
On-shell approach to neutrino oscillations

Gustavo F. S. Alves,* Enrico Bertuzzo ,† and Gabriel M. Salla ‡

Instituto de Física, Universidade de São Paulo, C.P. 66.318, 05315-970 São Paulo, Brazil

(Received 12 April 2022; accepted 16 August 2022; published 31 August 2022)

In the usual quantum field theoretical approach, neutrino oscillations are studied diagonalizing either the
mass or matter Hamiltonians. In this paper we analyze the problem from an on-shell amplitude perspective,
where Lagrangians or Hamiltonians are not available. We start by studying in detail how flavor enters in the
amplitudes and how the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix emerges. We then analyze the
elastic amplitude of two neutrinos and two charged leptons that induce matter effects and propose a strategy
to obtain the known results of the standard oscillation theory without Hamiltonians. Finally, we extend the
previously proposed procedure and use the most general elastic 4-point amplitude to study beyond the
Standard Model effects on oscillations.
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I. INTRODUCTION

Many decades after their discovery, neutrino oscillations
are still among the most interesting and subtle observed
phenomena, and one of the few clearly established evi-
dences of beyond the Standard Model (BSM) physics [1,2].
Two complementary approaches have been used to describe
oscillations: a quantum mechanical one, in which the
neutrino wave packet propagates between the production
and detection regions, and a quantum field theory (QFT)
one, in which production, propagation, and detection are
considered as a unique process. For a review and a
comparison between the two formalisms we refer the
reader to [3] and references therein. Besides the oscillations
in vacuum, interactions with matter, the Mikheyev-
Smirnov-Wolfenstein (MSW) effect [4–6], also plays a
major role in neutrino physics. The usual description of this
effect strongly relies on the computation of the interacting
Hamiltonian, which in turn involves further diagonalization
of the neutrino states (see for instance [7]).
In this paper we are interested in approaching the

oscillation phenomenon from the perspective of on-shell
methods [8–10].1 Such methods bypass completely the

need for quantum fields, Lagrangians and Hamiltonians,
constructing scattering amplitudes directly in terms of
physical states and “fundamental” 3-point amplitudes.
Moreover, the on-shell program has a remarkable prop-
erty regarding amplitudes in effective field theories
(EFTs) [12–19]: once the particle content of an n-point
amplitude is chosen, on-shell techniques allow to enu-
merate all possible kinematic structures permitted by the
little group, independently of the order in the EFT at
which they are generated for the first time. Scattering
amplitudes are thus a powerful tool to include all-order
beyond the Standard Model (BSM) effects without
having to worry about operators basis and fields redefi-
nitions. The main questions we want to address in this
paper are: (i) how may flavor be included in on-shell
amplitudes and how do we recover the unitarity of the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix
without quantum field redefinitions? (ii) how may we
obtain the MSW effect in the absence of any matter
Hamiltonian?
This paper is organized as follows. In Sec. II we study

the 3-point amplitude of one neutrino, one charged lepton
and a W boson. In particular, in Sec. II A we study its
high-energy behavior, making contact to the usual oper-
ator language. Then, in Sec. II B, we discuss how to
implement flavor quantum number at the level of ampli-
tudes and show how the PMNS matrix naturally appears
in this framework. Section III is instead dedicated to the
computation of matter effects: in Sec. III A we present a
way to compute the matter potential, while in Sec. III B
we propose a strategy allowing to obtain the modified
dispersion relations for neutrinos typical of propagation
in matter. Finally, in Sec. IV we compute the matter
effects in the presence of general effective interactions.
We conclude in Sec. V.
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1See Ref. [11] for an application of on-shell techniques to the
determination of the operators up to dimension 9 in the SMEFT
with light sterile neutrinos.
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II. THE PMNS MATRIX FROM THE νēW
AMPLITUDE

A. The 3-point amplitude

Our starting point is the 3-particle massive amplitude
involving one neutrino, one charged lepton and oneW boson.
Its structure in terms of spinor helicity variables is [16]

A½1ν2ē3W � ¼
yL
M

h13ih23i þ gL
mW

h13i½23�

þ gR
mW

½13�h23i þ yR
M

½13�½23�; ð1Þ

where we have adopted the bold notation of Ref. [9] for
massive spinors (see Appendix A). Note that the second and
third terms are suppressed by theW massmW , while the first
and last term are suppressed by some large mass scale
M ≫ mW . The reason behind this resides in the high energy
(massless) limit of such amplitude. For the first and last term,
only one of the transverse helicities of the W boson are
reached in this limit,

yL
M

h13ih23i → yL
M

h13ih23i ¼ A½1−ν 2−ē 3−1W �;
yR
M

½13�½23� → yR
M

½13�½23� ¼ A½1þν 2þē 3þ1
W �: ð2Þ

Using the explicit formulas of Appendix C, we see that these
terms correspond, in the usual field theoretical language, to
dipole operators involving the field strength Wa

μν. On the
contrary, the high energy limit of the second and third term in
Eq. (1) is richer, since both the positive and negative helicities
of theW boson canbe reached in this case. Tobemoreprecise,
the correct formof the amplitude in theUVcanbe approached
allowing the masses to vanish one at a time. Since the result
will be important in Sec. II, it is worth to show it in detail.
We have

gL
mW

h13i½23�⟶m1→0 gL
mW

h13i½23�

⟶
m2→0 gL

mW
h13i½23�¼−gL

h13i2
h12i ¼ gL

½23�2
½12� ; ð3Þ

where in the last step we have used momentum conservation
and to get rid of the factor ofmW we used theWeyl equations
(see Appendix A). This justifies our choice of writing the
coefficient as gL=mW since the presence of the vector mass in
thedenominator is necessary for a consistentUV-IRmatching
within the SM. Analogous reasoning can be applied to the
½13�h23i term. Again comparing with Appendix C, we see
that these terms are generated by the usual renormalizable
charged current interaction.
For ease of the reader acquainted with the usual

Lagrangian approach, we determine the SUð2ÞL ×Uð1ÞY
operators that generate the terms in Eq. (1). They can be
found in Table I. For Majorana neutrinos we have νR ¼ νcL

(we do not add any additional sterile neutrino to the
physical spectrum, i.e., these states lie above the cutoff
of the EFT), while for Dirac neutrinos this is an indepen-
dent degree of freedom νR ¼ NR. The table emphasizes one
of the crucial points raised in the Introduction: on-shell
amplitudes automatically include structures that (i) appear
at different order in an expansion over the cutoff scale and
(ii) that traditionally belong to different EFTs: the SMEFT
for the terms involving Lc and the νSMEFT for the terms
involving NR.

2 Moreover, we observe from Table I that the
structures involving the right handed neutrino helicity are
more suppressed for Majorana than for Dirac neutrinos
when embedded in an EFT framework. Can the same
conclusion be reached from a purely on-shell perspective?
An apparent obstacle to this program is the fact that only
the h13i½23� structure can be directly UV completed into
the SUð2ÞL × Uð1ÞY invariant 3-point amplitudes [see
Eq. (5)]. According to Table I all other terms should be
generated by higher-point amplitudes. Two arguments can
be used to perform the IR/UV matching between ampli-
tudes involving a different number of particles. The first
one was presented in Ref. [16], and amounts to notice that,
in the soft limit in which the Higgs boson momentum
vanishes, amplitudes involving the Higgs boson are indis-
tinguishable from amplitudes without the Higgs boson. To
compensate for the dimension mismatch between higher
and lower points amplitudes, a new mass scale must be
introduced, analogous to the Higgs vev. A second argument
has been presented in Ref. [17] and amounts to impose
correlations between coefficients to tame a possible growth
with energy of the amplitude. In our case this procedure can
be applied to the ½13�h23i structure. Focusing first on Dirac

TABLE I. Amplitude/operators dictionary. In the SUð2ÞL ×
Uð1ÞY invariant theory we list the smallest dimensional operators
contributing to the corresponding amplitude, distinguishing
between the Majorana and Dirac cases, if needed.

Amplitude Uð1ÞEM theory SUð2ÞL × Uð1ÞY theory

h13ih23i ēRσμννLW−
μν (d ¼ 5) ēRσμνH†τaLWa

μν (d ¼ 6)

½13�½23� ēLσμννRW−
μν (d ¼ 5)

ðL̄HÞσμνðHTϵτaLcÞWa
μν

(d ¼ 7, Majorana)
L̄σμντaNRϵH�Wa

μν

(d ¼ 6, Dirac)
h13i½23� ēLγμνLW−

μ (d ¼ 4) L̄γμτaLWa
μ (d ¼ 4)

½13�h23i ēRγμνRW−
μ (d ¼ 4)

ēRγμðH†ϵLcÞH†ϵDμH�

(d ¼ 7, Majorana)
ēRγμNRH†ϵDμH�

(d ¼ 6, Dirac)

2Typically, in the νSMEFT the right handed neutrinos are
supposed to be heavier than the left handed ones and are
responsible for the generation of neutrino masses. Since we are
considering Dirac neutrinos, we are implicitly assuming that the
Majorana term for the NR fields is forbidden by some symmetry.
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neutrinos, we need to “glue” the 3-point amplitudes νēW�

and hW�W0 (withW0 the longitudinal component of theW
boson and W� the transverse ones) to obtain the 4-point
amplitude νēW0H. This amplitude can be UV completed in
the SUð2ÞL × Uð1ÞY invariant amplitude νēH†H, whose
coefficient is given at leading order by 1=Λ2. Demanding
this 4-point amplitude not to grow with the energy requires
gR ∼m2

W=Λ2, apart from an Oð1Þ coefficient. A similar
reasoning applies to the Majorana case, in which however
we need to construct the 5-point amplitude LcēH�H†H to
obtain an SUð2ÞL ×Uð1ÞY invariant object. This generates
a dependence gR ∼ Λ−3. There is, nevertheless, an obstruc-
tion to applying the same procedure to the dipole ampli-
tudes, since these are generated at loop level. Since this
point lies somewhat outside the purpose of this paper, we
defer it to future work. In what follows, we will never need
the cutoff scaling of the terms in Eq. (1).

B. Emergence of the PMNS matrix

Up to this point, we have not considered how flavor can
be implemented in the 3-point amplitude. Clearly, we could
invoke the operators in Table I and extract the flavor
structure of the amplitudes directly from them, but in this
work we want to avoid the use of QFT techniques. Our
derivation rests on one important assumption: in the
absence of mass, no quantum number can be used to
distinguish between 1-particle states of different genera-
tions. In the massless limit we thus gain the freedom to
perform unitary transformations on the states of each
species, which amount to

jνiðp; hÞi → ðU�
νÞjijνjðp; hÞi;

jēiðp; hÞi → ðUeÞjijējðp; hÞi; ð4Þ

where Uν and Ue are unitary matrices.3 The transforma-
tions above imply that in the massless limit the correspond-
ing S-matrix elements must transform covariantly under
flavor transformations. At the level of amplitudes, massless
spinor variables depend only on the particle momentum
and are thus generation blind. As a consequence, all the
flavor dependence must be encoded in the coefficients in
front of each term in the amplitude, which must thus have
nontrivial flavor transformations. Stated in another way:
when a certain type of particle becomes massless, the
amplitude must be a covariant tensor under a flavor
transformation of that type of particle. Notice that this is
not the case for massive amplitudes, in which also the
spinor variables depend on the particle mass.
We now use this observation to deduce the flavor

structures of the coefficients gL;R and yL;R. More specifi-
cally, we take the limit in which individual particles

become massless one at a time: first all neutrinos, then
the charged leptons and finally the W boson. When all the
particles are massless we will match into the SM gauge
amplitude [12,20]:

ASM½1−LA;i
2þL̄B;j

3−1Wa � ¼ gijðTaÞAB
h13i2
h12i ;

ASM½1−LA;i
2þL̄B;j

3þ1
Wa � ¼ −gijðTaÞAB

½23�2
½12� ; ð5Þ

where L is the usual lepton doublet and Ta is a gauge
generator. We have also written explicitly the gauge indices
(A and B) as well as the generation indices (i and j). Under
the assumption of flavor universality, we can use the
freedom to rotate LA;i and LB;j to make the gij coefficients
proportional to the identity: gij → gδij, where g is the
SUð2ÞL gauge coupling.
We are now in the position of discussing the flavor

dependence of the couplings in the IR. To fix our notation,
we rewrite Eq. (1) making explicit the generation indices:

A½1νi2ēj3W � ¼
yijL
M

h1i3ih2j3i þ
gijL
mW

h1i3i½2j3�

þ gijR
mW

½1i3�h2j3i þ
yijR
M

½1i3�½2j3�: ð6Þ

Since we are considering on-shell amplitudes, the gener-
ation indices represent states of well-defined mass, and all
the coefficients are complex matrices in generation space.
Before taking the massless limit, we observe that, accord-
ing to Eqs. (2), (3), and (5), only the h1i3i½2j3� term has
the correct particle content to be matched into the SM
amplitudes. We thus need to show that the matrix gL is not
any complex matrix, but is unitary and can thus be
identified with the PMNS matrix. The various massless
limits can be achieved following Eq. (3). At each stage we
gain the freedom to perform a flavor transformation of the
species that became massless. To book keep this freedom,
we explicitly apply a generic flavor transformation at each
stage. Focusing on the coefficients only and writing them as
matrices in generation space we obtain

gL
mW

⟶
mν→0U†

νgL
mW

⟶
me→0U†

νgLUe

mW
⟶
mW→0

U†
νgLUe ¼ g1; ð7Þ

where in the last step we have matched onto the SM
amplitude with coefficient proportional to the identity in
flavor space. The last equality can be true only if gL is
proportional to a unitary matrix. We will thus make contact
with the usual notation and write

gL ¼ gUνU
†
e ≡ gUPMNS: ð8Þ

The PMNS matrix emerges naturally from our consider-
ations. As gL is proportional to a unitary matrix, we observe

3We take the usual transformation in which antiparticles trans-
form in the conjugate representation with respect to particles.
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that as soon as the neutrinos become massless, we can use
the freedom of rotating the neutrino states to make gL
proportional to the identity. This matches, as it should, the
usual QFT conclusion that no PMNS matrix appears in the
limit of massless neutrinos. Furthermore, it is interesting to
observe that the standard counting of PMNS parameters is
guaranteed thanks to the possibility of applying arbitrary
phase transformations to the neutrino and charged antilep-
ton 1-particle states. For Dirac neutrinos the pure phase
transformations can be deduced directly from Eq. (4) by
identifying ðUνÞij ≡ eiαiδij and ðUeÞij ≡ eiβiδij. After this
step the counting of phases can proceed as usual [21]. The
situation is different for Majorana neutrinos, since in this
case particle and antiparticle coincide. Given that the latter
transforms in the conjugate representation, consistency is
ensured requiring Uν ¼ U�

ν, i.e., the transformation is
constrained to be orthogonal. This means that no phase
transformation can be applied in a consistent way on the
Majorana neutrino 1-particle states, leaving us with 3
phases in U. Once more, we recover the usual parameter
counting for the PMNS matrix.
When the other terms in Eq. (6) are turned on, a similar

reasoning applies, with a crucial difference: since they
cannot be matched into any SM 3-point amplitude, we
cannot conclude that the yL;R and gR coefficients are unitary.
They will thus be generic 3 × 3 complex matrices in flavor
space, with 9 × 2 ¼ 18 parameters each. If we choose to
work in a basis in which the PMNS matrix gL has the
minimum number of parameters, no freedom is left to reduce
the number of parameters of the yL;R and gR matrices, in
such a way that the amplitude of Eq. (6) depends on
18 × 3 ¼ 54 parameters in addition to those appearing in
the PMNS matrix. Only the number of parameters of the
latter depends on the Dirac or Majorana nature of the
neutrinos, while in both cases the remaining coefficients
will depend on a total of 54 parameters.
Having established how the PMNS matrix emerges, the

usual oscillation formula in vacuum can now be obtained
considering two amplitudes AP and AD, each containing
one neutrino state and denoting, respectively, the production

and detection process, connected by a neutrino propagator.
The overall amplitude can be computed in the limit of on-
shell propagating neutrinos using the usual factorization
properties [9]. We will not show explicitly this computation
here, since the exact form of the expressions depends on the
chosen production/detection processes.
We conclude this section with two observations: first, the

amplitude for a Z boson interacting with neutrinos can be
directly obtained from Eq. (7) with the replacement e → ν.
This implies that gL ¼ gUνU

†
ν ¼ g1, hence, as expected,

this term is flavor blind. Moreover, a line of reasoning
similar to the one used above can be applied to charged
current interactions between quarks. Although the quark
and W mass hierarchy forbids separate massless limits, the
UV matching can be done taking all the particles massless
at once. We again conclude that the coefficient of the
h1i3i½2j3� term must be proportional to a unitary matrix,
to be identified with the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. The main difference with respect to the
present case is the UV origin of the other three terms.4

III. OSCILLATIONS IN MATTER

Having established the flavor structure of the scattering
amplitudes we are ready to tackle the problem of neutrino
oscillations in matter. As already mentioned, in the usual
approach matter effects are computed using Hamiltonians,
a tool we do not have at our disposal when studying the
problem from a scattering amplitude point of view. How
can we thus describe such phenomenon?

A. The potential

Firstly, we have to translate the usual computation of the
matter potential in the scattering amplitude language.
To this end, we consider the elastic scattering νe → νe
mediated by a charged current, focusing for the moment on
the SM only contribution. This can be constructed using the
usual factorization properties around the pole. Using the
SM term in the amplitude of Eq. (6) we find

ð9Þ

with U ≡UPMNS. As discussed before, we will not consider neutral currents, since the contribution is not generation
dependent. This would lead to the same shift in the neutrino mass regardless of the neutrino flavor. We now focus on the low

4For completeness we report here the operators that generate the various terms in the A½1u2d̄3W � amplitude: the term h13ih23i is
generated at leading order by the operator d̄RσμντaH†QWa

μν; ½13�½23� by Q̄ H̃ σμντauRWa
μν; h13i½23� by the SM operator Q̄γμτaQWa

μ;
finally, ½13�h23i is generated by d̄RγμuRH†ϵDμH�.
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energy limit of the amplitude (P → 0) in order to recover
the usual MSW potential [4,5]. We first take the elastic limit
p3 ¼ −p1 and p2 ¼ −p4 and impose j ¼ j05:

A½1ej2ν̄i3ēj04νi0 � → −
g2UijðUi0jÞ�

m2
W

h4i1ji½1j4i0 �: ð10Þ

We then perform a spin average over the electron spin. To
this end, we remind the reader that the spinor helicity part
of the previous amplitude is written, without the bold
notation, as h4Ji 1Kj0 i½1Ij4Li0 �, where fI; J; K; Lg are SUð2Þ
little group indices. Taking the average over the electron
spin thus amounts to contract the amplitude in Eq. (10) by
ϵIK=2. This leads to

Ā½1ejð−4Þν̄ið−1Þēj4νi0 � ¼ 2
ffiffiffi
2

p
GFUijðU�Þi0jh4Ji jpej j4Li0 �

ð11Þ

where Ā denotes the averaged amplitude and GF ¼ffiffiffi
2

p
g2=8m2

W . We have also explicitly put in evidence the
charged lepton momentum pej ¼ j1Iji½1jIj. The MSW

potential VðjÞ
MSW with respect to a medium containing

charged leptons ej is defined, in the usual field theoretical
derivation, as Lint ¼ ν̄γμνVMSW;μ. Interpreting this in the

amplitude language, we define VðjÞ
MSW as the amplitude (11)

stripped of the neutrino spinor helicity variables and
integrated over the charged lepton Lorentz-invariant
momentum phase space:

ðVðjÞ
MSWÞii

0 ¼
ffiffiffi
2

p
GFUijðU�Þi0jNej

�
pej

Eej

�
; ð12Þ

where we have defined the average over the medium

hAi ¼ 1

Nej

Z d3pej

ð2πÞ3 fðpejÞA ð13Þ

using the medium distribution function fðpejÞ and the
number of medium constituent Nej is given by

Nej ¼
Z d3pej

ð2πÞ3 fðpejÞ: ð14Þ

This expression agrees with the results in the literature,
see for instance Ref. [22]. We also observe that the potential
extracted from the amplitude (11) is the one felt by
neutrinos over a charged lepton background. To obtain

the same potential for anti-neutrinos, it is enough to
change the direction of the neutrino momentum, which
implies in a sign change due to j4i0 � → j − 2i0 � ¼ −j2i0 � (see
Appendix A). Hence, the analytic continuation conditions
of the spinor variables guarantee that the MSW potential for
neutrinos and antineutrinos have opposite signs.
As a further check, let us verify what happens consid-

ering the exchange of a spin-0 particle (called ϕ) instead of
a spin-1 particle. The 3-point amplitude is in this case

A½1f̄2f3ϕ� ¼ cf1h12i þ cf2 ½12�; ð15Þ

where f ¼ ν, e. This leads to a 4-point amplitude
A½1e2ν̄3ē4ν� which, once more, needs to be computed in
the elastic limit and must be mediated over the electron
spins. A crucial difference with respect to the previous
case is that, while in the case of spin-1 mediator, the spin
average resulted in a factor of the medium particle
momentum, pej ¼ j1Iji½1jIj, in the scalar case we can
use the identity ϵIJh1I1Ji ¼ me, introducing terms propor-
tional to the medium particle mass. The final result is of
the form

Ā½1e2ν̄ð−1Þēð−2Þν� ¼ meðC1h22i − C2½22�Þ; ð16Þ

where C1;2 are appropriate combinations of the cν;e1;2
coefficients. The matter potential in this case is thus
proportional to the medium particle mass me, once more
the same result found in the literature [22].

B. Effect on neutrino propagation

In possession of the matter potential, we are now in
position to propose a strategy to recover a modified
dispersion relation using on-shell amplitudes. We will
devote this section to the SM case, leaving to Sec. IV
the discussion of BSM effects. In the standard approach,
this step is accomplished including the matter potential in
the Hamiltonian (or in the equation of motion), followed by
a rotation to go to the matter basis, which defines the in-
medium propagating eigenstates. Using only amplitudes,
we instead propose to consider a pair of generic n-point
amplitudes AP½1ν̄fIg�, AD½1νfI 0g�, containing one out-
going and one incoming neutrino, respectively. The col-
lective indices fIg and fI 0g represent some collections of
particles other than the neutrinos. The amplitudes AP and
AD will be used to represent neutrino production and
detection, respectively. For instance, they may represent
4-particle amplitudes containing a charged lepton and a
nucleon pair, but we will not need to specify their form in
our discussion. For ease of notation, we will from now on
use the simplified notation AP½1ν̄fIg� ¼ AP½ν̄Ii � and
AD½1νfI 0g� ¼ AD½νJj �, leaving implicit the information
about the additional particles that will not play a role in
our discussion and stressing the relevant indices of the

5To obtain the elastic amplitude we would in principle need
to take i ¼ i0 as well. However, since jmνi −mνi0 j ≪ mej , there is
not enough energy resolution to distinguish between neutrino
mass states, hence they contribute coherently to the amplitude.
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neutrino state: its massive little group indices I and J and its
mass flavor indices i and j. Using these amplitudes we
can construct a 4-point amplitude with a neutrino factori-
zation channel, which would account for its propagation
in vacuum from the production to the detection points.

In the presence of a charged lepton background, we can
build higher-point functions by allowing the internal
neutrino to interact with a pair of external charged leptons.
Considering that we are in the elastic limit we can write
the series

ð17Þ

where the line represents an insertion of the
amplitude in Eq. (11) containing the MSW potential. We
mimic in this way the fact that neutrinos have interactions
as they propagate through matter. To compare with the
literature, we consider only the contributions of order
OðGFÞ to the series. In order to proceed, it is important
to understand the behavior of the hpiIjVMSWjpjJ� insertion.
We will consider ultrarelativistic neutrinos and investigate
the high energy limit. The discussion is more transparent by
using the high energy basis described in [9,17] (see
Appendix A for details), such that

hpi;IjðVMSWÞijjpj;J�
¼ hλijðVMSWÞijjλ̃j�ξ−I ξþJ þ hλijðVMSWÞijjη̃j�ξ−I ξ−J
þ hηijðVMSWÞijjλ̃j�ξþI ξþJ þ hηijðVMSWÞijjη̃j�ξþI ξ−J :

ð18Þ

In the limitmν → 0 only the first term contributes, selecting
the massive little group indices I ¼ 2 and J ¼ 1. This is
compatible with the structure of the production and
detection amplitudes, since AP½ν̄Ii � must contain an ingoing
antineutrino state, i.e., a spinor helicity variable jpI

i � that,
in the high energy limit, selects I ¼ 2, while the AD½νJj �
contains an incoming neutrino state, i.e., a spinor helicity
variable jpJ

j i that, in the massless limit, selects J ¼ 1.
Physically, this means that the propagating neutrino has
negative helicity, i.e., it has left handed chirality as expected
in the SM case we are considering. In light of this, we only
need to analyze hpi2jVMSWjpj1�.6 Using the explicit ex-
pressions for the massive spinor variables presented in
Appendix A we obtain

jpj1� _αhpi2jα ¼ p _αα þOðm2
ν=jpj2Þ; ð19Þ

from which, neglecting terms of order Oðm2
νÞ, we

finally get

hpi2jVMSWjpj1� ¼ 2pμV
μ
MSW; ð20Þ

with the whole generation structure encoded in the
potential.
Going back to the propagation amplitude, we can thus

write, using a matrix notation,

Aprop½P→D�

¼AP½ν̄2�
1

p2−M2
ν

�
1þ2p ·VMSW

1

p2−M2
ν
þ…

�
AD½ν1�

¼AP½ν̄2�
1

ðp−VMSWÞ2−M2
ν
AD½ν1�; ð21Þ

up to terms of order OðG2
FÞ. In the last line of the equation

above we obtain the modified dispersion relation for the
neutrinos, i.e., a shift to the 4-momentum which agrees
with the literature [22].
The re-summed amplitude is not in an explicit factor-

izable form, as the neutrino states mix due to the flavor off-
diagonal terms in the potential. In order to restore manifest
factorization, i.e., to respect locality, we must be able to
write Eq. (21) as a single sum over well defined channels.
This amounts to require that the matrix ðp − VMSWÞ2 −
M2

ν must be diagonalizable. Calling UM the unitary matrix
that diagonalizes the propagator in matter, we obtain

Aprop½P → D� ¼ ÃP½ν̄2�
1

p2 − M̃2
ν

ÃD½ν1�; ð22Þ

with ÃP½ν̄2�≡AP½ν̄2�U†
M, ÃD½ν1�≡ UMAD½ν1� and M̃ν

the new diagonal mass matrix. The transition from
Eqs. (21) and (22) is nothing but the diagonalization of
the vacuum mass eigenbasis to the matter one.
To conclude this section, and as a sanity check of the

validity of our procedure, we perform the same computation

6We have checked that all other combinations of little group
indices are suppressed by at least another power of the neutrinos
mass, making them even more suppressed.
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for the potential generated by a scalar mediator. We take
from Eq. (16) the potentials associated to the terms with
angle and square brackets,

Vϕ;1 ¼ meC1; Vϕ;2 ¼ meC2; ð23Þ
and we repeat the same procedure outlined before, noticing
that now hpi2pj1i ¼ mνi, ½pi2pj1� ¼ −mνj to first order in

m2
ν=p2. The modified dispersion relation reads

p2 −M2
ν → p2 −M2

ν −MνVϕ;1 − Vϕ;2Mν; ð24Þ
i.e., the scalar mediator induces a change in the neutrino
mass matrix that is proportional to the mass of the back-
ground constituents. We again recover the results in the
literature.

IV. BSM EFFECTS

We now turn to the computation of the matter effects using
the most general 4-point function A½1ej2ν̄i3ēj4νi0 � that can
include any possible BSM physics. Here we will confine
ourselves to a scenario in which no sterile neutrino is
produced by AP and consider only the propagation of the
SM neutrinos. This means that the amplitudeA½1ej2ν̄i3ēj4νi0 �
will represent the most general correction to the SM
propagation. According to Ref. [23], this amplitude can
be written as

A½1ej2ν̄i3ēj04νi0 � ¼ g1h2i4i0 ih1j3j0 i þ g2h2i4i0 i½1j3j0 �
þ g3h1j2ii½3j04i0 � þ g4h2i3j0 i½1j4i0 �
þ g5½1j3j0 �h2ij1j4i0 � þ g6½1j3j0 �½2ij1j4i0 i
þ g7h2i4i0 i½1jj2j3j0 i þ g8h2i4i0 ih1jj2j3j0 �
þ ðangle ↔ squareÞ; ð25Þ

where the structures with the conjugate spinors ðangle ↔
squareÞ may have independent coefficients. Also, all coef-
ficients may depend on the Mandelstam variables sij ¼
ðpi þ pjÞ2. The amplitude above spans the most general
4-point amplitude, which includes both factorizable and
contact terms. We also note that, except for the SM term g4
that is proportional to UijðUi0j0 Þ�, all other coefficients are
arbitrary matrices in generation space. Taking the elastic
limit and averaging over the charged lepton background
yields the amplitude

A½1ej2ν̄i3ēj04νi0 � → V1h4Ji 4Li0 i − V2½4Ji 4Li0 � þ h4Ji jV3j4Li0 �;
ð26Þ

where the different potentials read

V1 ¼ Nej

�ðp4 · pejÞðg7 þ g8Þ −mejðg1 þ g2Þ
2Eej

�
; ð27Þ

V2 ¼ Nej

�ðp4 · pejÞðg07 þ g08Þ −mejðg01 þ g02Þ
2Eej

�
; ð28Þ

V3 ¼ −
Nej

2

�
½ðg4 − g3Þ þ 2mejðg6 − g5Þ�

pej

2Eej

�
: ð29Þ

The symbols g0 denote the coefficients for the conjugate
spinor structures. We see that in Eq. (26) there is no
contribution such as ½4Ji jVj4Li0 i because it is higher-order
in the neutrino mass expansion. Using the results from
Eqs. (21) and (24), we obtain the most general modification
to the neutrinos dispersion relations up to first order in the
coefficients:

p2 −M2
ν → ðp − V3Þ2 −M2

ν −MνV1 − V2Mν: ð30Þ

In order to have a well defined factorizable amplitude, i.e., to
define a matter basis for the neutrino propagation, Eq. (30)
must be a diagonalizable matrix.
From a broader phenomenological point of view,

Eq. (25) is the on-shell version of amplitudes generated
by neutrino nonstandard interactions (NSI), including
interactions of right handed neutrinos [24]. The amplitude’s
coefficients can thus in principle be probed in a variety
of experiments. For instance, the process νe− → νe− has
been searched for at neutrino scattering experiments, while
eþe− → νν̄ can be studied at colliders (like LEP, BABAR,
and Belle) and can also give an additional contribution to
supernovæ energy draining [25,26]. In any case, there are
not enough data to probe all the parameters appearing in
Eq. (25). Another interesting feature of the amplitude (25)
lies in the difference between Dirac and Majorana neu-
trinos. In the latter case, assuming all coefficients to be
constant and taking the incoming and outgoing neutrino
indices to be the same, the amplitude must be invariant
under a 2 ↔ 4 exchange. This reflects in the following
correlations between the coefficients: g3;4 ¼ −g04;3,
gð0Þ5;6 ¼ −gð0Þ6;5 and

g1 ¼ −g1 − g7mj þ g8mj0 ;

g2 ¼ −g2 þ g7mj0 − g8mj;

g01 ¼ −g01 þ g07mj − g08mj0 ;

g02 ¼ −g02 − g07mj0 þ g08mj: ð31Þ

The equations above hold, however, only for constant
couplings. Since, in general, gi and g0i will depend on
s12, s13 and s14, the relations in Eq. (31) will become more
involved and will also depend on the particular way the
coefficients depend on the Mandelstam variables.
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V. CONCLUSIONS

The phenomenon of neutrino oscillations is typically
approached diagonalizing the vacuum or matter
Hamiltonian. In this paper, we have attacked the problem
of how to describe neutrino oscillations using on-shell
methods, i.e., without relying on fields, Lagrangians or
mass matrices. As a first step, we have studied how to
implement the notion of flavor from the point of view of
scattering amplitudes. Then, we discussed how the PMNS
matrix emerges in this framework. To the best of our
knowledge, this is the first time that the flavor properties of
amplitudes are discussed from a completely on-shell
perspective. To make contact with the usual field theoretical
approach, we have also explicitly determined the UVorigin
(in operator language) of the different terms appearing in
the 3-point amplitude in Sec. II A, finding differences
between the Dirac and Majorana neutrino cases. Finally,
we proposed a prescription to compute the potential and the
modified neutrino dispersion relations induced by the
propagation over a charged lepton background. In particu-
lar, we were able to reproduce the known results for vector
and scalar mediators, i.e., for those situations in which the
medium spin does not count. We then used the formalism to
compute the matter potential including all possible BSM
contributions that can affect neutrino propagation by using
the most general 4-point amplitude involving two neutrinos
and two charged leptons.
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APPENDIX A: CONVENTIONS USED

In this Appendix we summarize the conventions we use
for the spinor variables. We use the bold notation of Ref. [9]
to denote massive spinors. They are explicitly given by

hpIj ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ jpjp
c −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − jpjp

sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ jpjp

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − jpjp

c

!
; ðA1Þ

jpI� ¼
 ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − jpjp
sÞ� ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ jpjp
cÞ�

−ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − jpjp

cÞ� ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ jpjp

s�Þ�
!
; ðA2Þ

with I the SUð2Þ little-group index, c ¼ cosðθ=2Þ, s ¼
sinðθ=2Þeiϕ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� jpjp

a complex number. The first
column refers to I ¼ 1, while the second corresponds to
I ¼ 2. The spinors jpIi and ½pIj can be obtained by simply
taking the complex conjugate. The helicity variables so
defined satisfy the massive Weyl equations

pjpIi ¼ MjpI�; pjpI� ¼ M†jpIi; ðA3Þ

½pIjp ¼ −M†hpIj; hpIjp ¼ −M½pIj; ðA4Þ

where the complex number M is defined as MM† ¼ m2,
with m the physical mass of the particle. Momentum
bispinors are defined as

p _αα ≡ ϵIJjpI�hpJj; pα _α ≡ −ϵIJjpIi½pJj; ðA5Þ

where

ϵIJ ¼
�
0 −1
1 0

�
: ðA6Þ

The following identity involving two spinor variables of the
same type have been used in the computation of the matter
potential:

jpIiαhpIjβ ¼ Mδβα; jpI� _α½pIj_β ¼ −M†δ _α_β; ðA7Þ

while momentum conservation can be written asX
i

jpI
ii½piIj ¼ 0: ðA8Þ

Finally, we use the standard conventions for spinor
variables with negative momenta:

hð−pÞIj ¼ hpIj; jð−pÞI� ¼ −jpI�: ðA9Þ

APPENDIX B: HIGH ENERGY BASIS

The high energy limit for massive states can be studied
by expanding the little group indexes in the following basis
of SU(2) (we will follow the conventions from [17])

jλIi ¼ jλiξ−I þ jηiξþI;

jλ̃I� ¼ jλ̃�ξþI þ jη̃�ξ−I; ðB1Þ

where

ξþI ¼
�

0

−1

�
; ξ−I ¼

�
1

0

�
: ðB2Þ

The SUð2Þ little group indices can be lowered with the
antisymmetric tensor, giving
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ξþI ¼
�
1

0

�
; ξ−I ¼

�
0

1

�
: ðB3Þ

The massless spinors in Eq. (B1) can be read from
Eq. (A1) as follows:

jλi ¼ jp1i; jηi ¼ jp2i;
jλ̃� ¼ jp2�; jη̃� ¼ jp1� ðB4Þ

With this identification we see that, in the high energy
limit, terms containing jηi or jη̃�, i.e., proportional toffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
≃m are subdominant with respect to terms con-

taining jλi and jλ̃�, justifying the results below Eq. (18).

APPENDIX C: CONNECTION WITH THE USUAL
FIELD THEORETICAL DERIVATION

We now explicitly outline how the spinor helicity
variables match into the more common notation in terms
of Dirac spinors. Since we are discussing the interactions
between fermions and vectors, it will be important to have
the explicit expression for the polarization vectors. For a
massive spin-1 particle we have [16]

ϵμðpÞ ¼
hpjσμjp�ffiffiffi

2
p

m
; ðC1Þ

while for massless spin-1 particles we can write [16]

ϵðþÞ
μ ðpÞ ¼ hqjσμjp�ffiffiffi

2
p hpqi ; ϵð−Þμ ðpÞ ¼ hpjσμjq�ffiffiffi

2
p ½pq� ; ðC2Þ

where q is an arbitrary reference momentum. The spinor
wave functions read [27]

uIðpÞ ¼
� jpIi
jpI�

�
; ūIðpÞ ¼

�
hpIj; ½pIj

�
;

vIðpÞ ¼
� jpIi
−jpI�

�
; v̄IðpÞ ¼

�
−hpIj; ½pIj

�
; ðC3Þ

and we are using the Weyl representation of the Dirac
matrices.
For the monopole interactions of massive particles we

obtain

v̄2γμPLu1ϵμðp3Þ ¼ ½2jσ̄μj1i h3jσμj3�ffiffiffi
2

p
m3

¼ −
ffiffiffi
2

p h13i½23�
m3

;

v̄2γμPRu1ϵμðp3Þ ¼ −½1jσ̄μj2i h3jσμj3�ffiffiffi
2

p
m3

¼
ffiffiffi
2

p h23i½13�
m3

;

ðC4Þ

where we have used the identity σ̄μ _ββσμα _α ¼ 2δβαδ
_β
_α. As

observed around Eq. (3), choosing the coefficient to be
inversely proportional to the vector mass ensures the con-
sistency of the massless limit. We see here that the same
factor appears from the direct computation of the amplitude.
For dipole interactions we instead obtain

v̄2σμνPLu1ðp3μϵνð3Þ − p3νϵμð3ÞÞ ¼ −2
ffiffiffi
2

p
h13ih23i;

v̄2σμνPRu1ðp3μϵνð3Þ − p3νϵμð3ÞÞ ¼ −2
ffiffiffi
2

p
½13�½23�: ðC5Þ
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