812 43.561 -

R.200.1000.30 200 0.958 [10369, 24197] 9937 23226 57.216 - 10512 22781 53.856 - 7381 38410 80.784 - 10120 23249 56.471 -

R.200.1000.60 200 0.989 [11612, 21873] 11399 21706 47.485 - 12042 21993 45.246 - 6666 28522 76.629 - 10665 19934 46.498

R.300.100.1 300 0.013 13 13 13 0.000 37.352 13 13 0.000 35.012 13 13 0.000 205.731 13 13 0.000 56.4263

R.300.100.15 300 0.905 [661, 3539] 660 6958 90.515 - 669 2259 70.385 - - - - - 811 2056 60.554 -

R.300.100.30 300 0.970 [1075, 3767] 1008 6790 85.155 - 1102 3163 65.160 - - - - - 1157 2590 55.328 -

R.300.100.60 300 0.994 [919, 2457] 919 4732 80.579 - 949 1954 51.433 - - - - - 991 1865 46.863 -

R.300.1000.1 300 0.013 715 715 715 0.000 3187.049 715 715 0.000 64.683 715 715 0.000 257.074 715 715 0.000 71.6789

R.300.1000.15 300 0.905 [7597, 23528] 7607 110366 93.107 - 7832 24047 67.430 - - - - - 8768 29423 70.200 -

R.300.1000.30 300 0.965 [11457, 40457] 11179 53835 79.235 - 12071 40863 70.460 - - - - - 12269 31618 61.196 -

R.300.1000.60 300 0.994 [10061, 30655] 10180 38212 73.359 - 10275 25323 59.424 - - - - - 10408 21623 51.866 -

R.400.100.1 400 0.010 6 6 376 98.404 - 6 6 0.000 995.137 6 6 0.000 726.057 6 6 0.000 97.3851

R.400.100.15 400 0.927 [836, 8807] 781 35044 97.771 - 856 22767 96.240 - - - - - 963 3591 73.183 -

R.400.100.30 400 0.978 [976, 7243] 911 39022 97.665 - 1010 26438 96.180 - - - - - 1084 3061 64.587 -

R.400.100.60 400 0.996 [847, 5545] 837 3309 74.705 - 861 2652 67.534 - - - - - 966 2069 53.311 -

R.400.1000.1 400 0.010 780 780 780 0.000 161.021 780 780 0.000 124.990 780 780 0.000 208.525 780 780 0.000 90.9555

R.400.1000.15 400 0.930 [8545, 85878] 8357 85878 90.269 - 9083 85878 89.423 - - - - - 9976 35160 71.627 -

R.400.1000.30 400 0.977 [11910, 95523] 11030 127290 91.335 - 11783 127290 90.743 - - - - - 12337 57272 78.459 -

R.400.1000.60 400 0.995 [10199, 55950] 9360 65615 85.735 - 9877 36662 73.059 - - - - - 9954 22376 55.515 -

R.500.100.1 500 0.008 3 3 3 0.000 2157.743 3 3 0.000 1881.297 3 3 0.000 2333.235 3 3 0.000 112.086

R.500.100.15 500 0.945 [1011, 11452] 964 11452 91.582 - 1018 11452 91.111 - - - - - 1250 5508 77.306 -

R.500.100.30 500 0.980 [980, 12225] 849 16963 94.995 - 976 14273 93.162 - - - - - 1099 4841 77.298 -

R.500.100.60 500 0.996 [811, 8427] 840 49105 98.289 - 840 6357 86.786 - - - - - 931 2723 65.810 -

R.500.1000.1 500 0.008 297 297 297 0.000 97.473 297 297 0.000 85.459 297 297 0.000 85.281 297 297 0.000 77.4382

R.500.1000.15 500 0.940 [8831, 107776] 8949 107776 91.697 - 9461 107776 91.222 - - - - - 10628 45356 76.568

R.500.1000.30 500 0.981 [12419, 156359] 11799 156359 92.454 - 12694 156359 91.882 - - - - - 12576 57330 78.064

R.500.1000.60 500 0.996 [8770, 33260] 8233 112466 92.680 - 8192 45696 82.073 - - - - - 6559 20465 67.950 -

R.600.100.1 600 0.007 [1, 379] 1 55 98.182 - 1 55 98.182 - 1 1 0.000 2710.470 1 1 0.000 2182.18

R.600.100.15 600 0.950 [831, 5949] 714 5931 87.962 - 845 4044 79.105 - - - - - 938 2443 61.605 -

R.600.100.30 600 0.985 [1106, 12875] 945 18932 95.008 - 1099 18932 94.195 - - - - - 740 6467 88.557 -

R.600.100.60 600 0.997 [805, 7893] 838 26732 96.865 - 778 25214 96.914 - - - - - 538 2494 78.428 -

R.600.1000.1 600 0.007 322 322 322 0.000 352.202 322 322 0.000 140.645 322 322 0.000 127.397 322 322 0.000 103.378

R.600.1000.15 600 0.945 [10600, 121877] 10753 121877 91.177 - 10915 121877 91.044 - - - - - 9401 65039 85.546 -

R.600.1000.30 600 0.984 [11668, 151010] 11352 190145 94.030 - 12431 190145 93.462 - - - - - 9356 48775 80.818 -

R.600.1000.60 600 0.997 [8027, 87770] 7962 256464 96.895 - 8162 75269 89.156 - - - - - 6908 42652 83.804 -

R.700.100.1 700 0.006 2 - - - - - - - - 2 2 0.000 1649.486 2 2 0.000 619.22

R.700.100.15 700 0.957 [962, 6561] 815 14478 94.371 - 972 5718 83.001 - - - - - 655 2759 76.260 -

R.700.100.30 700 0.987 [843, 20281] 896 6960 87.126 - 983 4218 76.695 - - - - - 588 2531 76.768 -

R.700.100.60 700 0.997 [567, 7032] 538 7033 92.350 - 555 1854 70.065 - - - - - 383 1598 76.033 -

R.700.1000.1 700 0.006 611 611 616 0.812 - 611 616 0.812 - 611 611 0.000 592.107 611 611 0.000 368.139

R.700.1000.15 700 0.956 [5075, 10779] 4375 147321 97.030 - 5136 7145 28.118 - - - - - 2787 6315 55.867 -

R.700.1000.30 700 0.986 [4777, 9829] 4477 32742 86.326 - 4827 6981 30.855 - - - - - 2658 6115 56.533 -

R.700.1000.60 700 0.997 [3004, 15579] 2942 8534 65.526 - 2997 5842 48.699 - - - - - 1913 5357 64.290 -

Average 68.917 912.416 57.687 372.097 26.765 797.801 49.160 319.698

4.7. CONCLUSIONS 141

Table 4.13: PCMCA-WT computational results of solving the models CPB and RPB
with the MILP solver, and solving the models CCP and RCP with the CP Solver for

COMPILERS instances.

MILP Solver CP Solver

Instance CPB RPB CCP RCP

Name Size ρ(R) Best-Known LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s]

gsm.153.124 126 0.970 [256, 311] 257 312 17.628 - 269 311 13.505 - 278 317 12.303 - 280 311 9.968 -

gsm.444.350 353 0.990 [2406, 2873] 2294 4878 52.973 - 2405 4856 50.474 - - - - - 2456 4310 43.016 -

gsm.462.77 79 0.840 [408, 468] 402 478 15.900 - 402 477 15.723 - 419 474 11.603 - 418 465 10.108 -

jpeg.1483.25 27 0.484 87 87 87 0.000 26.041 87 87 0.000 18.556 87 87 0.000 1.194 87 87 0.000 1.071

jpeg.3184.107 109 0.887 [508, 665] 506 656 22.866 - 510 715 28.671 - 518 718 27.855 - 517 692 25.289 -

jpeg.3195.85 87 0.740 [22, 25] 17 25 32.000 - 17 25 32.000 - 23 25 8.000 - 22 25 12.000 -

jpeg.3198.93 95 0.752 [180, 204] 180 188 4.255 - 180 188 4.255 - 181 188 3.723 - 181 188 3.723 -

jpeg.3203.135 137 0.897 [616, 750] 602 980 38.571 - 618 751 17.710 - 629 913 31.106 - 626 750 16.533 -

jpeg.3740.15 17 0.257 33 33 33 0.000 1.523 33 33 0.000 0.839 33 33 0.000 0.157 33 33 0.000 0.095

jpeg.4154.36 38 0.633 90 90 90 0.000 556.798 90 90 0.000 60.924 90 90 0.000 1.272 90 90 0.000 1.764

jpeg.4753.54 56 0.769 164 164 164 0.000 2753.752 164 164 0.000 1790.269 164 164 0.000 15.342 164 164 0.000 16.877

susan.248.197 199 0.939 [804, 1184] 792 1978 59.960 - 802 1370 41.460 - 805 1361 40.852 - 780 1320 40.909 -

susan.260.158 160 0.916 [576, 876] 568 937 39.381 - 573 938 38.913 - 596 991 39.859 - 598 897 33.333 -

susan.343.182 184 0.936 [621, 830] 617 798 22.682 - 622 776 19.845 - 636 1043 39.022 - 632 792 20.202 -

typeset.10192.123 125 0.744 [280, 415] 274 429 36.131 - 282 379 25.594 - 293 385 23.896 - 292 387 24.548 -

typeset.10835.26 28 0.349 [99, 111] 99 111 10.811 - 100 112 10.714 - 110 111 0.901 - 109 111 1.802 -

typeset.12395.43 45 0.518 [143, 146] 140 146 4.110 - 141 146 3.425 - 146 146 0.000 2181.942 146 146 0.000 2780.121

typeset.15087.23 25 0.557 97 97 97 0.000 60.502 97 97 0.000 29.118 97 97 0.000 0.477 97 97 0.000 0.318

typeset.15577.36 38 0.555 125 125 125 0.000 286.210 125 125 0.000 43.164 125 125 0.000 2.116 125 125 0.000 1.713

typeset.16000.68 70 0.658 [77, 80] 66 81 18.519 - 66 80 17.500 - 79 80 1.250 - 71 80 11.250 -

typeset.1723.25 27 0.245 60 60 60 0.000 590.577 60 60 0.000 86.068 60 60 0.000 4.013 60 60 0.000 3.469

typeset.19972.246 248 0.993 [1427, 1929] 1422 3562 60.079 - 1452 2509 42.128 - 1519 2961 48.700 - 1525 2804 45.613 -

typeset.4391.240 242 0.981 [1132, 1412] 1108 2595 57.303 - 1137 2476 54.079 - 1149 2511 54.241 - 1154 1905 39.423 -

typeset.4597.45 47 0.493 [150, 155] 150 154 2.597 - 151 154 1.948 - 154 154 0.000 209.659 154 154 0.000 128.916

typeset.4724.433 435 0.995 [2576, 3433] - - - - 2673 6131 56.402 - - - - - 2679 7194 62.761 -

typeset.5797.33 35 0.748 113 113 113 0.000 851.490 113 113 0.000 28.504 113 113 0.000 0.547 113 113 0.000 0.574

typeset.5881.246 248 0.986 [1411, 1700] 1378 2258 38.973 - 1396 2426 42.457 - 1406 2385 41.048 - 1394 2084 33.109 -

Average 20.567 640.862 19.141 257.180 15.374 241.672 16.059 293.492

4.7 Conclusions

In this chapter we introduced an extension on the Precedence-Constrained Minimum-

Cost Arborescence problem, named the Precedence-Constrained Minimum-Cost Ar-

borescence with Waiting-Times, and presented a proof that the problem belongs

to the NP-hard complexity class through a reduction to the Rectilinear Steiner

Arborescence problem.

Several MILP models for the PCMCA-WT are devised, by extending and modi-

4.7. CONCLUSIONS 142

fying some of the MILP models proposed for the PCMCA problem. The Computa-

tional results has shown that for a total of 68 instances, the model DA achieves the

lowest average optimality gap of 13.8%, followed by the model RPB with an average

optimality gap of 15.5%, followed the model AAC with an average optimality gap

of 15.7%. Furthermore, for a total of 11 out of the same 68 instances, the model

RPB is 73.9% faster on average at finding the optimal solution for those instances

compared to the model DA, and 43.1% faster on average compared to the model

AAC. Finally, for a total of 116 instances, the model RPB is able to find the best

lower and upper bound for a larger number of instances (68 out of 116 instances)

compared to the models DA (37 out of 116 instances) and AAC (26 out of 116

instances). Considering all factors, we can conclude that the model RPB has the

best overall performance on the benchmark instances considered.

Finally, we proposed two polynomial sized CP models that are based on the two

models CPB and RBP. The computational experiments conducted have shown that

increasing the number of threads used by the MILP Solver considerably improves the

performance of the two MILP models CPB and RBP. In addition, the computational

experiments have shown that the CP models are often able to find better quality

solutions compared to the two MILP models, however the proposed MILP models

are often better at finding tighter lower bound estimates on the value of the optimal

solution. Finally, by utilizing a parallel MILP solver and CP solver, we were able to

find the optimal solution to six additional instances, and improved lower bounds for

70 instances, and improved upper bounds for 71 instances, out of a total of 87 open

instances. The best-known bounds for the benchmark instances (116 instances) can

be found in tables 4.14-4.16, that contain a total of 80 open instances.

4.7. CONCLUSIONS 143

Table 4.14: PCMCA-WT best-known solutions for TSPLIB instances.

Name Size ρ(R) Best-Known Solution

br17.10 18 0.314 44

br17.12 18 0.359 44

ESC07 9 0.611 1906

ESC11 13 0.359 2174

ESC12 14 0.396 1138

ESC25 27 0.177 1158

ESC47 49 0.108 747

ESC63 65 0.173 56

ESC78 80 0.139 1196

ft53.1 54 0.082 4089

ft53.2 54 0.094 [4161, 4284]

ft53.3 54 0.225 [4799, 5279]

ft53.4 54 0.604 [5923, 6420]

ft70.1 71 0.036 [33101, 33298]

ft70.2 71 0.075 [33089, 33670]

ft70.3 71 0.142 [34423, 36932]

ft70.4 71 0.589 [36850, 36939]

rbg048a 50 0.444 263

rbg050c 52 0.459 225

rbg109 111 0.909 [366, 401]

rbg150a 152 0.927 [463, 509]

rbg174a 176 0.929 [463, 553]

rbg253a 255 0.948 [532, 718]

rbg323a 325 0.928 [1009, 1891]

rbg341a 343 0.937 [780, 1457]

rbg358a 360 0.886 [950, 1150]

rbg378a 380 0.894 [678, 1126]

kro124p.1 101 0.046 [32651, 33962]

kro124p.2 101 0.053 [33006, 35860]

kro124p.3 101 0.092 [34005, 42416]

kro124p.4 101 0.496 [39969, 49590]

p43.1 44 0.101 [2860, 3955]

p43.2 44 0.126 [2870, 4160]

p43.3 44 0.191 [2966, 4255]

p43.4 44 0.164 [3125, 4495]

prob.100 100 0.048 [677, 738]

prob.42 42 0.116 171

ry48p.1 49 0.091 [13200, 13670]

ry48p.2 49 0.103 [13336, 14305]

ry48p.3 49 0.193 [13994, 15477]

ry48p.4 49 0.588 [17180, 19495]

4.7. CONCLUSIONS 144

Table 4.15: PCMCA-WT best-known solutions for SOPLIB instances.

Name Size ρ(R) Best-Known Solution

R.200.100.1 200 0.020 29

R.200.100.15 200 0.847 [589, 979]

R.200.100.30 200 0.957 [838, 1761]

R.200.100.60 200 0.991 [8861, 16197]

R.200.1000.1 200 0.020 887

R.200.1000.15 200 0.876 [7231, 12601]

R.200.1000.30 200 0.958 [10512, 22781]

R.200.1000.60 200 0.989 [12042, 19934]

R.300.100.1 300 0.013 13

R.300.100.15 300 0.905 [811, 2056]

R.300.100.30 300 0.970 [1157, 2590]

R.300.100.60 300 0.994 [991, 1865]

R.300.1000.1 300 0.013 715

R.300.1000.15 300 0.905 [8768, 24047]

R.300.1000.30 300 0.965 [12269, 31618]

R.300.1000.60 300 0.994 [10408, 21623]

R.400.100.1 400 0.010 6

R.400.100.15 400 0.927 [963, 3591]

R.400.100.30 400 0.978 [1084, 3061]

R.400.100.60 400 0.996 [966, 2069]

R.400.1000.1 400 0.010 780

R.400.1000.15 400 0.930 [9976, 35160]

R.400.1000.30 400 0.977 [12337, 57272]

R.400.1000.60 400 0.995 [9954, 22376]

R.500.100.1 500 0.008 3

R.500.100.15 500 0.945 [1250, 5508]

R.500.100.30 500 0.980 [1099, 4841]

R.500.100.60 500 0.996 [931, 2723]

R.500.1000.1 500 0.008 297

R.500.1000.15 500 0.940 [10628, 45356]

R.500.1000.30 500 0.981 [12694, 57330]

R.500.1000.60 500 0.996 [8233, 20465]

R.600.100.1 600 0.007 1

R.600.100.15 600 0.950 [938, 2443]

R.600.100.30 600 0.985 [1099, 6467]

R.600.100.60 600 0.997 [838, 2494]

R.600.1000.1 600 0.007 322

R.600.1000.15 600 0.945 [10915, 65039]

R.600.1000.30 600 0.984 [12431, 48775]

R.600.1000.60 600 0.997 [8162, 42652]

R.700.100.1 700 0.006 2

R.700.100.15 700 0.957 [972, 2759]

R.700.100.30 700 0.987 [983, 2531]

R.700.100.60 700 0.997 [555, 1598]

R.700.1000.1 700 0.006 611

R.700.1000.15 700 0.956 [5136, 6315]

R.700.1000.30 700 0.986 [4827, 6115]

R.700.1000.60 700 0.997 [2997, 5357]

4.7. CONCLUSIONS 145

Table 4.16: PCMCA-WT best-known solutions for COMPILERS instances.

Name Size ρ(R) Best-Known Solution

gsm.153.124 126 0.970 [280, 311]

gsm.444.350 353 0.990 [2456, 4310]

gsm.462.77 79 0.840 [419, 465]

jpeg.1483.25 27 0.484 87

jpeg.3184.107 109 0.887 [518, 656]

jpeg.3195.85 87 0.740 [23, 25]

jpeg.3198.93 95 0.752 188

jpeg.3203.135 137 0.897 [629, 750]

jpeg.3740.15 17 0.257 33

jpeg.4154.36 38 0.633 90

jpeg.4753.54 56 0.769 164

susan.248.197 199 0.939 [805, 1320]

susan.260.158 160 0.916 [598, 897]

susan.343.182 184 0.936 [636, 776]

typeset.10192.123 125 0.744 [293, 379]

typeset.10835.26 28 0.349 [110, 111]

typeset.12395.43 45 0.518 146

typeset.15087.23 25 0.557 97

typeset.15577.36 38 0.555 125

typeset.16000.68 70 0.658 [79, 80]

typeset.1723.25 27 0.245 60

typeset.19972.246 248 0.993 [1525, 2509]

typeset.4391.240 242 0.981 [1154, 1905]

typeset.4597.45 47 0.493 154

typeset.4724.433 435 0.995 [2679, 6131]

typeset.5797.33 35 0.748 113

typeset.5881.246 248 0.986 [1406, 2084]

Chapter 5

Conclusions

In this thesis, we have introduced and studied the Precedence-Constrained

Minimum-Cost Arborescence Problem, and its extension, the Precedence-Constrained

Minimum-Cost Arborescence Problem with Waiting-Times. For both problems, we

presented proofs which shows that both problems belong to the NP-hard complex-

ity class, therefore we utilized several techniques from the area of combinatorial

optimizations for solving the problems. A computational study for the different

techniques used is presented, with the aim of studying the performance of each

method in terms of solution time, memory consumption, and solution quality.

The first part of the thesis introduced several MILP models for the PCMCA,

by extending selected models previously proposed in the literature for the MCA

problem. The models are extended by adding precedence-enforcing constraints to

models in order to satisfy the precedence relationships between vertex pairs. The

first precedence-enforcing constraints proposed are based on modifying the flow-

conservation constraints of a Multicommodity flow model. Next, we introduced

precedence-enforcing constraints that eliminate precedence-violating paths through

value propagation along the paths of a potential solution. Finally, we extended the

classical connectivity cover constraint of the MCA in order to satisfy the prece-

146

147

dence relationships between vertex pairs. The computational study conducted has

shown that the latter model has the best overall performance compared to the other

proposed models. Finally, we have introduced a B&B algorithm for the PCMCA

problem that is based on a Lagragian relaxation of the best performing model for the

PCMCA. The B&B algorithm was evaluated using several step-size rules in order

to solve the Lagrangian relaxation. The computational study conducted has shown

that the B&B algorithm is able to find the optimal solution faster when compared

to solving the same model with an MILP solver, except on a very small subset of

instances.

The second part of this thesis introduced several MILP models for the PCMCA-

WT, by extending a subset of the models introduced for the PCMCA. Furthermore,

we introduced a new polynomial sized model for the PCMCA-WT, and by exploiting

a special feature of the problem we were able to further reduced the number of

variables and constraints in the model. The computational study conducted has

shown that the polynomial sized model with the reduced number of variables and

constraints has the best overall performance compared to the other models proposed

for the PCMCA-WT. Compared to the PCMCA, the models perform less effectively

on PCMCA-WT instances, and therefore we have considered using a parallel MILP

Solver and a parallel CP Solver to enhance the performance of the model and improve

the solution quality of the benchmark instances. The performance of the MILP and

CP Solvers was evaluated by solving the polynomial sized models, due to limitations

of the utilized CP solver, and based on the fact that the Reduced Path-Based model

has the best overall performance at solving the PCMCA-WT. The computational

study conducted has shown that the CP Solver has an overall better performance

compared to the MILP Solver on the considered model. We should note that,

utilizing the CP Solver in order to solve the models proposed for the PCMCA was

not considered, as the MILP Solver performs sufficiently well on the considered

148

benchmark instances.

Future work on the PCMCA could consider using more effective techniques for

solving the Lagrangian relaxation, and faster converging step-size rules compared to

the ones considered in this study. Furthermore, more effective pruning techniques

could be considered in order to reduce the size of the solution space explored by

the B&B algorithm. Finally, the performance of the models should be evaluated on

larger size instances with different structures and size of precedence relationships.

For the PCMCA-WT, future work could investigate finding new valid inequalities

for the problem, combining MILP and CP solvers in order to utilize their different

strengths, and possibly extending the B&B algorithm proposed for the PCMCA to

solve instances of the PCMCA-WT.

Bibliography

[1] Aarts, E., Aarts, E. H. L., & Lenstra, J. K. (2003). Local search in combinatorial
optimization. Princeton University Press.

[2] Abdelmaguid, T. F. (2018). An efficient mixed integer linear programming
model for the minimum spanning tree problem. Mathematics , 6 (10), 183.

[3] Ascheuer, N., Jünger, M., & Reinelt, G. (2000). A branch & cut algorithm
for the asymmetric traveling salesman problem with precedence constraints.
Computational Optimization and Applications , 17 (1), 61–84.

[4] Bang-Jensen, J. (1991). Edge-disjoint in-and out-branchings in tournaments
and related path problems. Journal of Combinatorial Theory, Series B , 51 (1),
1–23.

[5] Bazaraa, M. S., & Sherali, H. D. (1981). On the choice of step size in subgradient
optimization. European Journal of Operational Research, 7 (4), 380–388.

[6] Bérczi, K., Fujishige, S., & Kamiyama, N. (2009). A linear-time algorithm to
find a pair of arc-disjoint spanning in-arborescence and out-arborescence in a
directed acyclic graph. Information processing letters , 109 (23-24), 1227–1231.

[7] Bock, F. (1971). An algorithm to construct a minimum directed spanning tree
in a directed network. Developments in operations research, (pp. 29–44).

[8] Böcker, S., & Rasche, F. (2008). Towards de novo identification of metabolites
by analyzing tandem mass spectra. Bioinformatics , 24 (16), i49–i55.

[9] Cai, M., Deng, X., & Wang, L. (2004). Minimum k arborescences with band-
width constraints. Algorithmica, 38 (4), 529–537.

[10] Carrabs, F., Cerulli, R., Pentangelo, R., & Raiconi, A. (2021). Minimum span-
ning tree with conflicting edge pairs: a branch-and-cut approach. Annals of
Operations Research, 298 (1), 65–78.

[11] Chekuri, C., Khanna, S., & Shepherd, F. B. (2005). Multicommodity flow, well-
linked terminals, and routing problems. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing , (pp. 183–192).

149

BIBLIOGRAPHY

[12] Chou, X., Dell’Amico, M., Jamal, J., & Montemanni, R. (2023). Precedence-
constrained arborescences. European Journal of Operational Research, 307 (2),
575–589.

[13] Chu, Y.-J. (1965). On the shortest arborescence of a directed graph. Scientia
Sinica, 14 , 1396–1400.

[14] Cococcioni, M., & Fiaschi, L. (2021). The big-m method with the numerical
infinite m. Optimization Letters , 15 (7), 2455–2468.

[15] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction
to algorithms . MIT press.

[16] Dantzig, G. B. (1990). Origins of the simplex method. In A history of scientific
computing , (pp. 141–151). Springer Science & Business Media.

[17] Darmann, A., Pferschy, U., & Schauer, J. (2009). Determining a minimum
spanning tree with disjunctive constraints. In International Conference on Al-
gorithmic Decision Theory , (pp. 414–423). Springer.

[18] Dasgupta, D., & Michalewicz, Z. (2013). Evolutionary algorithms in engineering
applications . Springer Science & Business Media.

[19] Dell’Amico, M., Jamal, J., & Montemanni, R. (2021). A mixed integer linear
program for a precedence-constrained minimum-cost arborescence problem. In
2021 The 8th International Conference on Industrial Engineering and Applica-
tions (Europe), (pp. 216–221).

[20] Dell’Amico, M., Jamal, J., & Montemanni, R. (2023). A branch-and-bound
algorithm for the precedence-constrained minimum-cost arborescence problem.
Computers & Operations Research, (p. 106248).

[21] Dell’Amico, M., Jamal, J., & Montemanni, R. (2023). Compact models for the
precedence-constrained minimum-cost arborescence problem. In Advances in
Intelligent Traffic and Transportation Systems , (pp. 112–126). IOS Press.

[22] Dell’Amico, M., Jamal, J., & Montemanni, R. (2023). Compact models for
the precedence-constrained minimum-cost arborescence problem with waiting-
times. Annals of Operations Research (under review).

[23] Derboni, M., Rizzoli, A. E., Montemanni, R., Jamal, J., Kovacs, N., & Cellina,
F. (2018). Challenges and opportunities in deploying a mo-bility platform in-
tegrating public transport and car-pooling services. In Proceedings of the 18th
Swiss Transport Research Conference.

[24] Dowsland, K. A., & Thompson, J. (2012). Simulated annealing. Handbook of
natural computing , (pp. 1623–1655).

150

BIBLIOGRAPHY

[25] Duhamel, C., Gouveia, L., Moura, P., & Souza, M. (2008). Models and heuris-
tics for a minimum arborescence problem. Networks: An International Journal ,
51 (1), 34–47.

[26] Edmonds, J. (1967). Optimum branchings. Journal of Research of the national
Bureau of Standards B , 71 (4), 233–240.

[27] Escudero, L. F. (1988). An inexact algorithm for the sequential ordering prob-
lem. European Journal of Operational Research, 37 (2), 236–249.

[28] Escudero, L. F., Guignard, M., & Malik, K. (1994). A lagrangian relax-and-
cut approach for the sequential ordering problem with precedence relationships.
Annals of Operations Research, 50 (1), 219–237.

[29] Eswaran, K. P., & Tarjan, R. E. (1976). Augmentation problems. SIAM Journal
on Computing , 5 (4), 653–665.

[30] Fertin, G., Fradin, J., & Jean, G. (2017). Algorithmic aspects of the maxi-
mum colorful arborescence problem. In International Conference on Theory
and Applications of Models of Computation, (pp. 216–230). Springer.

[31] Fischetti, M., & Toth, P. (1993). An efficient algorithm for the min-sum ar-
borescence problem on complete digraphs. ORSA Journal on Computing , 5 (4),
426–434.

[32] Fischetti, M., & Vigo, D. (1997). A branch-and-cut algorithm for the resource-
constrained minimum-weight arborescence problem. Networks: An Interna-
tional Journal , 29 (1), 55–67.

[33] Fisher, M. L. (1981). The lagrangian relaxation method for solving integer
programming problems. Management science, 27 (1), 1–18.

[34] Ford, L. R., & Fulkerson, D. R. (1956). Maximal flow through a network.
Canadian journal of Mathematics , 8 , 399–404.

[35] Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in im-
proved network optimization algorithms. Journal of the ACM (JACM), 34 (3),
596–615.

[36] Frieze, A. M., & Tkocz, T. (2022). A randomly weighted minimum arborescence
with a random cost constraint. Mathematics of Operations Research, 47 (2),
1664–1680.

[37] Gabow, H. N., Galil, Z., Spencer, T., & Tarjan, R. E. (1986). Efficient algo-
rithms for finding minimum spanning trees in undirected and directed graphs.
Combinatorica, 6 (2), 109–122.

151

BIBLIOGRAPHY

[38] Galbiati, G., Gualandi, S., & Maffioli, F. (2011). On minimum changeover cost
arborescences. In International Symposium on Experimental Algorithms , (pp.
112–123). Springer.

[39] Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A Guide
to the Theory of NP-Completeness . W H Freeman & Co., San Francisco.

[40] Georgiadis, L. (2003). Arborescence optimization problems solvable by ed-
monds’ algorithm. Theoretical Computer Science, 301 (1-3), 427–437.

[41] Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial
optimization, (pp. 2093–2229). Springer.

[42] Glover, F. W., & Kochenberger, G. A. (2006). Handbook of metaheuristics ,
vol. 57. Springer Science & Business Media.

[43] Goemans, M. X. (2005). Lecture notes on the ellipsoid algorithm.

[44] Goemans, M. X. (2007). Lecture notes on the arborescence problem.

[45] Gogna, A., & Tayal, A. (2013). Metaheuristics: review and application. Journal
of Experimental & Theoretical Artificial Intelligence, 25 (4), 503–526.

[46] Google (2015). Google OR-Tools. [last accessed 10-March-2023].
URL https://developers.google.com/optimization

[47] Gouveia, L., & Lopes, M. J. (2005). The capacitated minimum spanning tree
problem: On improved multistar constraints. European Journal of Operational
Research, 160 (1), 47–62.

[48] Grakova, E., Golasowski, M., Montemanni, R., Slaninová, K., Martinovič, J.,
Jamal, J., Janurová, K., & Salani, M. (2019). Hyperparameter search in pe-
riodic vehicle routing problem. In MATEC Web of Conferences , vol. 259, (p.
01003). EDP Sciences.

[49] Hakimi, S. L. (1965). Optimum distribution of switching centers in a com-
munication network and some related graph theoretic problems. Operations
research, 13 (3), 462–475.

[50] Hao, J., & Orlin, J. B. (1994). A faster algorithm for finding the minimum cut
in a directed graph. Journal of Algorithms , 17 (3), 424–446.

[51] Henschel, R., Leal-Taixé, L., & Rosenhahn, B. (2014). Efficient multiple people
tracking using minimum cost arborescences. In German Conference on Pattern
Recognition, (pp. 265–276). Springer.

152

https://developers.google.com/optimization

BIBLIOGRAPHY

[52] Hoffman, A. J. (1974). A generalization of max flow—min cut. Mathematical
Programming , 6 (1), 352–359.

[53] IBM (1988). IBM CPLEX Optimizer. [last accessed 10-March-2023].
URL https://www.ibm.com/de-de/analytics/cplex-optimizer

[54] Jamal, J., Loske, D., Klumpp, M., Chou, X., Di Florio Di Renzo, A.,
Dell’Amico, M., & Montemanni, R. (2022). Skill-based joint order batching
and picker routing problem. In 2022 The 9th International Conference on In-
dustrial Engineering and Applications (Europe), (pp. 64–69).

[55] Jamal, J., & Montemanni, R. (2018). Industrial cluster symbiosis optimisa-
tion based on linear programming. Process Integration and Optimization for
Sustainability , 2 (4), 353–364.

[56] Jamal, J., Montemanni, R., Huber, D., Derboni, M., & Rizzoli, A. E. (2017).
A multi-modal and multi-objective journey planner for integrating carpooling
and public transport. Journal of Traffic and Logistics Engineering Vol , 5 (2),
68–72.

[57] Jamal, J., Rizzoli, A. E., Montemanni, R., & Huber, D. (2016). Tour planning
and ride matching for an urban social carpooling service. In MATEC Web of
Conferences , vol. 81, (p. 04010). EDP Sciences.

[58] Jamal, J., Shobaki, G., Papapanagiotou, V., Gambardella, L. M., & Monte-
manni, R. (2017). Solving the sequential ordering problem using branch and
bound. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI),
(pp. 1–9). IEEE.

[59] Kawatra, R., & Bricker, D. (2004). Design of a degree-constrained minimal
spanning tree with unreliable links and node outage costs. European Journal
of Operational Research, 156 (1), 73–82.

[60] Kleinberg, J., & Tardos, E. (2006). Algorithm design. Pearson Education India.

[61] Kováč, J. (2013). Complexity of the path avoiding forbidden pairs problem
revisited. Discrete Applied Mathematics , 161 (10-11), 1506–1512.

[62] Kramer, O. (2017). Genetic algorithms. In Genetic algorithm essentials , (pp.
11–19). Springer.

[63] Li, J., Liu, X., & Lichen, J. (2017). The constrained arborescence augmentation
problem in digraphs. In 2017 3rd IEEE International Conference on Computer
and Communications (ICCC), (pp. 1204–1209). IEEE.

153

https://www.ibm.com/de-de/analytics/cplex-optimizer

BIBLIOGRAPHY

[64] Li, Y., Thai, M. T., Wang, F., & Du, D.-Z. (2006). On the construction of
a strongly connected broadcast arborescence with bounded transmission delay.
IEEE Transactions on mobile computing , 5 (10), 1460–1470.

[65] Lucena, A. (1992). Steiner problem in graphs: Lagrangean relaxation and
cutting planes. Coal Bulletin, 21 (2), 2–8.

[66] Manson, S. M. (2001). Simplifying complexity: a review of complexity theory.
Geoforum, 32 (3), 405–414.

[67] Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming
formulation of traveling salesman problems. Journal of the ACM (JACM),
7 (4), 326–329.

[68] Montemanni, R., & Jamal, J. (2018). Industrial cluster optimization based
on linear programming. In 2018 5th International Conference on Industrial
Engineering and Applications (ICIEA), (pp. 241–246). IEEE.

[69] Montemanni, R., Smith, D. H., & Gambardella, L. M. (2008). A heuristic
manipulation technique for the sequential ordering problem. Computers & Op-
erations Research, 35 (12), 3931–3944.

[70] Morais, V., Gendron, B., & Mateus, G. R. (2019). The p-arborescence star
problem: Formulations and exact solution approaches. Computers & Operations
Research, 102 , 91–101.

[71] Ognibene Pietri, N., Chou, X., Loske, D., Klumpp, M., Jamal, J., & Mon-
temanni, R. (2022). The picking and packing problem in buy-online-pick-up-
in-store retailing. In Operations Research Proceedings 2021: Selected Papers
of the International Conference of the Swiss, German and Austrian Opera-
tions Research Societies (SVOR/ASRO, GOR eV, ÖGOR), University of Bern,
Switzerland, August 31–September 3, 2021 , (pp. 239–244). Springer.

[72] Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization: al-
gorithms and complexity . Courier Corporation.

[73] Papapanagiotou, V., Jamal, J., Montemanni, R., Shobaki, G., & Gambardella,
L. M. (2015). A comparison of two exact algorithms for the sequential ordering
problem. In 2015 IEEE conference on systems, process and control (ICSPC),
(pp. 73–78). IEEE.

[74] Pereira, A. H., Mateus, G. R., & Urrutia, S. (2022). Branch-and-cut algorithms
for the-arborescence star problem. International Transactions in Operational
Research, 29 (4), 2374–2400.

154

BIBLIOGRAPHY

[75] Reinelt, G. (1991). TSPLIB-—A traveling salesman problem library. ORSA
journal on computing , 3 (4), 376–384.

[76] Roos, C., Terlaky, T., & Vial, J. P. (2005). Interior point methods for linear
optimization. Springer Science & Business Media.

[77] Schrijver, A. (1998). Theory of linear and integer programming . John Wiley &
Sons.

[78] Shi, W., & Su, C. (2005). The rectilinear steiner arborescence problem is np-
complete. SIAM Journal on Computing , 35 (3), 729–740.

[79] Shobaki, G., & Jamal, J. (2015). An exact algorithm for the sequential ordering
problem and its application to switching energy minimization in compilers.
Computational Optimization and Applications , 61 (2), 343–372.

[80] Shobaki, G., Rmaileh, N. E. A., & Jamal, J. (2016). Studying the impact of
bit switching on cpu energy. In Proceedings of the 19th International Workshop
on software and compilers for embedded systems , (pp. 173–179).

[81] S&P Global (2007). Belarussian president threatens new duties on russian oil
transit. [Online; posted 29-January-2007; last accessed 10-March-2023].
URL https://www.spglobal.com/marketintelligence/en/mi/

country-industry-forecasting.html?ID=106598459

[82] Talbi, E.-G. (2009). Metaheuristics: from design to implementation. John
Wiley & Sons.

[83] Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM journal
on computing , 1 (2), 146–160.

[84] Toth, P., & Vigo, D. (1995). An exact algorithm for the capacitated shortest
spanning arborescence. Annals of Operations Research, 61 (1), 121–141.

[85] Van Beek, P. (2006). Backtracking search algorithms. In Foundations of arti-
ficial intelligence, vol. 2, (pp. 85–134). Elsevier.

[86] Viana, L. A. d. C., & Campêlo, M. (2020). Two dependency constrained span-
ning tree problems. International Transactions in Operational Research, 27 (2),
867–898.

[87] Weiss, M. A. (1995). Data structures and algorithm analysis . Benjamin-
Cummings Publishing Co., Inc.

[88] Wolsey, L. A., & Nemhauser, G. L. (1999). Integer and combinatorial optimiza-
tion, vol. 55. John Wiley & Sons.

155

https://www.spglobal.com/marketintelligence/en/mi/country-industry-forecasting.html?ID=106598459
https://www.spglobal.com/marketintelligence/en/mi/country-industry-forecasting.html?ID=106598459

	Introduction
	Combinatorial and Integer Optimization
	Fundamental Concepts of Complexity Theory
	Heuristic and Relaxation Methods

	Fundamental Concepts of Graph Theory
	Outline of the Thesis

	The Minimum-Cost Arborescence Problem
	Problem Definition
	Mixed Integer Linear Programming Models
	Set-Based Model
	Flow-Based Model

	Polynomial-Time Algorithms
	Literature Review
	Conclusions

	The Precedence-Constrained Minimum-Cost Arborescence Problem
	Problem Definition
	Applications
	Computational Complexity
	Mixed Integer Linear Programming Models
	Multicommodity Flow Model
	Path-Based Models
	Ust Model
	Ut Model

	Flow-Based Models
	Compact-Ust Model
	Compact-Ut Model

	Set-Based Model

	A Branch-and-Bound Algorithm
	A Lagrangian Relaxation
	The Relaxed Model
	Solving the Lagrangian Relaxation

	Branch-and-Bound Algorithm Data Structures
	Search-Tree
	Search-Tree Node

	Lower Bound and Upper Bound Computation
	Branching Scheme
	Reduction, Pruning and Bypass Rules

	Computational Results
	The MILP Models
	The Linear Relaxation of the Models
	The IP Models
	Overall Results

	The B&B Algorithm
	Lagrangian Relaxation
	Overall Results

	Conclusions

	The Precedence-Constrained Minimum-Cost Arborescence Problem with Waiting Times
	Problem Definition
	Computational Complexity
	Flow-Precedence Constraints
	Mixed Integer Linear Programming Models
	Multicommodity Flow Model
	Path-Based Models
	Complete Model
	Reduced Model

	Distance-Accumulation Model
	Adjusted Arc-Cost Model

	Constraint Programming Models
	Complete Model
	Reduced Model

	Computational Results
	The MILP Models
	The Linear Relaxation of the Models
	The IP Models
	Overall Results

	The CP Models

	Conclusions

	Conclusions

