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Abstract

This paper develops an heterogeneous agents model with fundamen-
talists and chartists trading in two different speculative markets. It
examines whether investors’ behaviour is related to the volatility and
its dynamics. We find that investors’ heterogeneity in price trends and
trading strategies can significantly explain asymmetry in semi-volatility
transmission.
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1 Introduction

There is a rich literature contributing to the identifications and duplication
of stylized facts of stock returns in financial markets. Some of these regulari-
ties can be summarized as asymmetry, excess of kurtosis, volatility clustering,
leverage effect and long-range dependence. In particular, the line of research
focusing on the role of agent-based financial market models have been quite
successful at replicating these facts (see e.g. [3], [6], [18]). Although, these
models are able to match quite well the stylized facts of stock returns, their
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majority focus on a single market or one risky asset. There are few exceptions
that extend the heterogeneous agents models (HAM) framework to price dy-
namics of multi-asset or multi-markets dynamics. [19] proposes a multi-asset
market model where technical traders can switch between several financial
markets. He demonstrates that the stability of the markets can be affected
if the composition between chartists and fundamentalists varies. [20] present
a model with fundamentalists and chartists that are free to trade in two dif-
ferent markets. The authors show that a uniform transaction tax may stabi-
lize all markets. [14] analyse the propagation of financial crisis considering a
two-market heterogeneous agents model where each trader can invest in each
market.
In these models, the link between markets can occur in different ways. A com-
mon approach consists of fitness measures affecting investor composition, as in
the seminal paper of [3]. The works of [20], [1] and [14], for example, belong to
this group. Another proposal is to develop HAM of multi-assets in continuous
time as in [13]. In this case, two markets are integrated into one market via the
introduction of cross-sectional momentum traders. In addition, [9] consider a
three-market model in which two stock markets are linked via foreign exchange
market. Finally, [7] show that nonlinear trading rules may cause endogenous
price dynamics with random switching between bull and bear markets.
Our paper combines two literature strands: (i) the first focuses on multi-
markets HAM in economics and finance, while (ii) the second concentrates
on the impact of asymmetric behaviour of investors in relation to downside
and upside risk. In financial markets literature, this phenomenon is known as
asymmetric volatility. It is related to the fact that positive changes in volatil-
ity are associated with negative returns more often than negative changes in
volatility are associated with positive returns. In this connection, in this paper
we rely on the total spillover index (TSI) of [4] as a proxy for the system overall
connectedness of markets showing that the volatility transmission exhibits a
certain degree of asymmetry.
Our contributions to the existing literature are as follows. First, we follow the
framework of [20] and [5]. We consider two types of traders, fundamentalists
and chartists, who place orders in two speculative markets with the same trans-
action currency and on the same asset. It is assumed that, in each market,
traders switch to the strategy that they believe to perform better. Moreover,
the switching mechanism is based on the TSI index of [4] which is intended
to capture the overall connectedness of markets. It considers the ratio of total
cross-variance shares over the total (own and cross) variance shares.
Second, we demonstrate that the model is able to replicate the most impor-
tant stylized facts of financial markets. Indeed, we first focus on the stylized
facts that take place in individual markets, in particular volatility clustering
and long memory. Next, we consider the empirical facts that simultaneously
involve multiple markets. To this purpose, following [4] we use downside and
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upside volatility as proxies of downside risk and upside opportunities in order
to analyse the asymmetries in volatility transmission.

The paper is structured as follows. In Section 2 we present the model
where two types of speculators, fundamentalists and chartists, trade in two
stock markets. In Section 3 we conduct different numerical simulations of the
model to verify its capability to match typical stylized facts documented in
the literature, especially volatility clustering, long memory and asymmetry in
semi-volatility transmission. Section 4 concludes.

2 The model

In this section we develop a simple behavioural financial model which allows
us to analyse interactions between two speculative markets. We study a two-
dimensional discrete-time dynamic model which describes the dynamics of two
markets where the same asset is traded. As stressed by [1], in financial lit-
erature has been shown that the same asset traded in different markets tend
to behave differently. In line with this evidence, following [20, [17] and [14],
we consider two markets, 1 and 2, each populated by three types of traders
(fundamentalists, chartists and a market maker). Fundamentalists believe the
stock price returns towards its fundamental value, in this regard, they buy
stocks if the current price is below the fundamental value, while they sell
stocks if the current price is above the fundamental value. The orders placed
by fundamentalists in market i, with i = 1, 2 are given by:

Dfi
i,t = afi(Fi,t − Pi,t) + εfit (1)

where parameter afi > 0 captures the convergence of the market price i to
the expected fundamental value. εfit ∼ N(0, (σ)f,i) is an independent normally
distributed random variable with zero means and constant variance.

Chartists behave in exactly the opposite way to fundamentalists. Indeed,
they follow the trend of the market, in this sense, they buy stocks if the current
price is above the price of the previous period, otherwise they sell stocks. Their
orders in market i, with i = 1, 2 can be written as:

Dci
i,t = aci(Pi,t − Pi,t−1) + εcit (2)

with aci is a positive reaction parameter. εcit ∼ N(0, (σ)c,i) is an inde-
pendent normally distributed random variable with zero means and constant
variance.

Regarding the market fractions of traders, we follow [5] assuming that the
fraction of chartists evolves according to the TSI index, that is:

W ci
i,t =

D
cj
j,t +D

fj
j,t

D
cj
j,t +D

fj
j,t +Dci

i,t +Dfi
i,t

(3)
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while the fraction of fundamentalists is determined as follows:

W fi
i,t = 1−W ci

i,t (4)

with i, j = 1, 2 and i 6= j. From Eqs. (3)-(4), we can infer some important
facts. First, the fractions of traders are relative to the total demand of all the
markets. This represents the first element that connects each market to the
other. Second, fundamentalists fraction takes into consideration only the total
demand of the market where they trade relative to the total demand. Indeed,
expanding Eq (4), the fraction of fundamentalists is equal to:

W fi
i,t =

Dci
i,t +Dfi

i,t

D
cj
j,t +D

fj
j,t +Dci

i,t +Dfi
i,t

(5)

While the chartists fraction is based on the total demand of the other
market relative to the total demand (see Eq (3)). In line with [4], the two
agents act as spillovers of volatility. In fact, the TSI index can be decomposed
into two parts:

TSI i = DSi
∗→ +DSi

→∗ (6)

with i, j = 1, 2 and i 6= j. DSi
∗→ is the directional spillover received

by market i from the other market j, while DSi
→∗ is the directional spillover

transmitted by market i to the other market j. In our model DSi
∗→ corresponds

to the fraction of chartists (Eq. (3)) , while DSi
→∗ is the equivalent of the

fraction of the fundamentalists (Eq. (5)). Given that, in our model, W fi
i , W ci

i

are the fractions of fundamentalists and chartists of type i in market i, with
i = 1, 2, respectively, and W fi

i + W ci
i = 1 for every i = 1, 2, we conclude

that the total number of agents in each market give us a proxy for the system
overall connectedness(i.e. the Total Spillover Index).

The stock market is characterized by the presence of a market maker that
sets the stock (log) price Pi,t+1 with i = 1, 2 according to total excess demand:

T :

P1,t+1 = P1,t + am
(
W f1

1,tD
f1
1,t +W c1

1,tD
c1
1,t

)
P2,t+1 = P2,t + am

(
W f2

2,tD
f2
2,t +W c2

2,tD
c2
2,t

) (7)

where am is a positive price adjustment parameter that measures the mar-
ket power of traders. Taking into account the trading strategies and the cor-
responding fractions in (1)-(4), System (7) takes the following form:

T :


P1,t+1 = P1,t + am

[( Dc1
1,t +Df1

1,t

Dc2
2,t +Df2

2,t +Dc1
1,t +Df1

1,t

)
∗Df1

1,t +
( Dc2

2,t +Df2
2,t

Dc2
2,t +Df2

2,t +Dc1
1,t +Df1

1,t

)
∗Dc1

1,t

]
P2,t+1 = P2,t + am

[( Dc2
2,t +Df2

2,t

Dc2
2,t +Df2

2,t +Dc1
1,t +Df1

1,t

)
∗Df2

2,t +
( Dc1

1,t +Df1
1,t

Dc2
2,t +Df2

2,t +Dc1
1,t +Df1

1,t

)
∗Dc2

2,t

] (8)
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Based on the above considerations, introducing the auxiliary variables X1,t

and X2,t, we obtain a first order four-dimensional dynamical system, which
describes the prices evolution over time in each market, driven by the following
4-D map S : (X1,t, X2,t, P1,t, P2,t) 7→ (X1,t+1, X2,t+1, P1,t+1, P2,t+1)

S :



X1,t+1 = P1,t

X2,t+1 = P2,t

P1,t+1 = P1,t + am
[( Dc1

1,t +Df1
1,t

Dc2
2,t +Df2

2,t +Dc1
1,t +Df1

1,t

)
∗Df1

1,t +
( Dc2

2,t +Df2
2,t

Dc2
2,t +Df2

2,t +Dc1
1,t +Df1

1,t

)
∗Dc1

1,t

]
P2,t+1 = P2,t + am

[( Dc2
2,t +Df2

2,t

Dc2
2,t +Df2

2,t +Dc1
1,t +Df1

1,t

)
∗Df2

2,t +
( Dc1

1,t +Df1
1,t

Dc2
2,t +Df2

2,t +Dc1
1,t +Df1

1,t

)
∗Dc2

2,t

] (9)

where Dci
i,t = aci(Pi,t −Xi,t) + εcit with i = 1, 2.

In the next paragraph, we show that our model based on the switching
mechanism described above is able to mimic the main stylized facts of finan-
cial markets. Moreover, we demonstrate that beyond the empirical evidence
concerning returns, the model is also related with volatility and its dynamics
revealing the presence of asymmetry in semi-volatility transmission.

3 Semi-volatilities spillovers and stylized facts

The model presented in the previous section, and summarized by Map (9),
describes our HAM aimed at studying how volatility is transmitted from one
market to the other and, its consequences to the price dynamics. The channel
through which volatility spreads among markets is the sentiment index, that
relies on the TSI of [4]. In the building of our model, we have seen that
the sentiment index is responsible for the switching mechanism of traders.
Overall, our paper is in line with the literature on sentiment traders that
are responsible to the emergence of complex dynamics in financial markets
([15], [3], [8]). For example, [11] find that when sentiment traders enter the
market, the fundamental fixed point is never reached. Moreover, the presence
of sentiment traders is responsible to the excess volatility and mispricing.

This model is inspired by the work of [20] where the introduction of a
transaction tax is evaluated on the dynamics of the price variability in two
different speculative markets with technical and fundamental analysts. Unlike
[20], the focus of the model is on the transmission of volatility spillovers be-
tween two speculative markets where two types of traders invest on the same
asset. Moreover, from the assumption of the model, the switching mechanism
is limited on the same market considering the effects of information coming
from the other market. Finally, we stress that the proportion of switching
agents choosing a certain trading rule is governed by the sentiment index ac-
cording to Eqs. (3) and (5) following [7], [15], [6] unlike other authors using a
discrete-choice model (see [3], [10], [20], among others).
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Table 1: The stock markets parameter setting.
c1 c2 af1 af2 ac1 ac2 am F1 F2 P1,0 P2,0 σ1 = σ2
2.5 0.39 2 2 3.1 0.5 0.2 2.7 1 1.5 2 2
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Figure 1: Time series of returns. The panels show the evolution of returns in
markets 1 (panel (a)) and 2 (panel (b)), respectively.

In what follows we provide evidence of the capability of our model to repli-
cate typical stylized facts of financial markets. We explore empirical evidence
occurring in single markets, for this purpose we concentrate our attention on
volatility clustering and long memory. Next, we concentrate on the stylized
facts observed between markets. In what follows, the simulations are per-
formed using Map (9), where a stochastic component is added to the demand
of each trader. However, instead of prices, numerical simulations focus on daily
log-returns, specified as:

rt = ln(Pt)− ln(Pt−1) (10)

The parameters set used in all the simulations are reported in Table (1).
Fig. (1) illustrates the returns series for the two markets. Two main important
facts can be observed. First, the figure confirms that returns alternate period
of calm (low volatility) with period of turbulence (high volatility) giving evi-
dence of bull and bear market episodes. Second, the graph also demonstrates
a simultaneous returns pattern in the two markets implying a high level of
comovements of the two stock markets in line with empirical evidence (see [17]
among others).

The second stylized fact concerns the long memory effect. It is related
to the serial correlation of returns, indeed, it has been found that returns
exhibit statistical insignificant autocorrelation function (ACF), while squared
and absolute returns are characterized by significant ACFs ([12], [2]). It is
evident in Fig. (2) where the ACFs for returns (in blue) and absolute returns
(in yellow) are plotted with respect the first 35 lags. It shows that ACF of
returns becomes insignificant after the first few lags, while ACF of absolute
returns decays slowly and remains statistically significant after 35 lags.

Many authors argue that agents are heterogeneous for different reasons. In
our model we assume that traders are heterogeneous in their beliefs about the
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Figure 2: Volatility clustering of financial return series. The panels show the
evolution of autocorrelation functions of raw and absolute returns in markets
1 (panel (a)) and 2 (panel (b)).

future value of the price. However, other authors claim that traders are het-
erogeneous with respect to the time horizons they consider in their investment
decisions. In particular, [16] argument that heterogeneous traders can be asso-
ciated to different volatility components. The authors distinguish short-term
traders that rely on high-frequency volatility component, and long-term traders
that, evaluating their investment decisions at low frequency, are responsible
to the long-term component of volatility. As a consequence of these facts, it
results that high-frequency volatility are more informative than low-frequency
volatility. Thus, volatility exhibits asymmetries in their components. In ad-
dition, the asymmetry in volatility may regard the distribution of returns, i.e.
the fact that large peaks on volatility are more concerned with negative returns
than positive returns.

To this purpose, assuming realized volatility measures (RV) as proxy of
volatility, we decompose realized volatility into its downside and upside semi-
variance components ([14]). In particular, the realized variance estimator is
defined as:

RV =
M∑
i=1

r2i (11)

where ri are intraday returns. Decomposing RV into its downside and
upside semi-variance components, we find:

RV = RV + +RV − (12)

where

RV + =
M∑
1

r2i I(ri > 0)RV − =
M∑
1

r2i I(ri < 0) (13)

Finally, considering the square root of the semi-variance estimators we obtain
the semi-volatility estimators, given by:



124 G. Campisi and S. Muzzioli

0 500 1000 1500 2000
0

2

4

6

8

R
V

+
d,

t

10-6 (a)

t 0 500 1000 1500 2000
0

0.5

1

R
V

- d,
t

10-5 (b)

t 0 500 1000 1500 2000
0

0.5

1

R
V

d,
t

10-5 (c)

t

0 500 1000 1500 2000
0

1

2

3

4

R
V

+ w
,t

10-5 (d)

t 0 500 1000 1500 2000
0

1

2

3

R
V

- w
,t

10-4 (e)

t 0 500 1000 1500 2000
0

1

2

3

R
V

w
,t

10-4 (f)

t

0 500 1000 1500 2000
0

1

2

3

R
V

+ m
,t

10-3 (g)

t 0 500 1000 1500 2000
0

2

4

6

R
V

- m
,t

10-3 (h)

t 0 500 1000 1500 2000
0

2

4

6

R
V

m
,t

10-3 (i)

t

Figure 3: Asymmetric semi-volatilities. Upside semi-volatility (left), down-
side semi-volatility (middle) and volatility (rigth) of market 1 for different
frequencies. In panels (a)-(c) daily semi-volatilities and volatility, in panels
(d)-(f) weekly semi-volatilities and volatility, and panels (g)-(i) monthly semi-
volatilities and volatility.

σ̂+ =
√
RV +σ̂− =

√
RV − (14)

We analyze the stock market semi-volatility dynamics demonstrating that
our model exhibits asymmetry in semi-volatility transmission. This fact im-
plies that, the correlation of large and negative returns is larger than the
correlation of large positive returns.
Figure (3) shows the dynamics of upside semi-volatility (panels (a), (d) and
(g)), downside semi-volatility (panels (b), (e) and (h)) and volatility (panels
(c), (f) and (i)) for different frequencies (daily, weekly and monthly from the
top to the bottom respectively). It is worth noting that volatility shows the
two asymmetries discussed above. In particular, for all frequencies, downside
semi-volatility is larger than upside volatility. Moreover, we also observe that
long-term volatility has a stronger influence on those at shorter interval. This
confirms that our model is able to replicate typical empirical facts concerned
with volatility and its dynamic as found by many authors ([14], [16], among
others).

Following [17], we consider cross-correlation between markets. Table (2)
presents estimates of the cross-correlation function of raw and absolute returns
for between the two stock markets. It shows the contemporaneous correlation
in raw returns with a coefficient of 0.99 but after the lags of ±1 the coefficient
is insignificant. On the other hand, absolute returns exhibit long-range depen-
dence of correlations, indeed, the cross-correlation functions decay slowly also
for time difference of ±50 lags where their coefficients reach values of 0.124
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Table 2: Statistical properties of the two markets. The table reports the cross-
correlation function of raw returns ccirt for lags i ∈ {−1, 0, 1} and the cross-
correlation function of absolute returns cci|rt| for lags i ∈ {−50,−2, 0, 2, 50}.

cc−1rt cc0rt cc1rt cc−50|rt| cc−2|rt| cc0|rt| cc2|rt| cc50|rt|
Mean -0.038 0.99 0.004 0.124 0.347 0.989 0.304 0.095

and 0.095.

4 Conclusions

The model proposed in this paper introduces a sentiment indicator in a simple
asset-pricing framework. The sentiment index relies on a proxy of the cross-
variance between two different markets where the same asset is traded, and is
responsible of the switching mechanism generated in the model.
In particular, we have shown that the traders’ demands could be compared
with the two component of the TSI index, i.e., the directional spillover re-
ceived and transmitted from each market. To this purpose, fundamentalists
played the role of directional spillovers transmitted by one market to the other,
while chartists represented directional spillovers received by one market from
the other. Although transactions only take place within the same market and
not between markets, through the number of agents it is possible to go back
to a proxy of the system overall connectedness thanks to the sentiment index
introduced.
Finally, numerical simulations have exhibited the capability of our model to
replicate some of the stylized facts of financial markets. In particular, we have
concentrated our attention on volatility clustering and long memory effect that
are two of the main stylized facts occurring in single markets. In addition, we
attempted to demonstrate two further stylized facts occurring in international
markets, i.e., comovements of prices and cross-correlations of volatilities. Only
few works have jointly explained both statistical regularities (for example [17]),
and we have shown that our model pass this test with success.
Further extensions of our model could be considered. From a theoretical point
of view, we can make our model discontinuous extending the analysis on the
border collision bifurcations. Moreover, another way to develop the model is
to estimate it with appropriate econometric methods.
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