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a b s t r a c t

In this paper we show how the nonlinearity term affects the
tunnel effect and the survival amplitude in the nonlinear Win-
ter’s model. In particular, in the case of attractive nonlinearity
large enough it turns out that the tunnel effect is going to
disappear. Furthermore, the difficulty in giving a rigorous and
appropriate definition of quantum resonances by means of the
notions already used for linear equations is also highlighted.

© 2023 Published by Elsevier Inc.

1. Introduction

It is a well known fact that the introduction of a nonlinear perturbation dramatically changes
he qualitative behavior of a linear model. For example, in classical mechanics, the Duffing equation
s a second-order nonlinear equation that describes the motion of a damped oscillator with a cubic
erturbation, and the associated dynamical system exhibits a much more complicated behavior
han the linear one with (classical) jump resonance phenomena, chaotic dynamics and hysteresis
ffects [1].
Even in quantum mechanics the introduction of a nonlinear term involves a whole range of

ew problems: from, e.g., proving the local and global existence of solutions to the appearance of
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Fig. 1. A typical potential for the alpha-nucleus tunneling problem is depicted in the left image; for a given energy
E the region I indicates the well, while the region II indicates the internal barrier with top at x = a > 0. In fact, in
uantum mechanics a particle can move, with a finite nonzero probability, from region I to region III even if these regions
re separated by a potential barrier. A toy model is depicted in the right image where the barrier is represented by a
ointwise δ Dirac interaction at x = a, with strength α > 0 and an infinite barrier is also present at x = 0; and this
odel is usually referred to as Winter’s model.

low-up phenomena, and some of them have been extensively studied [2]. In contrast, the effect
f nonlinear perturbation on the time dynamics of a quantum system is much less understood and
tudied. In particular, whether and how the tunnel effect of a barrier is modified when a nonlinear
erm is introduced, which is one of the most surprising effects of Quantum Mechanics, has not been
atisfactorily explored. The tunnel effect was initially studied by Gamow [3] in order to explain
he alpha-emission from a radioactive nucleus (Fig. 1). In fact, in quantum mechanics, contrary to
hat happens in classical mechanics, a particle can move, with a finite nonzero probability, from
region to a different region even if these regions are separated by a potential barrier. Modern

heory explains the tunnel effect by means of quantum resonances. Indeed, within the framework
f one-dimensional Schrödinger’s linear equation

i∂tψt = Hψt , ψt ∈ L2(R) ,

here H is the linear Schrödinger operator, quantum resonances (see [4–7] for a review) are
ssociated with metastable states that are not really bound because they usually correspond to
tates confined by a barrier, through which tunneling occurs. The physical effect of quantum
esonances can be seen when we consider the time behavior of the survival amplitude A(t) defined
s the scalar product between the initial wave function ψ0 and the wave function ψt of the quantum
ystem at instant t:

A(t) := ⟨ψ0, ψt⟩ .

he survival probability is defined as the square of the absolute value of the survival amplitude
sometimes in the literature, with abuse of notation, both objects are named survival probability):

P(t) = |A(t)|2 .

In the case of confining potentials, like the harmonic one, then bound states occur and if ψ0
oincides with one of them then P(t) ≡ 1 for any t . This is not the case when the well is separated
rom an adjacent one by a barrier; in this case tunnel effect occurs and then P(t) decreases when t
ncreases. To be more precise we can state that when the pure point spectrum of the Schrödinger
2
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o
perator H is nonempty and ψ0 is an eigenvector of H then P(t) ≡ 1 for any t; in general, P(t) does
not go to zero as t goes to infinity if Πpψ0 ̸= 0, where Πp denotes the projection operator on the
pure point eigenspace. On the other side, when the pure point spectrum of H is empty or Πpψ0 = 0
we expect to observe an exponentially decreasing behavior for P(t) because of the occurrence of
quantum resonances (if any). In fact, we expect that, after a very short time, the survival amplitude
has the following asymptotic behavior [8,9]

A(t) ∼ e−itE (1)

when ψ0 is a normalized state approximating the quantum resonance state associated to the
resonance energy E such that ℑE < 0. However, we should recall that Khalfin [10] (see also
[11–13]) proved that such an exponentially decreasing behavior is dominant for any instant t that
is not too small only when the Schrödinger operator H is not bounded from below. In fact, in the
case of Schrödinger operators H bounded from below the time decay for the survival amplitude is
of the form

A(t) ∼ e−itE
+ b(t) (2)

where the remainder term b(t) behaves like t−γ for some γ > 0, and thus it becomes the dominant
one for very large times. In conclusion, for any instant t that is not too small the time behavior
of the survival amplitude is governed by two terms: one term, due to quantum resonances, has
exponentially decaying behavior and it is the dominant one up to a critical instant; the second one,
due to typical dispersive effects, has an inverse power of the time law and it becomes dominant for
longer times. For the sake of completeness, however, we should also say that for very small times
the dominant behavior of the survival probability is power-like P(t) ∼ 1 − cts, for some c > 0 and
s > 0, and this fact has been widely used to argue the Zeno’s quantum effect [14–16].

The analysis of the problem of the exponential decay rate versus the power decay rate in the
time-dependent survival amplitude A(t) has been a research topic since the ’50 and experimental
evidence of the deviation from exponential decay has been observed too [17]. In 1961 Winter [18]
proposed a simple but effective model for a numerical proof that a transition effect between the
two different types of decay starts around a certain instant t . Recently, a more rigorous analysis of
Winter’s model (also called single delta-shell model in literature), consisting of a one-dimensional
model (see Fig. 1) with one Dirac’s delta potential at x = a > 0 and Dirichlet boundary condition
at x = 0, has been done [19–29]. In particular, ψt (x) = 0 for any x ≤ 0 and any t ∈ R, and
thus we restrict ourselves to functions ψt ∈ L2(R+). Furthermore, Winter-like models, in which
a more general singular potential is considered, have been recently studied, see e.g. [30,31]. We
would remind that the use of a Dirac’s δ function representing a well or barrier potential has
been suggested for the first time by E. Fermi [32] in 1936; since then this idea has been widely
used to propose simple and solvable models in quantum mechanics [33]. We also observe that the
use of Dirac’s δ potentials has been recently introduced to model the effect of nodes in star-like
graphs [34–37].

In order to extend the analysis of the tunnel effect to the case of nonlinear Schrödinger equations
(hereafter NLS) some interesting questions arise:

– How can we define quantum resonances in the case of nonlinear equations?
– Is the behavior of the solution ψt , and in particular of its survival amplitude A(t), affected by

the existence of quantum resonances? And if so, in which way?

These questions are still largely unexplored, and the purpose of this paper is to shed some light on
this complex problem and to try to understand some basic facts from the analysis of the simple
explicit model obtained by the Winter’s one for the nonlinear Schrödinger equation. Indeed, while
the extension of the notion of stationary states from linear to nonlinear Schrödinger equations
is fairly well understood, the extension of quantum resonances and the connection of quantum
resonances, if properly defined, with the time decay of the survival amplitude are, on the other hand,
far from being fully understood. Since NLS equations have now become a popular tool in the study
of nonlinear optics [2], BEC condensates [38], in quantum chemistry [39,40], resonant tunneling for
3
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harges in heterostructures [41], etc., it is particularly important to understand whether and how
he tunnel effect subsists in NLS and what explanation may be proposed.

The one-dimensional nonlinear Schrödinger equation we consider is the Gross–Pitaevskii one
ith cubic nonlinearity:

i∂tψt = Hψt + η|ψt |
2ψt , η ∈ R , ψt ∈ L2(R+) ,

where η ∈ R is the strength of the nonlinear perturbation and it may assume either positive (in
which case we speak of defocusing or repulsive nonlinearity) and negative (in which case we speak
of focusing or attractive nonlinearity) values. One may, in principle, consider the case of quintic
nonlinearity, where the nonlinearity term is given by η|ψt |

4ψt , or any power nonlinearity, where the
nonlinearity term is given by η|ψt |

2σψt for some σ > 0. We do not dwell here on these other models
and we simply restrict ourselves to the cubic nonlinearity where σ = 1. We should immediately
point out that the introduction of the nonlinear term has some implications:

– The absolute value of ψt in the nonlinear term η|ψt |
2ψt plays a crucial role in order to prove

the conservation of the norm and of the energy. In fact, if we replace the nonlinear term
η|ψt |

2ψt by ηψ3
t then conservation of the norm and of the energy in general do not hold

true.
– Nonlinearity arising from the square of the absolute value of the wavefunction inhibits

superposition principle as well as the analytical properties that connect, in linear equations,
the quantum resonances to the time behavior of the survival amplitude.

– Explicit solutions to the time-independent nonlinear Schrödinger equation are only known
when the nonlinear term has the form ηψ3

t . Although it is correct to replace (see Proposition 3)
the term η|ψt |

2ψt with the term ηψ3
t , for the purpose of finding the stationary solutions

associated with real values of energy, this substitution is no longer permissible in the study of
quantum resonances because in that case complex values of energy must be considered. Also,
in the study of survival amplitude the original term η|ψt |

2ψt must be retained.

A first crucial question concerns how quantum resonances can be defined for NLS problems
and whether this notion makes sense in NLS. Several proposals have been given in literature
[42–52] making use of complex scaling arguments, Siegert’s approximation method and scattering
coefficient analysis. In particular, in this paper we critically review these definitions of quantum
resonances in NLS and point out that the two methods based on complex scaling and Siegert’s
approximation have, in our opinion, serious problems. On the other hand, the method of defining
quantum resonances by scattering coefficient analysis can be applied in principle, as in the linear
model, but the link between the resonances, associated with the maximum values of the scattering
coefficient, and time decay of the survival amplitude still remains completely vague.

In this paper we will numerically show that the time decay of the survival amplitude, and
thus the tunnel effect, is really affected by the nonlinearity strength. In particular, it can be seen
by numerical experiments that the typical exponential decay associated to quantum resonances
persists even in this model as long as η is not smaller than a critical negative value η̃, and it
becomes faster for increasing positive values of η; if η becomes smaller than the critical value η̃ then
new stationary states of the nonlinear equation arise and the survival amplitude does not decay, in
such a case we can state that the tunnel effect has been destroyed by the nonlinear perturbation.
Furthermore, we can also conjecture that the quantum resonances obtained in the linear model
become stationary states for the nonlinear one when the nonlinearity strength takes the negative
threshold value η̃.

The paper is organized as follows. In Section 2 we consider the linear Winter’s model in detail; in
particular we recall the spectral properties and the expression of the resolvent operator, calculate
the quantum resonances, give the expression of the evolution operator and finally, in a numerical
experiment, calculate the survival amplitude A(t). Some of these results have been previously
given also in other papers [19–29]. In Section 3 we then consider the nonlinear Winter’s model
where we calculate the stationary solutions showing that a bifurcation phenomenon occurs and
where previous definitions of quantum resonances are critically reviewed. Finally, in Section 4, by
4
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eans of numerical experiments, we show that the survival amplitude does indeed depend on
he nonlinearity strength η and we draw some concluding remarks. In Appendix we provide the
echnical proof of Theorem 1.

Normalization to 1 of the wavefunction ψt is assumed valid throughout the whole paper with
the exception of Section 3.4 where we analyze the notion of quantum resonances for NLS. We recall
that for linear Schrödinger equations the value c > 0 of the normalization condition ∥ψ∥ = c does
not matter because we can always reduce it to 1 by means of a simple scaling ψ → ψ/c. On
the other hand, in the case of NLS the scaling ψ → ψ/c implies that the nonlinearity strength η
must change as η → c2η. Thus, if we decide to change the normalization condition then we must
take care of the fact that the nonlinearity strength changes too. In Section 3.4 we consider general
solutions to the NLS that are not in L2 and thus we cannot assume the usual normalization condition∫

+∞

0 |ψ(x)|2dx = 1. We in fact assume a different normalization condition
∫ a
0 |ψ(x)|2dx = 1 and for

this reason we denote only in this section the nonlinearity strength by Γ instead of η as usually
done in the rest of the paper.

Concerning notation:

– ⟨ψ, ϕ⟩ =
∫
R+ ψ(x)ϕ(x)dx denotes the usual scalar product in L2(R+);

– ∥ψ∥ =
√

⟨ψ,ψ⟩ denotes the usual norm in L2(R+);
– Hp,s denotes the Sobolev space with indexes p and s (see [33] for details);
– Wn(z), where z ∈ C and n ∈ Z, denotes the nth branch of the Lambert special function (see [53]

for details);
– cs(z, p), sn(z, p) and dn(z, p), where z ∈ C and p ∈ [0, 1], denote the Jacobian Elliptic functions

(see [54] for details);
– by ω we denote the eigenvalue and resonance energy for the linear Winter’s model considered

in Section 2;
– in Section 3, where we study the nonlinear Winter’s model, the energy is denoted byΩ instead

of ω.

. Analysis of the linear Winter’s model

In this Section we consider the one-dimensional time dependent linear Schrödinger equation{
iψ̇t = Hαψt
ψt |t=0 = ψ0

, ψt ∈ L2(R+) , ∥ψ0∥ = 1 , (3)

here

Hα = −
∂2

∂x2
+ V and V (x) =

{
+∞ if x < 0
αδ(x − a) if x ≥ 0 (4)

for some a > 0 and α ∈ R ∪ {+∞}, α ̸= 0. For the sake of simplicity we simply denote, when this
does not cause misunderstanding, Hα by H when α ∈ R and H∞ when α = +∞. Similarly, we omit
the dependence on α in the other terms, e.g. the resolvent, the kernel of the resolvent operator, and
so on, when this fact does not cause misunderstanding.

2.1. Resolvent and spectrum

Let α ∈ R \ {0}, and let

ψ(0) = 0 (5)

be the Dirichlet boundary condition at x = 0 and

ψ(a−) = ψ(a+) and ψ ′(a+) − ψ ′(a−) = αψ(a) , (6)

be the matching condition at x = a where the Dirac’s delta is supported. It is well known [33] that
the linear operator H admits a self-adjoint extension (still denoted by H) defined on the domain

D(H) =
{
ψ ∈ H2,1(R+) ∩ H2,2(R+

\ {a}) : (5) and (6) hold true
}
.

5



A. Sacchetti Annals of Physics 457 (2023) 169434

w

T

w

Let

K0(x, k) =
i
2k

eik|x| , ℑk > 0

and let

Γ (k) =

(
−

i
2k −

i
2k e

ika

−
i
2k e

ika
−

1
α

−
i
2k

)
ith inverse matrix

Γ −1(k) =
2k

2ik − α + αe2ika

(
−2k − iα iαeika

iαeika −iα

)
.

hen the resolvent operator is the integral operator [33]([
H − k2

]−1
φ

)
(x) =

∫
R+

K (x, y, k)φ(y)dy , φ ∈ L2(R+) ,

here

K (x, y, k) = K0(x − y, k) −
1
4k2

4∑
j=1

Kj(x, y, k) (7)

is the kernel with

K1(x, y, k) =
[
[Γ −1(k)]

]
1,1 e

ik(|x|+|y|)

K2(x, y, k) =
[
[Γ −1(k)]

]
1,2 e

ik(|x|+|y−a|)

K3(x, y, k) =
[
[Γ −1(k)]

]
2,1 e

ik(|x−a|+|y|)

K4(x, y, k) =
[
[Γ −1(k)]

]
2,2 e

ik(|x−a|+|y−a|) .

Concerning the spectrum it follows that

σess(H) = σac(H) = [0,+∞) , (8)

and the eigenvalues, if there, are given by ω = k2 < 0 where k is a purely imaginary solution to
the equation:

2ik − α + αe2ika = 0 , ℜk = 0 and ℑk > 0 , (9)

obtained from the formula (2.1.13) by [33] for α1 = +∞, α2 = α, y1 = 0 and y2 = a (according
with the notation by [33]). This equation has complex-valued solutions

k =
i
2a

[
−aα + Wn

(
aαeaα

)]
(10)

where Wn(z) denotes the nth branch of the Lambert special function [53]. If we recall that:

i. W0(z) is real-valued if and only if z ≥ −e−1; in particular

ia. W0(0) = 0,
ib. W0(−e−1) = −1,
ic. W0(z) ∈ [−1, 0] ⇔ z ∈ [−e−1, 0],
id. W0(z) > 0 ⇔ z > 0,
ie. the branch cut for W0(z) is the line (−∞,−e−1

];

ii. W−1(z) is real-valued if and only if −e−1
≤ z < 0, and it takes values in the interval [−1, 0);

iii. Wn(z) has not zero imaginary part for any z ∈ R and any n ∈ Z \ {0,−1}, furthermore the
branch cut for W (z), n ̸= 0, is the line (−∞, 0];
n

6
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hen solutions (10) are purely imaginary and such that ℑk > 0 only if n = 0 and aα < −1. In
onclusion, we have proved that

roposition 1. If aα < −1 then the discrete spectrum of H is not empty and it consists of just one
egative real-valued eigenvalue

ω = −

[
1
2a

[
−aα + W0

(
aαeaα

)]]2
. (11)

If aα ≥ −1 then the discrete spectrum of H is empty.

Remark 1. If α = +∞ then condition (6) becomes the Dirichlet boundary condition ψ(a) = 0 and
in such a case the spectrum of H∞ is purely discrete with eigenvalues

ω∞,m =

(mπ
a

)2
, m = 1, 2, . . .

nd associated normalized eigenvectors

ψ∞,m(x) =

√
2
a
sin
(mπx

a

)
χ(0,a)(x) , (12)

where

χA(x) =

{
0 if x /∈ A
1 if x ∈ A .

2.2. Barrier quantum resonances

In the case of a repulsive δ interaction at x = a, i.e. for α > 0, the discrete spectrum of H is
mpty. However, quantum resonances may occur.
Quantum resonances for linear Schrödinger operators may be defined in several ways (see

4–7,11,22] for a review); here, we identify quantum resonances with complex poles of the kernel
f the analytic continuation of the resolvent operator. More precisely, let D be a dense subset of
2(R+), then for any ϕ ∈ D the function ω ∈ C → ⟨ϕ, [H−ω]

−1ϕ⟩ has a meromorphic continuation
rom the upper half-plane ℑω > 0 to the lower half-plane ℑω < 0; resonances are the complex
oles of such an analytic extension.
By means of such a definition and by making use of the resolvent kernel formula (7) then

uantum resonances ω = k2 of H are associated to the complex solutions k to (9) such that
rg(k) ∈ (−π/4, 0). Hence, it follows that

roposition 2. If α > 0 the discrete spectrum of H is empty and H admits a family of quantum
esonances ωm = k2m where

km = iwm , wm =
1
2a

[
−aα + W−m

(
aαeaα

)]
, m = 1, 2, . . . . (13)

In Table 1 and in Fig. 2 we collect the values of the first 10 resonances ωm, m = 1, . . . , 10, for
different values of α.

Remark 2. As α > 0 increases, the imaginary part of the quantum resonances becomes smaller
and smaller and we speak of narrow resonances. In fact, one can check that the quantum resonances
ωm go to ω∞,m for increasing values of α and a fixed:

lim
α→+∞

ωm = ω∞,m for any fixed a > 0 .

Indeed, we remind that (see formula (4.20) by [53])

W (z) ∼ ln z + 2π im − ln 2π im + ln z for large z , (14)
m ( )

7
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Table 1
Table of values of quantum resonances ωm of H with repulsive singular potential for different
values of the strength α; for argument’s sake we fix the units such that a = 1. In the last column
we collect the values ω∞,m = (πm/a)2 corresponding to the real-valued eigenvalues obtained in
the case of two infinite barriers at x = 0 and x = a.
m α = 1 α = 5 α = 10 α = +∞

ℜωm ℑωm ℜωm ℑωm ℜωm ℑωm ω∞,m

1 4.70 −3.52 7.31 −0.96 8.28 −0.38 9.87
2 28.10 −13.01 31.98 −5.00 34.08 −2.41 39.48
3 71.69 −24.46 76.06 −11.14 78.75 −6.18 88.83
4 135.22 −37.08 139.88 −18.57 142.87 −11.24 157.91
5 218.60 −50.55 223.47 −26.89 226.64 −17.24 246.74
6 321.81 −64.68 326.83 −35.91 330.13 −23.98 355.31
7 444.81 −79.36 449.97 −45.49 453.35 −31.30 483.61
8 587.58 −94.50 592.86 −55.55 596.30 −39.12 631.65
9 750.13 −110.05 755.50 −66.02 759.01 −47.36 799.44
10 932.44 −125.96 937.90 −76.85 941.46 −55.98 986.96

Fig. 2. Plot of values of quantum resonances ωm collected in Table 1 for different values of the strength α (asterisk
ymbols correspond to α = 1, box symbols correspond to α = 5, circle symbols correspond to α = 10 and finally cross
ymbols correspond to α = +∞). For argument’s sake we fix a = 1.

nd then

km =
1
2ia

[
aα − W−m

(
aαeaα

)]
∼

mπ
a

as α → +∞ .

emark 3. Quantum resonances can be also defined as the complex values ω = k2 such that the
ssociated solution to the equation Hψ = ωψ satisfies the outgoing condition ψ(x) ∼ eikx when x
8
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oes to plus infinity (i.e.: Siegert’s approximation method [48,55]). In such a case we have to solve
he differential equation

−ψ ′′
= k2ψ , x ∈ (0, a) ∪ (a,+∞) (15)

with conditions (5) and (6) and the outgoing condition

ψ(x) = eikx , ∀x > a.

A straightforward calculation proves that these conditions are fulfilled provided that k is a solution
o (9).

emark 4. Another way to define quantum resonances consists to find the values ω = k2 such
hat the scattering coefficient becomes singular. That is, let

ψ(x) =

{
C1 sin(kx + ϕ1) if x ∈ (0, a)
C2 sin(kx + ϕ2) if x > a

be the solution to (15). Dirichlet condition ψ(0) = 0 implies that ϕ1 = 0; while the matching
onditions (6) at x = a imply that{

C2 sin(ka + ϕ2) = C1 sin(ka)
kC2 cos(ka + ϕ2) = kC1 cos(ka) + αC1 sin(ka)

rom which it follows that

k2C2
2 = k2C2

1 + α2C2
1 sin2(ka) + kαC2

1 sin(2ka) .

If we define in the Winter’s model the scattering coefficient as

S(ω) =
C2
1

C2
2

=
k2

k2 + α2 sin2(ka) + kα sin(2ka)
, ω = k2 ,

hen it has complex poles km given by (13) and the function S(ω), for ω ∈ [0,+∞), has a sequence
f maximum values (see Fig. 3) in a neighborhood of ℜk2m.

.3. Evolution operator

Solution ψt (x) ∈ L2(R+) to the time-dependent linear Schrödinger equation (3) is given by
t = e−itHψ0, where e−itH is the evolution operator associated to the self-adjoint operator H .
xpression of the evolution operator can be recovered from the resolvent operator by making use
f arguments similar to the ones used by [56]. Indeed, the evolution operator is an integral operator

[
e−itHψ0

]
(x) =

∫
R+

U(x, y, t)ψ0(y)dy (16)

here the kernel U(x, y, t) has the form

U(x, y, t) = −
i
π

∫
R+i0

ke−ik2tK (x, y, k)dk = U0(x, y, t) +

4∑
j=1

Uj(x, y, t)

where

U0(x, y, t) = −
i
π

∫
R+i0

ke−ik2tK0(x − y, k)dk =
1

√
4π it

ei|x−y|2/4t

and

Uj(x, y, t) =
i
∫

1
e−ik2tKj(x, y, k)dk . (17)
4π R+i0 k
9
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Fig. 3. Plot of the scattering coefficient S(ω) for α = +1 (dot line), α = +5 (broken line) and α = +10 (full line).

In order to apply formula (16) in numerical experiments we have to numerically compute the
bove integrals (17). Here, we propose a faster way to compute the kernel U(x, y, t) by means of a
onvergent series. The following result, which proof is postponed in the Appendix, holds true

heorem 1. Let

e1n := e1n(x, y, t) = (2an + |x| + |y|)/2
√
t

e2n := e2n(x, y, t) = (2an + |x| + |y − a| − a)/2
√
t

e3n := e3n(x, y, t) = (2an + |x − a| + |y| − a)/2
√
t

e4n := e4n(x, y, t) = (2an + |x − a| + |y − a| − 2a)/2
√
t

, n = 0, 1, 2, . . . ,

and

f jn = ejn + iα
√
t/2 and g j

n = ei(e
j
n)2 , j = 1, 2, 3, 4 .

et

U0 := U0(x, y, t) =
1

√
4π it

ei|x−y|2/4t ,

V0 := V0(x, y, t) = −
1

√
8π

(it/2)−1/2 e−i(f 10 )2/2g1
0D0((1 − i)f 10 )

and let

vn := vn(x, y, t) = −e−i(f 1n )2/2g1
nD−n((1 − i)f 1n ) + e−i(f 2n )2/2g2

nD−n((1 − i)f 2n )
−i(f 3n )2/2 3 3 −i(f 4n )2/2 4 4
+e gnD−n((1 − i)fn ) − e gnD−n((1 − i)fn ) ,

10
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here Dn(z) denotes the parabolic cylinder function. Then

U(x, y, t) = U0 + V0 +
1

√
8π

∞∑
n=1

αn(it/2)(n−1)/2vn . (18)

Remark 5. If we recall the following properties of the parabolic cylinder function [54]

i. D0(z) = e−z2/4;
ii. D−1(z) = ex

2/4
√
π
2 erfc

(
z

√
2

)
;

iii. D−m(z) =
zD1−m(z)−D2−m(z)

1−m , m = 2, 3, . . .;

hen it follows that

V0(x, y, t) = −
1

√
4π iπ

ei(|x|+|y|)2/4t

nd that

e−i(f j1)
2/2g j

1D−1((1 − i)f j1) =

√
π

2
e−i(f j1)

2
g j
1erfc

(
(1 − i)f j1

√
2

)
Hence, by induction, terms vn can be computed by means of the error function erfc. In particular,
by means of the asymptotic expansion (7.1.23) [54] one can check that

D−m(z) ∼ z−me−z2/4 as z → ∞ .

In conclusion, it follows that

vn ∼ −
g1
n

[(1 − i)f 1n ]n
+

g2
n

[(1 − i)f 2n ]n
+

g3
n

[(1 − i)f 3n ]n
−

g4
n

[(1 − i)f 4n ]n
∼ (na/

√
t)−n

or large n and thus the series (18) rapidly converges for any t and α.

emark 6. By means of a straightforward calculation one can check that

U(x, y, t) = 0 when xy ≤ 0 .

Indeed, if, for instance, x ≤ 0 and y ≥ 0 then

V0(x, y, t) = −
1

√
4π iπ

ei(|x|+|y|)2/4t
= −

1
√
4π iπ

ei(−x+y)2/4t
= −U0(x, y, t)

nd for any n = 0, 1, 2, . . .

e1n = (2an − x + y)/2
√
t

e2n = (2an − x + |y − a| − a)/2
√
t

e3n = (2an − x + y)/2
√
t = e1n

e4n = (2an − x + |y − a| − a)/2
√
t = e2n

,

from which it follows that vn = 0 for any n. Thus, if ψ0(x) = 0 for any x ≤ 0 then ψt (x) = 0 for any
≤ 0, too.

.4. Survival amplitude

Let ψt (x) be the solution to (3) with initial condition ψ0(x). We define survival amplitude the
calar product between these two vectors, that is

A(t) := ⟨ψ ,ψ ⟩ .
0 t

11
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ere, we discuss the time behavior of the survival probability by making use of the expression of
he evolution operator obtained in the previous Section 2.3. However, one could also treat the same
roblem by making use of the Fock and Krylov method [57] (see also [28,58]) where

A(t) =

∫
σ (H)

ρ(E)e−iEtdE ,

σ (H) is the spectrum of H and ρ(E) is the density of states.
In order to discuss the exponential behavior (2) in the Winter’s model associated to the quantum

resonances km given by Proposition 2 we consider the following experiment: let us choose ψ0
coinciding with the ground state wavefunction of H∞

ψ∞,1(x) =

√
2
a
sin
(πx

a

)
χ[0,a](x) ,

here χ[0,a](x) is the step function in the interval [0, a], with associated eigenvalue ω∞,1 =
π2

a2
.

Then we compute the survival amplitude A(t) := ⟨ψ0, ψt⟩ where ψt = e−iHtψ0 and ψ0 = ψ∞,1,
or different values of α (e.g. α = 1, α = 10 and α = 100). Numerical computation of ψt ,
nd then of A(t), could be done by making use of (16) where the kernel U(x, y, t) is given by
eans of the integrals (17) or, more quickly and easily, by making use of the convergence series
iven in Theorem 1. In fact, because of the particular choice of the initial wavefunction ψ0 we do
ot necessarily need to make use of these numerical tools but, in order to compute the survival
mplitude, we could make use of the following Theorem.

heorem 2. Let km be the complex-valued solutions to (9) given in Proposition 2; let

βm =

⎧⎪⎨⎪⎩
0 if |ℑkm| > |ℜkm|

1
2 if |ℑkm| = |ℜkm|

1 if |ℑkm| < |ℜkm|

,

and

a1 = −
(1 + i)

√
2a3

4(1 + aα)2π9/2

[
−8(1 + aα)2 + π2(a2α2

+ 2aα + 5)
]

cm = 2π iqm , qm =
aπkm

1 + a(α − 2ikm)

[
1 + eikma

π2 − k2ma2

]2
then

A(t) = ⟨ψ0, ψt⟩ = a1t−3/2
−

∞∑
m=1

βmcme−ik2mt
+ O(t−5/2) as t → +∞ .

Proof. In order to compute the survival amplitude we follow the line introduced by [59,60]. In
particular, we have that

⟨ψ0, ψt⟩ = ⟨ψ0, e−itHψ0⟩ = f0(t) + fα(t) , fα(t) =

4∑
j=1

fj(t) ,

where

f0(t) =

∫
R
Q0(k)e−ik2tdk , Q0(k) =

k
π i

∫
R

∫
R
ψ0(x)ψ0(y)K0(x − y, k)dy dx

s the evolution term associated to the free Laplacian; and

fj(t) =

∫
Qj(k)e−ik2tdk , Qj(k) = −

1
∫ ∫

ψ0(x)ψ0(y)Kj(x, y, k)dy dx .

R 4kπ i R R

12
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straightforward calculation gives that

Q0(k) =
a
[
2iπ2(1 + eika) + ka(π2

− k2a2)
]

π i(k2a2 − π2)2
.

oncerning the terms Qj(k) for j = 1, 2, 3, 4 we have that

Q1(k) = −
1

4kπ i

∫
R

∫
R
ψ0(x)ψ0(y)K1(x, y, k)dydx

= −
1

2akπ i

[
Γ −1(k)

]
1,1

∫ a

0

∫ a

0
sin
(πx

a

)
sin
(πy

a

)
eik(|x|+|y|)dydx

= −
1

2akπ i

[
Γ −1(k)

]
1,1

[
πa(1 + eika)
π2 − k2a2

]2
nd similarly

Q2(k) = −
1

2akπ i

[
Γ −1(k)

]
1,2

[
πa(1 + eika)
π2 − k2a2

]2
Q3(k) = −

1
2akπ i

[
Γ −1(k)

]
2,1

[
πa(1 + eika)
π2 − k2a2

]2
Q4(k) = −

1
2akπ i

[
Γ −1(k)

]
2,2

[
πa(1 + eika)
π2 − k2a2

]2
ow, let

Q (k) =

4∑
j=1

Qj(k) =
q(k)

2k + iα − iαe2ika

here

q(k) = −2aπ
[
(1 + eika)
π2 − k2a2

]2
(k + iα − iαeika)

From the Cauchy Theorem as applied in Lemma 3 by [59] and the Watson’s Lemma stated by
43.3 [61] it follows that

f0(t) =

∫
R
Q0(k)e−ik2tdk

=
2
√
2a(1 − i)
π5/2

√
t

+
a3

√
2

4π9/2t3/2
[
(π2

− 8)(1 + i)
]
+ O(t−5/2) as t → +∞ .

Eventually, we have to calculate

fα(t) =

∫
R

q(k)
2k + iα − iαe2ika

e−k2 itdk

= e−iπ/4
∫
R
Q
(
e−iπ/4ρ

)
e−ρ2tdρ −

∑
m=1

βm2π iRes

[
q(k)e−k2 it

2k + iα − iαe2ika
, km

]
,

rom the Residue’s Theorem; then, again Watson’s Lemma gives that∫
R
Q
(
e−iπ/4ρ

)
e−ρ2tdρ = t−1/2Γ (1/2)d0 +

1
2
t−3/2Γ (3/2)d1 + O(t−5/2) as t → +∞ ,

here

d0 = −
4a

π3

13
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Fig. 4. Plot of the survival probability P(t) = |A(t)|2 , where ψ0 is given by ψ∞,1 , for different values of α (full line
orresponds to α = 40, dot line corresponds to α = 20, broken line corresponds to α = 10 and broken-dot line corresponds
o α = 1).

d1 = −
2ia3

(1 + aα)2π5

[
−8(1 + aα)2 + π2 (a2α2

+ 2aα + 3
)]
.

Concerning the calculus of the residues it follows that

Res

[
q(k)e−k2 it

2k + iα − iαe2ika
, km

]
= qme−k2m it

where

qm =
q(km)

2 + 2a(α − 2ikm)
.

hen, Theorem 2 follows. □

emark 7. From Theorem 2 it follows that the dominant terms of the survival amplitude for large
imes are

a1t−3/2 and c1eℑω1t

since ℑωm < ℑω1 < 0 for m = 2, 3, . . .. In particular, the first term is the dominant one when t
oes to infinity since ℑω1 < 0; while the second one is the dominant one for

t ≤
3

2ℑω1
W−1

(
2ℑω1

3

⏐⏐⏐⏐a1c1
⏐⏐⏐⏐2/3

)
∼ |ℑω1|

−1
|ln(|ℑω1|)| for |ℑω1| ≪ 1 . (19)

In Fig. 4 we plot the survival probability P(t) = |A(t)|2 for different values of α (where we fix
he units such that a = 1) where ψ0 = ψ∞,1. In order to compare the results obtained by formula

A(t) ∼ a t−3/2
+ c e−ik21t (20)
1 1

14



A. Sacchetti Annals of Physics 457 (2023) 169434

l
e
a

w
t
d

e
h
e

b
(

Table 2
Table of values of the quantum resonance ω1 = k21 and of the numerical coefficients c1 and a1 of formula (20)
corresponding to the linear problem with repulsive singular potential for different values of the strength α; for argument’s
sake we fix the units such that a = 1. The parameter ∆ is the maximum of the absolute value of the difference between the
survival amplitude computed with formula (20) and the survival amplitude computed with formula (16) and Theorem 1
for t ∈ [0.5, 5].
α k1 ω1 c1 a1 ∆

1 2.2986 − 0.7660i 4.6966 − 3.5216i −1.1943 + 0.4624i −0.1011 · 10−1(1 + i) 0.96 · 10−2

10 2.8776 − 0.0665i 8.2766 − 0.3828i −0.9898 + 0.0303i −0.3331 · 10−3(1 + i) 0.72 · 10−3

20 2.9958 − 0.0205i 8.9742 − 0.1231i −0.9950 + 0.0085i −0.9166 · 10−4(1 + i) 0.22 · 10−3

40 3.0655 − 0.0057i 9.3974 − 0.0347i −0.9983 + 0.0021i −0.2405 · 10−4(1 + i) 0.21 · 10−3

Fig. 5. Log-plot of the survival probability P(t) = |A(t)|2 , where ψ0 is given by ψ∞,1 , for different values of α (full
ine corresponds to α = 10, dot line corresponds to α = 5, broken line corresponds to α = 2.5). The transition from
xponential to power-like behavior is clearly shown; and for sharp resonances, as for α = 10, an interference effect
ppears around t = 33.79 as formula (19) predicts.

ith the ones obtained when ψt is computed by formula (16) and Theorem 1 we compute in Table 2
he maximum ∆ of the absolute value of their difference for t ∈ [0.5, 5] and we see that this
ifference turn out to be very small; thus the two results fully agree.
One can see that when the resonance is not very sharp, as for α = 1, then the transition from

xponentially to power-like decay is clearly shown in Fig. 4. For sharp resonances obtained for
igher values of α this transition can be seen in the log-plot in Fig. 5; in particular, an interference
ffect is expected too, as [58,62] proved.
Finally, we also have to point out that the computation of A(t) by means of formula (16) can

e done, in principle, for any time t but it is much more time-consuming than the simple formula
20) that properly works when t is not too small (e.g. t ≥ 0.5) in the considered experiment.
15
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. Analysis of the nonlinear Winter’s model

In this section we consider stationary states and quantum resonances for the nonlinear
chrödinger equation{

iψ̇t = Hψt + η|ψt |
2ψt

ψt |t=0 = ψ0
, ψt ∈ L2(R+) , ∥ψ0∥ = 1 . (21)

s in the previous Section let us omit the dependence on α when this fact does not cause
misunderstanding. In this Section we denote by Ω the energy value of the stationary states.

Remark 8. Similarly to the case of a single Dirac’s δ potential [63] one expects that the solution to
(21) globally exists and, furthermore, a formal straightforward calculation proves the conservation
of the norm and of the energy, i.e.

∥ψt∥ = ∥ψ0∥ and En(ψt ) = En(ψ0) , ∀t ,

where

En(ψ) = ⟨ψ,Hψ⟩ +
1
2
η∥ψ∥

4
L4 .

For a rigorous derivation of these results we refer to [36].

3.1. Stationary states - preliminary results

We look for stationary solutions to Eq. (21); that is ψt (x) = e−iΩtψ(x) where Ω is real-valued
and ψ(x) is a solution to the equation

Hψ + η|ψ |
2ψ = Ωψ ,ψ ∈ L2(R+) , ∥ψ∥ = 1 . (22)

Remark 9. We should point out that when one looks for stationary solutions to the linear problem
(3) the normalization condition ∥ψ∥ = 1 does not play a crucial role, we only have to require
that ψ ∈ L2. This is not the case in nonlinear Schrödinger equations; indeed, for any fixed η the
normalization condition ∥ψ∥ = c affects the energy Ω of the associated stationary solutions. For
argument’s sake and without loosing in generality we fix such a value c equal to one; if not we
imply rescale

ψ →
ψ

c
and η → c2η .

First of all we prove that if a solution ψ to (22) there exists then ψ is, up to a constant phase
factor, a real-valued function.

Proposition 3. Let ψ ∈ L2(R+) be a solution to the nonlinear equation (22), where Ω and η are
real-valued, satisfying conditions (5),(6); then ψ(x) is, up to a constant phase factor, a real-valued
function.

Proof. We have that

W (x) :=
[
ψ ′ψ̄ − ψψ̄ ′

]
=

{
c1 if x ∈ (0, a)
c2 if x ∈ (a,+∞)

is a piece-wise constant function. Indeed, since ψ satisfies to the equation

−ψ ′′
+ η|ψ |

2ψ = Ωψ , x ∈ (0, a) ∪ (a,+∞) , (23)

then if we multiply both sides by ψ̄ and take the difference of the resulting terms with their complex
conjugate we have that

dW
=
[
ψ ′′ψ̄ − ψψ̄ ′′

]
= 0 , x ∈ (0, a) ∪ (a,+∞) , (24)
dx
16
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ince η and Ω are real-valued parameters. Let

W± = W (a ± 0) := lim
x→a±

W (x)

be the right (+) and left (−) limit of W (x) at x = a; then conditions (6) imply that

W+ = ψ ′(a + 0)ψ̄(a + 0) − ψ(a + 0)ψ̄ ′(a + 0)
=
[
ψ ′(a − 0) + αψ(a + 0)

]
ψ̄(a + 0) − ψ(a + 0)

[
ψ̄ ′(a − 0) + αψ̄(a + 0)

]
= ψ ′(a − 0)ψ̄(a − 0) − ψ(a − 0)ψ̄ ′(a − 0) = W− .

ence, c2 = c1. Furthermore, condition (5) implies that c1 = 0 since ψ(0) = 0. Now, if we set

ψ(x) =

{
φ1(x)eiθ1(x) if x ∈ (0, a)
φ2(x)eiθ2(x) if x ∈ (a,+∞)

here φ1,2(x) ≥ 0 and θ1,2(x) are real-valued, then equation ψ ′ψ̄ − ψψ̄ ′
= 0 implies that θj are

onstant functions and thus the matching conditions (6) implies that θ2−θ1 = 2nπ for some integer
umber n. □

Remark 10. From Proposition 3 it follows that when η and Ω are real-valued then Eq. (22) takes
he form

Hψ + ηψ3
= Ωψ , ∥ψ∥ = 1 . (25)

We have to point out that this is not the case when Ω is complex-valued with non-zero imaginary
part.

Now, we look for solutions to (25) in the case where α = +∞ at first and then for any α ∈ R.

3.2. Stationary states - Infinite barrier: α = +∞

We separately treat the case of defocusing nonlinearity, where η > 0, and the case of focusing
nonlinearity, where η < 0.

3.2.1. Defocusing nonlinearity: η > 0
It is well known [64] that the general real-valued solution to the equation

−ψ ′′
+ ηψ3

= Ωψ , η > 0 ,

may be written as

ψ(x) = Csn (λ(x − x0), p) , p ∈ [0, 1] ,

where sn(x, p) is the Jacobi elliptic function and

p2 = −
λ2 −Ω

λ2
and C2

= −
2(λ2 −Ω)

η
=

2p2λ2

η
,

or some C, λ ∈ R. In such a case the solution to (25) when α = +∞ is given by

ψ(x) =

{
C sn (λ(x − x0), p) , x ∈ (0, a)
0 , a < x ,

with Dirichlet boundary conditions

ψ(0) = ψ(a) = 0 ; (26)

that is{
sn (λx0, p) = 0

.
sn (λ(a − x0), p) = 0

17
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ence x0 = 0 is a zero of the Jacobi elliptic function sn and λ is such that

λa = 2 mK(p) , m = 1, 2, . . . ,

where K(p) is the value of the complete elliptic integral of first kind.
The normalization condition implies that

1 = C2
∫ a

0
[ sn (λ(x − x0), p)]2 dx = C2 2m

λ

K(p) − E(p)
p2

here E(p) is the complete elliptic integral of second kind.
In conclusion, the following conditions must be satisfied⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 = 0
λa = 2 mK(p)

C2 2m
λ

K(p)−E(p)
p2

= 1

C2
=

2
η
p2λ2

that imply the following equation for p ∈ [0, 1]:

G+(p) := K(p) [K(p) − E(p)] =
aη
8m2 . (27)

Since the function G+(p) is a monotone increasing function such that

G+(0 + 0) = 0 and G+(1 − 0) = +∞

then Eq. (27) has exactly one real-valued solution pm ∈ [0, 1) for any m ∈ N.
In conclusion, we have proved that

Proposition 4. Let η > 0 and let pm ∈ [0, 1) be the unique solution to the equation

K(p) [K(p) − E(p)] =
aη
8m2 , m ∈ N .

et

λm =
2mK(pm)

a
, Cm =

√
2/ηpmλm and Ωm = λ2m(1 + p2m) .

hen

ψm(x) =

{
Cmsn (λmx, pm) , x ∈ (0, a)
0 , a < x , (28)

s a stationary solution to (25) normalized to one.

emark 11. In the limit case of η → 0 then pm → 0 for any n, hence

Ωm → λ2m →

(
2m
a

K(0)
)2

=

(mπ
a

)2
= ω∞,m

n agreement with the linear model.

.2.2. Stationary states - Focusing nonlinearity: η < 0
When η < 0 then Proposition 4 takes the form

roposition 5. Let η < 0 and let pm ∈ [0, 1) be the unique solution to the equation

K(p)
[
E(p) − (1 − p2)K(p)

]
=

a|η|
8m2 , m ∈ N.

Let

λm =
2mK(pm)

, Cm =

√
2/|η|pmλm and Ωm = λ2 (1 − 2p2 ) .
a m m

18
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hen

ψm(x) =

{
Cmcn (λmx − K(pm), pm) , x ∈ (0, a)
0 , a < x , (29)

s a stationary solution to (25) normalized to one.

emark 12. Like in the case of defocusing nonlinearity even in this case we have thatΩm → ω∞,m
as η → 0.

Proof. It is well known [64] that the general real-valued solution to the equation

−ψ ′′
+ ηψ3

= Ωψ , η < 0 ,

may be written in the form

ψ(x) = Ccn (λ(x − x0), p)

where

p2 =
λ2 −Ω

2λ2
and C2

= −
λ2 −Ω

η
= −

2p2λ2

η
,

or some C, λ ∈ R. In such a case the solution to (25) when α = +∞ is given by

ψ(x) =

{
C cn (λ(x − x0), p) , x ∈ (0, a)
0 , a < x ,

with Dirichlet boundary conditions (26); that is{
cn (λx0, p) = 0
cn (λ(a − x0), p) = 0 .

Hence λx0 = K(p) is a zero of the Jacobi elliptic function cn and λ is such that

λa = 2 mK(p) , m = 1, 2, . . . .

The normalization condition implies that

1 = C2
∫ a

0
[ cn (λ(x − x0), p)]2 dx = m

2C2

λp2
[
E(p) − (1 − p2)K(p)

]
.

In conclusion, the following conditions must be satisfied⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λx0 = K(p)
λa = 2 mK(p)

2m C2

λp2
[
E(p) − (1 − p2)K(p)

]
= 1

C2
= −

2
η
p2λ2

that imply the following equation for p ∈ [0, 1]

G−(p) := K(p)
[
E(p) − (1 − p2)K(p)

]
=

a|η|
8m2 . (30)

Since the function G−(p) is a monotone increasing function such that

G−(0 + 0) = 0 and G−(1 − 0) = +∞

hen Eq. (30) has exactly one real-valued solution pm ∈ [0, 1) for any m ∈ N and any η < 0.
Proposition 5 is so proved. □
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.3. Stationary states - Finite barrier: α ∈ R

Recalling that

lim
p→1−

sn(u, p) = tanh(u) and lim
p→1−

cn(u, p) = sech(u)

nd since we look for a real-valued solution ψ(x) to (25) such that ψ(x) → 0 as x → +∞ then
uch a solution there exists only when η < 0 and Ω < 0 and it has the form

ψ(x) =

{
C cn (λ(x − x0), p) , x ∈ (0, a) where p2 =

λ2−Ω

2λ2
and C2

= −
λ2−Ω
η

C ′ sech
(
λ′(x − x′

0)
)

, a < x where λ′2
= −Ω and C ′2

=
2Ω
η

.

ereafter, we may assume, for argument’s sake, that λ > 0 and λ′ > 0.
The Dirichlet boundary condition ψ(0) = 0 at x = 0 implies that λx0 = K(p) is a zero of the

acobi elliptic function cn. The matching condition (6) at x = a implies that{
C ′sech

(
λ′(a − x′

0)
)
− C cn (λ(a − x0), p) = 0

C ′sech(λ′(a − x′

0))
[
λ′tanh(λ′(a − x′

0)) + α
]
− Cλsn(λ(a − x0), p)dn(λ(a − x0), p) = 0

urthermore, we have to require the normalization condition:

C2
∫ a

0
[ cn (λ(x − x0), p)]2 dx + C ′2

∫
+∞

a

[
sech

(
λ′(x − x′

0)
)]2 dx = 1

hat is

C2

λ
G(λa) +

C ′2

λ′

[
1 − tanh

(
λ′(a − x′

0)
)]

= 1

where

G(u) :=

∫ u

0
[ cn (q + K(p), p)]2 dq =

u − E [sn(u, p)]
p2

+ 2ñ
K(p) − E(p)

p2

here ñ = round [u/2/K(p)]. In conclusion, the parameters C , C ′, λ, λ′, x0, x′

0 and p must satisfy to
the following conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λx0 = K(p)
C ′sech

(
λ′(a − x′

0)
)
− C cn (λ(a − x0), p) = 0

C ′sech(λ′(a − x′

0))
[
λ′tanh(λ′(a − x′

0)) + α
]
− Cλsn(λ(a − x0), p)dn(λ(a − x0), p) = 0

C2

λ
G(λa) +

C ′2

λ′

[
1 − tanh

(
λ′(a − x′

0)
)]

= 1

C2
= −

2
η
p2λ2

C ′2
= −

2λ′2

η

(1 − 2p2)λ2 = −λ′2

with some constrains: e.g. η < 0 and 2p2 − 1 ≥ 0, that is p ∈ [1/
√
2, 1].

The numerical study of such a system of equations gives that (see Fig. 6)

Proposition 6. For any α ̸= 0 there exists η̃(α) < 0 such that if η ≤ η̃(α) then stationary solutions
orresponding to some negative real values Ω±

n (η), n = 1, 2, . . . ,N(η) for some positive integer N(η),
here exists; these couple of stationary solutions comes from a saddle point bifurcation occurring at
= ηn(α) for some ηn(α), where ηn+1(α) ≤ ηn(α) and η1(α) = η̃(α). Furthermore, when α < 0 is such

hat aα < −1 then there exists a stationary solution corresponding to Ω0(η) for any η < 0 such that

lim Ω0(η) = −

[
1 [

−aα + W0(aαeaα)
]]2

.

η→0−0 2a
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Fig. 6. Here we plot the energy value Ω of stationary solutions to (25) for different values of α. In the left hand side
icture we plot Ω±

1 (η), Ω±

2 (η) where full lines correspond to α = 10 and broken lines correspond to α = 5. In the right
and side picture we plot the Ω±

1 (η), Ω±

2 (η) and Ω0(η) where full lines correspond to α = −10, broken lines correspond
o α = −5. Ω±

1,2(η) are associated to saddle point bifurcations at η = η1(α) and η = η2(α), where η1(α) = η̃(α) and
where, for instance, η̃(10) = −6.59. Ω0(η) is such that Ω0(0− 0) coincides with the value of the energy ω given by (11).

Remark 13. For a given value of η, e.g. η = −7.4 then two stationary states there exist with
energy Ω+

1 = −0.36 and Ω−

1 = −2.29; the corresponding values of p, λ, C and x0 are p+

1 = 0.72,
−

1 = 0.77, λ+

1 = 3.39, λ− = 3.56, C+
= 1.27, C−

= 1.43, x+

0 = 0.55 and x−

0 = 0.55. If we denote

I =

∫ a

0
|ψ(x)|2dx = C2

∫ a

0
|cn (λ(x − x0), p)|2 dx

hen

I+ = 0.80 and I− = 0.98 .

.4. Quantum resonances for NLS

Here, we critical review some definitions proposed for quantum resonances in NLS. Only in this
ection we denote by Γ the strength of the nonlinear term instead of η; that is we consider the
quation

Hψ + Γψ3
= Ωψ (31)

nstead of (25). The reason of this choice will be explained in Remark 16.

.4.1. On the definition of quantum resonances for NLS by the complex scaling method
This technique basically consists to the application of the mapping ψ(x) → ψθ (x) = eiθ/2ψ(xeiθ ),

∈ C. This map is not unitary and applying this transformation to the linear Schrödinger operator
he bound states, if there, are θ-independent while the continuum spectrum is ‘‘rotated’’ in the
omplex energy plane [65]. Such a rotation uncovers quantum resonances, which correspond to
he poles of the analytical continuation of the kernel of the resolvent operator as discussed in
ection 2.2. Some attempts to extend such a definition of quantum resonances for NLS have
een recently proposed [43,44,49,50] but a serious drawback occurs: the nonlinear term |ψ(x)|2
s not an analytic function! This fact has been properly recognized from the authors of the papers
uoted above and some expedients, e.g. substituting |ψ |

2 by ψ2, have been proposed in order to
ircumnavigate this problem, but we think that the fact that analyticity property is lost cannot be

2 2
ixed and furthermore the substitution of |ψ | by ψ changes the nonlinear Winter’s model.
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.4.2. On the definition of quantum resonances for NLS by the Siegert’s approximation method
The Siegert’s approximation method, explained in Remark 3, yields good results for narrow

esonances for linear Schrödinger operators [48]. Some authors [47] proposed to apply such a
ethod to the study of resonances for NLS, too. In particular, in the case of nonlinear vWinter’s
odel they made the ansatz that the resonance wavefunction is such that ψ(x) = Ceikx, for x > a,
here k is related to the resonance energy by the formula (in our notation) Ω = k2 + η|C |

2. We
hould point out that this ansatz property works only for real-valued Ω; unfortunately, when the
maginary part of Ω is not exactly zero then ψ(x) = Ceikx, for x > a, is not a solution to the
onlinear Winter’s model. For a for single well/barrier NLS some authors [45,46] circumnavigate
his problem modifying Eq. (31) neglecting the nonlinear term outside the potential well in order to
nambiguously define ingoing and outgoing waves and thus a scattering coefficient. They motivate
his approach by pointing out that such an approximation is well justified for bound states since in
his case the condensate density is much higher inside the potential well than outside. We think
hat this artifact enable us to properly define the outgoing condition but it does not solve a second
atal problem; that is explicit solutions to NLS is only known when Ω is real-valued and where the
onlinear term is given by ηψ3 and not by η|ψ |

2ψ .

.4.3. On the definition of quantum resonances for NLS by the analysis of scattering coefficients
Let us define, as done in the linear case, the scattering coefficient simply as

S =
C2

C ′2

here C and C ′ are the coefficients of the total wave function in regions 0 < x < a and a < x [42,51].
Resonances for the nonlinear Winter’s model may be defined as the relative maximum value points
of S. Here, following the treatment adopted by [51], we compute the scattering coefficient S(Ω) as
function of the energy Ω and then we plot its graph. To this end we have to look for solutions to
(31) satisfying the boundary conditions (5) and (6), furthermore we assume some ‘‘normalization’’
condition; since ψ /∈ L2(R+) then we cannot consider the usual normalization condition ∥ψ∥ = 1
nd then we choose to put the normalization condition on the well, that is

1 = ∥ψ∥
2
L2([0,a]) =

∫ a

0
|ψ(x)|2dx .

Remark 14. We should point out that the expression of the scattering coefficient S(Ω) for real-
alued Ω is obtained for real-valued ψ where the nonlinear term η|ψ |

2ψ in Eq. (31) is substituted
y ηψ3 and then we cannot extend the resulting expression of S(Ω) to complex-valued Ω .

Now, we are ready to compute the scattering coefficient; for argument’s sake we restrict
urselves to the focusing case where Γ < 0; the defocusing case where Γ > 0 can be similarly
reated and thus we do not dwell here on the details.

Let Γ < 0, let Ω be fixed and let

ψ(x) =

⎧⎨⎩C cn (λ(x − x0), p) , x ∈ (0, a) where p2 =
λ2−Ω

2λ2
and C2

= −
λ2−Ω
Γ

C ′ cn
(
λ(x − x′

0), p
′
)

, x > a where p′2
=

λ′2
−Ω

2λ′2 and C ′2
= −

λ′2
−Ω
Γ

.

e a real-valued solution to the nonlinear equation in (31) (λ > 0 and λ′ > 0). If C ′
̸= 0 or p′

̸= 1
then ψ /∈ L2. The Dirichlet boundary condition (5) at x = 0 and the matching condition (6) at x = a
imply that ψ(0) = 0 and⎧⎪⎨⎪⎩

C ′ cn
(
λ′(a − x′

0), p
′
)
− C cn (λ(a − x0), p) = 0

−C ′λ′sn(λ′(a − x′

0), p
′)dn(λ′(a − x′

0), p
′) + Cλsn(λ(a − x0), p)dn(λ(a − x0), p)
= αC cn (λ(a − x0), p)

22



A. Sacchetti Annals of Physics 457 (2023) 169434
Table 3
The scattering coefficient S(Ω) assumes relative maximum values at the points Ωn , n ≥ 1. In the
table we collect these values for n = 1, 2 and 3, for some values of α and in both focusing and
defocusing nonlinearity cases.
Γ = −9 Γ = +9

α Ω1 Ω2 Ω3 α Ω1 Ω2 Ω3

1 2.95 26.35 70.6 1 17.64 43.0 88.0
5 3.73 28.3 72.4 5 19.18 45.4 89.8
10 4.51 29.86 74.8 10 20.21 47.2 92.2

Fig. 7. In the left hand side picture we plot the scattering coefficient S(Ω) for different values of α and Γ = −9: α = 1
(dot line), α = 5 (broken line) and α = 10 (full line). In the right hand side picture we plot the scattering coefficient
S(Ω) for Γ = −5.95 (full line) and Γ = −7.27 (broken line); in both cases α = +10.

In conclusion, the parameter C , C ′, λ, λ′, x0, x′

0, p and p′ must satisfy to following conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λx0 = K(p)
C ′ cn

(
λ′(a − x′

0), p
′
)
− C cn (λ(a − x0), p) = 0

−C ′λ′sn(λ′(a − x′

0), p
′)dn(λ′(a − x′

0), p
′) + Cλsn(λ(a − x0), p)dn(λ(a − x0), p)

= αC cn (λ(a − x0), p)

1 = −
2p2λ
Γ

∫ λa
0 cn2 (y − K(p), p) dy

C2
= −

2
Γ
p2λ2

C ′2
= −

2λ′2p′2

Γ

Ω = (1 − 2p2)λ2 = (1 − 2p′2)λ′2

From these equations one can plot in Fig. 7 the scattering coefficient S(Ω). In Table 3 the value of
the energy Ω corresponding to the first three ‘‘resonances’’, identified with the maximum point of
the scattering coefficient, is reported for, e.g., Γ = −9 and Γ = +9.

Remark 15. Fig. 7 may suggest that, as in the linear case, complex poles for S(Ω) there exists and
thus a typical exponentially decay time-behavior associated to quantum resonances would occur.

Remark 16. From Fig. 7 it turns out that when the nonlinearity strength Γ changes then the
resonances energies shift and, in some cases, become narrow and narrow. In particular we expect
that they eventually become the stationary statesΩ± obtained in Proposition 6 when Γ takes some
n
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alues. In order to compare the values of η and Γ for which stationary states occur we have to
oint out that we are dealing with two different normalization conditions; if we denote by φ(x) the
tationary solution to Eq. (25) corresponding to a given η < 0 and with the normalization condition∫

+∞

0
|φ(x)|2dx = 1

then

ψ(x) =
1

√
I
φ(x) ,

is a stationary solution to (31) for Γ = ηI , where I is defined in Remark 13. Then, from Remark 13
at Γ = −7.27, corresponding to η = −7.4, we expect to see a stationary state with energy

= Ω+

1 = −0.36, and at Γ = 5.95, still corresponding to the same value η = −7.4, we expect to
ee a stationary state with energy Ω = Ω−

1 = −2.29 (see the right hand side of Fig. 7).

3.5. Survival amplitude for NLS

Let ψt (x) be the solution to (21) with initial condition ψ0(x); the survival amplitude is the scalar
roduct between these two vectors, that is

A(t) := ⟨ψ0, ψt⟩ . (32)

he survival probability P(t) = |A(t)|2 represents the probability that a state at time t is in its
initial state.

In order to numerically compute ψt we make use of the spectral splitting method discussed
below.

3.5.1. Spectral splitting method
In order to compute the solution ψt here we make use of the spectral splitting approximation

method. The basic idea is quite simple (see, e.g., the paper [66] and, in particular, the paper [67]
where the spectral splitting method has been adapted to the case of singular potentials): suppose
to consider a formal evolution equation

iψ̇t = [A + B(ψt )]ψt , ψ0 = ψt |t=t0 ,

where A and B(ψt ) are two given operators, where the second one is not linear and it depends on
ψt . Let us denote by St−t0ψ0 its solution where St−t0 is the associated evolution operator; let us
denote by X t−t0 and Y t−t0 the evolution operators respectively associated to the equations

iψ̇t = Aψt and iψ̇t = B(ψt )ψt .

It is well known that, in general, Sδψ0 − X δY δψ0 ̸= 0, for any δ ∈ R, but this difference may be
proved, under some circumstances, to be small when δ is small. That is for any fixed t > 0 and any
n ∈ N large enough we have that

ψt = St−t0ψ0 ∼ (X δY δ)nψ0 , where δ = (t − t0)/n . (33)

We apply now such an approximation method to the NLS (21) where A is the linear operator
H and where B(ψt ) is the nonlinearity term η|ψt |

2. Hence X δ = e−iHδ is the evolution operator
discussed in Section 2.3; concerning Y δ we have to solve equation

iẇt = η|wt |
2wt , where wt0 = w0 , (34)

and a straightforward calculation gives that |wt |
2 is constant with respect to t; thus (34) can be

written
iẇt = B(wt )wt = B(wt0 )wt
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Fig. 8. Here we plot the survival probability P(t) = |A(t)|2 where the initial wavefunction ψ0 is given by (12). In
articular, a = 1 and α = +10 are fixed.

nd then Y δ is nothing but the simple multiplication operator

Y δw0 = e−iη|w0|
2δw0 .

ence, ψt (x) = 0 for any x ≤ 0 and any t ∈ R if ψ0(x) = 0 for any x ≤ 0.
In conclusion, by means the spectral splitting method we have that (let us fix t0 = 0 for

rgument’s sake)

A(t) = ⟨ψ0, ψt⟩ = ⟨ψ0, Stψ0⟩ ∼ ⟨ψ0, (X δY δ)nψ0⟩ (35)

or n large enough where δ = t/n and where

X δψ = e−iHδψ and Y δψ = e−iη|ψ |
2
ψ .

.5.2. Numerical experiments
In this Section we compute the survival amplitude (32) where the initial wavefunction ψ0 is

iven, for argument’s sake, by the stationary solution (12) to the linear Schrödinger operator H∞,
.e. ψ0(x) = ψ∞,1(x). There is no special reason in the choice of this initial wavefunction, except
that in this way it is possible to compare with the results obtained in the linear case in Section 2.4.

Let us fix a = 1 and α = +10 and we compare five different numerical experiments where
= 0 (i.e. the linear evolution), η = ±3 and η = ±9. In Fig. 8, left-hand side picture, we plot the

urvival probability P(t) = |A(t)|2 for t in a given interval (for argument’s sake let t ∈ [0, 1]).

Remark 17. From Fig. 8 it turns out that a rather fast exponential decay occurs when η ≥ 0, while
for η < 0, such a time-decay effect seems to disappear. This fact may be explained by the fact
that the quantum resonances associated to maximum point of the scattering coefficient S(Ω) have
nergies that increase when η > 0 increases; in contrast, when η < 0 then the resonance energy

decreases and the resonances become narrow and narrow and eventually they become stationary
state for η ≤ η̃.
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. Do quantum resonances have significance in nonlinear Schrödinger equations? Comments
nd conclusions

A key feature of quantum resonances for the study of the exponentially decay of the survival am-
litude for linear Schrödinger equations is that the exponent in formula (2) does not depend on the
nitial state but only on the imaginary part of the complex-valued energy of the quantum resonance.
e will see that this property still seems to be valid for NLS by means of the following numerical

xperiment in which we consider different initial conditions and compare the exponential decays
n the absence and presence of nonlinear terms in Fig. 9.

.1. Numerical experiment

Consider the cases where the following different initial conditions are assigned:

– the initial wavefunction is the eigenfunction (12) in the case where we put the Dirichlet
condition in x = a in the linear case:

ψA,0(x) =

√
2
a
sin
(πx

a

)
χ(0,a)(x) .

– the initial wavefunction has a Gaussian shape centered at x =
1
2a:

ψG,0(x) = C
[
e−(x−a/2)2/σ2

− e−a2/4σ2
]
χ(0,a)(x)

where σ > 0 and

C =
√
2
[
√
2πσerf

(
a

√
2σ

)
− 4

√
πσ e−a2/4σ2

erf
( a
2σ

)
+ 2ae−a2/2σ2

]−1/2

is a normalization parameter; for argument’s sake let σ = 0.2, a = 1 and thus C = 2.0028.
– the initial wavefunction is a piece-wise constant function:

ψS,0(x) =

√
2
a
χ(a/4,3a/4)(x) .

We denote by ψA,t (x) (respectively ψG,t (x) and ψS,t (x)) the solution to (21) with initial wave-
unction ψA,0(x) (respectively ψG,0(x) and ψS,0(x)). Similarly we denote

AA(t) = ⟨ψA,0, ψA,t⟩ , AG(t) = ⟨ψG,0, ψG,t⟩ and AS(t) = ⟨ψS,0, ψS,t⟩

he corresponding survival amplitudes. We next compute the time evolution of the wafunctions
A,t , ψG,t and ψS,t for different values of η by means of the spectral splitting method and go on to
lot the absolute value of the survival amplitudes and probabilities.

.2. Comparison of numerical experiments

It appears from Fig. 9 that for small t an oscillating behavior, observed since Winter’s article [18],
f the survival amplitude can occur; this oscillating behavior is clearly explained in the linear case
here η = 0 by the fact that in Theorem 2 several resonances can contribute to the wave function
t for small times and thus a typical interference effect may occur. After a transient time only the
ontribution due to the narrow resonances survives and thus the oscillatory behavior disappears
nd the contribution of the resonances to the absolute value of the survival amplitude has a simple
xponential form.
Similar oscillatory behavior is also observed for nonlinear models and we numerically see that,

fter a transient time, the absolute value of the each survival amplitude has an exponential behavior
f the kind be−εt , for some ε = ε(η) > 0 real-valued, and we estimate the values of these parameters
and b in Table 4. We also point out that the coefficients ε(η) depend on η = 0,±3,±9 but are
ssentially the same for any of the three different initial wavefunctions ψ , ψ and ψ .
A,0 G,0 S,0
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Fig. 9. Here we plot the survival probability for different values of η (i.e. for η = 0, linear case, and for η = ±9). The
initial wavefunction is ψA,0 (dot line), ψG,0 (broken line) and ψS,0 (full line). In particular, a = 1 and α = +10 are fixed.

Table 4
Fit the absolute value of the survival amplitude function with an exponential function of the kind
be−εt ; the values of εA , εG , εS , bA , bG and bS depend on η and they are listed above.

η = −9 η = −3 η = 0 η = +3 η = +9

εA 0.0054 0.2877 0.3879 0.4621 0.5770
bA 0.9704 0.9927 0.9909 0.9855 0.9723
εG 0.0513 0.3403 0.4172 0.4757 0.5659
bG 0.8078 0.8022 0.7893 0.7758 0.7501
εS 0.0482 0.3314 0.4092 0.4695 0.5634
bS 0.8111 0.8132 0.8033 0.7923 0.7708

Furthermore, for the nonlinear models we also see that the pictures corresponding to η > 0 and
< 0 are quite different in all three cases corresponding to the different initial conditions ψA,0,
G,0 and ψS,0. When η > 0 the dispersion effect seems to be stronger than in the linear case where
= 0, while the dispersion effect seems to gradually vanishes when η is negative and, in absolute
alue, quite large. In particular, when η reaches the threshold value η̃(α) = −6.59 for α = 10 the
ecay effect disappears.

.3. Conclusions

From the numerical analysis performed we can conclude that an extension to the nonlinear case
f the notion of quantum resonance seems admissible and that a possible definition of it as a pole of
he scattering coefficient S(Ω) deserves to be proposed. Unfortunately, it is not possible to verify this
efinition analytically on a simple model because the meromorphic extension of S(Ω) to complex
alues of Ω is not explicitly known in the case where the nonlinear term η|ψt |

2ψt contains the
absolute value. Only numerical experiments are, at this moment, possible. The numerical analysis
also confirm the intuitive fact that in the case of a repulsive nonlinear potential (i.e., with η > 0)
the nonlinear Schrödinger equation exhibits a more dispersive character and thus the survival
amplitude decreases more rapidly over time than in the linear case. On the contrary, in the case
of an attractive nonlinear potential (i.e., with η < 0), the opposite effect is observed; that is the
survival amplitude decreases more slowly until it becomes essentially stable when η reaches a
critical value. It is evident from the graphs that this critical value occurs in conjunction with the
presence of stationary solutions. Thus, we can conjecture that in the nonlinear case we are in the
presence of quantum resonances that similarly affect the decay of the survival amplitude and that
the associated energy has a negative imaginary part that tends to increase (in absolute value) as
positive η increases and that, on the other hand, tends to zero when negative η approaches the
threshold value; at this limit value the resonance becomes a stationary state.
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Appendix. Proof of the Theorem 1

The proof is essentially based on a long and straightforward calculation. We collect here the
mains steps.

Since

f 1n =
1

2
√
t
(2an + |x| + |y|) + iα

√
t/2 and e1n = ei(an+(|x|+|y|)/2)2/t ,

then one can check that

U1(x, y, t) = −
1

√
8π

∞∑
n=0

αng1
n

(
it
2

)(n−1)/2

e−i(f 1n )2/2D−n((1 − i)f 1n ) . (36)

And similarly

U2(x, y, t) =
1

√
8π

∞∑
n=0

αn+1(it/2)n/2e−i(f 2n )2/2g2
nD−n−1((1 − i)f 2n ) (37)

U3(x, y, t) =
1

√
8π

∞∑
n=0

αn+1(it/2)n/2e−i(f 3n )2/2g3
nD−n−1((1 − i)f 3n ) (38)

U4(x, y, t) = −
1

√
8π

∞∑
n=0

αn+1(it/2)n/2e−i(f 4n )2/2g4
nD−n−1((1 − i)f 4n ) . (39)

Indeed, for instance, let U1 =
i

4π A1 where

A1 =

∫
R+i0

1
k
e−ik2tK1(x, y, k)dk =

∫
R+i0

1
k
e−ik2t [Γ (k)]−1

1,1 e
ik(|x|+|y|)dk

= 2i
∞∑
n=0

∫
R
e−ik2t

(
−αe2ika

2ik − α

)n

eik(|x|+|y|)dk

= 2i
∞∑
n=0

(−α)nA1,n , A1,n :=

∫
R
e−ik2t+2ikan+ik(|x|+|y|) 1

(2ik − α)n
dk

If we set

−k2t + 2kan + k(|x| + |y|) = −r2 + (2an + |x| + |y|)2/4t

here

r =
√
t k − (2an + |x| + |y|)/2t
( )

28
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t

W
t

w

w

I

R

hen

A1,n = (2i)−nt (n−1)/2ei(an+(|x|+|y|)/2)2/t
∫
R
e−ir2 1

(r + f 1n )n
dr .

e recall now the following result (see Appendix A [56]): let m ∈ N and z ∈ C such that ℑz > 0,
hen ∫

R

e−ix2

(x + z)n
dx = −i(−2i)(n−1)/2

√
2πe−iz2/2D−n((1 − i)z)

here D−n(z) is the parabolic cylinder function. Hence,

A1,n = −

(
−

t
2i

)(n−1)/2√
π/2e−i(f 1n )2/2g1

nD−n((1 − i)f 1n ) · (−1)n+1 .

and then (36) follows.
Similarly, we can obtain an expression for Uj, j = 2, 3, 4, by means of convergent series. E.g., let

U2 =
i

4π A2 where

A2 =

∫
R+i0

1
k
e−ik2tK2(x, y, k)dk =

∫
R+i0

1
k
e−ik2t [Γ (k)]−1

1,2 e
ik(|x|+|y−a|)dk

= 2iα
∫
R+i0

1
2ik − α

1

1 +
αe2ika
2ik−α

e−ik2teik(|x|+|y−a|+a)dk

= 2iα
∞∑
n=0

∫
R

1
2ik − α

(
−αe2ika

2ik − α

)n

e−ik2teik(|x|+|y−a|+a)dk

= 2iα
∞∑
n=0

(−α)nA2,n ,

where

A2,n :=

∫
R
e−ik2t+2ikan+ik(|x|+|y−a|+a) 1

(2ik − α)n+1 dk

If we set

−k2t + 2kan + k(|x| + |y − a| + a) = −r2 + (2an + |x| + |y − a| + a)2/4t

here

r =
√
t (k − (2an + |x| + |y − a| + a)/2t) .

then

A2,n = (2i)−n−1tn/2ei(an+(|x|+|y−a|+a)/2)2/t
∫
R
e−ir2 1

(r + f 2n )n+1 dr

= (2i)−n−1tn/2ei(an+(|x|+|y−a|+a)/2)2/t
[
−i(−2i)n/2

√
2πe−i(f 2n )2/2D−n−1((1 − i)f 2n )

]
=

√
π/2(−1)n+1(it/2)n/2e−i(f 2n )2/2g2

nD−n−1((1 − i)f 2n ) .

n conclusion (37) follows.
Similarly, we obtain the expression for U3 and U4. Eventually, Theorem 1 follows.
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