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A B S T R A C T

We consider the problem of modeling a decision-making process in a network of stochastic agents, each
described as a Markov chain. Two approaches for describing disagreement among agents as social forces are
studied. These forces modulate the rates at which agents transition between decisions. We define similarity
conditions between the two disagreement models and derive a method for obtaining two model instances that
fulfill this property. Moreover, we show that a condition for significantly reducing the state-space dimension
through marginalization can be derived for both models. However, using a counterexample, we also demonstrate
that similarity is not generally possible for models that can be marginalized. Finally, we recommend which
disagreement model to use based on the results of our comparison.
1. Introduction

In many areas, from market economy and politics to vehicular
traffic, groups of individuals need to make collective decisions through
communication. Opinion dynamics [1] can be used to describe and
predict the outcome of these processes. However, for complex systems
that evolve from human interaction, deriving deterministic models may
require more information than what is practically available. Markov
chains can be used in stochastic abstractions of such systems. For
example, [2] models highway traffic as vehicles that randomly arrive
to- and depart from lanes, so that the number of vehicles in each lane
is a continuous-time Markov chain (CTMC). Based on a similar arrival-
and departure process, [3] describes a system of traffic intersections
as interconnected CTMCs. Using a different approach, [4] models an
intersection as a stochastic decision process to predict road users’
decisions to yield or go through the crossing. Each road user switches
between the two decision states as a CTMC, according to the Markovian
opinion dynamics framework proposed in [5], where CTMC agents
change each other’s state probabilities by transition rate modulation.
In [6], this framework is used to describe how stubborn agents induce
rifts in community opinion and how social power develops depending
on the interaction topology. Additionally, [7] showed that a marginal-
ized form of this Markovian opinion dynamic model can be obtained
analytically. Within this framework, there is a need to develop models
of basic interaction forms that can be observed in applications.
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(PNRR) within the Italian National Ph.D. Program in Autonomous Systems (DAuSy).
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In [4], an indirect repulsion force models disagreement in a network
of Markovian agents by increasing the frequency at which agents make
conflicting decisions. In this paper, we present the direct repulsion force
which instead describes disagreement as a decrease in the rates at
which agents make identical decisions. The difference between the two
principles is illustrated in the following example.

Example 1. Drivers 𝑎 and 𝑏 in Fig. 1 choose between highway lanes 𝐿1
and 𝐿2. Indirect repulsion causes 𝑎 to choose 𝐿2 at a higher frequency
since 𝑏 is not in 𝐿2 (Fig. 1(a)). Conversely, direct repulsion makes 𝑎
decide 𝐿1 at a lower frequency since 𝑏 is in 𝐿1 (Fig. 1(b)).

As direct repulsion may seem more intuitive than indirect repulsion,
a technical comparison is necessary to determine if the two alternative
disagreement models can similarly describe the same decision process.
This objective is achieved with the following four contributions: (1)
The direct repulsion force is defined; (2) It is shown that an agent
network D constructed using direct repulsion can be reduced to a small-
scale model by analytical marginalization; (3) The similarity property
is defined for two general networks, and a method for obtaining D
similar to an agent network I, constructed using indirect repulsion, is
formulated; (4) A counterexample is derived to show that, in general,
the similarity conditions do not hold for marginalizable networks.

In the following, Section 2 describes agent- and network models,
Section 3 covers the repulsion forces, Section 4 shows how to derive
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Fig. 1. Drivers 𝑎 and 𝑏 decide between lanes 𝐿1 and 𝐿2. Indirect repulsion increases
he rate of different decisions, while direct repulsion decreases the rate of identical
ecisions.

he marginalization of D, and Section 5 defines similarity between
and I. In Section 6 we construct a counterexample showing that

arginalizable networks cannot always be similar, while Section 7
emonstrates an example in which similarity is obtained when I is

marginalizable. Finally, conclusions are drawn in Section 8.

2. Basic Markovian network model

2.1. Agents as continuous-time Markov chains

Let  denote a set of 𝑁 agents. We model the isolated decision
rocess of the 𝑛:th member as a time-homogeneous CTMC over a
et  = {𝑠1,… , 𝑠𝑀} of 𝑀 decision states. State transitions 𝑠𝑖 →

𝑗 , where 𝑖 ≠ 𝑗, occur at non-negative real rates 𝑄𝑛[𝑖, 𝑗] from the
𝑀 × 𝑀 matrix 𝑄𝑛, in which each diagonal element 𝑄𝑛[𝑖, 𝑖] is the
negated sum of the off-diagonal elements in row 𝑖. The vector 𝛱𝑛(𝑡) =
𝜋𝑛
1 (𝑡) 𝜋𝑛

2 (𝑡) … 𝜋𝑛
𝑀 (𝑡)

]𝑇 is a probability distribution over  de-
scribing the probability that the agent is in each state at time 𝑡. It is
given by solving

�̇�𝑛(𝑡) = 𝑄𝑇
𝑛 𝛱𝑛(𝑡), (1)

where �̇�𝑛(𝑡) denotes the first time derivative of 𝛱𝑛(𝑡), from some initial
condition 𝛱𝑛(0). The solution 𝛱𝑛(𝑡), including the transient behavior,
is fully characterized by 𝑄𝑛 and 𝛱𝑛(0) according to [8].

As done in [4,5], we assume that 𝑄𝑛 is irreducible, which ensures
that the associated CTMC is ergodic. This implies that the agent has
a nonzero probability to visit all states, and that 𝛱𝑛(𝑡) converges to a
unique, stationary state probability �̄�𝑛.

2.2. Agent networks

For a general network X of 𝑁 agents with 𝑀 decisions there are 𝑀𝑁

network states, each defined as a tuple 𝑠X = ⟨𝑠1,… , 𝑠𝑛,… 𝑠𝑁 ⟩, where 𝑠𝑛

denotes the state of the 𝑛:th agent. The network states are organized in
the set

X = 1 ×⋯ × 𝑛 ×⋯ × 𝑁 , (2)

where each 𝑛 represents the same decisions as , but is indexed to
distinguish between agents. The probability that two agents transition
at exactly the same time is zero, so every possible transition between
two network states is caused by the state transition of a single agent.
Hence, X can be described as a CTMC over X. The probability that X
is in each state at time 𝑡 is denoted 𝛱X(𝑡) and given by solving

�̇�X(𝑡) = 𝑄𝑇𝛱X(𝑡), (3)

where �̇�X(𝑡) denotes the first time derivative of 𝛱X(𝑡), from some initial
condition 𝛱X(0). The network transition rate matrix is

𝑄 =
𝑁
∑

𝑛=1
𝐼𝑀𝑛−1 ⊗𝑄𝑛 ⊗ 𝐼𝑀𝑁−𝑛 , (4)

where ⊗ represents the Kronecker product, 𝑄𝑛 is the rate matrix of the
𝑛:th agent, and 𝐼 denotes identity matrices with dimensions 𝑀𝑛−1 and
𝑀𝑁−𝑛, respectively. Since the 𝑀𝑁 ×𝑀𝑁 matrix 𝑄 describes a CTMC,
it obeys the same definition as in 2.1, albeit for a different, larger state
space. As explained in [5], this network CTMC inherits the ergodicity
property of the individual agents.
2

t

3. Indirect and direct repulsion

In the following, we recall the indirect repulsion force presented
in [4] and propose an alternative direct formulation for modeling
disagreement between stochastic agents.

3.1. Indirect repulsion

The indirect repulsion force is expressed as

+𝜉𝑛𝑗 (𝓁 , 𝛾) = 𝛾
∑

𝑘
𝛤
𝓁

[𝑛, 𝑘]
(

1 − 𝟏𝑘𝑗
)

(5)

nd describes how the 𝑛:th agent, a member of the group , increases
he rate of transitions to 𝑠𝑗 . The increase is directly dependent on which
f the agents, indexed 𝑘, in the group 𝓁 are in states different from 𝑠𝑗 ,
n event denoted by the negated indicator function (1 − 𝟏𝑘𝑗 ).  and 𝓁

re disjoint subsets of  that interact according to the directed graph

𝓁

=
(

 , 𝛤
𝓁

)

, where 𝛤
𝓁

is an 𝑁×𝑁 row-normalized, non-negative

eal adjacency matrix of agent-to-agent influence strength. A group 
an be repulsed by several disjoint groups 𝓁 ∈  with a unique
raph describing each conflict. However, each group can be repulsed by
ther groups (assuming the role of  in one conflict), and repulse other
roups (assuming the role of 𝓁 in another conflict), simultaneously.

The parameter 𝛾 ≥ 0 sets the magnitude of the repulsion force
n proportion to the weighted average decisions of 𝓁 . It can be a
unction of both time-independent traits, such as agent index 𝑛 and
he pair

(

,𝓁
)

, but also of the time-dependent network state 𝑠X.
owever, state independence is required for analytical marginalization

o be possible. We call this property marginalizability.
To express indirect repulsion in the network model (3), we define

he 𝑀𝑁×𝑀𝑁 network transition rate matrix 𝑅+ with the same indexing
onvention as 𝑄. If a network transition from the 𝑎:th to the 𝑏:th state
n X, denoted 𝑠X𝑎 → 𝑠X𝑏 where 𝑎 ≠ 𝑏, is caused by the 𝑛:th agent’s
ransition 𝑠𝑖 → 𝑠𝑗 , then 𝑅+[𝑎, 𝑏] =

∑

𝓁∈𝑅
+𝜉𝑛𝑗 (𝓁 , 𝛾|𝑠X𝑎 , 𝑠

X
𝑏 ). While

he indicator functions from (5) are random variables, they can be
valuated deterministically given the network states 𝑠X𝑎 and 𝑠X𝑏 , such
hat 𝑅+[𝑎, 𝑏] becomes a nonnegative real scalar. Each diagonal element
n 𝑅+, however, is the negated sum of off-diagonal elements in the
orresponding row.

An agent network modeled with indirect repulsion is denoted I, and
ts decision probabilities 𝛱I(𝑡) are found by solving

̇ I(𝑡) = (𝑄 + 𝑅+)𝑇𝛱I(𝑡), (6)

here �̇�I(𝑡) is the first time derivative of 𝛱I(𝑡), from some initial
ondition 𝛱I(0).

.2. Direct repulsion

As an alternative form of repulsion, we now describe the direct
epulsion force as

−𝜉𝑛𝑗 (𝓁 , 𝛾) = 𝛾
∑

𝑘
𝛤
𝓁

[𝑛, 𝑘]𝟏𝑘𝑗 . (7)

his force is denoted ‘‘−’’ as it, in contrast to (5) which is denoted ‘‘+’’,
irectly reduces the 𝑛:th agent’s transition rate to 𝑠𝑗 depending on which
gents, indexed 𝑘, are in 𝑠𝑗 . However, to prevent negative transition
ates, 𝛾 must be limited, as shown next.

Given state-independent influence parameters 𝛾, assume that the
:th agent is maximally repulsed. That is, every group 𝓁 has all its
gents in 𝑠𝑗 so that 𝟏𝑘𝑗 = 1 for all 𝑘 and 𝓁 . Since each 𝛤

𝓁
is row

ormalized, the total rate reduction is ∑

𝓁∈
−𝜉𝑛𝑗 (𝓁 , 𝛾) =

∑

𝓁∈ 𝛾. If
𝑛
his is less than or equal to the minimal isolated transition rate 𝑞min =
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min𝑖≠𝑗 𝑄𝑛[𝑖, 𝑗], none of the 𝑛:th agent’s transition rates are negative.
ssuming that 𝛾 is dependent on 𝑛 and

(

,𝓁
)

, we require
∑

𝓁∈
𝛾 ≤ 𝑞𝑛min, ∀𝑛. (8)

As for indirect repulsion, we define a 𝑀𝑁 ×𝑀𝑁 transition rate ma-
trix 𝑅− to describe direct repulsion in the network model (3). A network
transition from the 𝑎:th to the 𝑏:th state in X, where 𝑎 ≠ 𝑏, that is
aused by the 𝑛:th agent’s transition 𝑠𝑖 → 𝑠𝑗 obtains the rate reduction
𝑅−[𝑎, 𝑏] =

∑

𝓁∈𝑅
−𝜉𝑛𝑗 (𝓁 , 𝛾, |𝑠X𝑎 , 𝑠

X
𝑏 ). Each diagonal element in 𝑅− is the

negative sum of the off-diagonal elements in the corresponding row. A
network described with direct repulsion is denoted D, and its decision
probabilities 𝛱D(𝑡) are found by solving

�̇�D(𝑡) = (𝑄 − 𝑅−)𝑇𝛱D(𝑡), (9)

where �̇�D(𝑡) is the first time derivative of 𝛱D(𝑡), from some initial
condition 𝛱D(0).

Remark 1. Unlike indirect repulsion, direct repulsion needs to be
limited, requiring knowledge of 𝑞𝑛min. Additionally, its transition rate
reductions may have unwanted effects on the transient phase of the
network decision probabilities. These disadvantages are important to
consider when choosing repulsion model.

4. Marginalization with direct repulsion

Through marginalization, the probability distribution of a single
variable can be derived by summation over a joint probability dis-
tribution. This way, 𝑀𝑁 individual agent decision probabilities can
be derived from an 𝑀𝑁 network model. However, [4] showed that a
marginalization of I can be expressed analytically, without using the
network model. This is much more computationally efficient. In the
following, we show how to analytically derive a marginalization of D
under the same conditions.

Theorem 1. Each row in the marginalized model describes the probability
that the 𝑛:th agent is in 𝑠𝑗 as

̇ 𝑛𝑗 =
𝑀
∑

𝑖=1
𝑄𝑛[𝑖, 𝑗]𝜋𝑛

𝑖 + 𝜋𝑛
𝑗

∑

𝓁∈
𝛾 −

∑

𝓁∈
𝛾
∑

𝑘
𝛤
𝓁

[𝑛, 𝑘]𝜋𝑘
𝑗 . (10)

Proof. We let E[𝟏(𝑡)] = 𝜋(𝑡), where E[⋅] denotes the expected value of
a random variable, and express the probability that the 𝑛:th agent is in
𝑠𝑗 after 𝛿𝑡 time using the infinitesimal definition of the CTMC. Then,

E
[

𝟏𝑛𝑗 (𝑡 + 𝛿𝑡)|𝑠X
]

= 𝟏𝑛𝑗
(

1 − 𝛿𝑡Q𝑂
)

+
(

1 − 𝟏𝑛𝑗
)

𝛿𝑡Q𝐼 , (11)

where Q𝑂 and Q𝐼 represent the total in- and outgoing rates from 𝑠𝑗 .
Taking the expected value of the RHS,

E
[

𝟏𝑛𝑗 (𝑡 + 𝛿𝑡)|𝑠X
]

− E
[

𝟏𝑛𝑗
]

𝛿𝑡
= E

[

−𝟏𝑛𝑗
(

Q𝑂 +Q𝐼
)

+Q𝐼
]

, (12)

and the LHS approaches �̇�𝑛
𝑗 as 𝛿𝑡 → 0. Next, we split Q𝐼 and Q𝑂 into two

parts: isolated and repulsive rates. Then, we derive the contributions to
̇ 𝑛𝑗 for each part.

First, let Q𝑂 =
∑

𝑖≠𝑗 𝑄𝑛[𝑗, 𝑖] and Q𝐼 =
∑

𝑖≠𝑗 𝑄𝑛[𝑖, 𝑗]𝟏𝑛𝑖 in the RHS of
(12), which becomes

E
[

−𝟏𝑛𝑗
(

∑

𝑖≠𝑗
𝑄𝑛[𝑗, 𝑖] +

∑

𝑖≠𝑗
𝑄𝑛[𝑖, 𝑗]𝟏𝑛𝑖

)

+
∑

𝑖≠𝑗
𝑄𝑛[𝑖, 𝑗]𝟏𝑛𝑖

]

. (13)

Since ∑

𝑖≠𝑗 𝑄𝑛[𝑗, 𝑖] = −𝑄𝑛[𝑗, 𝑗] and 𝟏𝑛𝑗𝟏
𝑛
𝑖 = 0 for all 𝑡, this is reduced to

E
[

𝑄𝑛[𝑗, 𝑗]𝟏𝑛𝑗 +
∑

𝑄𝑛[𝑖, 𝑗]𝟏𝑛𝑖
]

= E
[

𝑀
∑

𝑄𝑛[𝑖, 𝑗]𝟏𝑛𝑖
]

. (14)
3

𝑖≠𝑗 𝑖=1
The contribution to �̇�𝑛
𝑗 from the isolated rates is thus

𝑀
∑

𝑖=1
𝑄𝑛[𝑖, 𝑗]𝜋𝑛

𝑖 , (15)

which corresponds to the first term in (10).
Second, by setting Q𝑂 = −

∑

𝓁∈
∑

𝑖≠𝑗
−𝜉𝑛𝑖 (𝓁 , 𝛾) and Q𝐼 =

−
∑

𝓁∈
−𝜉𝑛𝑗 (𝓁 , 𝛾), we evaluate the rate contributions from the direct

repulsion force (7). Assuming that 𝛾 is state-independent, but possibly
dependent on 𝑛,  and 𝓁 , the RHS of (12) becomes

E
[

𝟏𝑛𝑗
∑

𝓁∈

𝑀
∑

𝑖=1

−𝜉𝑛𝑖 (𝓁 , 𝛾) −
∑

𝓁∈

−𝜉𝑛𝑗 (𝓁 , 𝛾)
]

. (16)

s 𝛾 is independent on 𝑠𝑖 and 𝑠𝑗 , we obtain

[

𝟏𝑛𝑗
∑

𝓁∈
𝛾

𝑀
∑

𝑖=1

∑

𝑘
𝛤
𝓁

[𝑛, 𝑘]𝟏𝑘𝑖 −
∑

𝓁∈
𝛾
∑

𝑘
𝛤
𝓁

[𝑛, 𝑘]𝟏𝑘𝑗
]

. (17)

f we for each agent in 𝓁 , indexed 𝑘, sum over the indicator functions
or every possible state 𝑖 = 1…𝑀 , 𝟏𝑘𝑖 = 1 for exactly one 𝑖. Additionally,

𝓁

is row normalized. Thus,
[

𝟏𝑛𝑗
∑

𝓁∈
𝛾 −

∑

𝓁∈
𝛾
∑

𝑘
𝛤
𝓁

[𝑛, 𝑘]𝟏𝑘𝑗
]

, (18)

hich rewritten in terms of 𝜋 is

𝑛
𝑗

∑

𝓁∈
𝛾 −

∑

𝓁∈
𝛾
∑

𝑘
𝛤
𝓁

[𝑛, 𝑘]𝜋𝑘
𝑗 , (19)

the second and third term in (10). ■

We use (10) to construct the marginalized model

�̇�𝑚(𝑡) = (𝑄𝑚 − 𝑅𝑚)𝑇𝛱𝑚(𝑡), (20)

where 𝑄𝑚 and 𝑅𝑚 are 𝑀𝑁 ×𝑀𝑁 matrices constructed from the terms
(15) and (19), respectively.

4.1. Effects of marginalizability on 𝑅+ and 𝑅−

Assume that two different network transitions 𝑠X𝑎 → 𝑠X𝑏 and 𝑠X𝑐 → 𝑠X𝑑
are caused by the same agent making the transitions 𝑠𝑖 → 𝑠𝑗 and
𝑠𝑘 → 𝑠𝑙, respectively. If the same repulsive agents who are in 𝑠𝑗
when 𝑠X𝑎 → 𝑠X𝑏 , are also in 𝑠𝑙 for 𝑠X𝑐 → 𝑠X𝑑 , the transitioning agent
faces an identical opposition in both scenarios. Then, the summation
term in (5) (or (7) for direct repulsion) will be identical for both
network transitions. Moreover, if all parameters are state-independent
(a necessary condition for marginalizability) the influence strength is
identical in both scenarios. Consequentially, the force and thereby the
corresponding element in 𝑅+ (or 𝑅−) is the same for 𝑠X𝑎 → 𝑠X𝑏 and
𝑠X𝑐 → 𝑠X𝑑 .

5. Similarity between direct and indirect repulsion

To establish if a network D defined with direct repulsion and a
network I formulated with indirect repulsion can be used to similarly
model a decision process, we define two criteria for similarity between
two general networks: (1) the difference in the networks’ expected
decision state holding time is minimized w.r.t. some criterion (e.g. (22)
in this paper), and (2) the networks have identical stationary decision
probabilities. Next, we define this property formally to derive a method

that finds D similar to I.
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5.1. Minimal difference in expected decision state holding time

Our first criterion for similarity is that the time that D spends in each
decision state should be as close as possible to that of I. As described
in [8], the state holding time 𝑉𝑖 of a state 𝑠𝑖 in a CTMC with rate matrix
𝑄 is exponentially distributed with parameter −𝑄[𝑖, 𝑖]. It follows that
the expectation E[𝑉𝑖] = −1∕𝑄[𝑖, 𝑖]. For a state 𝑠X𝑖 in the networks I and
D, the cumulative probability distribution functions of state holding
time are

𝑃 [𝑉 +
𝑖 ≤ 𝑡] = 1 − 𝑒

(

𝑄[𝑖,𝑖]+𝑅+[𝑖,𝑖]
)

𝑡 and (21a)

𝑃 [𝑉 −
𝑖 ≤ 𝑡] = 1 − 𝑒

(

𝑄[𝑖,𝑖]−𝑅−[𝑖,𝑖]
)

𝑡, (21b)

respectively. Thus, I decreases the expected state holding time, while D
increases it. To keep the decision state holding times of both networks
as close as possible, the increase of E[𝑉 −

𝑖 ] should be minimized, equiva-
lent to minimizing the diagonals of 𝑅−. For this purpose, we formulate
he objective function

(𝑟,𝐻) = 𝑟𝑇𝐴𝑇𝐻𝐴𝑟, (22)

here 𝑟 is a column vector such that 𝑟𝑖 represents the 𝑖:th positive 𝑅−

lement found by nested row-wise and left-to-right iteration. 𝐴 is a
0, 1)-matrix such that 𝐴𝑟 = −diag(𝑅−), and 𝐻 is a tuning matrix for
mphasizing the minimization of a subset of diagonal elements.

.2. Equal stationary decision probabilities

Our second criterion for similarity between D and I is that they
should reach identical stationary state probabilities. While the transi-
tion rate matrix of an ergodic CTMC maps to a unique stationary state,
several matrices can produce the same stationary state. We need to find
the off-diagonal elements of 𝑅− such that the stationary state equations
f (6) and (9), expressed as

𝑄 + 𝑅+)𝑇 �̄� = 0 and (23a)

𝑄 − 𝑅−)𝑇 �̄� = 0, (23b)

old given 𝑄, 𝑅+ and the shared stationary distribution �̄� . Since 𝑄
ecomes redundant in finding 𝑅−, (23) reduces to

𝑅−)𝑇 �̄� = −(𝑅+)𝑇 �̄�. (24)

We can rearrange the linear combination (𝑅−)𝑇 �̄� into a product be-
tween a known matrix 𝑀�̄� constructed from elements of �̄� and the
vector 𝑟 of unknown 𝑅− off-diagonals. The rate reductions in 𝑟 must
be positive, but cannot exceed the transition rates in 𝑄. In total, we
require

𝑀�̄� 𝑟 = −(𝑅+)𝑇 �̄� (25a)

0 < 𝑟 < 𝑞, (25b)

where 𝑞 is a vector of 𝑄 elements and indexed like 𝑟.
All solutions to (25a) are given by

𝑟 = −𝑀†
�̄�
(𝑅+)𝑇 �̄� + (𝐼 −𝑀†

�̄�
𝑀�̄� )𝑤, (26)

where † denotes the Moore–Penrose inverse and 𝑤 is an arbitrary vector,
see e.g. [9]. Solutions exist iff 𝑀�̄�𝑀†

�̄�
= −(𝑅+)𝑇 �̄� . If the latter holds,

the solution is unique iff 𝑀�̄� has full column rank, and 𝐼 −𝑀†
�̄�
𝑀�̄� is

a zero matrix. While this condition can be used to check the existence
of any solution 𝑟, we also require 𝑟 < 𝑞, which in practice is easily
4

enforced directly in a numerical solver.
5.3. Obtaining D similar to I by constrained optimization

Minimizing the objective function (22) under the constraints in (25)
defines the constrained optimization problem

minimize
𝑟

𝑓 (𝑟,𝐻) (27a)

subject to 𝑀�̄� 𝑟 = −(𝑅+)𝑇 �̄�, (27b)

0 < 𝑟 < 𝑞, (27c)

which, for any number of agents and decisions, finds the off-diagonal el-
ements of the matrix 𝑅− such that D is similar to I. In the following, we
investigate how the feasibility of (27) is affected by network structure
and additional constraints for obtaining marginalizable networks.

6. Feasibility under similarity- and marginalizability constraints

To show that similarity is not generally feasible for marginalizable
networks, we return to Example 1 in the introduction, and investigate
(27) in three cases:

(1) No additional marginalization constraints are imposed,
(2) D is marginalizable, and
(3) D and I are both marginalizable.

In Example 1, 𝑁 = 2 drivers, 𝑎 and 𝑏, choose between 𝑀 = 2 lanes at
rates in

𝑄1 =
[

−𝑞𝑎12 𝑞𝑎12
𝑞𝑎21 −𝑞𝑎21

]

, 𝑄2 =

[

−𝑞𝑏12 𝑞𝑏12
𝑞𝑏21 −𝑞𝑏21

]

, (28)

respectively, so that X has a state space X = {𝑠11, 𝑠
1
2}×{𝑠

2
1, 𝑠

2
2} according

to (2). Its isolated transition rate matrix is

𝑄 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝑞𝑎12 − 𝑞𝑏12 𝑞𝑏12 𝑞𝑎12 0

𝑞𝑏21 −𝑞𝑎12 − 𝑞𝑏21 0 𝑞𝑎12
𝑞𝑎21 0 −𝑞𝑎21 − 𝑞𝑏12 𝑞𝑏12
0 𝑞𝑎21 𝑞𝑏21 −𝑞𝑎21 − 𝑞𝑏21

⎤

⎥

⎥

⎥

⎥

⎦

. (29)

Assuming mutual repulsion, the structure of the network transition rate
matrices for indirect and direct repulsion are

𝑅+ =

⎡

⎢

⎢

⎢

⎢

⎣

−(𝑟𝑎+12 + 𝑟𝑏+12 ) 𝑟𝑏+12 𝑟𝑎+12 0
0 0 0 0
0 0 0 0
0 𝑟𝑎+21 𝑟𝑏+21 −(𝑟𝑎+21 + 𝑟𝑏+21 )

⎤

⎥

⎥

⎥

⎥

⎦

, (30a)

𝑅− =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
𝑟𝑏−21 −(𝑟𝑎−12 + 𝑟𝑏−21 ) 0 𝑟𝑎−12
𝑟𝑎−21 0 −(𝑟𝑎−21 + 𝑟𝑏−12 ) 𝑟𝑏−12
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (30b)

Here, 𝑟𝑎∕𝑏+𝑖𝑗 and 𝑟𝑎∕𝑏−𝑖𝑗 denote the rate increase and decrease for each
agent’s transition 𝑠𝑖 → 𝑠𝑗 as a result of indirect and direct repul-
sion, respectively. To formulate the constraints in (27b) and (27c), we
construct

𝑀�̄� =

⎡

⎢

⎢

⎢

⎢

⎣

�̄�2 0 �̄�3 0
−�̄�2 −�̄�2 0 0
0 0 −�̄�3 −�̄�3
0 �̄�2 0 �̄�3

⎤

⎥

⎥

⎥

⎥

⎦

, (31a)

𝑞 =
[

𝑞𝑏21 𝑞𝑎12 𝑞𝑎21 𝑞𝑏12
]𝑇 , (31b)

𝑟 =
[

𝑟𝑏−21 𝑟𝑎−12 𝑟𝑎−21 𝑟𝑏−12
]𝑇 , (31c)

�̄� =
[

�̄�1 �̄�2 �̄�3 �̄�4
]𝑇 . (31d)

Fig. 2 shows the CTMC representations of 𝑎, 𝑏 and X. For the sake of
demonstration, X has both the indirect and direct repulsion rates added
to its isolated transition rates, thus depicting I and D simultaneously.

In this special case, indirect and direct repulsion never affects the same
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Fig. 2. CTMCs 𝑎 and 𝑏 and their network CTMC X.

network transition, which can also be seen in the non-overlapping
sparsity patterns of (30a) and (30b).

6.1. No marginalization constraints

Evaluating the constraints (27b) and (27c) for Example network 1
yields

0 < 𝑟𝑏−21 =
�̄�1 𝑟𝑏+12 − �̄�4 𝑟𝑏+21 + �̄�3 𝑥

�̄�2
< 𝑞𝑏21, (32a)

< 𝑟𝑎−12 =
�̄�4 𝑟𝑎+21 + �̄�4 𝑟𝑏+21 − �̄�3 𝑥

�̄�2
< 𝑞𝑎12, (32b)

< 𝑟𝑎−21 =
�̄�1 𝑟𝑎+12 + �̄�4 𝑟𝑏+21 − �̄�3 𝑥

�̄�3
< 𝑞𝑎21, (32c)

0 < 𝑟𝑏−12 = 𝑥 < 𝑞𝑏12. (32d)

hus, the rate 𝑥 is a free parameter on an interval (𝑥min, 𝑥max), such that
32) hold, showing that similarity can be achieved without marginal-
zation of the networks.

.2. D is marginalizable

Following the reasoning in Section 4.1, choosing state-independent
arameters when constructing 𝑅− requires the additional equality con-
traints 𝑟𝑎−21 = 𝑟𝑎−12 and 𝑟𝑏−21 = 𝑟𝑏−12 , halving the number of unknowns in

(27). The lower bound of (32) reduces into the constraints

0 < 𝑟𝑏−21 =
�̄�1 𝑟𝑏+12
�̄�2

+
�̄�4 𝑟𝑎+21
�̄�2

+
�̄�1 𝑟𝑎+12
�̄�2 − �̄�3

−
�̄�4 𝑟𝑎+21
�̄�2 − �̄�3

, (33a)

0 < 𝑟𝑎−21 =
�̄�4 𝑟𝑎+21
�̄�2 − �̄�3

−
�̄�1 𝑟𝑎+12
�̄�2 − �̄�3

, (33b)

0 =
�̄�1 𝑟𝑎+12
�̄�3

−
�̄�1 𝑟𝑏+12
�̄�2

−
�̄�4 𝑟𝑎+21
�̄�2

+
�̄�4 𝑟𝑏+21
�̄�3

. (33c)

he satisfaction of (33c) is determined only by 𝑅+ and �̄� and can-
ot be controlled by choosing 𝑅−. Hence, this counterexample shows
hat similarity between I and D is not always determined by D, if D is
arginalizable.

.3. D and I are marginalizable

Marginalizability of I requires that 𝑟𝑎+12 = 𝑟𝑎+21 and 𝑟𝑏+12 = 𝑟𝑏+21 hold, in
ddition to (33). We can then express 𝑟𝑏+12 as a function of 𝑟𝑎+12 in (33c),
nd substitute 𝑟𝑏+12 in (33a). This, in combination with (33b), first allows
s to derive two sets of conditions
�̄�2
�̄�3

>
�̄�4
�̄�1

> 1 or
�̄�2
�̄�3

<
�̄�4
�̄�1

< 1, (34)

hat account for the existence and positivity of 𝑟.
Second, we must verify that the conditions (34) do not affect the

ositivity of the entries 𝑟𝑎+12 and 𝑟𝑏+12 . From (33c), we assume that 𝑟𝑎+12 > 0
by construction. Therefore, 𝑟𝑏+12 > 0 iff

�̄�3�̄�1 − �̄�4�̄�2 > 0, (35)
5

�̄�2�̄�1 − �̄�4�̄�3
Fig. 3. Agent decision probabilities and eigenvalues.

which has two possible sets of solutions,

⎧

⎪

⎨

⎪

⎩

�̄�3
�̄�2

> �̄�4
�̄�1

�̄�2
�̄�3

> �̄�4
�̄�1

or
⎧

⎪

⎨

⎪

⎩

�̄�3
�̄�2

< �̄�4
�̄�1

�̄�2
�̄�3

< �̄�4
�̄�1
.

(36)

inally, the constraints (34) for the existence and positivity of the
olution must be merged with those for the positivity of the entries of
atrix 𝑅+, (36). However, none of these merged sets has a solution,

ince for both cases there is a conflict between inequalities. This means
hat it is not possible to find any combinations of �̄� entries such that
ll the constraints hold. Thus, 𝑁 = 𝑀 = 2 is a counterexample showing
hat similarity according to (27) is not generally feasible when both D and
are marginalizable.

. Numerical results

In Example 1, the similarity objective function (27a) cannot be
inimized as the diagonal elements of (30b) become independent on

he free rate 𝑟𝑏−12 due to (32). However, in the following large-scale
xample, we show that (27) can be solved when I is marginalizable,
nd that minimizing (27a) can lead to a shorter probability transient
n D.

xample 2. Assume that 𝑁 = 8 driver agents 𝑐, 𝑑… 𝑗 choose between
= 2 lanes at rates 𝑄1[1, 2] = 1, 𝑄2[1, 2] = 2, . . .𝑄8[1, 2] = 8 and

𝑄1…8[2, 1] = 5, producing a 256 × 256 𝑄 according to (4). Groups are
disregarded, assuming fully connected repulsion between all agents so
that 𝛤

𝓁
in (5) and (7) always describes repulsion between two agents.

For I, we choose state-independent parameters 0.14 ≤ 𝛾 ≤ 0.71 so that
(8) holds for all agents and I is marginalizable.

The objective is to find a D similar to I by solving (27) for the vector
𝑟 containing the 2032 unknown rates in 𝑅−. We assume that 𝑅− is the
result of state-dependent 𝛾-parameters so that D is not marginalizable.
The matrix 𝐻 in (27a) is set to identity for an unweighted minimization
of all diagonal elements in 𝑅−. Moreover, to show that the diagonal
elements of 𝑅− can indeed be minimized, we find and compare two
networks, D1 and D2. For D1, we require 𝑟 ≥ 0.4, which is unnecessarily
high. For D2, 𝑟 ≥ 0.001, which is closer to the necessary positivity
constraint.

We simulate I, D1 and D2 to obtain the network probability trajec-

tories from 𝑡 = 0 to 𝑡 = 1. By post-summation over network decision
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probabilities, we extract the decision probabilities of each agent 𝑐. . . 𝑗
nd compare them in Fig. 3. In the first eight plots, it can be seen that I,
1, and D2 all produce the same stationary decision probability for each
gent, confirming that the second similarity criterion in Section 5 holds.
n the plot of agent 𝑐, we also show the network rise time until 95%
f the stationary probability. Importantly, I has the fastest rise time
1 ≈ 0.35, followed by D2 with 𝑡2 ≈ 0.55 and lastly D1 with 𝑡3 ≈ 0.87.
he eigenvalue plot shows that a higher spectral gap, obtained by
inimizing the difference in expected state holding time, corresponds

o a shorter transient time in this particular case.

emark 2. In the above, we show a case in which we find D similar
o a marginalizable I. When marginalization constraints are enforced
lso on D, no solution is found.

. Conclusions

We introduce the direct repulsion force as an alternative to the
ndirect repulsion force for modeling group-wise disagreement in a de-
ision process among Markovian agents in a network. To see if both
ethods can similarly describe a decision process, similarity is defined

s a property between two network models, requiring equality be-
ween their respective stationary decision probabilities and a minimal
w.r.t. the cost (27a)) difference between their expected decision state
olding times. We show that the state-space dimension of a network
efined with direct repulsion also can be significantly reduced using
arginalization, and for two networks D and I defined with direct and

ndirect repulsion respectively, we demonstrate an example of when
similar to a marginalizable I can be obtained. However, we also

erive a counterexample to show that the existence of D similar to I
annot generally be guaranteed when D and/or I are marginalizable.
oreover, direct repulsion requires more information and may increase

he time until the decision process becomes stationary. Therefore, we
ecommend indirect repulsion as a model for disagreement in decision
rocesses among Markovian agents. Future work includes learning in-
irect repulsion parameters from decision processes in traffic scenarios,
uch as lane changing.
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