
20/05/2024 22:52

Gradient Coding with Dynamic Clustering for Straggler-Tolerant Distributed Learning / Buyukates, B.;
Ozfatura, E.; Ulukus, S.; Gunduz, D.. - In: IEEE TRANSACTIONS ON COMMUNICATIONS. - ISSN 0090-6778. -
714:6(2022), pp. 3317-3332. [10.1109/TCOMM.2022.3166902]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



ar
X

iv
:2

10
3.

01
20

6v
1 

 [
cs

.I
T

] 
 1

 M
ar

 2
02

1
1

Gradient Coding with Dynamic Clustering for

Straggler-Tolerant Distributed Learning

Baturalp Buyukates1, Emre Ozfatura2, Sennur Ulukus1, and Deniz Gündüz2
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Abstract

Distributed implementations are crucial in speeding up large scale machine learning applications.

Distributed gradient descent (GD) is widely employed to parallelize the learning task by distributing the

dataset across multiple workers. A significant performance bottleneck for the per-iteration completion

time in distributed synchronous GD is straggling workers. Coded distributed computation techniques

have been introduced recently to mitigate stragglers and to speed up GD iterations by assigning redundant

computations to workers. In this paper, we consider gradient coding (GC), and propose a novel dynamic

GC scheme, which assigns redundant data to workers to acquire the flexibility to dynamically choose

from among a set of possible codes depending on the past straggling behavior. In particular, we consider

GC with clustering, and regulate the number of stragglers in each cluster by dynamically forming the

clusters at each iteration; hence, the proposed scheme is called GC with dynamic clustering (GC-DC).

Under a time-correlated straggling behavior, GC-DC gains from adapting to the straggling behavior

over time such that, at each iteration, GC-DC aims at distributing the stragglers across clusters as

uniformly as possible based on the past straggler behavior. For both homogeneous and heterogeneous

worker models, we numerically show that GC-DC provides significant improvements in the average

per-iteration completion time without an increase in the communication load compared to the original

GC scheme.

This work was supported by EC H2020-MSCA-ITN-2015 project SCAVENGE under grant number 675891, by the European

Research Council project BEACON under grant number 677854, and by CHIST-ERA grant CHIST-ERA-18-SDCDN-001 (funded

by EPSRC-EP/T023600/1). This work was presented in part at the IEEE International Conference on Communications, Montreal,

Canada, June 2021 [1].
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I. INTRODUCTION

Gradient descent (GD) methods are widely used in machine learning problems to optimize

the model parameters in an iterative fashion. When the size of the training datasets and the

complexity of the trained models are formidable, it is not feasible to train the model on a

single machine within a reasonable time frame. To speed up GD iterations, gradient computa-

tions can be distributed across multiple workers. In a typical parameter server (PS) framework

with synchronous GD iterations, the dataset is distributed across the workers, and each worker

computes a gradient estimate, also called a partial gradient, based on its own local dataset.

The PS then aggregates these partial gradients to obtain the full gradient and update the model.

In this distributed setting, the main performance bottleneck is the slowest straggling workers.

Many recent works have focused on developing straggler-tolerant distributed GD schemes. In

these works, the main theme is to assign redundant computations to workers to overcome the

potential delays caused by straggling workers, either together with coded dataset assignment to

workers, i.e., coded computation [2]–[23], or combined with coded local computations, i.e., coded

transmission [24]–[34], or by simply using backup computations, i.e., uncoded computation [35]–

[40].

In this paper, we consider the gradient coding (GC) framework introduced in [24], where

the dataset is distributed across the workers in an uncoded but redundant manner, and workers

return coded computations to the PS. We note that this can also model a scenario, in which data

is collected directly by the workers, instead of being distributed by the server. Redundancy

can either be created by data sharing among the workers, or may be inherent due to the

data collection/generation mechanism. Thanks to the redundancy in the local datasets, partial

gradients from only a subset of the workers will be sufficient to recover the full gradient. Coded

combinations retrieved by the workers are designed such that any subset of responses from

sufficiently many workers will allow the computation of the full gradient by the PS. Further

details of GC are presented in the next section.

To improve the performance of the GC scheme, reference [29] proposes a static clustering

technique, which entails dividing the workers into smaller clusters and applying the original

GC scheme at the cluster level. This technique is shown to improve the average computation
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time compared to the original GC scheme. With clustering, unlike in the original GC scheme,

the number of tolerated stragglers scales with the number of clusters when the stragglers are

uniformly distributed among the clusters. However, this may not be the case in practical scenarios

as evident in the measurements taken over Amazon EC2 clusters that indicate a time-correlated

straggling behavior for the workers [16], [24]. In this case, the advantage of clustering diminishes

since the stragglers are not uniform across clusters.

To mitigate this problem and to further improve the performance, in this paper, we introduce

a novel GC scheme with dynamic clustering, called GC-DC. The main idea behind GC-DC

is to assign more data samples to workers than the actual computation load (per-iteration) to

give them the flexibility in choosing the computations they need to carry out at each iteration.

This allows the master to choose at each iteration which subset of computations each worker

should try to complete, and which coded combination it should transmit back to the master. To

reduce the potential solution space, we focus on the GC scheme with clustering, and let the

master decide on the clusters to be formed at each iteration. At each iteration, GC-DC forms

the clusters such that the stragglers are distributed across the clusters as uniformly as possible

based on the workers’ past straggling behavior. We numerically show that the proposed GC-DC

scheme significantly improves the average per-iteration completion time without an increase in

the communication load under both homogeneous and heterogeneous worker environments.

The rest of this paper is organized as follows: In Section II, we present the GC and GC with

clustering frameworks. In Section III, we introduce the GC with dynamic codeword assignment

scheme to improve the average iteration completion time of the static GC schemes and present

the problem formulation. In Section IV, we transform the GC with dynamic codeword assignment

problem to a dynamic clustering problem and illustrate its advantage over the original GC and

GC with static clustering schemes. Section V presents the proposed greedy dynamic clustering

strategy and Section VI demonstrates its effectiveness through numerical simulations over the

existing static GC schemes. Finally, we conclude this paper in Section VII with a summary of

the main results along with a discussion of some future directions.
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II. PRELIMINARIES: GRADIENT CODING (GC) AND CLUSTERING

In many machine learning problems, given a labeled dataset D = {(x1, y1), . . . (xs, ys)}, where

x1, . . . ,xs ∈ R
d are the data points with corresponding labels y1, . . . , ys ∈ R, the goal is to solve

the following optimization problem

θ∗ = argmin
θ∈Rd

s
∑

i=1

l(xi, yi, θ), (1)

where l is the application-specific loss function and θ ∈ R
d is the parameter vector to be

optimized. The optimal parameter vector can be obtained iteratively using GD. The full gradient

computed over the whole dataset at iteration t is given by g(t) =
∑s

i=1∇l(xi, yi, θt). When

the size of the dataset, s, is large, the computation of the full gradient becomes a performance

bottleneck. To speed up GD iterations, gradient computations can be distributed across mul-

tiple workers. However, in many implementations, particularly in the context of ‘serverless’

computing, e.g., Microsoft Azure, Amazon Web Services (AWS), the workers’ completion time

of assigned tasks can be highly heterogeneous and stochastic over time. In those cases, the

overall computation speed of each iteration becomes limited by the slowed straggling server.

Coded computing techniques tackle the bottleneck due to stragglers by introducing redundant

computations in a structured manner such that additional computations carried out by faster

servers can compensate for the stragglers.

A. Gradient Coding (GC)

GC is a distributed coded computation technique introduced in [24] to perform distributed

GD across K workers. The complete dataset D is divided into K non-overlapping equal-size

mini-batches, D1, . . . ,DK , and each worker is assigned multiple mini-batches. We denote the

set of indices of mini-batches assigned to the kth worker with Ik, k ∈ [K] , {1, . . . , K}. Let

g
(t)
k denote the partial gradient for the parameter vector θt evaluated over mini-batch Dk at the

tth GD iteration, i.e.,

g
(t)
k =

1

|Dk|

∑

(x,y)∈Dk

∇l(x, y, θt). (2)

We note that the full gradient is given by g(t) = 1
K

∑K

k=1 g
(t)
k . To tolerate straggling workers,

GC assigns redundant mini-batches, and hence, redundant computations, to the workers.
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If a mini-batch Di is assigned to worker k, i.e., i ∈ Ik, then the corresponding partial gradient

g
(t)
i is computed by the kth worker. Computation load, r, denotes the number of mini-batches

assigned to each worker, i.e., |Ik| = r, ∀k ∈ [K]. At each iteration, each worker first computes

the r partial gradients, one for each mini-batch available locally, and sends a linear combination

of the results, c
(t)
k , Lk(g

(t)
i : i ∈ Ik), called a coded partial gradient. Thus, in the GC

scheme, each worker is responsible for computing a single predefined coded partial gradient.

The underlying code structure in GC, which dictates the linear combinations formed by each

worker, exploits the available redundancy so that the PS can recover the full gradient from only

a subset of the combinations. Accordingly, from now on, we refer to the coded partial gradients

formed by the workers simply as codewords. As shown in [24], the GC scheme can tolerate up

to r − 1 persistent stragglers1 at each iteration. Formally, for any set of non-straggling workers

W ⊆ [K] with |W| = K − r + 1, there exists a set of coefficients AW =
{

a
(t)
k : k ∈ W

}

such

that

∑

k∈W

a
(t)
k c

(t)
k =

1

K

K
∑

k=1

g
(t)
k . (3)

Thus, at each iteration t, the full gradient g(t) can be recovered from any K − r+1 codewords.

Next, we present the idea of clustering that was introduced in [29] to reduce the average

per-iteration completion time of the GC scheme.

B. Gradient Coding with Static Clustering (GC-SC)

In GC with clustering, we divide the workers into P disjoint clusters, each with the same

number of workers. Let Kp ⊂ [K] denote the set of workers in cluster p, p ∈ [P ], where

Kq ∩ Kp = ∅ for q 6= p, and
⋃

p∈[P ]Kp = [K]. We denote the cluster size by ℓ , K
P

, where we

assume that K is divisible by P for simplicity. The assignment of the workers to the clusters

is dictated by an ℓ × p worker assignment matrix, denoted by Acluster, where each column

corresponds to a different cluster and the entries in each column correspond to indices of the

workers assigned to that cluster. This worker assignment matrix is fixed throughout the training

1These are the straggler workers that either cannot complete any computation or whose computations are not used while

recovering the full gradient [29].
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process, hence the name static clustering. From now on, we refer to the GC with static clustering

scheme as GC-SC.

In GC-SC, each worker is assigned r mini-batches based on its cluster. This is represented by

an r×k data assignment matrix Adata, where each column corresponds to a different worker, and

the entries in column i, i ∈ [K], represent the mini-batches (correspondingly the partial gradient

computations) assigned to the ith worker. Equivalently, data assignment can be represented by

a 1 × k codeword assignment matrix Acode, which represents the codewords assigned to the

workers, where the codeword assigned to the ith worker in the pth cluster is denoted by cp,i,

for p ∈ [P ], i ∈ [ℓ]. Let IKp
denote the set of mini-batches assigned to the workers in the pth

cluster, i.e., IKp
=

⋃

k∈Kp
Ik. In GC-SC, the GC scheme is applied to each cluster separately

and the workers in cluster p aim at computing

1

|IKp
|

∑

k∈IKp

g
(t)
k . (4)

To illustrate the advantage of the clustering technique, consider K = 12, r = 2, and P = 4.

Here, the workers are divided into 4 clusters, each consisting of ℓ = 3 workers, and each cluster

is responsible for computing 3 of the total 12 partial gradients. Since r = 2, each worker aims

at computing the assigned 2 partial gradients.

In our example, the worker assignment can be specified by the following matrix:

Acluster =











1 2 3 4

6 7 8 5

9 10 11 12











. (5)

In this assignment, workers 1, 6 and 9 are in the first cluster, workers 2, 7 and 10 are in the

second cluster, and so on. The corresponding Adata is given in (6) for the cluster assignment

in (5). In (6), workers in each cluster are represented by a different color. We use blue, red,

magenta, and green for clusters 1, 2, 3, and 4, respectively. The corresponding Acode for the

cluster assignment in (5) is given in (7), where, codewords corresponding to different clusters

are shown in different colors. Each codeword in Acode is a linear combination of r = 2 partial

gradients. For example, c1,1 is a linear combination of partial gradients g1 and g2; c1,2 is a linear



7

Adata =

[

g1 g4 g7 g10 g11 g2 g5 g8 g3 g6 g9 g12
g2 g5 g8 g11 g12 g3 g6 g9 g1 g4 g7 g10

]

(6)

Acode =
[

c1,1 c2,1 c3,1 c4,1 c4,2 c1,2 c2,2 c3,2 c1,3 c2,3 c3,3 c4,3
]

(7)

combination of partial gradients g2 and g3, and c1,3 is a linear combination of partial gradients

g3 and g1. Thus, given Acluster, either Adata or Acode is sufficient the completely characterize

the partial computations that will be carried out by each worker.

In the original GC scheme, the PS waits until it receives K−r+1 = 11 results at each iteration;

hence only r−1 = 1 straggler can be tolerated. With clustering, the PS needs to receive at least

ℓ − r + 1 = 2 results from each cluster to recover the full gradient. Thus, the non-straggling

threshold is still K − r + 1, since more than one straggler cannot be tolerated if they are in

the same cluster. However, the non-straggling threshold represents a worst case scenario. With

clustering, up to 4 stragglers can be tolerated if they are uniformly distributed across clusters,

i.e., one straggler per cluster, as shown in “Realization 1” in Fig. 1. This shows that, in the case

of clustering, the full gradient can be recovered in a much larger set of realizations compared

to the original GC scheme. Thus, even if the non-straggling threshold (which corresponds to the

worst case scenario) remains the same, clustering will reduce the average per-iteration completion

time.

Formally, with clustering, it is possible to tolerate r − 1 stragglers in each cluster in the best

case scenario, which is when the stragglers are uniformly distributed among the clusters. In this

case, it is possible to tolerate P (r− 1) stragglers in total. However, this advantage of clustering

diminishes in the case of non-uniform distributed stragglers among the clusters, which may be

the case in practice. As shown in “Realization 2” in Fig. 1, even though there are still 8 non-

straggling workers, the PS cannot compute the full gradient (in the case of persistent stragglers)

when the stragglers are not uniformly distributed across the clusters. To this end, in the next

section, we introduce the concept of dynamic codeword assignment, which dynamically changes

codewords computed by the workers at each iteration based on the past straggler behavior to

further improve the performance of the clustering technique.
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cluster 1 cluster 2 cluster 3 cluster 4

Realization 1

cluster 1 cluster 2 cluster 3 cluster 4

Realization 2

Fig. 1. Two possible straggler realizations where red and green circles represent the straggling and non-straggling workers,

respectively.

III. GC WITH DYNAMIC CODEWORD ASSIGNMENT

In the conventional coded computation approaches, including the GC, the assignment of the

dataset to the workers and the code to be used are static and set at the beginning of the training

process. That is, at every iteration, a worker tries to compute the gradient estimates for all the

mini-batches assigned to it, and returns their exact same linear combination to the PS. Thus,

in order to recover the desired computation result at each iteration, the codes are designed

for the worst case scenario. The core idea behind dynamic codeword assignment is to change

the codewords assigned to the workers dynamically based on the observed straggling behavior.

Dynamic codeword assignment is driven by two policies; namely, data assignment and codeword

assignment. The data assignment policy, denoted by Πd, is executed only once at the beginning

of training and assigns up to m mini-batches to each worker, where m denotes the memory

constraint, i.e.,

Πd : D 7→ {I1, . . . , IK : |Ik| ≤ m} . (8)

We note that even though each worker can be allocated up to m mini-batches, each will compute

only r of them at each iteration; hence, the computation load at each iteration remains the same.

On the other hand, we can have
(

m

r

)

codewords that can be assigned to each worker depending

on which subset of r computations it carries out among m possibilities. Here, we introduce

C = {C1, . . . , CK}, where Ck denotes the set of feasible codewords corresponding to dataset Ik.

That is, Ck denotes the set of codewords that may be assigned to the kth worker at each iteration,

where each codeword is a linear combination of r gradient estimates that can be computed by

this worker.

We would like to highlight that with dynamic codeword assignment, the PS will specify at
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each iteration which codeword must be computed by each worker. This introduces additional

communication requirement compared to the static schemes, such as GC and GC-SC. On the

other hand, this information can be piggybacked on other control information that must be

communicated from the PS to the workers at each iteration, such as signalling the end of an

iteration and the transmission of the updated model parameters. However, it is still important to

keep this additional information minimal by designing a codebook with minimal |Ck|.

At the beginning of each iteration t, codeword assignment policy Πa is executed by the PS

based on the past straggler behavior of the workers up to iteration t, S[t−1], i.e.,

Π(t)
a (S[t−1],Πd) : C 7→ c

t =
{

ct1, . . . , c
t
K

}

, (9)

where ctk ∈ Ck is the codeword assigned to the kth worker at iteration t and S
[t−1] , (S1, . . . ,St−1),

while S
t = (St

1, . . . , S
t
K) denotes the straggler behavior at each iteration t, where St

k = 0 if the

kth worker is a straggler at iteration t, and St
k = 1 otherwise.2

The completion time of iteration t for a given data assignment policy Πd depends on the

codeword assignment ct and the straggler realization S
t. Here, our objective is to minimize the

expected completion time of each iteration based on the past straggler behavior for a given Πd:

min
Π

(t)
a

ESt|S[t−1],Πd
Q(ct,St), (10)

where Q(ct,St) is the completion time of iteration t under codeword assignment ct and the

straggler realization S
t.

We remark that the codeword assignment policy Π
(t)
a highly depends on the data assignment

policy Πd since in most of the coded computation scenarios the data assignment policy is driven

by the employed coding strategy. Thus, designing a data assignment policy Πd without any prior

knowledge on the coding strategy is a challenging task. To this end, in the next section, we

reformulate the dynamic codeword assignment problem where the coding strategy, consequently

the set of codewords, are fixed at the beginning and data assignment is performed based on the

underlying coding strategy.

2In this work, we assume an on/off straggling behavior for each worker such that a worker’s straggling status can change

over iterations. Workers can still deliver computation results in the straggling state but their computations are much slower. This

type of two-state straggling behavior is observed in empirical studies over Amazon EC2 clusters [16], [24].
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IV. GC WITH DYNAMIC CLUSTERING (GC-DC)

In this section, we reformulate the dynamic codeword assignment problem, and introduce the

GC-DC scheme. For the construction of the GC-DC scheme, we perform three steps; namely,

codeword construction, codeword distribution, and dynamic clustering, where the first two steps

are executed once at the beginning of training and the last one is executed at each iteration. Our

code construction will be based on GC-SC presented in Section II-B, and we will transform

the dynamic codeword assignment problem into a dynamic clustering problem. We note that the

number of clusters P is fixed and decided at the beginning of the training.

A. Codeword Construction

In the GC-DC scheme, we will request each worker to compute and return a codeword at

each iteration. Remember that each codeword is a specified linear combination of the gradient

estimates for a subset of r mini-batches, and the PS and the workers need to agree on how to

form these linear combinations in advance. Here, the set of codewords C is a union of smaller

disjoint codeword sets, i.e., C =
⋃P

p=1 C
p, such that the codewords in each set Cp, p ∈ [P ], are

encoded and decoded independently and correspond to a particular cluster. For example, in (7),

C1 = {c1,1, c1,2, c1,3}, where C1 is disjoint from the rest of the codeword set.

B. Codeword Distribution

The codewords in C are distributed among the workers according to a policy Πc, i.e.,

Πc(C) : C 7→ {C1, . . . , CK} , (11)

where we remark that Ck denotes the set of codewords that can be assigned to the kth worker

at each iteration. Now, let I(c) ⊆ D be the minimal subset of mini-batches that is sufficient to

construct codeword c, where we have |I(c)| ≤ r. Given the codeword distribution policy Πc,

any feasible data assignment policy Πd should satisfy the following constraint

Ik ⊇
⋃

c∈Ck

I(c), ∀k ∈ [K]. (12)

Based on this constraint, we observe that, given Πc(C), the minimum memory is used when

Ik =
⋃

c∈Ck
I(c), ∀k ∈ [K]. Thus, we note that the data assignment policy Πd is determined
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according to the codeword distribution policy Πc. In other words, we first perform codeword

distribution and then assign the corresponding mini-batches to the workers.

Next, we describe the codeword distribution policy Πc in (11) for the proposed GC-DC scheme.

We first assign each worker to n clusters. Each cluster p corresponds to a set of codewords Cp

with |Cp| = ℓ. We say that a worker is in cluster p, if that worker is assigned all ℓ codewords

in Cp. Hence, in the proposed scheme, each worker is assigned codewords from an n-subset of

{C1, . . . , CP}.3 With this, we form a worker cluster assignment matrix Acluster of size ℓn× P .

Here, the pth column of Acluster illustrates the workers assigned to the pth cluster, where wk

denotes the kth worker, k ∈ [K]. One such example Acluster for our continuing example is given

in (13) for n = 2.

Acluster =































w1 w2 w3 w4

w6 w7 w8 w5

w9 w10 w11 w12

w4 w1 w2 w3

w7 w8 w5 w6

w10 w11 w12 w9































. (13)

When assigning workers to clusters, we start by dividing workers into P groups according to

their indices. For example, in our continuing example for P = 4 and K = 12, these groups are

{w1, . . . , w4}, {w5, . . . , w8}, and {w9, . . . , w12}. Then, we utilize a circular shift operator and

sample n shift amounts in {0, . . . , P − 1} uniformly at random without replacement for each of

these groups. We circularly shift each of these groups according to the corresponding sampled

shift amounts and form the worker cluster assignment matrix Acluster. For example, in the first

and fourth rows of (13), the shift amounts for workers {w1, . . . , w4} are 0 and 1, respectively. As

a result of these random shifts, worker w1 is assigned to the first and second clusters, worker w2

is assigned to the second and third clusters, and so on. Similarly, from the second and fifth rows

of (13), we observe that the shift amounts for workers {w5, . . . , w8} are 3 and 2, respectively.

We note that, since the random shifts for the same set of workers, e.g., workers {w1, . . . , w4},

3That is, under the proposed GC-DC scheme, we have |Ck| = nℓ such that each worker may be assigned all ℓ codewords for

each of the clusters that it belongs to.
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are sampled without replacement, each worker is assigned to exactly n = 2 distinct clusters.

We remark that, given n, the memory requirement m of the proposed GC-DC scheme is given

by m = nℓ. Thus, for n = 2 and ℓ = 3, each worker stores 6 mini-batches in this example.

By constructing Acluster, we essentially perform the codeword distribution as each worker is

assigned all ℓ codewords for each of the n clusters that it is associated with. For example, from

(13) we deduce that worker 1 has all the codewords in sets C1 and C2, i.e., C1 = C1 ∪ C2 =

{c1,1, c1,2, c1,3, c2,1, c2,2, c2,3}. With this, we perform the data assignment and assign corresponding

mini-batches to each worker to form the data assignment matrix such that the constraint in (12)

is satisfied with equality. Correspondingly, I1 = {D1, . . . ,D6} so that worker 1 can compute

partial gradients g1, . . . , g6 to form any one of these 6 codewords.

C. Dynamic Clustering

The key idea behind dynamic clustering is to associate each worker to more than one cluster

by assigning more than r mini-batches to each worker. Assuming that a worker is associated

with n clusters, each worker is assigned a total of nℓ codewords so that a worker can replace

any worker in the n clusters it is associated with by computing a codeword that would be

computed by the worker to be replaced in the original GC scheme with clustering. Then, at each

iteration the PS selects one of the nℓ codewords for each worker based on the previous straggler

realization through a codeword assignment policy Πa given in (9). We note that, even though

more than one codeword is assigned to each worker, computation load is still r as in the original

GC scheme, and each worker still computes only one codeword consisting of r partial gradient

computations at each iteration.

To see the benefit of the proposed GC-DC scheme, we consider Acluster and corresponding

codewords for a particular straggler realization S = [1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1], where, colors

follow the cluster assignment in the static clustering case, i.e., Acluster given in (5). Under the

GC-SC scheme, it is not possible to recover partial gradients corresponding to the third cluster

as we do not have ℓ − r + 1 = 2 non-straggling workers in that cluster.4 Moreover, if this

straggling behavior persists for a substantial duration of time, the overall computation time will

4We note that this is the case assuming straggling workers do not return any computation results. Even if they do, whenever

there are less than ℓ− r + 1 non-straggling workers in a cluster, the PS has to wait for at least one of the straggling workers

to return its computation which may incur a significant delay in the completion time of that iteration.
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suffer drastically. To mitigate this, in the case of dynamic clustering, we observe in (13) that

worker w5 can replace worker w3 since it can compute codeword c3,1 which is the codeword

that was originally assigned to worker w3 in (7) in the GC-SC scheme. This does not affect the

recoverability of the partial gradients assigned to the fourth cluster, to which worker w5 initially

belongs, since that cluster has 2 more non-straggling workers, workers w4 and w12. Further,

worker w2 can replace worker w8 so that all partial gradients can be recovered successfully.

Equivalently, we have assigned the clusters such that non-straggling workers w2 and w5 now

belong to the 3rd cluster by ensuring that all other clusters still have at least ℓ − r + 1 = 2

non-straggling workers. Thus, dynamic clustering increases the set of straggler realizations for

which the full gradient recovery is possible compared to static clustering.

Since each worker can replace any worker in all the n clusters that it is assigned to, we essen-

tially form the clusters, dynamically at each iteration through codeword assignments, hence the

name dynamic clustering. That is, based on the codeword distribution presented in Section IV-B,

we can assign ℓ workers to each cluster according to the given worker cluster assignment matrix

Acluster without explicitly stating which worker will compute which codeword. With this, our

aim is to dynamically form clusters at each iteration to minimize the average completion time of

an iteration given the past straggler behavior and the worker-cluster assignment matrix Acluster.

Next, we characterize the average completion time of an iteration for a given cluster assign-

ment. We denote the kth smallest of random variables Y1, . . . , Yn as Yk:n. The completion time

of iteration t for cluster p is given by the time the PS receives the earliest ℓ− r+1 results from

that cluster such that

Qp(ct,St) = {Xp
1,r, . . . , X

p
ℓ,r}ℓ−r+1:ℓ, p ∈ [P ], (14)

where c
t is the set of codewords assigned to the workers as in (9) and X

p
k,r, k ∈ [ℓ], is the

computation duration of the kth worker of cluster p, i.e., the time it takes for that worker

to compute r partial gradients. Noting that iteration t ends when each cluster recovers its

corresponding partial gradients, completion time of iteration t is given by

Q(ct,St) = max
p∈[P ]

Qp(ct,St). (15)
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Since some of the workers are stragglers, computation capabilities of the workers are not

identical. In this case, minimizing the iteration completion time given in (15) through cluster

assignments is not an analytically tractable problem. Instead, in the next section, we propose

a greedy dynamic clustering strategy that aims to uniformly place stragglers across clusters at

each iteration to speed up GC.

V. GREEDY DYNAMIC CLUSTERING STRATEGY

In line with the observations on Amazon EC2 instances in [16], [24], in this section, we

consider a stochastic straggling behavior for the workers. In particular, we assume that workers’

computation statistics are independent from each other, and follow a two-state Markov process.

That is, at each iteration a worker can be either in a straggling or a non-straggling state. Once a

worker starts straggling, it operates significantly slower than the non-straggling performance and

remains straggling for a while. This may model an increased load at a worker for a period of time,

which reduces the computational resources that can be allocated for the specific computation

task. Our proposed greedy algorithm utilizes this time-correlated straggling behavior to assign

straggling workers to different clusters. At each iteration, the PS identifies the stragglers based on

the past observations and implements a greedy dynamic clustering strategy to uniformly distribute

the stragglers across clusters to improve the completion time of each iteration. We note that the

performance gain of the proposed GC-DC scheme is prominent when the computation speeds

of the workers are not identically distributed over iterations, e.g., they exhibit time-correlated

straggling behavior, as the GC-DC scheme gains from adapting to the straggling behavior by

carefully placing the workers to clusters at each iteration.

Inspired by the bin packing problem [41], we consider clusters as bins and workers as balls

as in Fig. 1. Unlike the bin packing problem, which aims to place balls of different volumes

into a minimum number of bins of finite volume, in our setting, the number of bins (clusters)

is fixed and our aim is to distribute the straggling workers as uniformly as possible to clusters

using the worker cluster assignment matrix Acluster. Our dynamic clustering algorithm has two

phases: in the first phase, based on the previous straggler realization, we place straggler and non-

straggler workers into clusters separately following a specific order, and in the second phase, any

placement conflict that may happen in the first phase (i.e., if a worker cannot be placed into any
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of the remaining clusters) is resolved through worker swap between the corresponding clusters.

During worker placement, clusters take turns based on a specified order and we implement a

greedy policy such that, once its turn comes, each cluster selects the first available worker that

can be assigned to that cluster based on the given worker cluster assignment matrix Acluster.

In what follows we describe in detail the proposed dynamic clustering strategy, which is also

presented in Algorithm 1. Given the worker cluster assignment matrix Acluster, without loss of

generality, we first reorder workers in each cluster according to their indices such that

Acluster(i, p) < Acluster(j, p), i < j, p ∈ [P ], (16)

where Acluster(i, p) denotes the index of the worker in the ith position in cluster p. For example,

in Acluster given in (13), Acluster(1, 2) is 2 since it corresponds to worker w2. Once its turn comes,

each cluster starts selecting workers with the lowest indices first. We note that, if the workers

have heterogeneous computing capabilities, then in this step we order workers according to their

speed of computation, such that the fastest workers are selected first, which we will consider

in Section VI-B. For ease of exposition, here, we provide the algorithm when all the straggling

workers have identical computation statistics, and similarly all the non-straggling workers have

the same computation statistics with each other. Therefore, there is no preference among workers

within each group, and ordering them according to their indices is appropriate.

We assume that at the end of each iteration, each worker accurately detects its straggling

status and informs the PS using an instantaneous feedback. The straggling state information

is in general not available to the worker before that iteration ends due to the unpredictable

and highly varying nature of computing resources in distributed computing systems. Since the

current straggling behavior is random following the underlying Markov process, at iteration t,

the algorithm starts by deducing the sets of non-straggling and straggling workers Kf and Ks

from S
t−1. We note that, at each iteration, Kf ∪ Ks = [K]. The proposed algorithm uses the

straggler statistics from iteration t−1 to perform dynamic clustering at iteration t, which makes

this algorithm suitable for Markovian straggling models.
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A. Phase I - Worker Placement

We place straggling and non-straggling workers separately to the clusters following a specific

order. If the number of non-straggling workers is higher than the stragglers, i.e., |Kf | ≥ |Ks|,

we start by placing the non-stragglers and vice-versa.

For the sake of demonstration, we assume |Kf | ≥ |Ks| and place the non-straggling workers

first. Let Of denote the order in which the clusters select workers such that Of(p) gives the

order in which the pth cluster selects workers. To determine the exact order, we define Kp
f and

Kp
s , which denote the set of non-straggling and straggling nodes that can be assigned to cluster

p, respectively. We remark that worker k can be assigned to cluster p if it is in column p of

Acluster, i.e., wk ∈ Acluster(:, p). With this, we determine the order vector such that

Of(p) < Of(p̄) if |Kp
f | < |K

p̄
f | p, p̄ ∈ [P ]. (17)

That is, clusters with less availability select workers first. In the case of equal availability, i.e.,

|Kp
f | = |K

p̄
f |, cluster with the smaller index selects first, i.e., Of(p) < Of(p̄) for p < p̄. The

order for straggler placement Os is determined accordingly using Kp
s , for p ∈ [P ].

Once the order Of is determined, non-straggling workers are placed into clusters following

Of . As stated in lines 16-23 of Algorithm 1, once its turn comes, each cluster p with an open

spot, i.e., each cluster p that currently has less than ℓ workers, selects the first available non-

straggling worker from Acluster(:, p), p ∈ [P ]. Once a non-straggling worker is assigned to a

cluster, we remove it from Kf and Acluster. We note that this assignment continues until there

is no unassigned non-straggling worker is left in Kf or a placement conflict is observed. Then,

the straggler workers are placed following a similar procedure with the order vector Os.

During Phase I, the algorithm makes at most M such placement attempts, where M > 0 is a

sufficiently large number. If after M turns, a worker cannot be assigned to any of the remaining

clusters, we deduce that there is a placement conflict and move on the second phase of the

algorithm.

B. Phase II - Conflict Resolution

Assume that there is a placement conflict at the end of Phase I such that worker k cannot be

placed to the remaining cluster p. That is, all of the n clusters that worker k can be assigned to
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are full, i.e., already have ℓ workers, and cluster p needs one more worker. In such a case, the

second conflict resolution phase of the algorithm starts.

Let Pk denote the set of possible clusters for worker k such that |Pk| = n. In the conflict

resolution step, as stated in lines 26-35 of Algorithm 1, we look for a worker k̄, which has been

assigned to one of the clusters in Pk in Phase I such that wk̄ ∈ Acluster(:, p). That is, even though

worker k̄ has been assigned to cluster p̄ ∈ Pk during Phase I, it can be assigned to cluster p as

well. Once we detect first such worker, we swap its position with worker k. That is, we assign

worker k, the conflicted worker, to cluster p̄ and worker k̄ to cluster p, the conflicted cluster.

We note that there might be multiple placement conflicts at the end of Phase I, in which case

the conflict resolution step is repeated until all cases are resolved.

To illustrate the proposed worker replacement policy in detail, we consider the cluster assign-

ment matrix in (13), and without loss of generality, order workers in an increasing order in each

column to obtain

Acluster =































w1 w1 w2 w3

w4 w2 w3 w4

w6 w7 w5 w5

w7 w8 w8 w6

w9 w10 w11 w9

w10 w11 w12 w12































, (18)

where the straggling workers are shown in red. The straggler realization for this example is

S = [1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1]. Here, we have 5 straggling and 7 non-straggling workers, i.e.,

|Ks| = 5 and |Kf | = 7.

Since there are more non-straggling workers than stragglers, we place the non-straggling

workers first. To determine a non-straggling worker placement order, we find the number of

available non-straggling workers in each cluster. One can observe in (18) that, cluster 1 and

cluster 2 have 4 available non-straggling workers that can be assigned to these clusters whereas

cluster 3 and cluster 4 have 3 available non-straggling workers. That is, we have |K1
f | = |K

2
f | = 4

and |K3
f | = |K

4
f | = 3. Based on these, we deduce a placement order Of = [3, 4, 1, 2] such that
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Algorithm 1 Proposed dynamic clustering strategy

1: Given Acluster, K, P , n, S0 such that w.l.o.g. Acluster(i, p) < Acluster(j, p) for i < j, p ∈ [P ]
2: for t = 1, . . . , T do

3: Observe S
t−1 and deduce Kf and Ks, i.e., sets of non-straggling and straggling workers

in iteration t− 1
4: Phase I:

5: Place workers to clusters following an order

6: if |Kf | ≥ |Ks| then

7: Place non-stragglers first

8: else

9: Place stragglers first

10: Phase II:

11: Conflict resolution in the case of an assignment problem in Phase I

12: Order determination:

13: Of(p) < Of(p̄) if |Kp
f | < |K

p̄
f | or (|Kp

f | = |K
p̄
f | and p < p̄) for p, p̄ ∈ [P ]

14: Use Os in the case of straggler placement with Kp
s for p ∈ [P ]

15: Non-straggler placement:

16: i = 1
17: while |Kf | > 0 and i < M do

18: j = mod (i, P ) with j ← P when mod (i, P ) = 0
19: Cluster to assign is p̄ such that Of(p̄) = j

20: if size(cluster p̄) < ℓ then

21: Assign the first non-straggling worker from Acluster(:, p̄) to cluster p̄

22: Remove the assigned worker from Kf and Acluster

23: i = i+ 1
24: Straggler placement:

25: Follow steps 16-23 using Ks and Os

26: Conflict resolution:

27: Given a conflicted worker k and corresponding conflicted cluster p

28: Identify the clusters Pk that worker k can be assigned to such that |Pk| = n

29: i = 1
30: while Worker k is not assigned to any cluster do

31: Select cluster p̄ such that p̄ = Pk(i)
32: if There is a worker k̄ in cluster p̄ such that wk̄ ∈ Acluster(:, p) then

33: Assign worker k̄ to cluster p

34: Assign worker k to cluster p̄

35: i = i+ 1

clusters take turns based on this placement order.5 At each turn of a particular cluster, a single

worker is assigned to that cluster according to the aforementioned greedy policy. In our example,

we start with the third cluster and w2 is assigned to this cluster. Then, the fourth cluster gets w4

and so on. This process continues until all the non-straggling workers are placed into clusters (or

5In a more refined implementation, this order can dynamically change after each round of worker placement, i.e., after all

clusters select one worker, to better reflect the clusters with less availability as worker placement continues.



19

cluster 1 cluster 2 cluster 3 cluster 4

phase 1

phase 2

w1 w6 w10 w7 w2 w11

w3

w4 w9

w12

w8 w5

cluster 1 cluster 2 cluster 3 cluster 4

w1 w6 w10 w7 w2 w11

w3

w12 w9

w8 w5
w4

Fig. 2. The proposed worker placement strategy.

until a placement conflict is observed). If a cluster is assigned ℓ = 3 workers, we say that cluster

is full and do not assign any more workers to that cluster. Next, we determine the placement

order of straggling workers in a similar fashion. One can deduce from (18) that the order of

placement for the stragglers is Os = [1, 2, 3, 4] as clusters 1 and 2 have the least availability.

Based on this order, stragglers are also placed using the greedy policy described above and the

first phase terminates with the worker placement shown in Fig. 2. Here, we observe a placement

conflict as w12 has not been assigned to any cluster whereas cluster 1 needs one more worker,

but w12 cannot be assigned there.

We start the second phase of the proposed worker placement algorithm to place w12 into a

cluster that has a worker which can be assigned to the first cluster. We see from (18) that w12

can be assigned to clusters 3 or 4. None of the workers which has been assigned to cluster 3 in

Phase I can be assigned to the first cluster. Then, the algorithm looks as cluster 4 and identifies

that w4, which has been assigned to the fourth cluster in the first phase, can go to the first cluster.

With this, we swap workers w4 and w12, which yields the final placement in Fig. 2.

At the end of the algorithm we see that the stragglers are placed into the clusters as uniformly

as possible: cluster 2 has two stragglers while the remaining clusters have only 1 straggler each.

We note that since we have only 7 non-straggling workers, less than the worst case scenario of

P (ℓ− r + 1) = 8 non-stragglers, the full recovery is possible for the static clustering scheme.

Thus, the proposed dynamic clustering scheme does not improve the worst case scenario. Rather,

it speeds up the GC scheme by uniformly placing the stragglers across clusters. This process is

repeated at each iteration to dynamically change the clusters based on the straggler observations.

We note that at the end of the first phase, there are 4 other workers, namely workers w4, w7, w9,
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and w10, that can be placed into the first cluster, which had placement conflict at the end of

Phase I of the algorithm. Even if ℓ = 3 of them would have been assigned to cluster 2, which

worker w12 cannot be assigned, the remaining one of them still would have been assigned to

either cluster 3 or 4. Thus, it is guaranteed that cluster 3 and cluster 4 have at least one worker

that can be assigned to cluster 1 so that the placement conflict can be resolved. The next lemma

formally states this guarantee.

Lemma 1 Assume that we have a conflicted worker k which cannot be assigned to the remaining

cluster p in Phase I. Then, if

n >
P (K − 1)

2K
, (19)

it is guaranteed that at least one worker in one of the clusters in Pk can be assigned to cluster

p so that the placement conflict can be resolved.

Proof: In the proof we consider the worst case scenario such that ℓ − 1 workers have already

been assigned to cluster p in Phase I. Thus, in the remaining P −1 clusters other than cluster p,

there are nℓ− ℓ+1 workers that can be assigned to cluster p. We want to make sure that, at the

end of Phase I of the algorithm, at least one of those workers is assigned to a cluster in set Pk,

which, as previously stated, denotes the set of clusters that worker k, the conflicted worker, can

be assigned to. Except cluster p, there are P − n− 1 clusters that worker k cannot be assigned

to. These P −n− 1 clusters can at most have (P −n− 1)ℓ workers after Phase I. Thus, as long

as

nℓ− ℓ + 1 > (P − n− 1)ℓ, (20)

there is at least one worker that can be assigned to cluster p in one of the clusters in Pk, which

yields (19) since ℓ = K
P

. �

In the previous example, (19) is satisfied since K = 12, P = 4, and n = 2 such that n > 11
6

.

In the next section, we analyze the performance of this dynamic clustering strategy through

numerical simulations.
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VI. NUMERICAL RESULTS

In this section, we provide numerical results comparing the proposed GC-DC scheme with GC-

SC as well as the original GC scheme using a model-based scenario for computation latencies.

For the simulations, we consider a linear regression problem over synthetically created training

and test datasets, as in [5], of sizes 2000 and 400, respectively. We set the size of the model to

d = 1000. A single simulation consists of T = 400 iterations. For all the simulations, we use

learning rate η = 0.1. To model the computation delays at the workers, we adopt the commonly

used shifted exponential model [42], and assume that the probability of completing r partial

gradient computations at worker k by time t is given by

P[Xk,r ≤ t] ,











1− e−µk(
t
r
−αk), if t ≥ rαk,

0, otherwise,

(21)

where αk > 0 is a constant shift indicating that a single computation duration cannot be smaller

than αk and µk > 0 denotes the straggling effect. We consider two different models for the

time-correlated straggling behavior: the homogeneous and heterogeneous worker models, which

we discuss next.

A. Gilbert-Elliot Model with Homogeneous Workers

We model the straggling behavior of the workers based on a two-state Markov chain: a slow

state s and a fast state f , such that computations are completed faster when a worker is in state

f . Specifically, in (21) we have rate µf in state f and rate µs in state s, where µf > µs as

in [23], [43]. That is, each worker has two possible rates based on its straggling statistics. We

assume that the state transitions only occur at the beginning of each iteration with probability

p; that is, with probability 1 − p the state remains the same. A low switching probability p

indicates that the straggling behavior tends to remain the same in consecutive iterations with

occasional transitions. We set p = 0.05, α = 0.01, µs = 0.1, and µf = 10. We assume that the

transition probability p along with the computation rates µs and µf are known to the PS. At the

end of each iteration, workers inform the PS regarding their straggling status before the next

iteration starts. With this information along with the knowledge of transition probability p, the
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Fig. 3. Average per-iteration completion time under the Gilbert-Elliot model with homogeneous workers for K = 12, P = 4,

r = 2, n = 2.

PS performs the dynamic clustering accordingly. For example, when p is small, the PS assumes

that each worker will continue with the same straggling behavior from the past iteration.

In the first simulation, we consider the scenario with K = 12 workers and the dataset is

divided into K = 12 mini-batches. We set r = 2; that is, two partial gradient computations, each

corresponding to a different mini-batch, can be computed by each worker at each iteration. We

take P = 4 such that four equal-size clusters are formed. We set n = 2 and let 6 of the total

12 workers start at the slow state, i.e., initially we have 6 straggling workers. In Fig. 3, we plot

the average per-iteration completion time of the original GC scheme, GC scheme with static

clustering (GC-SC), GC scheme with the proposed dynamic clustering (GC-DC), and a lower

bound, denoted by LB. Here, the lower bound is obtained by assuming that the full gradient

is recovered as soon as the earliest P × (ℓ − r + 1) workers finish their computations at each

iteration, independently of the codeword assignment matrix. We remark that this lower bound is

rather an idealistic scenario as it requires the perfect knowledge of computation times at each

iteration as well as n = P , i.e., all workers can be assigned to all the clusters.

We observe in Fig. 3 that clustering schemes significantly improve the performance compared

to the original GC scheme. The best performance is achieved when the dynamic clustering is

implemented, although the performance improvement with respect to GC-SC is smaller than the

performance improvement with respect to plain GC by implementing clustering.

In the second simulation, we set K = 20, P = 5, r = 3, and n = 3. We start with 10 stragglers

initially. In this case, we observe in Fig. 4(a) that the GC-DC scheme still performs the best and
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Fig. 4. Average per-iteration completion time under the Gilbert-Elliot model with homogeneous workers for K = 20, P = 5,

r = 3, n = 3 (a) under imperfect SSI, (b) under perfect SSI.

this time the performance improvement compared to the GC-SC scheme (approximately 34%)

is much more significant. This is due to the increase in the cluster size ℓ and the number of

assigned clusters n, which together increase the dynamic clustering capability of the proposed

greedy algorithm.

In the above simulations, we have considered the case in which the PS does not know the

exact straggler realization at the beginning of an iteration, and uses previous observation to

implement the dynamic clustering strategy. In the third simulation in Fig. 4(b), we consider the

same scenario as in the second simulation, but assume that the PS knows the exact straggler

realization at the beginning of each iteration, which we call perfect straggler state information

(SSI). That is, in the case of perfect SSI, the PS knows exactly which workers will straggle in the

current iteration, and therefore, the proposed dynamic clustering algorithm does not suffer from

transitions in the straggling behavior from one iteration to the next. In this case we see similar

trends as in Fig. 4(a), but observe that the GC-DC scheme results in a larger improvement in

the average per-iteration completion time (around 45%) than that of the imperfect SSI case.

B. Heterogeneous Worker Model

In this model, we assume that workers have different computation rates µk, k ∈ [K]. In this

case, we specify a straggling threshold τ > 0, and a worker k is treated as a straggler if µk < τ .
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1) Gilbert-Elliot Model with Heterogeneous Workers: First, we consider a similar model as

in Section VI-A and consider the case in which each worker’s straggling behavior is modeled

by a two-state Markov chain such that µk = µk,f if worker k is not straggling and µk = µk,s if

worker k is a straggler. At the beginning of each iteration, a worker’s straggling mode switches

with probability p. In this case, first we sample the non-straggling computation rates of each

worker µk,f uniformly at random from the interval [0, 5] and set αk = 0.01, p = 0.05 for

k ∈ [K]. We model the straggling computation rates of workers µk,s such that for worker k we

have µk,s =
µk,f

10
, k ∈ [K]. That is, in the straggling mode, each worker is 10× slower than its

typical non-straggling performance, which is motivated by the measurements taken over Amazon

EC2 clusters that indicate a similar performance drop in the straggling mode [16]. With this,

computation rates of the workers in the straggling mode are uniformly distributed in [0, 0.5]. We

assume that the non-straggling computation rates µk,f are known to the PS for k ∈ [K] after a

certain number of iterations and from these, the PS can deduce the straggling computation rates

µk,s.

Equipped with these, after each iteration, the PS is informed about the straggling status of

each worker and performs the proposed greedy dynamic clustering scheme with a modification

as follows: Instead of ordering the workers according to (16), we order them according to their

rates µk, k ∈ [K]. In this case, once its turn comes, each cluster selects the fastest available

worker first rather than selecting the one with the smallest index first.

We note that since the computation rates are sampled randomly, a worker’s straggling com-

putation rate can still be higher than another worker’s non-straggling rate. To account for these

scenarios, we set the straggling threshold τ = 0.5. That is, as long as a worker’s rate is below

0.5 we treat that worker as a straggler. We did not utilize such a threshold in the homogeneous

worker model since in that case workers have identical computation rates µf and µs in the

non-straggling and straggling states, respectively, such that µs < µf .

Simulations results for this setup are provided in Fig. 5. These results are averaged over 30

independent simulations for a fixed Acluster that is generated according to the procedure described

in Section IV-B. We observe in Figs 5(a) and (b) that the GC-DC scheme outperforms the static

clustering schemes, namely GC and GC-SC. As expected, the performance improvement is larger
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Fig. 5. Average per-iteration completion time under the Gilbert-Elliot model with heterogeneous workers for K = 20, P = 5,

r = 3, n = 3, and τ = 0.5 (a) under imperfect SSI, (b) under perfect SSI.

in the case of perfect SSI.

2) Heterogeneous Workers with Time-Varying Rates: So far, we have modeled the straggling

behavior based on a Gilbert-Elliot mode. In this subsection, instead of a two-state Markov chain

model, we consider that the straggling parameters of the workers are time-varying. We assume

that each worker samples its rate uniformly at random from the interval [0, 5] and set αk = 0.01

for all k ∈ [K]. We assume that at the beginning of each iteration, each worker re-samples its

rate with probability p such that with probability 1− p its rate stays the same. That is, we have

µk,t+1 = (1− at+1)µk,t + at+1 · U [0, 5], (22)

where, µk,t denotes the rate of worker k at iteration t, at is an i.i.d. Bernoulli(p) random variable,

i.e., P(at = 1) = p, ∀t, and U [a, b] denotes a uniform random variable over interval [a, b]. In

simulations, we use the scenario in the Fig. 4 and start with 10 stragglers. We initialize the rates

of stragglers with µk,0 = U [0, τ) and rates of non-straggling workers with µk,0 = U [τ, 5]. In this

setup, we set p = 0.05.

Since the computation capabilities of the workers are not identical, we apply the proposed

greedy dynamic clustering scheme with the same modification as above. We note that this model

requires the workers to accurately detect their computation rates at the end of each iteration and

send them to the PS before the next iteration starts.
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Fig. 6. Average per-iteration completion time under the heterogeneous worker model with time-varying rates for K = 20,

P = 5, r = 3, n = 3, and τ = 1 (a) under imperfect SSI, (b) under perfect SSI.

First, we consider the case in which τ = 1. In this case, we observe in Figs. 6(a) and (b) that the

GC-DC scheme outperforms the GC and GC-SC schemes but the improvement compared to the

GC-SC scheme is not significant. In fact, we see that in the case of perfect SSI the improvement

is around 20% compared to the GC-SC scheme whereas when the straggler realizations are not

known to the PS in advance this improvement drops to approximately 16%.

Next, we set τ = 0.1 such that the proposed greedy dynamic clustering scheme specifically

targets the slowest workers and carefully places them across clusters. In Figs. 7(a) and (b), we

observe that the GC-DC scheme performs the best and the improvement compared to the GC-SC

scheme is more significant. We also note that in Fig. 7, the performance improvement is larger

but the average iteration times are also larger for all three schemes compared to the case in

Fig. 6. This is because when τ = 0.1, we initialize the rates of the workers considering 10×

slower stragglers compared to when τ = 1. We finally note that all the simulation results given in

Figs. 6 and 7 are averaged over 30 independent simulations for a fixed Acluster that is generated

according to the procedure described in Section IV-B.

VII. DISCUSSION & CONCLUSIONS

In this work, we considered coded computing for large-scale distributed learning problems in

the presence of straggling workers, and introduced a novel scheme, called GC-DC, to reduce

the average per-iteration completion time of the static GC schemes. GC-DC employs the GC
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Fig. 7. Average per-iteration completion time under the heterogeneous worker model with time-varying rates for K = 20,

P = 5, r = 3, n = 3, and τ = 0.1 (a) under imperfect SSI, (b) under perfect SSI.

scheme with clustering introduced in [29], and assigns additional data to the workers without

increasing the per-iteration computation load at each worker compared to the original GC scheme.

By utilizing the extra degree-of-freedom offered by additional data, but without increasing the

computation load at each iteration, the proposed GC-DC scheme dynamically assigns workers to

different clusters at each iteration, in order to distribute the stragglers to clusters as uniformly as

possible. Under a time-correlated straggler model, GC-DC can improve the overall computation

speed by dynamically adapting to the straggling behavior. We showed through numerical sim-

ulations, for both homogeneous and heterogeneous worker models, that the proposed GC-DC

scheme can drastically improve the average per-iteration completion time without an increase in

the communication load.

We would like to highlight that the proposed redundant data assignment approach with dynamic

computations is a fairly general paradigm, and the proposed cluster-based GC approach is only

one of many possible coding techniques that can be employed. A possible future research

direction is considering heterogeneous cluster sizes. The proposed model assumes that number

of workers in each cluster is fixed. That is, cluster sizes are equal to ℓ = K
P

. One can consider

varying the cluster sizes to further decrease the average iteration time. Also, in the proposed

technique, workers are assigned to clusters based on an order that does not change during the

assignment process. To improve the performance, one can consider adaptively changing this
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worker assignment order. Another potential research direction is to consider a more complex

straggling behaviour across the workers, such as non-Markovian, Markovian with higher memory,

or correlated straggling behaviour across workers. Such models would require considering all

the past straggling behavior when making dynamic clustering assignments, and reinforcement

learning techniques can be employed to find the policy that chooses the best code or best

clustering strategy to be used at each iteration.
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