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On Coverage Control for Limited Range Multi-Robot Systems

Federico Pratissoli, Beatrice Capelli, Lorenzo Sabattini

Abstract— This paper presents a coverage based control
algorithm to coordinate a group of autonomous robots. Most
of the solutions presented in the literature rely on an exact
Voronoi partitioning, whose computation requires complete
knowledge of the environment to be covered. This can be
achieved only by robots with unlimited sensing capabilities,
or through communication among robots in a limited sensing
scenario. To overcome these limitations, we present a distributed
control strategy to cover an unknown environment with a
group of robots with limited sensing capabilities and in the
absence of reliable communication. The control law is based
on a limited Voronoi partitioning of the sensing area, and we
demonstrate that the group of robots can optimally cover the
environment using only information that is locally detected
(without communication). The proposed method is validated by
means of simulations and experiments carried out on a group
of mobile robots.

I. INTRODUCTION

Various strategies have been introduced for implementing
coverage control with networked mobile robots. In particular,
most relevant to this paper are the results reported in [1], [2].
In these works, the authors presented decentralized coordina-
tion algorithms for groups of mobile agents based on Voronoi
diagrams [3] and proximity graphs [4]. This approach gives
a simple solution that guarantees the convergence of the
networked robots to a configuration that maximizes the
coverage of the environment. This strategy is based on a
Voronoi partitioning of the whole environment, which is
assumed to be known [5] or measurable by the robots [6].
There exist several algorithms to construct an exact Voronoi
diagram by assuming that each robot can obtain the position
of all the others [7] or by means of communication among
robots and broadcasting of messages [8]–[10].

However, in most practical scenarios, robots do not neces-
sarily have information about the location of all other robots
and may not have the possibility to rely on a communication
network: hence, the Voronoi partitioning needs to be studied
in a sensor range constrained scenario. Thus, instead of an
exact Voronoi cell we consider a limited Voronoi cell, which
is a partitioning of the area within the sensing range of the
robot. A distributed methodology was presented in [1], [2]
to compute the exact Voronoi diagram for a limited sensing
network, which is based on the algorithm presented in [11].
The exact Voronoi cell of each robot can be gradually refined
by computing the partitioning within an adjustable sensing
range and incrementally increasing the sensing range. The
Adjust-Sensing-Radius algorithm has become the standard
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one in the field of distributed coverage control to solve the
problem of the Voronoi partitioning. However, the objective
of this algorithm is to determine the smallest distance Ri
for agent i which provides enough information to compute
the exact Voronoi cell Vi [1]. The algorithm requires sensors
with controllable sensing range in order to determine the
relative location of each Voronoi neighbor (more details will
be given in Section II). In practical applications, the limited
sensing capability of the robot is a constraint and rarely the
sensing radius can be adjusted to detect sufficient information
to compute the exact Voronoi diagram. An algorithm was
proposed in [7] to efficiently compute the Voronoi cell.
However, it is based on a reliable communication among the
robots, which in real scenarios can not be always guaranteed
(such as in underwater environments [12]). We consider a
control strategy constrained by the information detected by
the sensor (a communication network is not needed) and,
thus, based on the Voronoi partitioning of the area within
the sensing range (limited Voronoi diagram). An algorithm
studied to perform efficiently this computation is described
in [13].

The effect of the characteristics of robot sensing capa-
bilities on the performance of coverage control algorithms
have been recently addressed in the literature. In [14]–[16],
the authors introduced agents heterogeneity into the standard
coverage problem in order to consider the different sensing
modalities. Differently, in [17] the authors focused on the
anisotropic aspect of the limited sensing range. They pro-
posed an alternative coverage problem based on a definition
of a new proximity graph.

It is worth noting that all the aforementioned works are
based on an exact Voronoi partitioning of the environment:
hence, the control algorithm requires the location of the
Voronoi neighbors and the knowledge of the boundary of
the environment to compute each robot’s Voronoi cell. The
control strategy we propose can be applied to a group
of robots deployed in an unknown environment, since the
only information required by the control law can be locally
acquired by on board sensors.

Moreover, we would like to remark that only a few
works can be found in literature in which coverage control
is implemented and tested on real robots: an example is
provided by [6], where the authors tested the proposed
strategy on a swarm of mobile robots. Similarly, in this work
we validate the proposed methodology in real experiments
on ground robots.

Contribution: In this paper we propose a definition and
a characterization of the limited Voronoi partitioning, that
allows robots to individually compute the partitioning of the



environment based on information available within a limited
sensing range. The limited Voronoi partitioning will then be
exploited to propose a novel control strategy that allows
us to perform coverage (1) of an unknown environment,
(2) in a limited sensing scenario, and (3) without requiring
communication among the robots. The proposed control
strategy is validated in simulations, and in real experiments
on ground robots.

II. NOTATION AND DEFINITIONS

We denote by N, R, R≥0, and R>0 the set of natural, real,
real non-negative, and real positive numbers. Given x ∈ Rn,
let ‖x‖ be the Euclidean norm.

Let G = (U , E) be a graph characterized by a set U of
vertices and a set E ⊆ U × U of edges. Given an edge
(i, j) ∈ E , then the vertex i is a neighbor of the vertex j. Let
NG(i) be the set of neighbors of the vertex i in G. A graph
G is said to be undirected if (i, j) ∈ E implies (j, i) ∈ E .

Let F(R2) be the collection of finite point sets in R2. We
can denote an element of F(R2) as P = {p1, . . . , pn} ⊂ R2,
where {p1, . . . , pn} are points in R2.

The Voronoi partitioning can be defined on a polygonal
environment in R2. In the rest of the paper, we will use
Q ⊂ R2 to denote such convex polygonal environment: it
will be used, in particular, to denote the environment to be
covered by the robots. An arbitrary point in Q is denoted by
q ∈ Q. Let then P be a set of n points {p1, . . . , pn} in Q.
The exact Voronoi partitioning generated by P consists in
the set V(P) = {V1(P), . . . , Vn(P)}, where:

Vi(P) = {q ∈ Q|‖q − pi‖ ≤ ‖q − pj‖,∀pj ∈ P}. (1)

In the following, for the sake of brevity, we will use the
notation Vi to refer to Vi(P). Two agents are said to be
Voronoi neighbors if Vi ∩ Vj 6= ∅. We refer to [18] for a
major discussion about the Voronoi diagrams.

Let us define the proximity graph as a graph G in which
the edge set EG depends on the location of the vertices. In
this paper we consider graphs defined for points {p1, . . . , pn}
in R2. Hence, we can define a proximity graph function G :
F(R2)→ G(R2) that associates to P ∈ F(R2) an undirected
graph with the set P of vertices and the set EG(P) of edges,
where EG : F(R2) → F(R2 × R2) has the property that
EG(P) ⊆ P × P\ diag(P × P).

We denote, for p ∈ R2 and R ∈ R>0, the closed
and open ball in R2 centered at p with radius R
with B(p,R) =

{
q ∈ R2|‖q − p‖ ≤ R

}
and B(p,R) ={

q ∈ R2|‖q − p‖ < R
}

, respectively.
Throughout the paper, we will use 1S to represent the

indicator function, which is defined as 1S(q) = 1, if q ∈ S,
and 1S(q) = 0, if q /∈ S.

The following proximity graphs are relevant to our discus-
sion:

1) the R-disk graph P 7→ Gdisk(P, R) =
(P, EGdisk(P, R)), where the edges are defined
as:
EGdisk(P, R) =

{(pi, pj) ∈ P × P\diag(P × P) | ‖pi − pj‖ ≤ R};

2) the Delaunay graph P 7→ GD(P) = (P, EGD (P)),
where the edges are defined as:

EGD (P) =

{(pi, pj) ∈ P × P\diag(P × P) | Vi(P) ∩ Vj(P) 6= ∅};

3) the R-limited Delaunay graph P 7→
GLD(P, R) = (P, EGLD

(P, R)), where edges
(pi, pj) ∈ P × P\diag(P × P) are defined as:

(Vi(P) ∩B(pi, R/2)) ∩ (Vj(P) ∩B(pj , R/2)) 6= ∅.

For each proximity graph G = {Gdisk,GD,GLD} we can
define the respective set of neighbors of the point p as
NG(p,P) = {q ∈ P|(p, q) ∈ EG(P ∪ {p})}.

III. PROBLEM STATEMENT

We consider a multi-robot system constituted by n robots
that move in a 2-dimensional space. We assume each robot
to be modeled as a single integrator system,1 whose position
pi ∈ R2 evolves according to

ṗi = ui, (2)

where ui ∈ R2 is the control input, ∀i = 1, . . . , n. The set
of robots is represented by P = {p1, . . . , pn}. We consider
the following assumptions:

1) Convex unknown environment: the environment to be
covered by the multi-robot system is supposed to be
represented by a convex polytope Q, which is not
known a priori by the robots.

2) Limited sensing capabilities: each robot is able to
measure the position of neighboring robots and objects,
and to detect the boundaries of the environment Q,
within its limited sensing range (defined by a ball with
radius R ∈ R>0);

3) No communication capabilities: robots do not ex-
change information among each other.

Based on these assumptions, each robot computes its control
inputs based only on directly measurable information, within
the sensing range. Hence, the information exchange infras-
tructure can be modeled as the R-disk graph Gdisk(P, R)).

The problem addressed in this paper is then formalized as
follows:

Problem Define a distributed control strategy that allows
a multi-robot system with limited sensing capabilities to
perform coverage of an unknown convex environment Q
without explicit communication.

1We would like to remark that, even though the single integrator is a very
simplified model, it can still effectively be exploited to control real mobile
robots: using a sufficiently good trajectory tracking controller, the single
integrator model can be used to generate velocity references for widely
used mobile robotic platforms, such as wheeled mobile robots [19], and
unmanned aerial vehicles [20].



IV. BACKGROUND ON COVERAGE CONTROL

We will now briefly summarize the standard solution to
the coverage problem, as presented in [1].

A performance function can be defined, to be maximized
in order to obtain the optimal coverage of the group of robots
over Q. The performance function is chosen to model how re-
liable is the measurement, at point q ∈ Q, performed by robot
i whose position is pi, as a function of the distance ‖q−pi‖.
Therefore, the performance function can be defined as non-
increasing differentiable function f(‖q − pi‖) : R≥0 → R.

Moreover, an integrable probability density function φ :
Q→ R≥0 can be defined in order to characterize the portions
in Q where an event of interest occurs. Namely, φ is used
to capture the relative importance of determined areas in
the environment. Such probability density function may be
known a priori to all the robots, or may be estimated, at
run-time, based on local measurements, as discussed in [6]:
hence, without loss of generality, we will hereafter assume
the probability density function to be known to all the robots.

Given an exact Voronoi partitioning V(P ) of the envi-
ronment Q in, so called, n Voronoi cells {V1, . . . , Vn} (see
Fig. 1a), the optimization function H : Q → R can be
formulated as follows:

H(P,V) =

n∑
i=1

∫
Vi

f(‖q − pi‖)φ(q)dq, (3)

where each node is in charge of covering its own cell, and
with a better coverage corresponding to a higher value of
the function. In the literature, the performance function is
usually chosen as: f(x) = −x2. Therefore, the optimization
function becomes:

HV(P) = −
n∑
i=1

∫
Vi

‖q − pi‖2φ(q)dq = −
n∑
i=1

JVi,pi , (4)

where HV(P) = H(P,V) and JVi,pi indicates the polar
moment of inertia of the region Vi about the point pi. In
order to solve the optimization problem, the gradient of the
optimization function can be computed, obtaining:

∂HV
∂pi

(P) = 2MVi
(CVi

− pi), (5)

where MVi
and CVi

denote respectively the mass and the
center of mass with respect to the density function φ of the
Voronoi cell Vi ⊂ Q of the robot i in position pi. Therefore,
the mass and centroid can be computed as follows:

MVi
=

∫
Vi

φ(q)dq, CVi
=

1

MVi

∫
Vi

qφ(q)dq. (6)

For more details we refer the reader to [1], [6].
According to (5), the configuration of points P which

maximizes the optimization function HV(P) coincides with
the centroids of the respective Voronoi cells. In other words,
the solution to the maximization problem is achieved when
each agent is located at the centroid of its Voronoi region,
such that pi = CVi

, ∀i. Such configurations are called
centroidal Voronoi configurations, see [3]. HV(P) can be
used as a Lyapunov-like function and we can design a

(a) Exact Voronoi V . (b) Limited Voronoi Vr .

Fig. 1. Comparison between exact and limited Voronoi. The environment
Q is reported in blue, the robots are the red triangles, and the centroid of
the single Voronoi cell are the green crosses, the single Voronoi cell are
delimited with solid black lines. Fig. 1b also reports in dashed black lines
the wrong partitioning built considering the whole sensing range R, and in
purple the overlapping areas.

control law that drives the group of robots to a centroidal
Voronoi configuration, locally maximizing the coverage in
the environment. In particular, the control input for each
robot can be computed according to the Lloyd algorithm [1],
as follows:

ui = k(CVi − pi), (7)

where k ∈ R>0 is a proportional gain.
The exact Voronoi partitioning V(P) of the region Q is

assumed to be continuously updated. Thus, it is assumed
that the region Q is known or that each robot is able to
measure it. The network of the group of robots is defined
by the Delaunay proximity graph GD(P). To compute the
ith component of the HV(P) function, it is necessary for
the robot i to know its own position and the positions of its
neighbors over the graph GD(P). Usually the positions of
all the robots are assumed to be known or measurable.

A modified optimization function is then introduced in [2],
where coverage is achieved considering the R-limited De-
launay graph GLD(P, R), where two robots are neighbors if
their respective Voronoi cells are neighboring, and if their
distance is smaller than the communication range R. It is
worth noting, however, that this graph is build upon the exact
Voronoi partitioning V(P), whose computation requires, as
already discussed, full knowledge of the region Q and at
least of the Delaunay neighbors. In the next section we will
propose an alternative partitioning approach, that overcomes
these issues, requiring only local knowledge of the portion
of the region Q and neighbors that can be directly observed
by each robot.

V. LIMITED VORONOI

In this section, we introduce a novel methodology to obtain
a partitioning of the environment that, differently from [1],
[2], considers the limited sensing range of the agents as a
constraint, and thus exploits only the information directly
detectable by the robots: we will hereafter refer to this
concept as the limited Voronoi partitioning.

To achieve this, for each robot with sensing range R, and
position pi we consider:

1) the set of neighbors NGdisk(R)(pi,P) on the R-disk
graph,



2) the set of points Pi = {pi ∪NGdisk(R)(pi,P)},
3) a ball with radius equal to half of the sensing range,

namely

B(pi, r), with r =
R

2
(8)

The limited Voronoi partitioning generated by P is then
defined as Vr(P) = {V r1 (P1), . . . , V rn (Pn)}, where:

V ri (Pi) = (9)
= {q ∈ B∩Q(pi, r) | ‖q − pi‖ ≤ ‖q − pj‖,∀pj ∈ NGdisk(R)(pi,P)},

where B∩Q(pi, r) = {Q ∩ B(pi, r)} is the intersection
between the environment and the ball of radius r for robot
i, as introduced in (8). Fig. 1 reports the difference between
the exact Voronoi partitioning of Q, performed with the
knowledge of the agents’ positions, and the limited Voronoi
partitioning introduces in this paper, which is computed with
the information directly sensed by the robot.

We can then introduce the r-limited Voronoi graph P 7→
GLV (P, r) = (P, EGLV

(P, r)), where edges are defined as:

EGLV
(P, r) =

{(pi, pj) ∈ P × P\diag(P × P) | V ri (Pi) ∩ V rj (Pj) 6= ∅}.
We will hereafter show that the introduction of the balls

of radius r in (8) is instrumental for the definition of a
valid partitioning of the environment, that can be computed
based only on locally available information, i.e., exchanging
information over the graph Gdisk(R).

Lemma 1 The limited Voronoi partitioning defined in (9) is
equivalent to the exact Voronoi partitioning limited to the
portion of the environment Q that is covered by the union
of the areas within the robots’ balls of radius r introduced
in (8), i.e., ∪ni=1B∩Q(pi, r)

Proof: The R-limited Delaunay graph GLD(R) is the
proximity graph corresponding to the exact Voronoi parti-
tioning limited to the robots’ balls of radius r, namely

Vi(P ) ∩B(pi, r)

According to [4, Prop. 2.9], GLD(R) is spatially distributed
over the graph Gdisk(R). This implies that the R-disk graph
encodes sufficient information to compute the R-limited
Delaunay graph GLD(R). Hence, it is possible to conclude
that

V ri (Pi) = Vi(P ) ∩B(pi, r). (10)

which proves the statement.

Remark 1 Given Lemma 1, GLV (r) is spatially distributed
over Gdisk(R).

It is possible to show that the proposed definition of lim-
ited Voronoi diagram is well posed: namely, for a sufficiently
large sensing range, or for a sufficiently large number of
robots, the limited Voronoi diagram corresponds to the exact
Voronoi diagram.

Lemma 2 Consider the definition of limited Voronoi dia-
gram given in (9). For any n, a value r exists such that, for
r ≥ r, then Vr(P ) = V(P ).

Sketch of the Proof: This Lemma can be proven showing that
it is always possible to find r such that Q ⊆ ∪ni=1B(pi, r):
in this case Vr(P ) = V(P ).

Choosing r as the maximum distance between two points
in Q, then Q ⊆ B(pi, r), which implies Q ⊆ ∪ni=1B(pi, r).

Lemma 3 Consider the definition of limited Voronoi dia-
gram given in (9). For any r, a value n exists such that, for
n ≥ n, then Vr(P ) = V(P ).

Sketch of the Proof: As for Lemma 2, it is always possible
to find n such that Q ⊆ ∪ni=1B(pi, r): in this case Vr(P ) =
V(P ). For a given value r, n can be found considering the
minimum number of balls whose union covers the entire area
Q.

Remark 2 It is worth noting that considering radius r is
fundamental for achieving a valid environment partitioning.
In fact, if we considered (9) with R instead of r, such that q ∈
B∩Q(pi, R), the Voronoi partitioning generated would not be
a valid partitioning. This is due to the fact that GD∩Gdisk(R)
is not spatially distributed over Gdisk(R) [4, Sec. 2.2.1], as
opposed to GLV (r) (see Remark 1). An example is shown
in Fig. 1b, where dashed lines show the invalid partitioning
generated considering R, and overlapping areas are shown
in purple. In fact, a valid partitioning of the environment is
a collection of subsets of R2 that have disjoint interiors.

Remark 3 The proposed limited Voronoi partitioning allows
us to take full advantage of the limited sensing capabilities of
the robots, i.e., using all the information over Gdisk(R), and
to obtain a valid partitioning of the environment computing
it over B(pi, r) (see Remark 2).

VI. PROPOSED CONTROL STRATEGY

In this section, building upon the concept of limited
Voronoi partitioning introduced in Section V, we propose
a control strategy to solve Problem 1.

In particular, we propose the following control law:

ui = k(CV r
i
− pi), (11)

where k ∈ R>0 is a proportional gain and CV r
i

is the
centroid of the cell V ri defined by the r-limited Voronoi
diagram of robot i. We will hereafter show that this control
strategy leads to optimally deploying the limited sensing
range robots within the unknown environment Q. For this
purpose, we consider the environment Q to be partitioned
according to an exact Voronoi partitioning V(P), as defined
in (1). Hence, inspired by [2], we consider the following
performance function:

fr(x) = −x21[0,r](x)− r21(r,∞)(x), (12)

which, as we will show below, leads to optimally deploying
robots in their corresponding Voronoi cell considering the
limited sensing capabilities. The performance function is
intuitively chosen to be a non-increasing, piece-wise differen-
tiable and continuous function which provides an indication



of the robot sensor performance [1]. Hence, we consider the
standard approach to the problem as f(x) = −x2 for values
within the range r, i.e., inside the ball B(pi, r) (first term
of (12)). Also, we consider a constant function otherwise, as
f(x) = −r2 for values outside the range r, i.e., outside the
ball B(pi, r), to have a continuous function (second term
of (12)). Following the definition in (3), the optimization
function can then be derived as

HrV(P) = −
n∑
i=1

∫
Vi(P)

‖q − pi‖21[0,r]φ(q)dq

− r2
n∑
i=1

∫
Vi(P)

1(r,∞)φ(q)dq. (13)

Theorem 1 Consider a multi-robot system composed of n
robots with limited sensing range whose dynamics evolves
according to (2). Then, the control law (11) leads to maxi-
mize the optimization function (13).

Proof: We will show that control law (11) implements a
gradient ascent of the optimization function (13). Namely,
we will show that the time derivative of the optimization
function, that is

ḢrV(P) =

n∑
i=1

∂HrV(P)

∂pi

T

ṗi, (14)

is non-negative.
For this purpose, consider the definition of the optimiza-

tion function in (13). Following the same computation as
in (4), the first term can be rewritten by means of the polar
moment of inertia. Furthermore, the second term represents
the area, weighted with function φ, of the portion of Q that
is not covered by the union of the balls B(pi, r) (in green
in Fig. 1b). Hence, we can rewrite (13) as:

HrV(P) = −
n∑
i=1

JVi(P )∩B(pi,r),pi

− r2Areaφ(Q\ ∪ni=1 B(pi, r)), (15)

with Areaφ(S) =
∫
S
φ(q)dq, S ⊂ Q.

Given [2, Thm. 2.2], considering the choice of the perfor-
mance function (12), we can compute the partial derivatives
of the optimization function HrV(P) as follows:

∂HrV(P)

∂pi
= 2

∫
Vi(P )∩B(pi,r)

(q − pi)φ(q)dq

= 2MVi∩B(pi,r)
(CVi∩B(pi,r)

− pi),

(16)

where MVi∩B(pi,r)
and CVi∩B(pi,r)

are respectively the mass
and the centroid of the cell given by the intersection of
B(pi, r) with the exact Voronoi partitioning of the environ-
ment.

Considering the control law (11) and the dynamics (2),
the time derivative of the optimization function (14) can be
written as follows:

ḢrV(P) =

n∑
i=1

[
2MVi∩B(pi,r)

(CVi∩B(pi,r)
− pi)

]T
k(CV r

i
− pi),

(17)

Defining κi = k 2MVi∩B(pi,r)
> 0, we can rewrite (17) as

follows:

ḢrV(P) =

n∑
i=1

κi(CVi∩B(pi,r)
− pi)T (CV r

i
− pi). (18)

Consider now the results of Lemma 1, we obtain the follow-
ing:

CV r
i

= CVi∩B(pi,r)
, ∀i = 1, . . . , n. (19)

Therefore, from (18) and (19), we can state that

ḢrV(P) =

n∑
i=1

κi

∥∥∥CVi∩B(pi,r)
− pi

∥∥∥2 ≥ 0, (20)

which proves the statement.
According to Theorem 1, we can conclude that the pro-

posed control law (11), which can be computed by each robot
based only on directly sensed information, leads to optimally
covering the environment.

During the execution of the control algorithm, every robot
continuously updates the limited Voronoi diagram and moves
towards the centroid of the respective Voronoi cell. The cen-
troid computation and, hence, the control law (11), depend on
the neighbors detected and the environment sensed. In other
words, given a constant φ(q), every robot will tend to move
far from other robots and from the environment boundary,
while maximizing the coverage of the area.

VII. EXPERIMENTAL VALIDATION

In this section we report the simulations and the real
experiments we carried out to verify the proposed algorithm.

A. Simulations

The simulations were carried out in MATLAB® and aimed
at investigating the effectiveness of the proposed method,
also in comparison to the standard method introduced in
Section IV. When the density function φ is constant, the
objective of the robots is to spread uniformly in the envi-
ronment. To understand the difference between the proposed
method and the standard one, we tested both in the same
environment (Q is a square 6m× 6m).

In order to evaluate the performance of the system with
the proposed controller from a global point of view, Fig. 2 re-
ports the value of the standard optimization function HV(P),
as introduced in (4), considering four robots controlled
with (11), varying the sensing range, and with the standard
method (7). We use the standard optimization function (4)
as a benchmark for both our method and the standard one
to obtain comparable measures. We take as reference the
performance of the standard method (in blue in Fig. 2),
which is not affected by the sensing range of the robots.
Intuitively, robots with a small sensing range are not able
to optimally cover a large environment, when compared to
an ideal condition of unlimited sensing. Thus, with the pro-
posed control strategy, the robots converge to a sub-optimal
solution, which represents a tradeoff achieved considering
limited sensing capabilities. Thus, the coverage performance
with small sensing range robots (e.g., R = 1m) controlled
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Fig. 3. Difference between Voronoi partitioning with the standard method
(in red) and the proposed method with R = 2m (in blue). Initial and final
positions are represented with circles and triangles, respectively.

by our methodology is worse with respect to the standard
one. However, when the sensing range is sufficiently big
(e.g., R = 3m) the performance is comparable with the
one obtained with the standard method and, with R = 6m,
the performance obtained is the same as with the standard
method. To visually show the difference, at steady-state,
when the sensing range is small, we report, in Fig. 3, the
initial (circles) and final positions of the robots (triangles),
and the Voronoi partitions for both our case (in blue) and the
standard method (in red). With our method it is clear how,
with a sufficiently large environment, the robots converge to
positions in which the neighbors NGdisk(pi,P) are on the
boundary of B(pi, R), and the balls B(pi, r) are tangent to
each others, ∀i (see Fig. 3).

Fig. 4 reports, again, the optimization function HV(P)
defined in (4) as a benchmark for different numbers of robots
controlled with the standard method (solid lines) and with
our method with sensing range R = 2m (dashed lines). If
a group of robots with small sensing range is not able to
optimally cover a large environment, increasing the number
of robots, intuitively, will improve the optimization function
consequently. Thus, in the proposed control strategy the low
number of robots converge to a sub-optimal solution of the
coverage problem when compared to the standard one, due to
the limited sensing capabilities. In fact, with 5 robots (in blue
in Fig. 4) our method does not perform as the standard one.
Instead, increasing the number of robots the performance
is comparable. The only difference is the transient, where
the convergence is reached slowly with our method as the
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Fig. 4. Optimization function HV (P), as introduced in (4), achieved by
a different number of robots controlled with the proposed control law (11).
The solid lines represent the standard method, instead the dashed lines
represent our method.

centroids are closer to the robots’ position. In our method
the centroid is in B(pi, r), while in the standard method it is
inside the Voronoi cell: hence, if the cell is big, the centroid
can be further away from the position of the robot. It is worth
noting that the steady-state value is higher with a higher
number of robots given the chosen optimization function. In
fact, if the number of robots is larger, then the area is better
allocated to the robots, namely each point q ∈ Q is closer
to a robot than in the case with fewer robots.

It is worth noting that these results corroborate what was
demonstrated in Lemma 2 and Lemma 3, respectively. In
fact, increasing the sensing range or the number of robots we
obtain the same value of the optimization function because
the underlying limited Voronoi diagram is equal to the exact
one.

Moreover, we tested the proposed approach in a more
complex environment, as shown in the accompanying video.
The simulation, implemented in Matlab® , shows the motion
of 6 robots deployed in a non-convex environment. Each
robot (indicated with a colored dot) is directed towards the
centroid (colored cross) of the respective limited Voronoi
cell within the sensing range R (dotted colored circle). We
remind that the standard coverage control is not suitable for
non-convex environments because of the Voronoi partitioning
and it needs to be combined with further control strate-
gies [21], [22]. We remark that the simulation has the aim
to show an experiment in a more complex situation and that
the control strategy proposed seems to be able to deal with
non-convex environments. However, further studies need to
be conducted on this field.

B. Implementation on the Robots

Some preliminary tests were carried out on real robotic
platforms. The hardware set-up was made up of a group
of TurtleBot 3 Burger robots, equipped with a Raspberry
Pi 4 mounting Ubuntu 20.04, and of an OptiTrack tracking
system. The proposed algorithm was implemented in C++
and, for the calculation of the limited Voronoi, we adapted
a library2 developed with the Fortune Algorithm [23]. The
interface with the robots was implemented in ROS2, which
managed also the communication with the OptiTrack system.

2https://github.com/pvigier/FortuneAlgorithm
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Fig. 5. Experiments with uniform density function. In 5b and 5a every
colored shape is the limited Voronoi cell of the respective robot. In 5b the
circles are the starting positions, the triangles are the final positions.

It is worth noting that the proposed method does not need
any communication between the robots and that the external
tracking system can be replaced by on board sensors. In fact,
the OptiTrack system was used to emulate a limited range
sensor that is able only to measure neighbors’ position. This
information was used to create the limited Voronoi diagram
with the C++ library, which calculated also the centroid of
the cell based on the density function. Hence, each robot
was able to calculate on-board the limited Voronoi cell V ri ,
and the centroid CV r

i
. To obtain a faster implementation we

used the line integration method proposed in [24]. The input
calculated in terms of ṗi from (11) was modified according
to the input-output state feedback linearization [25] to be
correctly applied to the robot. The accompanying video
reports a representative trial of the experiments.

In the first experiment, the density function φ(q) was
constant, hence, the aim of the robots was to spread into
the environment. Fig. 5 reports the successful result of
the experiment: initial and final positions of the robots are
reported together with their respective limited Voronoi cell.

The second experiment aimed at testing the algorithm with
a non uniform density function. We assumed φ(q) had the
form of a bivariate unimodal Gaussian distribution with µ =[
0 0

]
and Σ ∈ R2×2, Σ =

[
σ 0
0 σ

]
, where σ = 0.3. µ

and Σ are respectively the mean and the covariance matrix
of the Gaussian distribution. Fig. 6 reports the trajectories
of the robots from the initial positions (circles) to the final
positions (triangles). As expected, the robots converged to the
center and they rounded up proportionally to the variance.
The Gaussian distribution is represented with the black cross,
which is the mean value, and the black concentric circles,
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Fig. 6. Experiments with not uniform density function φ(q). Initial and
final positions with circles and triangles, respectively. The black cross is
the center of φ(q) and the black concentric circles are different values of
variance.

which represent equidistant levels of the variance.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we presented a distributed coverage based
control to coordinate a group of autonomous robots with
limited sensing capabilities in an unknown environment. The
proposed novel control strategy, based on a limited Voronoi
partitioning, uses only the information directly detected by
the robot. We formally show how the control law drives
the group of robots to the respective centroid of the limited
Voronoi cell. A series of experiments and simulations were
performed on a group of mobile robots to validate the
performance of the proposed control method. As a future
work, we aim to further investigate how the proposed strategy
can deal with non-convex environments, since promising
results have been obtained in a few preliminary simulations.
Moreover, we aim to extend the proposed control strategy
to be effective for the exploration of unknown complex
environments. Finally, we aim to improve the control method
in order to consider a group of robots characterized by
heterogeneous limited sensing capabilities.
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