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Abstract We study a system of particles in the interval [0, ε−1]∩Z, ε−1 a positive integer. The particles move
as symmetric independent random walks (with reflections at the endpoints); simultaneously new particles are
injected at site 0 at rate jε ( j > 0) and removed at same rate from the rightmost occupied site. The removal
mechanism is, therefore, of topological rather than metric nature. The determination of the rightmost occupied
site requires a knowledge of the entire configuration and prevents from using correlation functions techniques.
We prove using stochastic inequalities that the system has a hydrodynamic limit, namely that under suitable
assumptions on the initial configurations, the law of the density fields ε

∑
φ(εx)ξε−2t (x) (φ a test function,

ξt (x) the number of particles at site x at time t) concentrates in the limit ε → 0 on the deterministic value∫
φρt , ρt interpreted as the limit density at time t . We characterize the limit ρt as a weak solution in terms of

barriers of a limit-free boundary problem.
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1 Introduction and model definition

This paper is inspired by the analysis in [11] and we are indebted to Pablo Ferrari for discussions and in
particular for suggesting the inequalities in Sect. 6. This is a first in a series of three papers where we study a
particle system whose hydrodynamic limit is described by a free boundary problem.

Our system is made of particles confined to the lattice [0, ε−1] ∩ Z, for brevity in the sequel we shall just
write [0, ε−1]. In this notation, ε−1 is a positive integer denoting the system size and we will be eventually
interested in the asymptotics as ε → 0. The evolution is a Markov process {ξt , t ≥ 0} on the space of particle
configurations ξ = (ξ(x))x∈[0,ε−1]; the component ξ(x) ∈ N is interpreted as the number of particles at site x .
The generator is denoted by

L = L0 + Lb + La (1.1)

(the dependence on ε is not made explicit). L0 is the generator of the independent random walks process; it is
defined on functions f by

L0 f (ξ) = 1

2

ε−1−1∑

x=0

L0
x,x+1 f (ξ) (1.2)

L0
x,x+1 f (ξ) = ξ(x)( f (ξ x,x+1) − f (ξ)) + ξ(x + 1)( f (ξ x+1,x ) − f (ξ)) (1.3)

where ξ x,y denotes the configuration obtained from ξ by removing one particle from site x and putting it at
site y, i.e.

ξ x,y(z) =
⎧
⎨

⎩

ξ(z) if z �= x, y,
ξ(z) − 1 if z = x,
ξ(z) + 1 if z = y.

Namely, L0 describes independent symmetric random walks which jump with equal probability after an
exponential time of mean 1 to the nearest neighbor sites, the jumps leading outside [0, ε−1] being suppressed
(reflecting boundary conditions).

The term Lb in (1.1) is

Lb f (ξ) = jε( f (ξ+) − f (ξ)), ξ+(x) = ξ(x) + 1x=0. (1.4)

It describes the action of throwing into the system new particles at rate ε j , j > 0, which then land at site 0;
instead La removes particles:

La f (ξ) = jε( f (ξ−) − f (ξ)), ξ−(x) = ξ(x) − 1x=R(ξ) (1.5)

namely a particle is taken out from the edge Rξ of the configuration ξ defined as

Rξ is such that:

{
ξ(y) > 0 for y = Rξ

ξ(y) = 0 for y > Rξ
(1.6)

La f (ξ) = 0 if Rξ does not exist, i.e. if ξ ≡ 0.
We interpret L as the generator of a system of independent walkers with “current reservoirs” which impose

a positive current ε j at site 0 and at the edge of the configuration. See [8,9] for a comparison with the density
reservoirs used in the analysis of the Fourier law. Here is a list of the main issues which are studied in this and
in the other papers in this series.

• The interaction described by La is highly non-local as Rξ depends on the positions of all the particles. This
spoils any attempt to use the BBGKY hierarchy of equations for the correlation functions, as customary in
ε perturbations of the independent system, see for instance [7].

• The La interaction is “topological rather than metric”, as the influence on a particle i of a particle j only
depends on whether j is to the right or left of i and not on their distance. Topological interactions appear
often in natural sciences as in population dynamics, in particular the motion of crowds of people [5], or
of animals [1]. Our result shows that there are natural examples in physical systems as well. The relative
simplicity of our model allows a rigorous analysis of such an interaction.
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• To the left of Rξ , the particles do not feel the La interaction and move freely, but Rξ depends on the
configuration of particles and hence on time as well. Ours, therefore, is a microscopic model for a free
boundary problem and one may thus guess that the hydrodynamic limit is also ruled by a free boundary
problem. In such a case, the hydrodynamic equations would be the linear heat equation in an open, time-
dependent space interval with suitable boundary conditions complemented by a law for the speed of the
right boundary.

• The action of Lb and La is to add from the left and, respectively, remove from the right particles at rate ε j .
They act, therefore, as “current reservoirs” [8–10], because they are imposing a current ε j (recall that for
density reservoirs [4,6] the particles current scales by ε). Supposing the validity of Fick’s law, the stationary
macroscopic profiles are then linear functions with slope −2 j : there are, therefore, infinitely many such
profiles (as here the boundary densities are not fixed). Two scenarios are then possible: either there is a
preferential profile or there is a second time scale beyond the hydrodynamical one, where we see that such
profiles are not stationary.

We shall give answers to most of the above issues, with our main results being stated in the next section.

2 Main results

Macroscopic profiles are functions u ∈ L∞([0, 1],R+) that we also regard as positive Borel measures on
[0, 1] via the correspondence u → u dr . For any Borel positive measure μ on [0, 1], we define

F(r; μ) =
1∫

r

μ(dr ′), r ∈ [0, 1]

setting, by an abuse of notation,

F(r; u) =
1∫

r

u(r ′) dr ′, r ∈ [0, 1] (2.1)

We then say that u ∈ L∞([0, 1],R+) has “an edge” R(u) if

R(u) = inf{r : F(r; u) = 0} < 1 (2.2)

The definition extends naturally to Borel-positive measures μ on [0, 1].
Definition 2.1 (Assumptions on the initial macroscopic profile) We denote by ρinit the initial macroscopic
profile, we suppose that ρinit ∈ L∞([0, 1],R+).

Remark For some results, we will need extra assumptions, namely that ρinit ∈ C([0, 1],R+) and/or that it has
an “edge”.

We shall next discuss in which way particle systems and evolution of macroscopic profiles are related.

Hydrodynamic limit

Particle configurations ξ are elements of N[0,ε−1] which may be regarded as positive measures μξ on the real
interval [0, ε−1] by setting

μξ =
ε−1
∑

x=0

ξ(x)Dx

where Dx , the Dirac delta at x , is the probability measure supported by the point x . Analogously to (2.1), we
set

Fε(x; ξ) =
ε−1∫

x

μξ (dx ′) =
∑

y≥x

ξ(y), x ∈ [0, ε−1] (2.3)
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and, as for the macroscopic profiles, we say that ξ has an edge Rξ if

Rξ = inf{x : F(x; ξ) = 0} < ε−1 (2.4)

which means that Rξ < ε−1 is the largest integer x such that ξ(x) > 0, in agreement with (1.6). To compare
macroscopic profiles and particle configurations, we shall use the functions Fε(x; ξ) and F(r; u). We define,
in particular, the local averages:

A�(x, ξ) := 1

�
(Fε(x; ξ) − Fε(x + � − 1; ξ)) = 1

�

x+�−1∑

y=x

ξ(y) (2.5)

with � a positive integer and x ∈ [0, ε−1 − � + 1]. The corresponding quantity for macroscopic profiles
u ∈ L∞([0, 1],R+) is

A′
�(x, u) = 1

ε�
(F(εx; u) − F(ε(x + �); u)) (2.6)

Definition 2.2 (Assumptions on the initial particle configuration) We fix b < 1 suitably close to 1 and a > 0
suitably small, for the sake of definiteness we set b = 9/10 and a = 1/20. We then denote by � the integer
part of ε−b and suppose that for any ε the initial configuration ξ verifies

max
x∈[0,ε−1−�+1]

|A�(x, ξ) − A′
�(x, ρinit)| ≤ εa (2.7)

and moreover that if ρinit has an edge R(ρinit), see (2.2), then

|εRξ − R(ρinit)| ≤ εa (2.8)

with Rξ as in (2.4). We shall denote by P(ε)
ξ the law of the process {ξt , t ≥ 0} in the interval [0, ε−1] with

generator L given in (1.1) and start at time 0 from a configuration ξ as above.

Thus, the initial configuration ξ converges to ρinit as ε → 0 in the sense of (2.7). Our first result proves
that the convergence extends to all positive times (but in a weaker sense).

Theorem 2.3 (Existence of hydrodynamic limit) Let ρinit ∈ L∞([0, 1],R+) and ξ as in Definition 2.2. Then,
there exists a non-negative, continuous function ρ(r, t), t > 0, r ∈ [0, 1], such that for any r ∈ [0, 1]

lim
t→0

F(r; ρ(·, t)) = F(r; ρinit(·)) (2.9)

and such that for any t > 0 and ζ > 0

lim
ε→0

P(ε)
ξ [ max

x∈[0,ε−1]
|εFε(x; ξε−2t ) − F(εx; ρ(·, t))| ≤ ζ ] = 1 (2.10)

Moreover, if ρinit ∈ C([0, 1],R+) then ρ(r, t) is continuous in [0, 1] × {t ≥ 0} and ρ(r, 0) = ρinit.

The above convergence implies weak convergence of the density fields against smooth test functions φ:

lim
ε→0

P(ε)
ξ

⎡

⎣
∣
∣
∣ε
∑

x

ξε−2t (x)φ(εx) −
1∫

0

φ(r)ρ(r, t)dr
∣
∣
∣ ≤ ζ

⎤

⎦ = 1, for all ζ > 0.
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The free boundary problem

Theorem 2.3 states the existence and some regularity properties of the hydrodynamic limit, but does not say
about its qualitative features: in particular which equation is satisfied by the limit and which equation rules the
motion of the edge, if it exists. The continuum analogue of our particle evolution is

∂ρ

∂t
= 1

2

∂2ρ

∂r2
+ j D0 − j DRt , j > 0 (2.11)

where the first term (on the right hand side) corresponds to the random walk evolution, j D0 to the addition of
particles at the origin and j DRt to the removal of the rightmost particles.

In [2], a suitable notion of quasi-solutions for (2.11) in R+ is given and it is proved that the limit of such
quasi-solutions coincides with the hydrodynamic limits found in Theorem 2.3. The main ingredient in the
proof is established here and it is based on the notion of upper and lower barriers. These are “approximate
solutions” of (2.11) which bound from below and from above the hydrodynamic limit ρ(r, t), the inequalities
being in the sense of mass transport.

This is defined as follows: two positive Borel measures μ and ν on [0, 1] are ordered with μ ≤ ν if

F(r; μ) ≤ F(r; ν) for all r ∈ [0, 1].
We shall apply the notion to measures in U defined as follows:

Definition 2.4 (The set U and the partial order) U is the set of all positive Borel measures u on [0, 1] which
have the form u = cu D0 + ρu(r)dr , cu ≥ 0, ρu ∈ L∞([0, 1],R+). By an abuse of notation, we shall also
write the elements of U as u = cu D0 + ρu . For any u, v ∈ U , we then set

u ≤ v iff F(r; u) ≤ F(r; v) for all r ∈ [0, 1]. (2.12)

We also write |u − v| = |cu − cv|D0 + |ρu − ρv| ∈ U so that

|u − v|1 := F(0; |u − v|) = |cu − cv| +
1∫

0

|ρu(r) − ρv(r)|dr (2.13)

is the total variation of the measure u − v.

Definition 2.5 (The cut and paste operator) We define for any δ > 0 the subset Uδ ⊂ U as

Uδ := {u = cu D0 + ρu : F(0; ρu) > jδ} (2.14)

and the cut-and-paste operator K (δ) : Uδ → U

K (δ)u = jδD0 + 1r∈[0,Rδ(u)]u, Rδ(u) = inf{r : F(r; u) = jδ} (2.15)

Observe that F(0; K (δ)u) = F(0; u).
In the following definition of barriers, we use the Green function Gneum

δ (r, r ′) (for the heat equation in
[0, 1] with Neumann boundary conditions):

Gneum
t (r, r ′) =

∑

k

Gt (r, r ′
k), Gt (r, r ′) = e−(r−r ′)2/2t

√
2π t

(2.16)

r ′
k being the images of r ′ under repeated reflections of the interval [0, 1] to its right and left (see for instance
[13] p. 97 for details).

We denote by

Gneum
δ ∗ f (r) =

∫

Gneum
δ (r, r ′) f (r ′)dr ′

and observe that F(0; Gneum
δ ∗ u) = F(0; u) and Gneum

δ ∗ u ∈ L∞([0, 1];R+).
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Definition 2.6 (Barriers) Let u ∈ L∞([0, 1],R+) be such that F(0; u) > 0. Then for all δ small enough
u ∈ Uδ and for such δ, we define the “barriers” S(δ,±)

nδ (u) ∈ Uδ , n ∈ N, as follows: we set S(δ,±)
0 (u) = u, and,

for n ≥ 1,

S(δ,−)
nδ (u) = K (δ)Gneum

δ ∗ S(δ,−)
(n−1)δ(u)

S(δ,+)
nδ (u) = Gneum

δ ∗ K (δ)S(δ,+)
(n−1)δ(u)

(2.17)

The families {S(δ,+)
nδ (u)}δ>0 are called upper barriers and {S(δ,−)

nδ (u)}δ>0 lower barriers.

The functions S(δ,±)
nδ are obtained by alternating the map Gneum

δ (i.e. a diffusion) and the cut and paste map
K (δ) (which takes out a mass jδ from the right and put it back at the origin, the macroscopic counterpart of Lb

and La). It can be easily seen that unlike the original process ξt , the evolutions S(δ,±)
nδ conserve the total mass,

that S(δ,+)
nδ maps L∞ into C∞ while S(δ,−)

nδ has a singular component ( jδD0) plus a L∞ component (which is
C∞ inside its support).

The name “upper and lower barriers” is justified by the following theorem:

Theorem 2.7 (Separated classes) Let u ∈ Ł∞([0, 1],R+), F(0; u) > 0, then

S(δ,−)
t (u) ≤ S(δ′,+)

t (u) for all δ, δ′, t such that u ∈ Uδ ∩ Uδ′ and t = kδ = k′δ′, with k, k′ ∈ N (2.18)

where the inequality is in the sense of Definition 2.4.

It thus looks natural to look for elements which separate the barriers:

Definition 2.8 (Separating elements) For a given non-negative u ∈ L∞, the function u = u(r, t), r ∈ [0, 1],
t ≥ 0, is below the upper barriers {S(δ,+)

nδ (u)} if
u(·, t) ≤ S(δ,+)

t (u)(·) for all δ > 0 and t such that t = kδ, k ∈ N (2.19)

It is above the lower barriers {S(δ,−)
nδ (u)} if

u(·, t) ≥ S(δ,−)
t (u)(·) for all δ > 0 and t such that t = kδ, k ∈ N (2.20)

If it is both above {S(δ,−)
nδ (u)} and below {S(δ,+)

nδ (u)}, then u(·, t) separates the barriers {S(δ,±)
nδ (u)(·)}.

Observe that if u(·, t) separates {S(δ,±)
nδ (u)}, then u(·, 0) = u(·).

Theorem 2.9 (Existence and uniqueness of separating elements) Let u ∈ L∞([0, 1],R+) and F(0; u) > 0.
Then there exists a unique function u(r, t) which separates the barriers {S(δ,±)

nδ (u)}. u(r, t) is continuous on
the compacts of [0, 1] × (0,∞) and u(·, t) converges weakly to u(·) as t → 0.

More properties of the separating elements are established in Sect. 8, in particular we show that they can
be obtained as monotonic limits of the upper or the lower barriers.

Theorem 2.10 (Characterization of hydrodynamic limit) The hydrodynamic limit ρ(r, t) of Theorem 2.3 sep-
arates the barriers {S(δ,±)

nδ (ρinit)}.

Super-hydrodynamic limit and further results

In [3], we shall study the stationary solutions of (2.11); they are linear functions with slope −2 j . We shall
prove that any weak solution (in the sense of barriers) converges as t → ∞ to a linear profile, the one with the
same total mass as the initial state. We shall also prove that at super-hydrodynamic times, i.e. times of order
ε−3 the particle processes is “close” to the manifold of linear profiles performing a Brownian motion on such
a set.

We conclude the list of results in this paper by a last theorem where we identify the limit equation for
ρ(·, t) when ρinit(·) has no edge:
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Theorem 2.11 (Hydrodynamic limit in the absence of an edge) Let ρinit such that F(r; ρinit) ≥ α(1 − r),
α > 0, then there exists T > 0 such that ρ(1, t) > 0 for t ∈ [0, T ] and ρ(r, t) is given by

ρ(r, t) = Gneum
t ∗ ρinit(r) + j

t∫

0

{Gneum
s (r, 0) − Gneum

s (r, 1)}ds, t ∈ [0, T ] (2.21)

Gneum
t (r, r ′) being the Green function of the heat equation in [0, 1] with Neumann conditions, see (2.16).

Strategy of proof

The key observation is that if we anticipate/posticipate the addition and removal of the particles which occur
in the true process in a given time interval, then we stochastically increase/decrease the final configuration [in
the sense of mass transport to the right, i.e. the microscopic version of (2.12)].

To implement this, we introduce the processes ξ
(δ,±)

kε−2δ
, k ∈ N. If for the true process, the number of added

and removed particles in the time interval [kε−2δ, (k + 1)ε−2δ] is equal to Nk;± then ξ
(δ,−)

(k+1)ε−2δ
is obtained

from ξ
(δ,−)

kε−2δ
by letting it evolve with generator L0 and at the end adding Nk;+ particles at 0 and then removing

the rightmost Nk;− particles. In a similar fashion, ξ (δ,+)

(k+1)ε−2δ
is obtained by reversing the order of the operations:

first the addition/removal and then after the free evolution. We then have for all δ > 0 and all k ∈ N

ξ
(δ,−)

kε−2δ
≤ ξkε−2δ ≤ ξ

(δ,+)

kε−2δ
stochastically (2.22)

(see Sect. 6 for details, in particular the definition of microscopic notion of partial order).
The probabilistic part of the paper is essentially concentrated in the analysis of the hydrodynamic limit of

the process ξ
(δ,±)

kε−2δ
: in Sect. 4, we prove that it converges to S(δ,±)

kδ (u) (if the initial ξ “approximates” u) where
convergence is in the sense of (2.10). This is important because it implies that the inequalities are preserved
in the limit.

The hydrodynamic limit for the independent randomwalks process is easy and well known in the literature,
but in our case there is an extra difficulty related to a macroscopic occupation at the origin, ξ(0) ≈ ε−1, due
to the cut and paste operations. This severely limits the choice of the parameters (b close to 1, a close to
0 which in normal situations have a much larger range of values) but luckily some room is left. Instead the
convergence of the microscopic cut and paste to its macroscopic counterpart is easy, as the variables Nk;± are
modulo negligible deviations independent Poisson variables with mean jε−1δ.

Once we have convergence to S(δ,±)
kδ (u), we are left with the analytic problem of studying the limits of the

latter as δ → 0. We first prove some regularity properties uniform in δ, see Sect. 7, and then complete the
proof of all theorems.

Sections content

In Sect. 3, we introduce the δ-approximate processes {ξ (δ,±)
t } and prove that the law of the total particles

number process |ξt | is a symmetric random walk on N with reflection at the origin (a result which follows
directly from the definition of the process ξt ). We then state some consequences of such a result which will be
used in the sequel.

In Sect. 4, we prove that if the initial configuration ξ approximates a profile u ∈ U then ξ
(δ,±)

ε−2kδ
converges in

law to S(δ,±)
kδ (u) as ε → 0. The proof exploits duality for the independent process but is not a consequence of

well-known results on the hydrodynamic limit for independent particles, because we need to take into account
the case when there is a macroscopic occupation number at the origin. As a consequence, the bounds are not
as strong as those which appear in the literature.

In Sect. 5, we introduce a probability space (
, P) where we can realize simultaneously all the processes
ξt and ξ

(δ,±)

ε−2kδ
for all ε.

In Sect. 6, we relate the true process ξε−2kδ and the auxiliary ones ξ
(δ,±)

ε−2kδ
by stochastic inequalities, in

the sense of mass transport theory, exploiting the realization of the process of Sect. 5. Using the convergence
proved in Sect. 4, the inequalities extend to flows S(δ,±)

kδ , thus proving Theorem 2.7.
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In Sect. 7, we prove regularity properties of the flows S(δ,±)
kδ which are uniform in δ.

In Sect. 8, we first prove existence and uniqueness of the separating element of barriers (Theorem 2.9) and
then deduce our main results (Theorems 2.3, 2.10). We conclude by giving the proof of Theorem 2.11.

3 The δ-approximate particle processes

In this section, we define the stochastic processes ξ
(δ,±)

kε−2δ
, k ∈ N which are analogous to the barriers S(δ,±)

kδ of
Definition 2.6. As we shall explain below, these processes are defined in such a way that the number of added
and removed particles in the time interval [kε−2δ, (k + 1)ε−2δ], denoted by Nk;±, is the same as that in the
true process {ξt }.

The variables Nk;±, k ∈ N are determined by the increments of process |ξt | yielding the particles’ number
at time t . This last process, despite the complexity of the full process ξt , is very simple:

Theorem 3.1 (Distribution of the particles’ number) |ξt | has the law of a random walk (nt )t≥0 on N which
jumps with equal probability by ±1 after an exponential time of parameter 2 jε, the jumps leading to −1 being
suppressed.

Proof For any bounded function f on N, we have

L f (|ξ |) = jε
{(

f (|ξ | + 1) − f (|ξ |))+ 1|ξ |>0
(

f (|ξ | − 1) − f (|ξ |))
}

(3.1)

which coincides with the action of the generator of the random walk (nt )t≥0 on the function f (n). This proves
that the law of |ξt | is the same as that of the random walk. ��

To introduce the δ−approximate process we define

Nk;+ = number of upwards jumps of |ξt | for t ∈ [kε−2δ, (k + 1)ε−2δ] (3.2)

Nk;− = number of downwards jumps of |ξt | for t ∈ [kε−2δ, (k + 1)ε−2δ] (3.3)

Definition 3.2 (The δ−approximated processes) The processes ξ
(δ,±)
t are defined successively in the time

intervals [kε−2δ, (k + 1)ε−2δ], k ≥ 0. We first distribute the variables Nk;± as the increments of the Markov
process (|ξt |)t≥0 starting from |ξ (δ,±)

0 |. Given such variables, we use an induction procedure and suppose

ξ
(δ,−)

kε−2δ
= ξ given. Then ξ

(δ,−)
t , t ∈ [kε−2δ, (k + 1)ε−2δ) has the law of the process ξ0t with generator L0

defined in (1.3) starting from ξ at time kε−2δ. ξ
(δ,−)

(k+1)ε−2δ
is then obtained from ξ0

(k+1)ε−2δ
by adding Nk;+

particles all at the origin and then removing the Nk;− rightmost particles.
ξ

(δ,+)
t , t ∈ (kε−2δ, (k + 1)ε−2δ]], is defined as the independent random walk evolution starting at time

kε−2δ from ξ ′: ξ ′ is obtained from ξ = ξ
(δ,+)

kε−2δ
by adding Nk;+ particles all at the origin and then removing the

Nk;− rightmost particles.

Thus in the ξ
(δ,±)
t processes, births and deaths are concentrated at the times kε−2δ, in between such times

the particles are independent random walks. While the analysis of the true process, (ξt )t≥0 is rather complex
due to the non-local nature of La ; the study of the hydrodynamical limit for ξ

(δ,±)
t is much simpler because

the number of rightmost particles to delete is macroscopic and becomes deterministic. The analysis will be
carried out in the next section.

We shall often use in the sequel the following explicit realization of the random walk process (nt )t≥0.

Definition 3.3 (The probability space (
0, P0)) We set 
0 = {ω0 = (t0, σ 0)}, where t0 = (t1;0, t2;0, . . .),
σ 0 = (σ1;0, σ2;0, ...) are infinite sequences of increasing positive “times” th;0 and of symmetric “jumps”,
σh;0 = ±1. (
0, P0) is the product of a Poisson process of intensity 2 jε for the increments of the time
sequence t0 and of a Bernoulli process with parameter 1/2 for the jump sequence σ 0.

Given n0 ∈ N andω0 ∈ 
0,we define (nt )t≥0, iteratively:we set nt = nth;0 in the time interval [th;0, th+1;0),
h ≥ 0, (t0;0 ≡ 0) and define

nth+1;0 =
{

nth;0 + σh+1;0 if nth;0 + σh+1;0 ≥ 0
0 if nth;0 + σh+1;0 < 0
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It is readily seen that the law of (nt )t≥0 as a process on (
0, P0) (for a given initial value n0) is the same
as the Markov process of Theorem 3.1 and hence of the particles’ number |ξt | in our original process once
n0 = |ξ0|.

When realized on (
0, P0), Nk,+ ≡ Nk,+(ω0, n0) (n0 the initial particles’ number) is the number of times
th;0 ∈ [kε−2δ, (k + 1)ε−2δ] where σh;0 = 1 (which does not depend on n0) , while the number of times
th;0 ∈ [kε−2δ, (k + 1)ε−2δ] where σh;0 = −1 is an upper bound for Nk,− ≡ Nk,−(ω0, n0) as the values
σh;0 = −1 do not produce a jump if nth;0 = 0 (hence the dependence on n0).

Under the assumptions on the initial datum ξ , see Definition 2.2, the process of adding and removing
particles becomes quite simple. For any integer k > 0 define on 
0

B0
k (ω0) =

∑

h

1σh;0=+1 1th;0∈[kε−2δ,(k+1)ε−2δ] (3.4)

A0
k(ω0) =

∑

h

1σh;0=−1 1th;0∈[kε−2δ,(k+1)ε−2δ] (3.5)

B0
k and A0

k are independent Poisson distributed variables with average ε−1 jδ.

Definition 3.4 (Good sets) Given T > 0 and γ > 0, we define for any δ and ε positive

G = {ω0 ∈ 
0 : |A0
k(ω0) − ε−1 jδ| ≤ ε− 1

2−γ ; |B0
k (ω0) − ε−1 jδ| ≤ ε− 1

2−γ , k : kδ ≤ T } (3.6)

Theorem 3.5 (Reduction to Poisson variables) Given ξ as in Definition 2.2, T > 0 and γ > 0, there is δ∗ > 0
so that for any δ < δ∗ and any ε > 0 small enough the following holds. For any ω0 ∈ G (see (3.6)) and any k,
such that kδ ≤ T

Nk,−(ω0, |ξ |) = A0
k(ω0), Nk,+(ω0, |ξ |) = B0

k (ω0) (3.7)

where Nk,±(ω0, |ξ |)) denote the variables Nk,± when realized on 
0.
Finally, for any n there is cn so that

P0[G] ≥ 1 − cnε
n (3.8)

Proof By Definition 2.2, the initial number of particles |ξ | is bounded from below by ε−1
∫

ρinit − ε−1+a ≥
ε−1C , C > 0. We choose δ∗ := C/(2 j) and shall prove by induction that for any δ < δ∗ and all ε small
enough we have in G

ntk ≥ ε−1C − k2ε− 1
2−γ , k ≤ T

δ
, tk = kε−2δ

Suppose that the inequality holds for k and let us prove it for k + 1. Since Nk,−(ω0, |ξ |) ≤ A0
k(ω0)

nt ≥ ntk − ε−1 jδ − ε− 1
2−γ ≥ ε−1(C − jδ∗) − (2k + 1)ε− 1

2−γ , t ∈ [tk, tk+1]
which is strictly positive for any k ≤ T/δ if ε is small enough. Thus (3.7) holds and

ntk+1 ≥ ntk − A0
k(ω0) + B0

k (ω0) ≥ ntk − 2ε− 1
2−γ

because ω0 ∈ G. This proves the induction hypothesis and for that seen in the proof, (3.7) holds as well.
The variables A0

k(ω0) and B0
k (ω0), k ≤ T/δ, are independent Poisson variables with mean ε−1 jδ hence

(3.8). ��

Once restricted to G, the processes ξ
(δ,±)
t , 0 ≤ t ≤ ε−2T , become quite simple. The particles move as

independent random walks in the finitely many intervals [kε−2δ, (k + 1)ε−2δ], while births and deaths at
the times kε−2δ are “essentially deterministic” like in the δ-approximated evolutions S(δ,±)

t of Definition 2.6.
Such considerations are made precise in Sect. 4 where we prove convergence of ξ

(δ,±)
t to S(δ,±)

t (ρinit) in the
hydrodynamic limit.
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4 Hydrodynamic limit for the approximating processes

The main result in this section is in Theorem 4.1 below. It states that the δ-approximate processes ξ
(δ,±)
t of

Definition 3.2 converge in the hydrodynamic limit to the evolutions S(δ,±)
t (·) of Definition 2.6.

Here, we exploit duality to prove convergence in a very strong form of the independent system to the heat
equation.

For any fixed δ and T > 0, the processes ξ
(δ,±)
t , t ≤ ε−2T are obtained by alternating independent random

walk evolutions to cut and paste operations. The latter involve macroscopic quantities and can be controlled by
means of Theorem 3.5 once we have the hydrodynamic limit for the independent process. This is well studied
and very detailed estimates are available but in the present case we have the extra difficulty that the initial
configurations may have a macroscopic occupation number at the origin ξ(0) ≈ ε−1. This is because in the
cut and paste, we actually paste ≈ jδε−1 particles at the origin. This is not a case studied in the literature (as
far as we know) and indeed it affects greatly the decay of correlations in the hydrodynamic limit.

As in our iterative procedure we have initial data with macroscopic occupation at the origin, and we may
as well take more general initial conditions (than those in Definition 2.2) with macroscopic occupation at the
origin. This will be actually useful in the sequel. Thus, the “macroscopic initial profile v0” is here taken in U ,
namely it is the sum of a non-negative L∞ function plus cD0, with c either equal to 0 or to jδ, we suppose
that

∫
v0 = F(0; v0) > 0. Analogously to (2.7) for any ε > 0, we choose the initial configuration ξ0 so that

max
x∈[0,ε−1−�+1]

|A�(x, ξ0) − A′
�(x, v0)| ≤ εa (4.1)

Theorem 4.1 Given any T > 0 for any δ > 0 small enough, any k : kδ ≤ T and any ζ > 0

lim
ε→0

P(ε)
ξ0

[ max
x∈[0,ε−1]

|εFε(x; ξ
(δ,±)

kε−2δ
) − F(εx; S(δ,±)

kδ (v0))| ≤ ζ ] = 1 (4.2)

where v0 and ξ0 are as above; P(ε)
ξ0

as in Definition 2.2; F and Fε as in (2.1).

The theorem is proved at the end of the section, as we shall see stronger results actually hold but what is
stated is that needed for Theorem 2.3. In the course of the proof, we shall introduce several positive parameters:
b, a, a∗, γ : b should be close to 1 and the others close to 0, for the sake of definiteness we take:

a = γ = 1

20
, b = 9

10
, a∗ = 1

100
(4.3)

We prove the theorem only for the process ξ
(δ,−)
t , the analysis of ξ

(δ,+)
t is similar and omitted. The first step

is a spatial discretization of the flow S(δ,−)
kδ :

Definition 4.2 (The discrete evolution) Denote by p0t (x, y), t ≥ 0, x, y ∈ [0, ε−1], the transition probability
of a continuous time, simple symmetric random walk with reflections at 0 and ε−1 (i.e. the random walker
jumps by ±1 with equal probability after an exponential time of mean 1, the jumps which would lead outside
[0, ε−1] are suppressed). For δ small enough, we define functions uk(x), x ∈ [0, ε−1] ∩ Z, with the property
that mass is conserved: Fε(0; uk) = Fε(0; u0) for all k. The definition is iterative, we set u0(x) := v0(εx);
then supposing that uk−1 has been already defined and that Fε(0; uk−1) = Fε(0; u0) we define uk as follows.
We first call

u0
k(x) =

∑

y

p(x, y)uk−1(y), p(x, y) := p0
ε−2δ

(x, y) (4.4)

uk is then obtained from u0
k by adding particles at 0 and removing particles on the right. Tomake this precise, let

Rk be an integer such that Fε(Rk; u0
k) ≥ ε−1 jδ while Fε(Rk +1; u0

k) < ε−1 jδ. The existence of Rk for δ small
enough follows from the assumption Fε(0; u0) ≥ cε−1, c > 0, observing that Fε(0; u0

k) = Fε(0; uk−1) =
Fε(0; u0) by the inductive assumption and Fε(0; u0) = ε−1F(0; v0). We then set vk(x) = u0

k(x) for x < Rk ,
vk(x) = 0 for x > Rk and

vk(Rk) := Fε(Rk; u0
k) − ε−1 jδ
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We can then finally define uk as
uk := vk + ε−1 jδ10 (4.5)

where 10 is theKrönecker delta at 0. To complete the induction,we observe that Fε(0; uk) = ε−1 jδ+Fε(0; vk),
Fε(0; vk) = Fε(0; u0

k) − ε−1 jδ so that Fε(0; uk) = Fε(0; u0
k) = Fε(0; uk−1).

In the next proposition, we show that in (4.2) we can replace S(δ,−)
kδ (v0) by the sequence uk with a negligible

error:

Proposition 4.3 In the same context as in Theorem 4.1,

lim
ε→0

max
x∈[0,ε−1]

|εFε(x; uk) − F(εx; S(δ,−)
kδ (v0))| = 0 (4.6)

Proof In this proof, we shorthand by g(r, r ′) the Green function Gneum
δ (r, r ′), r, r ′ ∈ [0, 1], defined in (2.16)

and also write for brevity p(x, y) := p0
ε−2δ

(x, y), as in Definition 4.2. Let uk , u0
k and Rk be as in Definition

4.2. We define for any real r between 0 and ε−1,

ψk(r) := [S(δ,−)
kδ (v0) − jδD0](εr)

Analogously to (1.6), we denote by R′
k the real number in [0, ε−1] such that ψk(r) > 0 for r < R′

k and
ψk(r) = 0 for r > R′

k . We also call

ψ0
k (r) = jδg(εr, 0) +

1∫

0

dr ′g(εr, r ′)ψk−1(ε
−1r ′)

so that

ψ0
k (r) = ψk(r), r < R′

k;
ε−1∫

R′
k

ψ0
k (r) = ε−1 jδ

Claim There are strictly positive constants C± which depend on δ so that for all k,

C− ≤ ψ0
k ≤ C+, C− ≤ u0

k ≤ C+;
∣
∣
∣
∣
d

dr
ψ0

k

∣
∣
∣
∣ ≤ εC+

∣
∣
∣
∣
∣
∣
∣

∑

x∈Z:x∈[Rk ,ε
−1]

ψ0
k (x) − ε−1 jδ| ≤ C+, |Fε(x;ψ0

k ) −
ε−1∫

x

ψ0
k

∣
∣
∣
∣
∣
∣
∣

≤ C+ (4.7)

The proof of the claim follows from classical estimates on random walks and Green functions:

c1√
δ

≤ g(r, r ′) ≤ c2√
δ
; c1ε√

δ
≤ p(x, y) ≤ c2ε√

δ

| d
dr

g(r, r ′)| ≤ c3
δ

; |p(x, y) − p(x, y + 1)| ≤
(

c3ε√
δ

)2

jδ + ε

ε−1∫

0

ψk = F(0; v0)

(4.8)

The crucial step in the proof of the proposition is the following statement:

There are α > β > 1 so that |u0
k(x) − ψ0

k (x)| ≤ ε√
δ
αk, |Rk − R′

k | ≤ βαk (4.9)
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We prove (4.9) by induction. We thus suppose that it holds for k − 1. Calling R∗
k the largest integer smaller

or equal than Rk and R′
k

|u0
k(x) − ψ0

k (x)| ≤ jδ|ε−1 p(x, 0) − g(εx, 0)| +
∑

y≤R∗
k−1

∣
∣
∣p(x, y)u0

k−1(y) −
ε(y+1)∫

εy

g(εx, r)ψ0
k−1(ε

−1r)

∣
∣
∣

+
Rk−1∑

y=R∗
k−1+1

p(x, y)u0
k−1(y) +

εR′
k−1∫

εR∗
k−1

g(εx, r)ψ0
k−1(ε

−1r)

We use the local central limit theorem to bound:

|p(x, y) − εg(εx, εy)| ≤ c5ε2

δ
(4.10)

Thus

|u0
k(x) − ψ0

k (x)| ≤ jδ
c5ε

δ
+ max

x
|u0

k−1(x) − ψ0
k−1(x)| +

∑

y≤R∗
k−1

∣
∣
∣p(x, y)ψ0

k−1(y)

−
ε(y+1)∫

εy

g(εx, r)ψ0
k−1(ε

−1r)

∣
∣
∣+ 2

c2ε√
δ
|Rk−1 − R′

k−1|C+

We write
∣
∣
∣
∣
∣
∣
∣

ε(y+1)∫

εy

g(εx, r)ψ0
k−1(ε

−1r) − εg(εx, εy)ψ0
k−1(y)

∣
∣
∣
∣
∣
∣
∣

≤ c6ε
2

and get using the induction assumption

|u0
k(x) − ψ0

k (x)| ≤ jc5ε + ε√
δ
αk−1 + 2

c2ε√
δ
βαk−1C+ + ε−1

{

c6ε
2 + C+

c5ε2

δ

}

Choosing α ≥ 1 + j
√

δc5 + 2c2C+β + √
δ{c6 + C+ c5

δ
}, we have

|u0
k(x) − ψ0

k (x)| ≤ ε√
δ
αk−1

(
j
√

δc5 + 1 + 2c2C+β + √
δ
{

c6 + C+
c5
δ

})
≤ ε√

δ
αk

As a consequence:

|Fε(x; u0
k) − Fε(x;ψ0

k )| ≤ (ε−1 − x + 1)
ε√
δ
αk (4.11)

Recalling that ψ0
k (x) ≥ C− and u0

k(x) ≥ C− we get

|Fε(R′
k; u0

k) − jδε−1| ≤ C+ + (ε−1 − R′
k + 1)

ε√
δ
αk

|Fε(R′
k; u0

k) − Fε(Rk; u0
k)| ≤ 2C+ + ε−1 ε√

δ
αk

C−|R′
k − Rk | ≤ |Fε(R′

k; u0
k) − Fε(Rk; u0

k)| ≤ 2C+ + αk

√
δ

which is smaller than βαk if β ≥ C−1− (2C+ + δ−1/2), thus completing the proof of (4.9).
Using (4.11), we then conclude the proof of the proposition, details are omitted. ��
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The proof of Theorem 4.1 is thus reduced to showing that: for all n so that nδ ≤ T ,

lim
ε→0

P(ε)
ξ [ε|Fε(x; ξ

(δ,−)

nε−2δ
) − Fε(x; un)| ≤ ζ for all x ∈ [0, ε−1]] = 1 (4.12)

which will be done in the sequel. Both sequences {ξ (δ,−)

nε−2δ
} and {un} are determined by alternating free evolution

and a cut and paste procedure. We first study the free evolution part proving that the independent random walk
configuration ξ0

ε−2δ
is well approximated by its average. Call Pξ and Eξ law and expectation of the independent

process starting from ξ , define for x ∈ [0, ε−1]

w(x |ξ) := Eξ [ξ0ε−2δ
(x)] =

ε−1
∑

y=0

p(x, y)ξ(y), p(x, y) := p0
ε−2δ

(x, y) (4.13)

with p0t the transition probability used in Definition 4.2.

Proposition 4.4 Let c∗ and a∗ be strictly positive and

Xc∗,a∗ := {ξ : |ξ | ≤ c∗ε−1, max
x �=0

ξ(x) ≤ ε−a∗} (4.14)

Then for any ξ ∈ Xc∗,a∗

max
x∈[0,ε−1]

w(x |ξ) ≤ c2c∗
√

δ
(4.15)

(c2 as in (4.8)). Moreover, let c∗, a∗ and b be strictly positive and such that

a∗ <
b

2
, b + a∗ < 1 (4.16)

(a condition which is satisfied by the choice (4.3)). Let � be the integer part of ε−b and A� be as in (2.5), then
for any integer n there is c′

n so that
Pξ [ξ0ε−2δ

∈ Xc∗,a∗ ] ≥ 1 − c′
nε

n (4.17)

Finally, there is a constant c so that

sup
x≤ε−1−�+1

Eξ

[∣
∣A�(x, ξ0

ε−2δ
) − A�(x, w(·|ξ))

∣
∣4
] ≤ cε2b (4.18)

Proof For brevity in this proof, we shall write w(x) instead of w(x |ξ). Recalling that p(x, y) is defined in
(4.4) and bounded in (4.8), we have for any ξ ∈ Xc∗,a∗

w(x) =
∑

y

p(x, y)ξ(y) ≤ c2ε√
δ

∑

y

ξ(y) ≤ c2ε√
δ

c∗ε−1 (4.19)

hence (4.15). The proof of (4.17) and (4.18) uses in a crucial way duality:
Duality. Given ξ ∈ N

[0,N ] and a labeled configuration x = (x1, . . . , xn), n ≥ 1, xi ∈ [0, ε−1], we define
D(ξ, x) =

∏

x

dx(x)(ξ(x)), dk(m) = m(m − 1) · · · (m − k + 1), d0(m) = 1 (4.20)

x(x) =
n∑

i=1

1xi =x

dk(m) are called Poisson polynomials. We then have:

Eξ [D(ξ0t , x)] = Ex [D(ξ, x0t )] (4.21)

where x0t is the independent random walks evolution.

123



394 Arab. J. Math. (2014) 3:381–417

• Proof of (4.17). Call x = (x1, . . . , x2k) with xi = x for all i = 1, . . . , 2k. Then by (4.21) and (4.19)

Eξ [d2k(ξ
0
ε−2δ

(x))] = Ex

[
∏

x

dx0
ε−2δ

(x)(ξ0(x))

]

≤ Ex

[
∏

x

ξ(x)
x0

ε−2δ
(x)

]

=
[
∑

y

p(x, y)ξ(y)

]2k

≤
(

c2ε|ξ |√
δ

)2k

≤
(

c2c∗
√

δ

)2k

(4.22)

By (4.22), we have that for any k there is c′′
k (independent of ε) so that

max
x∈[0,ε−1]

Eξ

[
ξ0
ε−2δ

(x)k] ≤ c′′
k (4.23)

Moreover, by the Chebishev inequality and (4.22)

Pξ

[
max

x∈[0,ε−1]
ξ0
ε−2δ

(x) ≤ ε−a∗] ≥ 1 − c′
mεm (4.24)

which proves (4.17) because |ξ0
ε−2δ

| = |ξ | ≤ ε−1c∗.
To prove (4.18), we shall use again duality, but also several maybe non-totally straightforward algebraic

manipulations. We start by expanding the product in the expectation:

Eξ

[|A�(x, ξ0
ε−2δ

) − A�(x, w)|4] = 1

�4

∑

x∈B�

Eξ

[
4∏

i=1

(
ξ0
ε−2δ

(xi ) − w(xi )
)
]

(4.25)

where x ∈ [0, ε−1 − � + 1] and B� = {x = (x1, . . . x4) : xi ∈ [x, x + � − 1], i = 1, . . . , 4}.
Call B(i)

� , i = 1, 2, 3, 4, the set of x ∈ B� such that there are i mutually distinct sites. We then have for
i ≤ 2:

1

�4

∑

x∈B(i)
�

∣
∣
∣
∣
∣
Eξ

[
4∏

i=1

(
ξ0
ε−2δ

(xi ) − w(xi )
)
]∣
∣
∣
∣
∣
≤ c�−2 (4.26)

as the expectation of products of ξ0
ε−2δ

(·) is bounded, which is proved using (4.23).

We are thus left with the sum over x ∈ B(i)
� with i = 3, 4. When i = 4, x = (x1, . . . , x4) with the entries

mutually distinct. Call σ = (σ1, . . . , σ4), σi ∈ {−1, 1}, and |σ |− the number of −1 in σ , then

4∏

i=1

(
ξ0
ε−2δ

(xi ) − w(xi )
) =

∑

σ

(−1)|σ |−D(ξ0
ε−2δ

; {xi : σi = 1})
∏

j :σ j =−1

w(x j ) (4.27)

and using duality:

Eξ

[
4∏

i=1

(
ξ0
ε−2δ

(xi ) − w(xi )
)
]

=
∑

y

p(x, y)
∑

σ

(−1)|σ |−D(ξ ; {yi : σi = 1})�(ξ ; {y j : σ j = −1})

×�(ξ ; {y j : σ j = −1}) :=
∏

j :σ j =−1

ξ(y j ) (4.28)

Suppose there is a singleton h, namely such that yh �= y j for all j �= h, then

∑

σ

(−1)|σ |−D(ξ0
ε−2δ

; {yi : σi = 1})�(ξ ; {y j : σ j = −1}) = 0 (4.29)
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Indeed let σ be a sequence with σh = 1 and σ ′ the one obtained from σ by changing only σh , then

(−1)|σ |− D(ξ0
ε−2δ

; {yi : σi = 1})�(ξ ; {y j : σ j = −1})
= (−1)|σ |− D(ξ0

ε−2δ
; {yi : σi = 1, i �= h})�(ξ ; {yh, y j : σ j = −1})

= −(−1)|σ ′|−D(ξ0
ε−2δ

; {yi : σ ′
i = 1})�(ξ ; {y j : σ ′

j = −1})
We have thus proved that calling Xn.s. the set of all y with no singletons is

Eξ

[
4∏

i=1

(
ξ0
ε−2δ

(xi ) − w(xi )
)
]

= �4(x) (4.30)

�4(x) =
∑

y∈Xn.s.

p(x, y)
∑

σ

(−1)|σ |−D(ξ ; {yi : σi = 1})�(ξ ; {y j : σ j = −1})

A similar property holds also when x ∈ B(3,∗)
� which is the set of all x such that x1 = x2, x3 �= x4, x1 and

x4 �= x1 (modulo permutation of labels all x ∈ B(3)
� are in B(3,∗)

� ). We write

(
ξ(x) − w(x)

)2 = {ξ(x)[ξ(x) − 1] − 2w(x)ξ(x) + w(x)2} + {ξ(x) − w(x)} + w(x)

Then analogously to (4.27) but with x ∈ B(3,∗)
� ,

4∏

i=1

(ξ0
ε−2δ

(xi ) − w(xi )) =
∑

σ∈{−1,1}4
(−1)|σ |− D(ξ0

ε−2δ
; {xi , σi = 1})

∏

j :σ j =−1

w(x j )

+
∑

σ=(σ2,σ3,σ4)

(−1)|σ |− D(ξ0
ε−2δ

; {xi , σi = 1, i ≥ 2})
∏

j≥2:σ j =−1

w(x j )

+w(x1)
∑

σ=(σ3,σ4)

(−1)|σ |− D(ξ0
ε−2δ

; {xi , σi = 1, i ≥ 3})
∏

j≥3:σ j =−1

w(x j )

(4.31)

Eξ

[
4∏

i=1

(
ξ0
ε−2δ

(xi ) − w(xi )
)
]

= �4(x) + �3(x2, x3, x4) + w(x1)�2(x3, x4) (4.32)

where

�3(x2, x3, x4) =
∑

(y2,y3,y4)∈Xn.s.

4∏

i=2

p(xi , yi )
∑

σ2,σ3,σ4

(−1)|σ |−D(ξ ; {yi , σi = 1, i ≥ 2})

×�(ξ ; j ≥ 2 : σ j = −1)

�2(x3, x4) =
∑

(y3,y4)∈Xn.s.

4∏

i=3

p(xi , yi )
∑

σ=(σ3,σ4)

(−1)|σ |− D(ξ ; {yi , σi = 1, i ≥ 3})

×�(ξ ; j ≥ 3 : σ j = −1)

with �4(x) as in (4.30).
Going back to (4.25), using (4.26) and (4.15)

Eξ [|A�(x, ξ0
ε−2δ

) − A�(x, w)|4] ≤ c

�2
+ max

x∈B(4)
�

�4(x) + 6

�

(

| max
x∈B(3,∗)

�

�4(x)|

+| max
(x2,x3,x4):distinct

�3(x2, x3, x4)| + c2c∗
√

δ
| max
(x3,x4):distinct

�2(x3, x4)|
)

(4.33)
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Let us bound one by one the functions�i starting from�4. Recalling (4.30) the condition y ∈ Xn.s. is realized
(modulo label permutations) in only two cases: (i) y1 = y2 �= y3 = y4; (ii) y1 = · · · = y4.

∑

σ

(−1)|σ |− D(ξ ; {yi : σi = 1})�(ξ ; {y j : σ j = −1}) =
{

ξ(y1)ξ(y3), in case (i)
3ξ(y1)2 − 6ξ(y1), in case (ii)

(4.34)

so that from (4.8) and since ξ ∈ Xc∗,a∗

|�4(x)| ≤
(

c2ε√
δ

)4 (
6(c∗ε−1)2 + 3(c∗ε−1)2

) ≤ cε2 (4.35)

The condition (y2, y3, y4) ∈ Xn.s. in �3 implies y2 = y3 = y4 and for such a y:

∑

σ=(σ2,σ3,σ4)

(−1)|σ |− D(ξ ; {yi , σi = 1, i ≥ 2})�(ξ ; j ≥ 2 : σ j = −1) = 2ξ(y2) (4.36)

so that from (4.8) and since ξ ∈ Xc∗,a∗

|�3(x2, x3, x4)| ≤
(

c2ε√
δ

)3

2(c∗ε−1) ≤ cε2 (4.37)

Finally if (y3, y4) ∈ Xn.s. then y3 = y4 and for such a y,

∑

σ=(σ3,σ4)

(−1)|σ |− D(ξ ; {yi , σi = 1, i ≥ 3})�(ξ ; j ≥ 3 : σ j = −1) = −ξ(y3) ≤ 0 (4.38)

Thus, (4.18) follows from (4.33) together with the above inequalities. ��

The cut and paste sequence of operations which appear in the definition of {ξ (δ,−)
tk , k ≤ k∗}, k∗ the largest

integer such that δk∗ ≤ T , tk = kε−2δ, is independent of the motion of the particles so that we have a rather
explicit expression for the law of the variables {ξ (δ,−)

tk , k ≤ k∗}, see (4.42) below. We first write (with ξ0 below
the initial condition in Theorem 4.1)

p({n±
k , k = 1, . . . , k∗}) = P(ε)

ξ0
[Nk−1,− = n−

k , Nk−1,+ = n+
k , k ≤ k∗] (4.39)

where Nk,± are defined in (3.3) and (3.2); their law depends only on |ξ0|.
We also write

π(ξ ′|ξ) = Pξ [ξ0ε−2δ
= ξ ′], |ξ | = |ξ ′|, a.s. (4.40)

(ξ0t the independent random walk process). We finally denote by K (n−,n+)ξ the configuration obtained from
ξ by adding n+ particles at 0 and then removing the n− rightmost particles (the definition requires that
|ξ | + n+ − n− ≥ 0, condition automatically satisfied below as the variables n± are the increments of the
particles’ number nt ). Then, writing

P
[{n±

k , ξ0k , k = 1, . . . , k∗}] = p({n±
k , k ≤ k∗})

k∗
∏

k=1

π(ξ0k |ξk−1)

ξk := K (n−
k ,n+

k )ξ0k (4.41)

with n±
0 := 0, we have

P(ε)
ξ0

[
{ξ (δ,−)

kε−2δ
) = ξ̄k, k = 1, . . . , k∗}

]
=

∑

n±
k ,ξ0k , k=1,...,k∗

1ξk=ξ̄k , k=1,...,k∗ P
[
{n±

k , ξ0k , k ≤ k∗}
]

(4.42)
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By (3.8) for any n there is cn so that

∑

{n±
k , k=1,...,k∗}∈G

p({n±
k , k ≤ k∗}) ≥ 1 − cnε

n (4.43)

G := {n±
k , k = 1, . . . , k∗ : |n±

k − ε−1 jδ| ≤ ε− 1
2−γ }

The strategy now is to fix {n±
k , k = 1, . . . , k∗} ∈ G and prove estimates uniform in the choice of {n±

k , k =
1, . . . , k∗}, as the contribution to (4.2) of the complement of G has negligible probability. We have

max
k=1,...,k∗ |ξ (δ,−)

kε−2δ
| ≤ c̄ε−1, for all {n±

k , k = 1, . . . , k∗} ∈ G (4.44)

where c̄ε−1 ≥ |ξ0| + 2k∗ε− 1
2−γ .

Recalling (4.41) for notation and that w is defined in (4.13), having fixed {n±
k , k = 1, . . . , k∗} ∈ G, see

(4.43), with n±
0 ≡ 0, we call

C =
{
ξ0k , k = 1, . . . , k∗ : max

k=1,...,k∗ max
x

|A�(x, ξ0k ) − A�(x, w(·|ξk−1)| ≤ εa; max
k=1,...,k∗ ‖ξ0k ‖∞ ≤ ε−a∗}

(4.45)

Then by Proposition 4.4 and (4.43) after using Chebishev with the fourth power,

P[{n±
k , ξ0k , k = 1, . . . , k∗} ∈ G ∩ C] ≥ 1 − cε−1−4a+2b = 1 − cε6/10 (4.46)

The proof of (4.12) continues by showing that in the set G ∩ C, ξk (as defined in (4.41)) is “close” to uk (as in
Definition 4.2). More precisely, call Xk and Rk the integers such that

Fε(Xk + 1; ξ0k ) < n+
k ≤ Fε(Xk; ξ0k ); Fε(Rk + 1; u0

k) < ε−1 jδ ≤ Fε(Rk; u0
k)

(see again Definition 4.2 for notation). Then, the analogue of (4.9) holds:

Proposition 4.5 There are α > β > 1 so that if {n±
k , ξ0k , k = 1, . . . , k∗} ∈ G ∩ C then for all k = 1, . . . , k∗

max
x

|A�(x, ξ0k ) − A�(x, u0
k)| ≤ αkεa, |Xk − Rk | ≤ βαkε−1+a (4.47)

Proof By (4.45)

|A�(x, ξ0k ) − A�(x, u0
k)| ≤ εa + |A�(x, u0

k) − A�(x, w(·|ξk−1)| (4.48)

Supposing for instance that Rk−1 ≤ Xk−1, we get

|w(x |ξk−1) − u0
k(x)| = |

∑

y

p(x, y)[ξk−1(y) − uk−1(y)]|

≤ p(x, 0)|n+
k−1 − ε−1 jδ| + |

∑

y<Rk−1

p(x, y)[ξ0k−1(y) − u0
k−1(y)]|

+p(x, Rk−1)[ξ0k−1(Rk−1) + u0
k−1(Rk−1)] +

∑

Rk−1<y≤Xk−1

p(x, y)ξ0k−1(y)

(4.49)

By (4.8)

p(x, 0)|n+
k−1 − ε−1 jδ| ≤ c2ε√

δ
ε− 1

2−γ
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We decompose the interval [1, Rk−1 − 1] into consecutive intervals [zi , z′
i ] of length � with the last interval

which may have length < � and get using (4.8)
∣
∣
∣
∣
∣
∣

∑

0<y<Rk−1

p(x, y)
[
ξ0k−1(y) − u0

k−1(y)
]
∣
∣
∣
∣
∣
∣
≤
∑

i

⎧
⎨

⎩
p(x, zi )�α

k−1εa +
∑

zi ≤y≤z′
i

|p(x, zi ) − p(x, y)|2ε−a∗
⎫
⎬

⎭

+c2ε√
δ
�2ε−a∗ ≤ c2ε√

δ
ε−1αk−1εa +

(
c3ε√

δ

)2

2ε−a∗ + c2ε√
δ
2ε−b−a∗ ≤ c2√

δ
αk−1εa + cε1−b−a∗

We also have

p(x, Rk−1)[ξ0k−1(Rk−1) + u0
k−1(Rk−1)] ≤ c2ε√

δ
2ε−a∗

By (4.8) and (4.15) and decomposing as before the interval [Rk−1 + 1, Xk−1] into consecutive intervals of
length �,

∑

Rk−1<y≤Xk−1

p(x, y)ξ0k−1(y) ≤
∑

Rk−1<y≤Xk−1

p(x, y)w(y|ξk−2)

+|
∑

Rk−1<y≤Xk−1

p(x, y)[ξ0k−1(y) − w(y|ξk−2)]|

≤ c2ε√
δ

c2c∗
√

δ
|Xk−1 − Rk−1| + c2ε√

δ
|Xk−1 − Rk−1|αk−1εa +

(
c3ε√

δ

)2

2ε−a∗ + c2ε√
δ
2ε−b−a∗

≤ c(ε|Xk−1 − Rk−1| + ε1−b−a∗
)

By collecting the above bounds and using the induction hypothesis:

|w(x |ξk−1) − u0
k(x)| ≤ c2ε√

δ
ε− 1

2−γ + c2√
δ
αk−1εa + 2cε1−b−a∗ + c2√

δ
2ε1−a∗ + cβαk−1εa

≤ αk−1εa
(

c2√
δ
ε

1
2−γ−a +

{
c2√
δ

+ cβ

}

+ 2cε1−b−a∗−a + c2√
δ
2ε1−a∗−a

)

≤ αk−1εa
({

c2√
δ

+ cβ

}

+ εa′
C

)

where a′ = min{ 12 − γ − a, 1 − b − a∗ − a, 1 − a∗ − a} > 0. Hence

|A�(x, ξ0k ) − A�(x, u0
k)| ≤ εa[1 + αk−1

({
c2√
δ

+ cβ

}

+ εa′
C

)

]

For ε small enough Cεa′ ≤ 1,

|A�(x, ξ0k ) − A�(x, u0
k)| ≤ αkεa, α = 2 +

{
c2√
δ

+ cβ

}

(4.50)

By (4.50)
|Fε(x; ξ0k ) − Fε(x; u0

k)| ≤ (ε−1 − x)αkεa + 2ε−b−a∗
(4.51)

hence, recalling (4.7),

|Fε(Rk; u0
k) − jδε−1| ≤ C+, |Fε(Xk; ξ0k ) − jδε−1| ≤ ε−a∗ + ε− 1

2−γ ≤ 2ε− 1
2−γ

|Fε(Xk; u0
k) − jδε−1| ≤ 2ε− 1

2−γ + |Fε(Xk; u0
k) − Fε(Xk; ξ0k )| ≤ 2ε− 1

2−γ + ε−1+aαk + 2ε−b−a∗

C−|Rk − Xk | ≤ |Fε(Rk; u0
k) − Fε(Xk; u0

k)| ≤ C+ + 2ε− 1
2−γ + ε−1+aαk + +2ε−b−a∗

which proves (4.47) with β = C−1− (5 + C+). ��
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Proof of Theorem 4.1. We need to prove (4.12). By (4.46), we can reduce to configurations in G ∩ C and
prove that in such a set

lim
ε→0

max
x∈[0,ε−1]

ε|Fε(x; ξk) − Fε(x; uk)| = 0 (4.52)

Let us suppose for the sake of definiteness that Rk ≤ Xk . Then for x ≤ Rk

|Fε(x; ξk) − Fε(x; uk)| ≤
∣
∣
∣

Rk−1∑

y=x

(ξ0k − u0
k)

∣
∣
∣+

Xk∑

y=Rk

ξ0k + u0(Rk)

Calling R̄k ≤ Rk the largest integer so that R̄k − x is a multiple integer of �, we get from (4.47):

∣
∣
∣

Rk−1∑

y=x

(ξ0k − u0
k)

∣
∣
∣ ≤ (R̄k − x)αkεa + 2ε−a∗

ε−b ≤ αkε−1+1/20 + 2ε−1+1/10−1/100

Call X̄k the smallest integer ≥ Xk such that X̄k − Rk is a multiple integer of �, then

Xk∑

y=Rk

ξ0k ≤ |X̄k − Rk |
(c2c∗

√
δ

+ εa
)

+ �ε−a∗ ≤ c{ε−1+a + ε−b−a∗} ≤ 2cε−1+ 1
20

Analogous bounds hold for x > Rk and (4.52) then follows. ��

5 Realization of the process

Following [12], we introduce a graphical construction of the process. It is also convenient to enlarge the
physical space [0, ε−1] by adding two extra sites {−1, ε−1 + 1} so that configurations ξ are functions on
[−1, ε−1 + 1]. We denote by X the subset of all configurations ξ such that ξ(−1) = ∞ while ξ(x) is finite
for all x ∈ [0, ε−1 + 1] By default in the sequel, ξ denotes elements of X , thus ξ is determined by its values
for x ≥ 0. Physical configurations are recovered by restricting ξ to [0, ε−1]. We shall often work in the sequel
with labeled particles:

Definition 5.1 (Ordered configurations in the enlarged space) We denote by X ord the space of ordered se-
quences x = (x1, x2, . . . , xn, . . . ), xi ≥ xi+1, with values on [−1, ε−1 + 1], such that there are finitely many
entries with xi ≥ 0, their number is denoted by N (x), so that xi = −1 for i > N (x) and xi ≥ 0 for i ≤ N (x).
We also define M(x) as the largest integer n such that xn = ε−1 + 1. To each x , we associate the configuration
ξx ∈ X

ξx (x) =
∑

i≥1

1xi =x for all x ∈ [0, ε−1 + 1], ξx (−1) = ∞ (5.1)

Viceversa, given any ξ ∈ X we define xξ by labeling the particles of ξ consecutively starting from the right.
Finally, given a sequence y with finitelymany entries in [0, ε−1+1], say yi1 ...yik , its re-ordering is the sequence
x where x1 is the largest element in yi1 ...yik , x2 the second largest and so on; xn = −1 for n ≥ k + 1.

We shall be exploiting the fact that the physically relevant quantities are the unlabeled configurations and
we are, therefore, free to label the particles as we like.

Definition 5.2 (The probability space (
, P)) We set


 =
∏

i≥0


i , P =
∏

i≥0

Pi

where 
i = {ωi = (t i , σ i )}, t i = (t1;i , t2;i , ...) are infinite sequences of increasing positive “times” tk;i
and σ i = (σ1;i , σ2;i , ...) infinite sequences of symmetric “jumps”, σk;i = ±1. For i ≥ 1, Pi is the product
probability law of a Poisson process of intensity 1 for the time sequences t i and of a Bernoulli process with
parameter 1/2 for the jump sequences σ i . (
0, P0) is the probability space introduced in Definition 3.3.
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Graphical representation. For each label i ≥ 0, we draw a vertical time axis R+ (called the i th time axis) and
on each of them we put “marks” (with values ±) as described below. For any element ωi ∈ 
i , i ≥ 1, we draw
on the i th time axis a sequence of arrows, at heights tk;i pointing to right or left if σk;i = ±1, respectively
(the σk;i are called marks). The marks on the 0-time axis are specified by ω0: they are + or − crosses which
are put at the times tk;0 with ± being the value of σk;0. To each arrow, we associate a displacement operator
and to each cross a creation or annihilation operator. Roughly speaking, an arrow on the i th axis indicates
the displacement at that time of the i th particle, provided it is in [0, ε−1] before and after the displacement
(otherwise the displacement is canceled). The creation operator moves a particle from −1 to 0, while the
annihilation operator takes to ε−1 + 1 the rightmost particle in [0, ε−1] (if such a particle exists, otherwise the
operation aborts). The precise definitions are given below:

Definition 5.3 Creation, annihilation and displacement operators on X ord denoted, respectively, by a±
0 and

a±
i , i ≥ 1.

• Let i ≥ 1. Then, a±
i x = x , x ∈ X ord, if xi = −1 or if xi = ε−1 + 1. If instead xi ∈ [0, ε−1] then a±

i x is the
re-ordering (see Definition 5.1) of y where y j = x j for j �= i and yi = xi ± 1 if xi ± 1 ∈ [0, ε−1] while
yi = xi if xi ± 1 /∈ [0, ε−1].

• a+
0 x =: y+ is defined as follows: y+

j = x j for j �= k ≡ N (x) + 1 and yk = 0, (see Definition 5.1). Thus,

N (a+
0 x) = N (x) + 1.

• a−
0 x =: y− is defined as follows: y− = x if N (x) = M(x) (i.e. no xi ∈ [0, ε−1]), otherwise let m :=

M(x) + 1 ≤ N (x), so that xm ∈ [0, ε−1]. Then, y−
m = ε−1 + 1; while y−

j = x j for j �= m; thus

N (a−
0 x) = N (x) and M(a−

0 x) = M(x) + 1.

The enlarged space has been introduced to make simpler the proof of the inequalities of the next section,
but in the end what is relevant is the restriction x ∩ [0, ε−1] of the configuration to the physical space. To this
end, we shall use the following lemma:

Lemma 5.4 Let x and x ′ be such that N (x) = N (x ′) and M(x) = M(x ′) then

N (aσ
i x) = N (aσ

i x ′); M(aσ
i x) = M(aσ

i x ′); for any i ≥ 0 and any aσ
i (5.2)

N (aσ
i x) = N (x); M(aσ

i x) = M(x); for any i ≥ 1 and any aσ
i (5.3)

and for any sequence a
σi j
i j

, j = 1, . . . , n,

N

⎛

⎝
n∏

j=1

a
σi j
i j

x

⎞

⎠ = N

⎛

⎝
n∏

j=1

(a
σi j
i j

)
1i j =0x

⎞

⎠ , M

⎛

⎝
n∏

j=1

a
σi j
i j

x

⎞

⎠ = M

⎛

⎝
n∏

j=1

(a
σi j
i j

)
1i j =0x

⎞

⎠ (5.4)

Proof aσ
i x , i ≥ 1, differs from x only if xi ∈ [0, ε−1] and in such a case it is obtained by rearranging

the particles in x ∩ [0, ε−1], hence (5.3). Thus, (5.2) is a consequence of (5.3) for i ≥ 1. When i = 0,
a+
0 x increases N (·) by 1 leaving M(·) unchanged. a−

0 x = x if N (x) = M(x) while if N (x) > M(x) then
M(a−

0 x) = M(x) + 1, N (a−
0 x) = N (x). (5.4) follows by applying repeatedly (5.2). ��

Definition 5.5 Fix t > 0. Then with P probability 1 t0 ∩ [0, t] has finitely many elements which are all
mutually distinct. We define

Ct (ω0) = card {tk,0 ∈ t0 : tk,0 ≤ t, σk;0 = +} (5.5)

and given x ∈ X ord let n ≥ Ct (ω0) + N (x). Thus, it is well defined (with P probability 1) the sequence
t = (t1, . . . , tk), 0 ≤ t j < t j+1 ≤ t of all times tk;i ∈ [0, t], k ≥ 1, i = 0, . . . , n. We call i j , j = 1, . . . , k, the
label of the time axis to which t j belongs and σ j the corresponding ± mark.
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Definition 5.6 (The time flows) T 0
t (x, ω) and Tt (x, ω), t > 0, x ∈ X ord and ω ∈ 
, are defined (P almost

surely) as follows. Let t be as in the previous definition, then using the same notation,

T 0
t (x, ω) =

k∏

i=1

(aσi
i )1i>0x, Tt (x, ω) =

k∏

i=1

aσi
i x (5.6)

To define T (δ,±)

Nδε−2(x, ω), N a positive integer, we split t (defined as in Definition 5.5 with t → Nδε−2) in N

groups: t (1), . . . , t (N ) where t (h) = t ∩ [(h − 1)ε−2δ, hε−2δ] (with P probability 1 we may suppose that all
such times are mutually distinct). We then set

T (δ,−)

Nδε−2(x, ω) =
N∏

h=1

⎧
⎨

⎩

kh∏

i=1

(

a
σ

(h)
i

i

)1i=0 kh∏

i=1

(

a
σ

(h)
i

i

)1i>0

⎫
⎬

⎭
x (5.7)

T (δ,+)

Nδε−2(x, ω) =
N∏

h=1

⎧
⎨

⎩

kh∏

i=1

(

a
σ

(h)
i

i

)1i>0 kh∏

i=1

(

a
σ

(h)
i

i

)1i=0

⎫
⎬

⎭
x (5.8)

We finally define T (δ,−)
t (x, ω), t ∈ ((N − 1)ε−2δ, Nε−2δ) by dropping from the product in (5.7) all operators

of the last group with t (N )
i > t , i ≥ 1, as well as all the creation–annihilation operators of t (N ). Also for

T (δ,+)

Nδε−2(x, ω), t ∈ ((N − 1)ε−2δ, Nε−2δ), we drop from the product in (5.8) all operators of the last group

with t (N )
i > t , i ≥ 1, but we retain the creation–annihilation operators of t (N ).

In otherwords in T (δ,+)

Nδε−2 , the creation–annihilation operators of the N th group occur all at time (N −1)δε−2,

while in T (δ,−)

Nδε−2 they occur at time Nδε−2, thus the above rule for defining T (δ,±)
t (x, ω) means that we drop

all the operators which appear at times larger than t (Fig. 1).
It is easy to see that the marginal over unlabeled configurations of each one of the processes {T 0

t (x, ω),

Tt (x, ω), T (δ,±)
t (x, ω)} has the law, respectively, of the free process ξ0t , the interacting process ξt and the

auxiliary processes ξ
(δ,±)
t . It also follows from (5.4) that

N (T (δ,±)

nε−2δ
(x, ω)) = N (Tnε−2δ(x, ω)), M(T (δ,±)

nε−2δ
(x, ω)) = M(Tnε−2δ(x, ω)) (5.9)

6 Mass transport inequalities

In this section, we introduce a partial order among measures based on moving mass to the right. We are
evidently in the context of mass transport theory from where we are borrowing the notions used in this section.
We work first in the space of particle configurations ξ regarding ξ as a distribution of masses and then in the
space U , considering u ∈ U as a mass density (which may have a Dirac delta at 0); the notions are the same
except for a change of language.

The main goal is to prove inequalities between ξt and the auxiliary processes ξ
(δ,±)
t (recall that the hydro-

dynamic limit of the latter is known since Sect. 4) and then derive analogous inequalities for S(δ,±)
t (u) and

their limit as δ → 0.
We tacitly suppose in the sequel that the configurations ξ are in X as specified in the beginning of Sect. 5.

Definition 6.1 (Partial order) For any ξ, ξ ′ ∈ X , we say that ξ ≤ ξ ′ iff

Fε(x; ξ) ≤ Fε(x; ξ ′) for all x ∈ [0, ε−1 + 1]. (6.1)

Observe that ξ ≤ ξ ′ has not the usual meaning, i.e. ξ(x) ≤ ξ ′(x) for all x ! The notion of order has rather
to be interpreted in the sense of “the interfaces” Fε(x; ξ) = ∑

y≥x ξ(y), see Definition 2.4 and Fig. 2 for a
visual illustration. One can easily check that the above “≤” relation has indeed all the properties of a partial
order. Same considerations apply to the case of continuous mass distributions as in (2.12) where the notion is
well known and much used in mass transport theory.
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Fig. 1 Graphical construction of the flow Tt (left panel) and of the process with generator (1.1) (right panel) for a system of size
ε−1 = 6. The legend for the left panel is as follows: continuous vertical line denotes the clocks of the particles involved in the
dynamics; the clock of the boundaries is that on the left; the clock that rings first is depicted with a bold line with color red if it
has associated a jump +1 and color black if corresponds to a jump −1. After jumps, particles are re-ordered (if needed). On the
right panel, the motion in the physical space [0, 6] is displayed

The equivalence with the previous statement about moving mass to the right is established next. We first
introduce a partial order in X ord by saying that x ≤ x ′ iff xi ≤ x ′

i for all i . Since there is a one-to-one
correspondence between X (see Definition 6.1) and X ord defines a priori a new order in X , but the two orders
are the same as proved in the following Proposition.

Proposition 6.2 The conditions: (1) ξ ≤ ξ ′; (2) xξ ≤ xξ ′ (see Definition 5.1) are equivalent. Moreover, let

x = (x1, . . . , xm) and x ′ = (x ′
1, . . . , x ′

n) be sequences with values in [0, ε−1 + 1] then ξx ≤ ξx ′ (see (5.1)) iff
n ≥ m and there is a one to one map i j from {1, . . . , m} into {1, . . . , n} so that x ′

i j
≥ x j for all j = 1, . . . , m.

Proof Equivalence of (1) and (2). Shorthand x = xξ , x ′ = xξ ′ .
Suppose (2) holds, then

Fε(x; ξ) =
∑

i≥1

1xi ≥x ≤
∑

i≥1

1x ′
i ≥x = Fε(x; ξ ′) for all x ≥ 0 (6.2)

hence (2) ⇒ (1).
Suppose (1) holds and let x = (x1, . . . , xm) and x ′ = (x ′

1, . . . , x ′
n). Then n ≥ m because otherwise

Fε(0; ξ) > Fε(0; ξ ′). We also have that xi ≤ x ′
i for i ≤ m: suppose by contradiction that xk > x ′

k then
Fε(xk; ξ) ≥ k while Fε(xk; ξ ′) < k, hence the contradiction. Thus (1) ⇒ (2).

Let x = (x1, . . . , xm) and x ′ = (x ′
1, . . . , x ′

n) be sequences with values in [0, ε−1 + 1] such that n ≥ m and
with a one to one map i j as in the text of the proposition. Then

Fε(x; ξx ) =
m∑

j≥1

1x j ≥x ≤
m∑

j≥1

1x ′
i j

≥x ≤ Fε(x; ξx ′) (6.3)

hence ξx ≤ ξx ′ . To prove the converse statement, we suppose that x = (x1, . . . , xm) and x ′ = (x ′
1, . . . , x ′

n) are
such that ξ := ξx ≤ ξ ′ := ξx ′ . Then, y := xξ ≤ y′ = xξ ′ , and there are one to one maps � j : {1, . . . , m} onto
itself and �′

j : {1, . . . , n} onto itself so that y� j = x j and x ′
�′

h
= y′

h . Then, x j ≤ x ′
i j
with i j = �′

� j
. ��
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Fig. 2 An example of two particle configurations (ξ, ξ ′) related by the inequality ξ ≤ ξ ′ for ε−1 = 10. Note that for the sites
x ∈ {1, 2, 8, 9} one has ξ(x) > ξ ′(x). However, the interface of ξ is below the interface of ξ ′ for all x ∈ [0, 10]

As a corollary, we have

Lemma 6.3 If x ≤ x ′ then

a±
i x ≤ a±

i x ′, i ≥ 0; x ≤ a±
0 x ′

a+
0 x ≤ x ′ if N (x) < N (x ′) a−

0 x ≤ x ′ if M(x) < M(x ′) (6.4)

Proof The inequality x ≤ a±
0 x ′ holds trivially because a±

0 x ′ does not decrease the entries of x ′. Let us next
consider the other inequalities involving a+

0 . Let k = N (x) + 1, then y := a+
0 x has yk = 0, while xk = −1

(all the other entries are unchanged). If N (x ′) > N (x) then x ′
k ≥ 0 and the last inequality in (6.4) is satisfied.

If N (x ′) = N (x) then x ′
k = −1 but y′

k = 0, where y′ = a+
0 x ′, hence the first equality in (6.4).

Let us next consider a−
0 . If M(x) = N (x) then a−

0 x = x and, therefore, is ≤ x ′ ≤ a−
0 x ′. Let then

m = M(x)+ 1 ≤ N (x). Then, y := a−
0 x has ym = ε−1 + 1. If M(x ′) > M(x), then x ′

m = ε−1 + 1. If instead

M(x ′) = M(x) then xm ≤ x ′
m hence x ′

m ∈ [0, ε−1] and y′ = a−
0 x ′ has y′

m = ε−1 + 1.

Let next y = a±
i x and y′ = a±

i x ′ with i ≥ 1 and for the sake of definiteness let us just consider the +
case. y = x if i ≤ M(x) and i > N (x). In the former case, x ′

i = ε−1 + 1 is also unchanged, in the latter
xi = −1 and again the inequality holds trivially. Let us then suppose that M(x) < i ≤ N (x) and suppose
that this holds as well for x ′ (otherwise x ′

i = ε−1 + 1). Then, min{xi + 1, ε−1} ≤ min{x ′
i + 1, ε−1} hence the

desired inequality applying the last statement in Proposition 6.2. ��
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As already mentioned, we ultimately need inequalities for the restrictions x ∩[0, ε−1] of the configurations
to the physical space. We shall use the following simple observation:

Lemma 6.4 If x ≤ x ′, then N (x) ≤ N (x ′) and M(x) ≤ M(x ′); however, (x ∩ [0, ε−1]) ≤ (x ′ ∩ [0, ε−1])
requires that M(x) = M(x ′). In particular, if x ≤ x ′:

(x ∩ [0, ε−1]) ≤ (x ′ ∩ [0, ε−1]) if N (x) = N (x ′), M(x) = M(x ′) (6.5)

Definition 6.5 (Stochastic order) A process (ξt )t≥0 is stochastically smaller than a process (ξ ′
t )t≥0, writing in

short ξt ≤ ξ ′
t (stochastically), if they can be both realized on a same space where the inequality holds pointwise

almost surely.

We shall prove stochastic order by realizing the processes on the same space (
, P) of Definition 5.2.

Definition 6.6 A map f : X ord → X ord preserves order if x ≤ x ′ implies f (x) ≤ f (x ′).
The first inequality in (6.4) proves that all the maps a±

i preserve order and since all the flows have been
defined in terms of products of such maps:

Theorem 6.7 (Stochastic inequalities) All the maps T (δ,±)

mε−2δ
(·, ω), T 0

t (·, ω) and Tt (·, ω), preserve order.

To compare the flows T (δ,±)
t and Tt , we shall use the following lemma:

Lemma 6.8 Let i ≥ 1, then
aσ0
0 aσi

i x ≤ aσi
i aσ0

0 x (6.6)

Proof Let σ0 = +. Call y = a+
0 x , then by the second inequality in (6.4), x ≤ y. Since aσi

i preserves order:
aσi

i x ≤ aσi
i y and since N (y) = N (x)+1 we have (6.6) (having used the third inequality in (6.4)). Let σ0 = −.

Call y = a−
0 x , then by the second inequality in (6.4), x ≤ y. Since aσi

i preserves order: aσi
i x ≤ aσi

i y and since
M(y) = M(x) + 1 we have again (6.6) (having used the fourth inequality in (6.4)). ��
Corollary 6.9 Let {(i j , σ j )} a sequence of n > 1 pairs with i j ≥ 0, σ j ∈ {+,−}. An exchange at (h, h + 1),
h+1 ≤ n, is the new sequence {(i ′j , σ ′

j )} where (i ′j , σ ′
j ) = (i j , σ j ) for j �= h, h+1 and (i ′h, σ ′

h) = (ih+1, σh+1),
(i ′h+1, σ

′
h+1) = (ih, σh). We then say that an exchange at (h, h + 1) is “allowed” if ih = 0 and ih+1 > 0.

Then if π is a permutation obtained by applying repeatedly allowed exchanges starting from {(i j , σ j )} so
that the final sequence is {(iπ( j), σπ( j))}

n∏

j=1

a
σ j
i j

x ≤
n∏

j=1

a
σπ( j)
iπ( j)

x (6.7)

Call {(a j , σ j )} the sequence associated with T (δ,−)

mε−2δ
(x, ω) and {(a′

j , σ
′
j )} the one associated with T (δ′,−)

mε−2δ

(x, ω), δ = kδ′: then the latter is obtained by repeated allowed exchanges from the former, hence

T (δ,−)

mε−2δ
(x, ω) ≤ T (δ′,−)

mε−2δ
(x, ω)

Also the sequence {(a′′
j , σ

′′
j )} associated with Tmε−2δ(x, ω) is obtained by repeated allowed exchanges from

{(a′
j , σ

′
j )}, hence

T (δ′,−)

mε−2δ
(x, ω) ≤ Tmε−2δ(x, ω)

The sequence {(a′′′
j , σ ′′′

j )} associated with T (δ′,+)

mε−2δ
(x, ω) is obtained by repeated allowed exchanges from

{(a′′
j , σ

′′
j )}, hence

Tmε−2δ ≤ T (δ′,+)

mε−2δ
(x, ω)

Finally the sequence {(a∗
j , σ

∗
j )} associated with T (δ,+)

mε−2δ
(x, ω) is obtained by repeated allowed exchanges from

{(a′′′
j , σ ′′′

j )}, hence
T (δ′,+)

mε−2δ
(x, ω) ≤ T (δ,+)

mε−2δ
(x, ω)

We have thus proved:
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Theorem 6.10 (Stochastic inequalities) Denoting by ξ
(δ,±)

mε−2δ
and ξ

(δ,±)
t the configurations ξ

T (δ,−)

mε−2δ
(x,ω)

and

ξTt (x,ω) restricted to x ∈ [0, ε−1] we have for any δ = kδ′, k a positive integer,

ξ
(δ,−)

mε−2δ
≤ ξ

(δ′,−)

mε−2δ
≤ ξmε−2δ ≤ ξ

(δ′,+)

mε−2δ
≤ ξ

(δ,+)

mε−2δ
(6.8)

Proof We have already proved the inequality for the configurations on [−1, ε−1 + 1], thus the proof of (6.8)
follows from (6.5) and (5.9). ��

The theorem has its continuum analogue which can be proved directly, see Section 4 of [3], but it can also
be deduced from Theorem 6.10, as we shall see.

Theorem 6.11 (Macroscopic inequalities) Let u ∈ L∞([0, 1],R+), F(0; u) > 0. Let δ : jδ < F(0; u) and
δ′ such that δ = kδ′ with k a positive integer. Then

S(δ,−)
mδ (u) ≤ S(δ′,−)

mδ ≤ S(δ′,+)
mδ ≤ S(δ,+)

mδ (6.9)

Moreover, the maps K (δ), Gneum
t ∗ and S(δ,±)

t on Uδ , see (2.14), preserve order.

Proof (6.9) follows from (6.8) and (4.2). Proof that K (δ)u ≤ K (δ)v, u, v ∈ Uδ . We have

K (δ)u − K (δ)v = (cu − cv)D0 + (ρu − ρv)1r≤Rδ(u) − ρv1Rδ(u)<r≤Rδ(v)

where Rδ(w) : F(Rδ(w);w) = jδ. Hence

F(r; K (δ)u) − F(r; K (δ)v) = (F(r; u) − F(r; v))1r≤Rδ(u) − 1r>Rδ(u)

Rδ(v)∫

r

ρv(r
′)

which is, therefore, ≤ 0.
The property that Gneum

t ∗ preserves the order is inherited from the same property for the independent flow

T 0
t . As a consequence of the two previous statements, we have that also S(δ,±)

t preserves the order (see the
definition in (2.14)). ��

7 Regularity properties of the barriers

In this section, we shall prove some regularity properties of the barriers S(δ,±)
t (u), u ∈ L∞([0, 1],R+),

F(0; u) > jδ (the barriers are defined in Definition 2.6).
By the smoothness of Gneum

t (r, r ′), t > 0, it is easy to prove that for any n > 0, S(δ,+)
nδ (u) is in C∞, while

S(δ,−)
nδ (u) is equal to jδD0 plus a function which is C∞ in the interior of its support. Such a smoothness,

however, being inherited from Gneum
δ , depends on δ, while we want properties which hold uniformly as δ → 0.

The properties of the Green functions that we use in this section are:

Gneum
t (r, r ′) = Gneum

t (r ′, r) ≤ c(1 + √
t)√

t
, | d

dr
Gneum

t (r, r ′)| ≤ c

t
(7.1)

∫

dr ′Gneum
t (r, r ′) = 1 (7.2)

∫

|r ′−r |>X

dr ′Gneum
t (r, r ′) ≤ √

2e−X2/(4t), ∀X > 0 (7.3)

(7.3) is proved by writing

∫

|r ′−r |>X

dr ′Gneum
t (r, r ′) ≤

∫

|r ′−r |>X

dr ′Gt (r, r ′), Gt (r, r ′) = e−(r−r ′)2/(2t)

√
2π t
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and then bounding

∫

|r ′−r |>X

dr ′Gt (r, r ′) ≤ e−X2/(4t)
√
2
∫

dr
e−r2/(4t)

√
4π t

Such bounds are verified also by the Green function for the Neumann problem in [0, �] for any � > 0 and
� = ∞ as well, so that the analysis in this section extends to all such cases. Observe that if � is finite and
positive, the bound on the derivative is much better:

∣
∣
∣
d

dr
Gneum

t (r, 0)
∣
∣
∣ ≤ ce−bt

t
, b > 0, c > 0

but we shall only use (7.1), (7.2) and (7.3) to have what follows valid also in the spatial domain [0,∞).
The main results in this section are

Theorem 7.1 (Space and time equicontinuity) Let u ∈ L∞([0, 1],R+), F(0; u) > 0. Then

• F(0; S(δ,±)
t (u)) = F(0; u) for all δ > 0 such that F(0; u) > jδ and all t = nδ, n ∈ N.

• There is a constant c so that for any δ > 0: F(0; u) > jδ

‖S(δ,+)
t (u)‖∞ ≤ c

{
j + ‖u‖∞ for all t ∈ δN, t ≤ 1
j + F(0; u) for all t ∈ δN, t > 1 (7.4)

Same bounds hold for {S(δ,−)
t (u) − j D0}.

• Given any time σ > 0 the following holds. For any ζ > 0, there are τζ > 0 and dζ > 0 so that for any
δ ∈ (0, σ ): F(0; u) > jδ, for any t ≥ σ in δN, for any t ′ ∈ δN, t ′ ∈ (t, t + τζ ) and for any r and r ′ such
that |r − r ′| < dζ ,

|S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| < ζ, |S(δ,+)

t ′ (u)(r) − S(δ,+)
t (u)(r)| < ζ (7.5)

• For all δ > 0 such that F(0; u) > jδ and all t > 0 in δN

F(0; |S(δ,+)
t (u) − S(δ,−)

t (u)|) ≤ 4 jδ (7.6)

Proof • F(0; S(δ,±)
t (u)) = F(0; u) because by (7.2) Gneum

δ preserves the mass, as well as K (δ), by its very
definition, see (2.15)).

• Proof of (7.4). Let t = nδ, n a positive integer, then

S(δ,+)
t (u)(r) ≤

∫

dr ′Gneum
δ (r, r ′)S(δ,+)

t−δ (u)(r ′) + jδGneum
δ (r, 0)

The inequality is because we are not taking into account the “loss part” in the action of K (δ). Iterating we get
for s = mδ, m < n a non-negative integer,

S(δ,+)
t (u)(r) ≤

∫

dr ′Gneum
t−s (r, r ′)S(δ,+)

s (u)(r ′) + jδ
n−m∑

k=1

Gneum
kδ (r, 0) (7.7)

Let nδ be the smallest integer such that δnδ ≥ 1 and suppose that in (7.7) t < δnδ and s = 0. By (7.2), the
integral in (7.7) is bounded by ‖u‖∞ whereas by (7.1) the sum is bounded by c′′ j

√
nδ ≤ c′′ j . Thus, (7.4) is

proved for t ≤ 1.
Let us next take t = δnδ and s = 0 in (7.7). Then using (7.1), we bound the integral in (7.7) by

c′F(0; u)(δnδ)
−1/2 ≤ c′F(0; u). As before the last term in (7.7) is bounded by c′′ j

√
δnδ ≤ 2c′′ j so that

(we may suppose c′ < 2c′′)

‖S(δ,+)
nδδ

(u)‖∞ ≤ 2c′′(F(0; u) + j)

By the same argument for any integer k ≥ 1

‖S(δ,+)
knδδ

(u)‖∞ ≤ 2c′′{F(0; S(δ,+)
(k−1)δnδ

(u)) + j} = 2c′′(F(0; u) + j) (7.8)
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the last equality because we have already proved that mass is conserved. Thus, (7.4) is proved for t ∈ (δnδ)N.
Let now m = knδ and knδ < n ≤ (k + 1)nδ k be a positive integer. The last term in (7.7) is bounded again by
2c′′ j , whereas the integral is smaller than ‖S(δ,+)

knδδ
(u)‖∞. Thus, (7.4) follows from (7.8) when t ≥ 1.

We next prove the analogue of (7.4) for

ρ
(δ,−)
t := S(δ,−)

t (u) − jδD0, t > 0 ∈ δN (7.9)

Let t = nδ, s = mδ, n > m in N, just as before. Recalling the definition (7.9), we have

ρ
(δ,−)
nδ = K (δ)[Gneum

δ ∗ S(δ,−)
(n−1)δ(ρ0)] − jδD0 = 1[0,R] Gneum

δ ∗ [ρ(δ,−)
(n−1)δ + jδD0

]

where 1[0,R] is the characteristic function of the set [0, R] and R is such that

1∫

R

Gneum
δ ∗ [ρ(δ,−)

(n−1)δ + jδD0
]
(r) = jδ

Then

ρ
(δ,−)
nδ (r) = 1r≤R( jδGneum

δ (r, 0) + Gneum
δ ∗ ρ

(δ,−)
(n−1)δ(r))

≤ jδGneum
δ (r, 0) + Gneum

δ ∗ ρ
(δ,−)
(n−1)δ(r) (7.10)

After iterating (7.10), we get

ρ
(δ,−)
t (r) ≤ jδ

n−m∑

k=1

Gneum
kδ (r, 0) +

∫

dr ′Gneum
t−s (r, r ′)ρ(δ,−)

s (r ′) (7.11)

which has the same structure as (7.7). The analysis after (7.7) extends to the present case and yields the proof
of (7.4) for ρ

(δ,−)
t .

The proof of (7.5) and (7.6) will be given after the following lemma.

Lemma 7.2 There is a constant c so that the following holds. For all δ > 0 such that F(0; u) > jδ and for
all 0 ≤ s < t , s, t ∈ δN, t − s ≤ 1, we write

w
(δ,+)
s,t (r) :=

∫

dr ′Gneum
t−s (r, r ′)S(δ,+)

s (u)(r ′), v
(δ,+)
s,t := S(δ,+)

t (u) − w
(δ,+)
s,t (7.12)

Then

sup
r,r ′∈[0,1]

|w(δ,+)
s,t (r) − w

(δ,+)
s,t (r ′)| ≤ c‖u‖∞

|r − r ′|
t − s

(7.13)

F(0; |v(δ,+)
s,t |) ≤ 2 j (t − s), ‖v(δ,+)

s,t ‖∞ ≤ cj
√

t − s (7.14)

Proof By (7.4) and the second inequality in (7.1), we get

|w(δ,+)
s,t (r) − w

(δ,+)
s,t (r ′)| ≤ ‖S(δ,+)

s (u)‖∞
∫

|Gneum
t−s (r, z) − Gneum

t−s (r ′, z)| dz ≤ c
|r ′ − r ′′|

t − s
‖u‖∞

which proves (7.13).
We already have an upper bound for S(δ,+)

t (u)(r) as given by (7.7) and want to find a lower bound. We
first define for any τ ∈ δN

v(δ)
τ (r) = 1r≥R S(δ,+)

τ (u)(r), R :
∫

v(δ)
τ (r) = jδ (7.15)

By (7.4)
‖v(δ)

τ ‖∞ ≤ C, C = c( j + ‖u‖∞) (7.16)
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By neglecting the contribution of j D0, we get

S(δ,+)
t (u) ≥ Gneum

δ ∗ (S(δ,+)
t−δ (u) − v

(δ)
t−δ)

and by iteration:

S(δ,+)
t (u) ≥ Gneum

t−s ∗ S(δ,+)
s (u) −

n−1∑

k=m

Gneum
(n−k)δ ∗ v

(δ)
kδ

Combining the upper and the lower bound and recalling (7.12)

|v(δ,+)
s,t | ≡ |S(δ,+)

t (u) − Gneum
t−s ∗ S(δ,+)

s (u)| ≤
n−1∑

k=m

Gneum
(n−k))δ ∗ v

(δ)
kδ + jδ

n−m∑

k=1

Gneum
kδ (r, 0) (7.17)

By (7.15) and (7.1)
∥
∥
∥
∥
∥

n∑

k=m+1

Gneum
(n−k)δ ∗ v

(δ)
kδ

∥
∥
∥
∥
∥

∞
≤ cj

√
δ
√

n − m = cj
√

t − s

and by (7.1)
∥
∥
∥
∥
∥

jδ
n−m∑

k=1

Gneum
kδ (r, 0)

∥
∥
∥
∥
∥

∞
≤ cj

√
δ
√

n − m = cj
√

t − s

so that ‖v(δ,+)
s,t ‖∞ ≤ cj

√
t − s and the second inequality in (7.14) is proved. To prove the first one, we use

(7.17), (7.12) and (7.2) to write

F(0; |v(δ,+)
s,t |) ≤ jδ(t − s) + F

(

0;
n−1∑

k=m

Gneum
(n−k)δ ∗ v

(δ)
kδ

)

≤ 2 jδ(t − s)

which concludes the proof of (7.14). ��
We resume the proof of Theorem 7.1 by proving:
• Proof of the first inequality in (7.5) (space equicontinuity). Recalling that δ < σ we may suppose (with

no loss of generality) that
ζ < 2c′√σ − δ, c′ := c( j + ‖u‖∞) (7.18)

with c the constant in (7.13)–(7.14). Then, given any such ζ > 0, we must find dζ > 0 so that

sup
|r−r ′|<dζ

|S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| < ζ, t ∈ δN, t ≥ σ (7.19)

By (7.13) and (7.14)

|S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| ≤ c′ |r − r ′|
t − s

+ c′√t − s (7.20)

We shall prove (7.19) with

dζ < ζ 3 min

{
1

4c′(2c′)2
; 1

c′′(2c′)2

}

(7.21)

where c′′ is a constant which will be specified later.
We first consider the case when (2c′)2δ < ζ 2. We then choose s < t as the smallest time in δN such that

2c′√t − s < ζ . Since t − s = kδ, for s to exist it must be that (2c′)2δ < ζ 2 which is indeed the case presently
considered. On the other hand by (7.18), s ≥ δ. Then, by the minimality of s, 2c′√t − s + δ ≥ ζ so that

2(t − s) ≥ t − s + δ ≥ ζ 2

(2c′)2
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By choosing dζ as in (7.21), the first term on the right hand side of (7.20) is bounded by

c′ 2(2c′)2

ζ 2 dζ <
ζ

2

hence |S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| < ζ .
It remains to consider the case when (2c′)2δ ≥ ζ 2. Observe that

S(δ,+)
t (u) = Gneum

δ ∗ ( jδD0 + v), v = 1r≤R S(δ,+)
t−δ (u) (7.22)

where R is such that
∫ 1

R S(δ,+)
t−δ (u) = jδ. Hence by (7.1), the space derivative of S(δ,+)

t (u)(r) is bounded by

c

δ
( jδ + F(0; S(δ,+)

t−δ (u))) =: c′′

δ

with c′′ = c( jδ + F(0; u)), having used that F(0; S(δ,+)
s (u)) = F(0; u).

By (7.21), we then get

|S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| ≤ c′′δ−1|r − r ′| ≤ c′′
(

ζ 2

(2c′)2

)−1

dζ < ζ (7.23)

• Proof of the second inequality in (7.5) (time equicontinuity). Let t ′ > t ≥ σ , t ′ − t ≤ 1. Then by (7.17)
with t → t ′ and s → t ,

|S(δ,+)

t ′ (u) − Gneum
t ′−t ∗ S(δ,+)

t (u)| ≤
n−1∑

k=m

Gneum
(n−k))δ ∗ v

(δ,+)
kδ + jδ

n−m∑

k=1

Gneum
(n−k)δ(r, 0)

≤ cj
√

t ′ − t

Hence calling ζ ′ = ζ/4 and with C ≥ ‖S(δ,+)
t (u)‖∞ (see (7.4)),

|S(δ,+)

t ′ (u)(r) − S(δ,+)
t (u)(r)| ≤

∫

r ′:|r−r ′|≥dζ ′

CGneum
t ′−t (r, r ′)dr ′ + ζ ′ + cj

√
t ′ − t

We choose τζ = aζ 8, a a positive constant whose value will be specified later. If δ > τζ , there is no
t ′ : t < t ′ < t + τζ and the second inequality in (7.5) is automatically satisfied. Let then δ ≤ τζ . We choose a

so that cj
√

aζ 4 < ζ ′. By the decay properties of the Green function, see (7.3)
∫

r ′:|r−r ′|≥dζ ′

Gneum
t ′−t (r, r ′)dr ′ ≤ √

2e
−cd2

ζ ′/(4τζ )

Since dζ = cζ 3 (see the proof of space continuity) for a small enough the above integral is < ζ ′ as well.
We shall resume the proof of Theorem 7.1 after the following lemma:

Lemma 7.3 Let u and v be both in Uδ , see (2.14), then

F(0; |K (δ)u − K (δ)v|) ≤ F(0; |u − v|), F(0; |K (δ)u − u|) ≤ 2 jδ (7.24)

Proof Supposing Rδ(u) > Rδ(v), see (2.15),

F(0; |K (δ)u − K (δ)v|) =
Rδ(v)∫

0

|u − v| +
Rδ(u)∫

Rδ(v)

u

= F(0; |u − v|) +
Rδ(u)∫

Rδ(v)

(u − |u − v|) −
∞∫

Rδ(u)

|u − v|
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We have
∞∫

Rδ(u)

|u − v| ≥ |
∞∫

Rδ(u)

(u − v)| = jδ −
∞∫

Rδ(u)

v =
Rδ(u)∫

Rδ(v)

v

so that

F(0; |K (δ)u − K (δ)v|) ≤ F(0; |u − v|) −
Rδ(u)∫

Rδ(v)

(v − u + |u − v|) ≤ F(0; |u − v|)

The second inequality in (7.24) follows because

K (δ)u − u = jδD0 − 1r>Rδ(u)u

��
• Proof of (7.6). The proof is actually a corollary of Lemma 7.3 and the maximum principle

F(0; |Gneum
t ∗ u − Gneum

t ∗ v) ≤ F(0; |u − v|)
Shorthand G for the operator Gneum

δ ∗ and

φ := K (δ)G · · · K (δ)Gu, ψ := G K (δ) · · · G K (δ)u

so that we need to bound the total variation of φ − ψ . Call

v = K (δ)u, vn = G K (δ) · · · Gv, un = G K (δ) · · · Gu

Thus, un and vn are obtained by applying G(K (δ)G)n−1 to u and, respectively, v. Since G(K (δ)G)n−1 is a
contraction we get, using (7.24),

F(0; |ψ − φ|) ≤ F(0; |K (δ)un − vn|) ≤ F(0; |K (δ)un − un|) + F(0; |vn − un|)
≤ 2 jδ + |vn − un|1 ≤ 2 jδ + |u − v|1 ≤ 4 jδ

The proof of Theorem 7.1 is concluded. ��
In the proof of Theorem 2.11 we shall use the following Lemma.

Lemma 7.4 Let σ > 0. Then, there is c > 0 such that, for any δ and for any t ∈ δN, t ≥ σ ,

|S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| ≤ cmax{|r − r ′| 13 ,√δ} (7.25)

Proof It is clearly sufficient to bound the left hand side of (7.25) when |r − r ′| and δ are such that:

2δ < σ, 2|r − r ′|2/3 < σ

We first consider the case when |r − r ′|2/3 ≥ δ. We then have

1 ≤ |r − r ′|2/3
δ

≤ σ

δ
− 1

Then, there exists a positive integer k∗ such that k∗δ ≤ σ and

|r − r ′|2/3
δ

≤ k∗ ≤ |r − r ′|2/3
δ

+ 1

We then apply (7.20) with s = t − k∗δ getting

|S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| ≤ c′(|r − r ′|1/3 +
√

|r − r ′|2/3 + δ
)

≤ c′(1 + √
2)|r − r ′|1/3 (7.26)

Suppose next |r − r ′|2/3 ≤ δ. Choose s = t − δ then (7.20) gives:

|S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| ≤ 2c′√δ (7.27)

so that (7.25) follows from (7.26) and (7.27). ��
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We conclude the section with a corollary of the proof of Theorem 7.1.

Theorem 7.5 Let u ∈ C([0, 1],R+), F(0; u) > 0. Then for any ζ > 0 there are τζ > 0 and dζ > 0 so that
for any δ : F(0; u) > jδ, for any t ∈ δN, for any t ′ ∈ δN, t ′ ∈ (t, t + τζ ) and for any r and r ′ such that
|r − r ′| < dζ ,

|S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| < ζ, |S(δ,+)

t ′ (u)(r) − S(δ,+)
t (u)(r)| < ζ (7.28)

Proof It follows from (2.16) and the continuity of u that for any ζ there is d∗
ζ so that for any t ≥ 0

|Gneum
t ∗ u(r) − Gneum

t ∗ u(r ′)| <
ζ

2
, |r − r ′| < d∗

ζ (7.29)

Recalling (7.21), we then set

dζ < min

{

d∗
ζ ; ζ 3

4c′(2c′)2
; ζ 3

c′′(2c′)2

}

(7.30)

As in the proof of Theorem 7.1, we first consider the case when (2c′)2δ < ζ 2. We then choose s < t as the
smallest time in δN such that 2c′√t − s < ζ ; in the present case where t is not bounded away from 0 it may
happen that s = 0; if not the analysis is just as in the proof of Theorem 7.1. If instead s = 0, we use (7.29) to
replace the bound in (7.13) with s = 0. Then we can replace (7.20) by

|S(δ,+)
t (u)(r) − S(δ,+)

t (u)(r ′)| ≤ ζ

2
+ c′√t < ζ (7.31)

The proof for the case when (2c′)2δ ≥ ζ 2 is just as in the proof of Theorem 7.1 so that the first inequality in
(7.28) is proved.

The second inequality in (7.28) follows from the first one by the same argument used in the proof of
Theorem 7.1 and since the first one has been proved without restrictions on t the second one has also no
restriction in t . ��

8 Hydrodynamic limit

Proof of Theorem 2.9. We fix an element u ∈ L∞([0, 1],R+) such that F(0; u) > 0. We first restrict to
δ ∈ �τ := {2−nτ, n ∈ N}, τ > 0 and prove convergence of S(δ,+)

t (u) as δ → 0 in �τ when t is restricted to
the interval [σ, S], 0 < σ < S. More precisely, we define a function ψ(n)(r, t) on [0, 1] × [σ, S] by setting

ψ(n)(r, t) = S(2−nτ,+)
t (u)(r), r ∈ [0, 1], t ∈ [σ, S] ∩ (2−nτ)N

and defining ψ(n)(r, t) when t ∈ [σ, S] by linear interpolation.
By Theorem 7.1 the family {ψ(n)} is equibounded and equicontinuous hence by the Ascoli–Arzelà theorem

it converges in sup norm by subsequences to a continuous function ψ(r, t) on [0, 1] × [σ, S]. On the other
hand for any r ∈ [0, 1] and t ∈ [σ, S] ∩ {k2−nτ, n, k ∈ N}:

lim
m→∞ F(r; S(2−mτ,+)

t (u)) = F(r; ψ(·, t))

because, by (6.9), F(r; S(2−mτ,+)
t (u)) is a non-increasing function of m which thus converges as m → ∞.

Thus, all limit functions ψ(r, t) agree on t ∈ [σ, S] ∩ {k2−nτ, n, k ∈ N} and since they are continuous they
agree on the whole [σ, S], thus the sequence ψ(n)(r, t) converges in sup-norm as n → ∞ to a continuous
function ψ(r, t).

By the arbitrariness of σ and T , the functionψ(r, t) extends to the whole [0, 1]× (0,∞) and summarizing
we have

lim
n→∞ ‖S(2−nτ,+)

t (u) − ψ(·, t)‖∞ = 0, t > 0, t ∈ (2−nτ)N (8.1)

the convergence being uniform in t ∈ {(2−nτ)N} when it varies on the compacts not containing 0.

Proposition 8.1 For any r ∈ [0, 1]
lim
t→0

F(r; ψ(·, t)) = F(r; u) (8.2)
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Proof Let t = k2−nτ , k and n positive integers. Then by (6.9)

F(r; ψ(·, t)) = lim
n→∞ F(r; S(2−nτ,+)

t (u)) ≤ F(r; S(t,+)
t (u))

Let X > 0, rX := max{r − X, 0}, then

F(r; S(t,+)
t (u)) ≤ F(rX , u) + F(0; u) sup

r ′

∫

|r−r ′|>X

Gneum
t (r, r ′)dr

By (7.3)

F(r; S(t,+)
t (u)) ≤ F(r; u) + ‖u‖∞ X + F(0; u)

√
2e−X2/(4t)

By choosing X = t1/4

F(r; S(t,+)
t (u)) ≤ F(r; u) + ‖u‖∞(t1/4 + √

2e−t−1/2/4)

To prove a lower bound, we write

F(r; ψ(·, t)) = lim
n→∞ F(r; S(2−nτ,+)

t (u)) ≥ F(r; S(t,−)
t (u))

and have

F(r; S(t,−)
t (u)) ≥ F(r + X, u) − F(0; u) sup

r ′

∫

|r−r ′|>X

Gneum
t (r, r ′)dr

F(r; S(t,−)
t (u)) ≥ F(r; u) − ‖u‖∞(t1/4 + √

2e−t−1/2/4)

Thus

|F(r;ψ(·, t)) − F(r; u)| ≤ ‖u‖∞(t1/4 + √
2e−t−1/2/4), t = k2−nτ > 0

By the continuity of ψ(·, t) and because the set {k2−nτ , k ∈ N+, n ∈ N} is dense in R+, it follows that

sup
t≤S

|F(r; ψ(·, t)) − F(r; u)| ≤ ‖u‖∞(S1/4 + √
2e−S−1/2/4)

hence (8.2). ��
Proposition 8.2 For any t ∈ {k2−nτ , k ∈ N+, n ∈ N},

lim
n→∞

∫

dr |ψ(r, t) − S(2−nτ,−)
t (u)(r)| = 0 (8.3)

F(r; ψ(·, t)) ≥ F(r; S(2−nτ,−)
t (u)), r ∈ [0, 1] (8.4)

Proof (8.3) follows from (8.1) and (7.6). By (8.3)

F(r;ψ(·, t)) = lim
n→∞ F(r; S(2−nτ,−)

t (u))

which implies (8.4) because, by (6.9), F(r; S(2−nτ,−)
t (u)) is a non-decreasing function of n. ��
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By (6.9) we then have for all r ∈ [0, 1] and all δ and t in {k2−nτ , k ∈ N+, n ∈ N},
F(r;ψ(·, t)) ≥ F(r; S(δ,−)

t (u)), F(r;ψ(·, t)) ≤ F(r; S(δ,+)
t (u)) (8.5)

(8.5) does not yet prove that ψ separates the barriers because we have to consider all t and δ and not only
those above. To this end, we observe that the function ψ(r, t) that we have defined so far actually depends on
the initial choice of τ , to make this explicit we write ψτ (r, t). Of course, we have for all τ > 0:

F(r; S(δ,−)
t (u)) ≤ F(r; ψτ (·, t)) ≤ F(r; S(δ,+)

t (u)), δ, t ∈ {k2−nτ, k ∈ N+, n ∈ N} (8.6)

so that we only need to show that ψτ does not depend on τ . To prove independence of τ , we use the following
lemma:

Lemma 8.3 There is c so that for any 0 < δ < δ′, u ∈ Uδ and n ≥ 1

|S(δ,−)
nδ (u) − S(δ′,−)

nδ′ (u)|1 ≤ c|u|1n
δ′ − δ

δ3/2
(8.7)

Proof To compare S(δ,−)
δ and S(δ′,−)

δ′ we shall use the following bounds:

|K (δ)(w) − K (δ′)(w)|1 ≤ 2 j (δ′ − δ), |Gneum
δ ∗ w − Gneum

δ′ ∗ w|1 ≤ c(δ′ − δ)

δ3/2
|w|1 (8.8)

together with |K (δ)(w)− K (δ)(w)|1 ≤ |v −w|1, see (7.24). Indeed we can bound |S(δ,−)
δ (w)− S(δ′,−)

δ′ (v)|1 by
≤ |K (δ){Gneum

δ ∗ w − Gneum
δ′ ∗ v}|1 + |(K (δ′) − K (δ))Gneum

δ′ ∗ v}|1
≤ |Gneum

δ ∗ w − Gneum
δ′ ∗ v|1 + 2 j (δ′ − δ)

≤ |Gneum
δ ∗ w − Gneum

δ ∗ v|1 + |Gneum
δ ∗ v − Gneum

δ′ ∗ v|1 + 2 j (δ′ − δ)

getting

|S(δ,−)
δ (w) − S(δ′,−)

δ′ (v)|1 ≤ |w − v|1 + c
δ′ − δ

δ3/2
|v|1 + 2 j (δ′ − δ) (8.9)

Using (8.9) with w = S(δ,−)
(n−1)δ(u) and v = S(δ′,−)

(n−1)δ′(u), then, by iteration, we get (8.7). ��
Theorem 8.4 ψτ is independent of τ .

Proof We shall prove that for any τ and τ ′

F(r; ψτ (·, t)) = F(r; ψτ ′(·, t)), r ∈ [0, 1], t > 0

and this will prove Theorem 8.4. We suppose that τ ′ /∈ {kτ2−n, k, n ∈ N} (otherwise the statement trivially
holds). We fix t ′ = nδ′, δ′ = τ ′2−m . Let δ = kτ2−q , δ < δ′. By the previous lemma, for all r ∈ [0, 1]

F(r; S(δ′,−)

t ′ (u)) ≤ F(r; S(δ,−)
nδ (u)) + cF(0; u)n

δ′ − δ

δ3/2

Write δ = kpτ2−p so that kp = k2p−q is a positive integer for p large enough. Then, by (6.9)

F(r; S(δ,−)
nδ (u)) ≤ F(r; S(τ2−p,−)

nδ (u))

By taking p → ∞:

F(r; S(δ′,−)

t ′ (u)) ≤ F(r;ψτ (·, nδ)) + cF(0; u)n
δ′ − δ

δ3/2

We then let δ → δ′ on {kτ2−n, k, n ∈ N}. In this limit, nδ → t ′ and by the continuity of ψτ (·, s) in s, we get

F(r; S(δ′,−)

t ′ (u)) ≤ F(r; ψτ (·, t ′))
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We next take m → ∞, recall δ′ = τ ′2−m , and get

F(r;ψτ ′(·, t ′)) ≤ F(r;ψτ (·, t ′)), for any t ′ ∈ {kτ ′2−n, k, n ∈ N}
In an analogous fashion we get

F(r;ψτ (·, t)) ≤ F(r; ψτ ′(·, t)), for any t ∈ {kτ2−n, k, n ∈ N}
Then ψτ (·, t) = ψτ ′(·, t) for all t in a dense set, hence they are equal everywhere being both continuous. ��

The proof of Theorem 2.9 is concluded. ��
Proof of Theorem 2.10. It follows from the reasoning above and the use of Theorem 6.11 with the choice
m = 2n and δ = t2−n . ��
Proof of Theorem 2.3. The proof of Theorem 2.3 is an immediate consequence of Theorem 8.4. ��

We are left with the proof of Theorem 2.11 that we explain in the remaining part of this section. We fix
ρinit such that ρinit(1) > 0 and we call ρt the function of Theorem 2.3.

For any a > 0 arbitrarily small, we define

Ta = sup{t > 0 : ρt (1) ≥ a}
Lemma 8.5 For any a > 0, there exists 0 < a′ < a such that

S(δ,+)
nδ ρinit(1) ≥ a′ for any n such that δn < Ta (8.10)

Proof Let t ∈ δN with t < Ta then ρt (1) ≥ a. From Theorem 2.10, for any r ∈ [0, 1], t ∈ δN we have

F(r; S(δ,−)
t (ρinit)) ≤ F(r; ρt ) ≤ F(r; S(δ,+)

t (ρinit)) (8.11)

On the other hand, from (7.6), for any r ∈ [0, 1], t ≥ 0,
∣
∣F(r; S(δ,−)

t (ρinit)) − F(r; S(δ,+)
t (ρinit))

∣
∣ ≤ 4 jδ. (8.12)

As a consequence, writing ρ
(δ,+)
t := S(δ,+)

t (ρinit) and choosing r = 1 − √
δ, we have

1∫

1−√
δ

ρ
(δ,+)
t (r)dr ≥

1∫

1−√
δ

ρt (r)dr − 4 jδ (8.13)

From Lemma 7.4, for r ∈ [1 − √
δ, 1],

|ρ(δ,+)
t (r) − ρ

(δ,+)
t (1)| ≤ cmax{|1 − r | 13 , √δ} ≤ cδ

1
6

hence
1∫

1−√
δ

ρ
(δ,+)
t (r)dr ≤ (ρ

(δ,+)
t (1) + c δ

1
6 )

√
δ (8.14)

Combining (8.13) and (8.14), we have

ρ
(δ,+)
t (1) + c δ

1
6 ≥ 1√

δ

1∫

1−√
δ

ρ
(δ,+)
t (r)dr ≥ 1√

δ

1∫

1−√
δ

ρt (r)dr − 4 j
√

δ (8.15)

thus

ρ
(δ,+)
t (1) ≥ 1√

δ

1∫

1−√
δ

ρt (r)dr − c′ δ
1
6 (8.16)

From the space continuity of ρt obtained in Theorem 2.3, for any a > 0 there exists δ > 0 small enough such
that, for |r − 1| ≤ √

δ,

ρt (r) ≥ ρt (1) − a/2 ≥ a/2

where the last inequality holds for all t < Ta . Then, the statement of the Lemma follows from (8.16) with

a′ = a/2 − c′δ 1
6 which is positive for δ small enough. ��
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Lemma 8.6 For any a > 0 there is Ca > 0 such that for any t ∈ δN, t < Ta

Rδ(S(δ,+)
nδ (ρinit)) ≥ 1 − Ca δ (8.17)

Proof Fix C > 0 and denote ρ
(δ,+)
t := S(δ,+)

t (ρinit). From Lemma 7.4, we know that there is c > 0 so that for
any r ∈ [1 − Cδ, 1], t ∈ δN,

ρ
(δ,+)
t (r) ≥ ρ

(δ,+)
t (1) − cδ

1
3 (8.18)

then, from Lemma 8.5, for any a > 0 there is 0 < a′ < a such that

1∫

1−Cδ

ρ
(δ,+)
t (r)dr ≥ Cδ(a′ − cδ

1
3 ) ∀t < Ta (8.19)

now it is sufficient to chose C = Ca > (a′ − cδ
1
3 )/j , δ small enough to get

1∫

1−Caδ

ρ
(δ,+)
t (r)dr > jδ ∀t < Ta, (8.20)

that gives (8.17). ��
Proof of Theorem 2.11. We define the dynamics

Ŝ(δ,+)
nδ (u) := Gneum

δ ∗ · · · ∗ QδGneum
δ ∗ Qδu n times

= Gneum
δ ∗ Qδ Ŝ(δ,+)

(n−1)δ(u) (8.21)

with
Qδu = u + jδD0 − jδD1 (8.22)

then

Ŝ(δ,+)
nδ (u) = Gneum

nδ ∗ u + jδ
n−1∑

k=0

Gkδ ∗ D0 − jδ
n−1∑

k=0

Gkδ ∗ D1 (8.23)

hence Ŝ(δ,+)
t (u) converges as δ → 0 to the dynamics defined by (2.21). It remains to prove that S(δ,+)

nδ (u) −
Ŝ(δ,+)

nδ (u) converges weakly to zero for nδ < supa Ta .
From (8.21) and (2.17), we can write

S(δ,+)
nδ (u) − Ŝ(δ,+)

nδ (u)

= Gneum
δ ∗ (K δ S(δ,+)

(n−1)δ − Qδ Ŝ(δ,+)
(n−1)δ)(u)

= Gneum
δ ∗ (K δ − Qδ)S(δ,+)

(n−1)δ(u) + Gneum
δ ∗ Qδ(S(δ,+)

(n−1)δ − Ŝ(δ,+)
(n−1)δ)(u)

= Gneum
δ ∗ (K δ − Qδ)S(δ,+)

(n−1)δ(u) + Gneum
δ ∗ QδGneum

δ ∗ (K δ S(δ,+)
(n−2)δ − Qδ Ŝ(δ,+)

(n−2)δ)(u)

=
n∑

k=1

Gneum
δ ∗ QδGneum

δ ∗ · · · ∗ QδGneum
δ ∗ (K δ − Qδ)S(δ,+)

(n−k)δ(u) (by iteration) (8.24)

where the Gneum
δ appears k times in the kth term of the sum and

(K δ − Qδ)v := j δ D1 − 1[Rδ(v),1] v (8.25)

Then, to prove the convergence of (8.24) to 0, we prove that each term in the sum (8.24) converges to 0 as
δ → 0. This is true since for any n : nδ < supa Ta

(K δ − Qδ)S(δ,+)
nδ u → 0 weakly as δ → 0 (8.26)
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The proof of this last statement follows from the following argument. We first fix a > 0 arbitrarily small, then,
from (8.17), there exists Ca > 0 so that

|supp(1
Rδ(S(δ,+)

kδ u)
S(δ,+)

nδ u)| ≤ Caδ, for any n : nδ ≤ Ta (8.27)

Then for any test function φ, nδ ≤ Ta ,

∣
∣
∣
1

jδ

1∫

Rδ(S(δ,+)
nδ u)

S(δ,+)
nδ u(r) · φ(r)dr − φ(1)

∣
∣
∣

=
∣
∣
∣
1

jδ

1∫

Rδ(S(δ,+)
nδ u)

S(δ,+)
nδ u(r) · (φ(r) − φ(1)) dr

∣
∣
∣

≤ sup
r∈[Rδ(S(δ,+)

nδ u),1]

∣
∣φ(r) − φ(1)

∣
∣ ≤ sup

|r−1|≤Caδ

∣
∣φ(r) − φ(1)

∣
∣ (8.28)

that vanishes as φ is continuous. Hence, for any a > 0,

lim
δ→0

∣
∣
∣
∣
∣
∣
∣
∣

1

jδ

1∫

Rδ(S(δ,+)
nδ u)

S(δ,+)
nδ u(r) · φ(r)dr − φ(1)

∣
∣
∣
∣
∣
∣
∣
∣

= 0 for kδ ≤ Ta (8.29)

then (8.29) is certainly true as long as nδ ≤ supa Ta ; this yields the convergence in distribution to equation

(2.21) for any time t such that ρt (1) > 0. We know that the convergence of S(t2−n ,+)
t (ρinit) to ρt as n → ∞ in

the sense of the interfaces (see Theorem 2.10) implies weak convergence against smooth test functions. This
and the uniqueness of the weak limit univocally characterizes ρt as the function given by (2.21) for t such that
ρt (1) > 0. Then, the Theorem is proved. ��
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