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Abstract
We establish the Lipschitz regularity of the a priori bounded local minimizers of integral
functionals with non autonomous energy densities satisfying non standard growth conditions
under a bound on the gap between the growth and the ellipticity exponent that is reminiscent
of the sharp bound already found in [16].
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1 Introduction

Since the pioneering papers by P. Marcellini [27, 28], the Lipschitz regularity for minimizers
of integral functionals with non-standard growth and for weak solutions for the associated
Dirichlet problem to the elliptic system has attracted a lot of attention (see e.g. [2, 5, 13, 14,
17–20, 30, 31]).

One of the main motivations comes from the applications, for instance to the theory of
elasticity for strongly anisotropic materials (see Zhikov [34], and also [35]); to this aim, in
recent years the integral of the Calculus of Variations

∫
�

|Du|p + a(x)|Du|q dx, (1.1)

where the function a = a(x) is Hölder continuous with exponent α and where 1 < p < q,

has been widely investigated from the point of view of the regularity of local minimizers.
In particular M. Colombo and G. Mingione, ([8]), studied the regularity of minimizers for
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integrals of the type (1.1) under the sharp gap

q

p
< 1 + α

n
. (1.2)

On the other hand, M. Eleuteri, P. Marcellini and E. Mascolo ([17]) investigated more
general integrals of the Calculus of Variations of the type

F(u) =
∫

�

g(x, |Du|) dx (1.3)

where
g(x, |Du|) = |Du|p + a(x) |Du|q (1.4)

is just a model example, without therefore assuming the precise structure condition for the
integrand as in (1.1); they proved the local Lipschitz continuity of the local minimizers and
to the solutions to the corresponding elliptic systems assuming a W1,r regularity on the
coefficients and under the gap

q

p
< 1 + 1

n
− 1

r
. (1.5)

In the model case (1.4), the above condition Eq. 1.5 is equivalent to (1.2) by the Sobolev
embedding with

α = 1 − n

r
. (1.6)

On the other hand, it is well known that, when dealing with a priori bounded minimizers
of functionals with non standard growth, the regularity can be obtained under a bound on
the gap independent of the dimension n ([1, 3, 6, 7, 12, 21, 22, 26]), see also [29] in the
case of functionals with quasi isotropic (p, q)−growth. In particular, for the double phase
functional, in [9], the authors were able to prove that the a priori bounded local minimizers
of integral functionals of kind Eq. 1.1 are C1,β -regular provided the sharp bound

q ≤ p + α (1.7)

holds.
It is natural to ask if the same phenomenon persists when the Lipschitz regularity of

more general functionals of kind Eq. 1.3 is investigated under an analogous a priori sharp
bound on the gap between the exponents p and q. The main motivation comes from the
fact that there are several interesting examples of functionals with non-standard growth and
with Uhlenbeck structure that are not covered by the double-phase functional Eq. 1.1 or
Orlicz-type functionals such as g(t) = t p log(1 + t); for instance we refer to Remark 3.3 in
[4] where an example of an integrand function exhibiting p, q−growth but not satisfying a
�2−condition is presented.

Our paper aims to answer this open question, by studying the local Lipschitz continuity
of the a priori bounded solutions to a class of variational problems of the form

min
z∈W1,p

loc (�;RN )

∫
�

F(x, Dz) dx, (1.8)

where � is a bounded open set of Rn , n ≥ 2.
We shall consider Carathéodory integrands F such that ξ �→ F(x, ξ) is C2 and there exists
f : � ×R

nN �→ [0,+∞) such that F(x, ξ) = f (x, |ξ |). Such an assumption simplifies the
approximation procedure that, even in the scalar case, can be quite involved (see for instance
[18]).
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We shall assume the following set of conditions:

�(1 + |ξ |2) p
2 ≤ F(x, ξ) ≤ L(1 + |ξ |2) q

2 (F1)

ν(1 + |ξ |2) p−2
2 |λ|2 ≤

∑
i,�,α,β

F
ξα

i ξ
β
�

(x, ξ)λα
i λ

β
� (F2)

|F
ξα

i ξ
β
�

(x, ξ)| ≤ L̃(1 + |ξ |2) q−2
2 (F3)

|Fxξ (x, ξ)| ≤ h(x)(1 + |ξ |2)
q−1
2 (F4)

for almost all x ∈ �, and all ξ, λ ∈ R
nN , ξ = ξα

i , λ = λ
β
� , i, � = 1, . . . , n, α, β = 1, . . . , N ,

where 2 ≤ p ≤ q and 0 ≤ ν ≤ L̃ are fixed constants, and h(x) ∈ Lr
loc(�) is a fixed non

negative function.
Before stating our main result, we recall the definition of local minimizer

Definition 1.1 A mapping u ∈ W1,1
loc (�,RN ) is a local minimizer of the integral functional

(1.8) if F(x, Du) ∈ L1
loc(�) and∫
suppϕ

F(x, Du) dx ≤
∫
suppϕ

F(x, Du + Dϕ) dx (1.9)

for any ϕ ∈ C∞
0 (�,RN ).

The main result reads as follows.

Theorem 1.2 Let u ∈ L∞
loc(�;RN ) ∩ W1,p

loc (�;RN ) be a local minimizer of the functional
Eq. 1.8 under the assumptions (F1)–(F4). Assume moreover that

r > max{n, p + 2} (1.10)

and

q < p + 1 − max

{
n

r
,

p + 2

r

}
. (1.11)

Then u is locally Lipschitz continuous and the following estimate holds for any ball BR0 � �

||Du||
L∞

(
B R0

2
;RnN

) ≤ C
(
1 + ||u||∞L (BR0 ;RN )

)χ̂

,

with C ≡ C(n, N , ν, L̃, ||h||Lr (�), R0) and with a positive exponent χ̂ = χ̂(p, q, r , n).

We observe that condition (1.11) not only reduces to (1.7) under the Sobolev embedding with
Eq. 1.6 for p < n − 2, but also includes the case p < n < p + 2 : indeed the a priori higher
integrability Lp+2 reveals to be crucial in order to weaken the assumption on the coefficients
in the non-autonomous case.

The proof of this result goes along several steps. The first step is devoted to the construction
of the approximating problems in Sect. 3.2 based on the approximation lemma stated in Sect.
3.1; the main feature here is that the approximating local minimizers have norm in a suitable
Lebesgue space which is uniformly bounded by the L∞ norm of the local minimizer u. This
procedure, inspired by [6] and already used in a similar form in [23], is one of the main
and delicate points of our arguments. Indeed, in the general vectorial setting, the a priori
boundedness of the minimizer of the original functional does not imply the boundedness
of the approximating minimizers. However, this construction complicates the form of the
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integrand function of the approximating functionals and, despite they satisfy standard growth
conditionswith respect to the gradient variable, the growthwith respect to the u variable in our
energy density yields the necessity to establish the Lipschitz regularity of the approximating
minimizers in Sect. 3.3; the proof of this result relies on a classical Moser iteration argument
and makes use of a preliminary higher differentiability and higher integrability result proven
in [23]. The next step aims to prove, in Sect. 3.4, a second order Caccioppoli type inequality
for the approximating minimizers; the main point here is that we are going to establish it
with constants independent of the approximation parameters. In a further step, in Sect. 4, by
using a Gagliardo-Nirenberg type inequality ([6]), we establish a uniform higher integrability
result for the approximating minimizers, with constants independent of the parameter of the
approximation. Finally we are ready to prove in Sect. 5 the main result of the paper, that will
be divided in two steps. In the first one we establish an uniform a priori estimate for the L∞
norm of the gradient of the minimizers of the approximating functionals while, in the second,
we show that these estimates are preserved in passing to the limit.

We conclude by mentioning that, as a consequence of the Lipschitz regularity of the local
minimizers, we are also able to obtain a second order regularity result. More precisely, we
have the following:

Theorem 1.3 Let u ∈ L∞
loc(�;RN ) ∩ W1,p

loc (�;RN ) be a local minimizer of the functional
Eq. 1.8 under the assumptions (F1)–(F4). Assume moreover that Eq. 1.10 and (1.11) are in
force. Then u ∈ W 2,2

loc (�;RN ) and the following estimate holds for any ball BR0 � �

||D2u||
L2

(
B R0

2
;Rn2N

) ≤ C
(
1 + ||u||∞L (BR0 ;RN )

)χ̂

with C ≡ C(n, N , ν, L̃, ||h||Lr (�), R0) and with a positive exponent χ̂ = χ̂(p, q, r , n).

2 Preliminary

In what follows, we shall denote by C a general positive constant that may vary on different
occasions, even within the same line of estimates. Relevant dependencies will be suitably
emphasized using parentheses or subscripts. The symbol B(x, r) = Br (x) = {y ∈ R

n :
|y − x | < r} will denote the ball centered at x of radius r .

We recall the following well known iteration lemma, whose proof can be found, e.g. in
[24, Lemma 6.1, p.191].

Lemma 2.1 For 0 < R1 < R2, consider a bounded function f : [R1, R2] → [0,∞) with

f (r1) ≤ ϑ f (r2) + A

(r2 − r1)α
+ B

(r2 − r1)β
+ C for all R1 < r1 < r2 < R2,

where A, B, C, and α, β denote nonnegative constants and ϑ ∈ (0, 1). Then we have

f (R1) ≤ c(α, ϑ)

(
A

(R2 − R1)α
+ B

(R2 − R1)β
+ C

)
.
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3 The approximation

3.1 An Approximation Lemma

In this subsection we will state a Lemma that will be the main tool in the approximation
procedure. For the proof we refer to Proposition 4.1 in [11] ( see also [10, Lemma 4.1] and
the recent [15, Theorem 5.1]).

Lemma 3.1 Let F : �×R
nN → [0,+∞) be a Carathéodory function satisfying assumptions

(F1)–(F4). Then there exists a sequence of Carathéodory functions F j : � × R
nN →

[0,+∞), monotonically convergent to F, such that the following properties hold for a.e.
x ∈ � and for every ξ ∈ R

nN :

F j (x, ξ) ≤ F j+1(x, ξ) ≤ F(x, ξ) ∀ j ∈ N (3.1){
K0(|ξ |p − 1) ≤ F j (x, ξ) ≤ L(1 + |ξ |)q

F j (x, ξ) ≤ K1( j)(1 + |ξ |)p,
(3.2)

with positive constants K0 = K0(�) and K1( j). In addition for every ξ ∈ R
nN , there hold

F j (x, ξ) = F̃ j (x, |ξ |), t �→ F̃ j (x, t) nondecreasing, (3.3)
∑

i,�,α,β

F j

ξα
i ξ

β
�

(x, ξ)λα
i λ

β
� ≥ ν(1 + |ξ |2) p−2

2 |λ|2 ∀λ, ξ ∈ R
nN , (3.4)

with ν = ν(ν, p) > 0. We also have
{

|F j
ξξ (x, ξ)| ≤ C( j)(1 + |ξ |2) p−2

2

|F j
ξξ (x, ξ)| ≤ C(L̃)(1 + |ξ |2) q−2

2 .
(3.5)

Moreover, the vector field x �→ F j
ξ (x, ξ) is weakly differentiable and, for every ξ ∈ R

nN ,

{
|F j

xξ (x, ξ)| ≤ C( j)h(x)(1 + |ξ |2) p−1
2

|F j
xξ (x, ξ)| ≤ Ch(x)(1 + |ξ |2) q−1

2 .
(3.6)

3.2 The approximating problems

Here we present the construction of the approximating problems that is inspired by the one in
[6] and whose main feature is that the sequence of the approximating minimizers has norm
in a suitable Lebesgue space uniformly bounded by the L∞ norm of the minimizer u.

Fix a compact set �′ � � and a real number a ≥ ||u||L∞(�′;RN ). For m ∈ N, let
u j ∈ W1,p(�′;RN ) ∩ L2m(�′;RN ) be a minimizer to the functional

F j (v,�′) =
∫

�′

(
F j (x, Dv) + (|v|2 − a2)m

+
)

dx (3.7)

under the boundary condition
u j = u on ∂�′,

and where F j is the sequence of functions obtained applying Lemma 3.1 to the integrand F
of the functional at (1.8).
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The existence of u j is easily established by the direct methods of the Calculus of Variation.
We shall need the following

Lemma 3.2 As j → +∞, we have that∫
�′

((|u j | − a
)2m
+

)
dx → 0,

∫
�′

F j (x, Du j ) dx →
∫

�′
F(x, Du) dx .

and

Du j → Du strongly in Lp(�′;RnN ).

Proof By the minimality of u j , using u as test function in the minimality inequality at (1.9),
we get ∫

�′

(
F j (x, Du j ) + (|u j |2 − a2)m

+
)

dx ≤
∫

�′
F j (x, Du) dx, (3.8)

since |u| ≤ ||u||L∞(�′;RN ) ≤ a a.e. in �′. Then, by virtue of the first inequality in (3.2), we
have that

K0

∫
�′

(|Du j |p − 1) dx ≤
∫

�′

(
F j (x, Du j ) + (|u j |2 − a2)m

+
)

dx

≤
∫

�′
F j (x, Du) dx ≤

∫
�′

F(x, Du) dx, (3.9)

where the last inequality is due to the monotonicity of the sequence F j given by (3.1). Hence
the sequence (Du j ) j is bounded in Lp(�′;RnN ) and there exists w ∈ W1,p(�′;RN ) such
that

u j⇀w weakly in W1,p(�′;RN ) as j → +∞.

Passing to the limit as j → +∞ in (3.8), using the last inequality in (3.9), we also have that

lim sup
j→+∞

∫
�′

(
F j (x, Du j ) + (|u j |2 − a2)m

+
)

dx ≤
∫

�′
F(x, Du) dx . (3.10)

On the other hand, for every fixed j0 ∈ N, the convexity of ξ → F j0(x, ξ), by lower
semicontinuity, implies∫

�′
F j0(x, Dw) dx ≤ lim inf

j→+∞

∫
�′

F j0(x, Du j ) dx

≤ lim inf
j→+∞

∫
�′

F j (x, Du j ) dx

≤ lim inf
j→+∞

∫
�′

(
F j (x, Du j ) + (|u j |2 − a2)m

+
)

dx

≤
∫

�′
F(x, Du) dx, (3.11)

where we used again the monotonocity of the sequence F j and (3.10). Taking the limit as
j0 → ∞ in the previous estimate, using the monotone convergence Theorem, we obtain∫

�′
F(x, Dw) dx = lim inf

j0→+∞

∫
�′

F j0(x, Dw) dx

≤
∫

�′
F(x, Du) dx ≤

∫
�′

F(x, Dw) dx, (3.12)
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by the minimality of u and since w = u on ∂�′. This, by the strict convexity of F , yields
that w ≡ u in �′. Hence, we conclude that

u j⇀u weakly in W1,p(�′;RN ).

Using (3.12) in (3.11), we have in particular that

lim
j→+∞

∫
�′

(|u j |2 − a2)m
+ dx = 0 (3.13)

which in turn implies

sup
j∈N

∫
�′

|u j |2m dx ≤ 2m(1 + |�′|a2m) (3.14)

and also

lim
j→+∞

∫
�′

F j (x, Du j ) dx =
∫

�′
F(x, Du) dx, (3.15)

i.e. the first conclusion of the Lemma. We also record that, by virtue of (3.4), we have

ν̄

∫
�′

(1 + |Du|2 + |Du j |2)
p−2
2 |Du − Du j |2 dx

≤
∫

�′

(
F j (x, Du) − F j (x, Du j ) + 〈Dξ F j (x, Du j ), Du j − Du〉

)
dx .

Since the Euler Lagrange system of the functional F j reads as∫
�′

〈Dξ F j (x, Du j ), Dϕ〉 dx + 2m
∫

�′
(|u j |2 − a2)m−1u j · ϕ dx = 0

for all ϕ = (ϕα)α=1,...,N ∈ C1
0(�

′,RN ), testing it with ϕ = u − u j , which is legitimate by
density, we get

ν̄

∫
�′

(1 + |Du|2 + |Du j |2)
p−2
2 |Du − Du j |2 dx

≤
∫

�′

(
F j (x, Du) − F j (x, Du j ) + 〈Dξ F j (x, Du j ), Du j − Du〉

)
dx

=
∫

�′

(
F j (x, Du) − F j (x, Du j )

)
dx − 2m

∫
�′

(|u j |2 − a2)m−1u j (u − u j ) dx

≤
∫

�′

(
F(x, Du) − F j (x, Du j )

)
dx − 2m

∫
�′

(|u j |2 − a2)m−1u j (u − u j ) dx .

Therefore, by (3.13), (3.14) and (3.15), taking the limit as j → +∞ in previous inequality,
we conclude that

lim sup
j→+∞

∫
�′

(1 + |Du|2 + |Du j |2)
p−2
2 |Du − Du j |2 dx = 0

that is
u j → u strongly in W1,p(�′;RN ) (3.16)

which concludes the proof. ��
The main tool in the proof of our main result is the following Gagliardo–Nirenberg type

inequality that we state as a lemma and whose proof can be found in the Appendix A of [6]
(see also [23]).
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Lemma 3.3 For η ∈ C1
c(�

′) with η ≥ 0 and C2 maps v : �′ → R
N we have

∫
�′

η2|Dv| m
m+1 (p+2) dx ≤ (p + 2)2

(∫
�′

η2|v|2m dx

) 1
m+1

×
[(∫

�′
η2|Dη|2|Dv|p dx

) m
m+1 + nN

(∫
�′

η2|Dv|p−2|D2v|2 dx

) m
m+1

]

where p ∈ (1,∞) and m > 1.

We conclude this subsection with a preliminary higher differentiability and a higher inte-
grability result, that will be useful in the sequel.

Theorem 3.4 Let u j ∈ W1,p(�′;RN ) ∩ L2m(�′;RN ) be a local minimizer of F j (u,�′).
Then

(1 + |Du j |2)
p−2
4 |Du j | ∈ W1,2

loc (�
′) and |Du j | ∈ L

m
m+1 (p+2)
loc (�′).

For the proof we refer to [23].

3.3 The Lipschitz continuity of the approximatingminimizers

Here, we establish the Lipschitz regularity of the approximatingminimizers. Even tough such
regularity is well known for minimizers of integral functionals satisfying standard growth
conditions with respect to the gradient variable, the growth with respect to the u variable in
our energy density doesn’t seem to fit with the available literature. The proof, however, relies
on the very classical Moser iteration argument. More precisely, we have the following

Theorem 3.5 Let u j ∈ W1,p(�′;RN )∩L2m(�′;RN ) be a local minimizer of the functional

(3.7). Then u j ∈ W1,∞
loc (�′;RN ) with the estimate

||Du j ||L∞(BR ;RN ) ≤ M j

for every ball BR � �′ with a constant M j depending on j .

Proof Testing the Euler–Lagrange system of the functional F j (v,�)with the functionψα =
Dxs ϕ

α with s ∈ {1, . . . , n}, α ∈ {1, . . . , N } we get

0 =
∫

�′

〈∑
i,α

F j
ξα

i
(x, Du j ), Dxi xs ϕ

α
〉

dx

+2m
∫

�′

∑
α

(|u j |2 − a2)m−1
+ u j

α · Dxs ϕ
α dx,

for every ϕ ∈ C1
0(�

′;RN ). By Theorem 3.4, we have that u j ∈ W2,2
loc (�

′;RN ), therefore
integrating by parts the integrals in previous identity, we get

∫
�′

⎛
⎝ ∑

i,�,α,β

F j

ξα
i ξ

β
�

(x, Du j )Dx�xs (u j
β)ϕα

xi
dx +

∑
i,α

F j
ξα

i xs
(x, Du j )ϕ

α
xi

⎞
⎠ dx

+2m
∫

�′

∑
α

Dxs

((|u j |2 − a2)m−1
+ u j

α
)

ϕα dx = 0, (3.17)
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holds for all s = 1, . . . , n and for all ϕ ∈ C1
0(�

′;RN ). For η ∈ C10(�′) and γ ≥ 0, by density
we can test (3.17) with the function ϕα = η2

(Dku j
)γ

Dxs (u j
α), where we used the notation

Dku j :=
(
1 + min

{|Du j |2, k2
}) 1

2 (3.18)

One can easily check that

ϕα
xi

= 2ηηxi

(Dku j
)γ

Dxs (u j
α)

+η2γ
(Dku j

)γ−2
χ{|Du j |≤k}|Du j |Dxi (|Du j |)Dxs (u

α
j )

+η2
(Dku j

)γ
Dxs xi (u j

α).

Inserting in (3.17) we get:

0 = 2
∫

�

η
(Dku j

)γ ∑
i,�,α,β

F j

ξα
i ξ

β
�

(x, Du j )Dx�xs (u j
β)ηxi Dxs (u j

α) dx

+
∫

�

η2
(Dku j

)γ ∑
i,�,α,β

F j

ξα
i ξ

β
�

(x, Du j )Dx�xs (u j
β)Dxs xi (u j

α) dx

+γ

∫
�

η2
(Dku j

)γ−2
χ{|Du j |≤k}

∑
i,�,α,β

F j

ξα
i ξ

β
�

(x, Du j )Dx�xs (u j
β)

·|Du j |Dxi (|Du j |)Dxs (u j
α) dx

+2
∫

�

η
(Dku j

)γ ∑
i,α

F j
ξi xs

(x, Du j )ηxi Dxs (u j
α) dx

+
∫

�

η2
(Dku j

)γ ∑
i,α

F j
ξα

i xs
(x, Du j )Dxs xi (u j

α) dx

+γ

∫
�

η2
(Dku j

)γ−2
χ{|Du j |≤k}

∑
i,α

F j
ξα

i xs
(x, Du j )

·|Du j |Dxi (|Du j |)Dxs (u j
α) dx

+2m
∫

�′
η2

(Dku j
)γ ∑

α

Dxs

((|u j |2 − a2)m−1
+ u j

α
)

· Dxs (u j
α) dx

=: I1 + I2 + I3 + I4 + I5 + I6 + I7.

Now we sum all the terms in the previous equation with respect to s from 1 to n, and we
still denote for simplicity by I1 − I7 the corresponding integrals. Previous equality yields

I2 + I3 + I7 ≤ |I1| + |I4| + |I5| + |I6|. (3.19)

Let us estimate the term I3. First of all, we have that

F j

ξα
i ξ

β
�

(x, ξ) =
(

F̃ j
t t (x, |ξ |)

|ξ |2 − F̃ j
t (x, |ξ |)

|ξ |3
)

ξα
i ξ

β
� + F̃ j

t (x, |ξ |)
|ξ | δ

ξα
i ξ

β
�

,
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where F̃ j is given by (3.3) of Lemma 3.1. Therefore
∑

i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dxs (u
α
j )Dx�xs (u

β
j )Dxi (|Du j |)|Du j |

=
(

F̃ j
t t (x,|Du j |)
|Du j |2 − F̃ j

t (x,|Du j |)
|Du j |3

) ∑
i,�,α,β,s

Dxi (u
α
j)Dx�

(uβ
j )Dxs (u

α
j )Dx�xs (u

β
j )Dxi (|Du j |)|Du j |

+ F̃ j
t (x, |Du j |)

|Du j |
∑
i,α,s

Dxs (u
α
j )Dxs xi (u

α
j )Dxi (|Du j |)|Du j |

=
(

F̃ j
t t (x, |Du j |)

|Du j |2 − F̃ j
t (x, |Du j |)

|Du j |3
)∑

i,α,s

Dxi (u
α
j )Dxs (u

α
j )Dxi (|Du j |)Dxs (|Du j |)|Du j |2

+F̃ j
t (x, |Du j |)|Du j |

∑
i

[Dxi (|Du j |)]2

=
(

F̃ j
t t (x, |Du j |) − F̃ j

t (x, |Du j |)
|Du j |

)∑
α

[∑
i

Dxi (u
α
j )Dxi (|Du j |)

]2

+ F̃ j
t (x, |Du j |)

|Du j | |Du j |2|D(|Du j |)|2

where we used the fact that

Dxs (|Du j |)|Du j | =
∑
�,β

Dx�xs (u
β
j )Dx�

(uβ
j ).

Now, by Cauchy-Schwarz’ inequality, we have

∑
α

[∑
i

Dxi (u
α
j )Dxi (|Du j |)

]2

≤
∑
i,α

(Dxi (u
α
j ))

2
∑

i

(Dxi (|Du j |))2

≤ |Du j |2 |D(|Du j |)|2

therefore, by using Kato’s inequality

|D(|Du j |)|2 ≤ |D2u j |, (3.20)

we obtain that

I3=γ

∫
�

η2
(Dku j

)γ−2
χ{|Du j |≤k}

∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dx�xs (u j
β)|Du j |Dxi (|Du j |)Dxs (u j

α) dx

≥ γ

∫
�

η2
(Dku j

)γ−2
χ{|Du j |≤k} F̃ j

t t (x, |Du j |)
∑
α

[∑
i

Dxi (u
α
j )Dxi (|Du j |)

]2

≥ 0.

A simple calculation shows that

I7 = 2m
∫

�′
η2

(Dku j
)γ ∑

α,s

(|u j |2 − a2)m−1
+ · |Dxs (u j

α)|2 dx

+ 4m(m − 1)
∫

�′
η2

(Dku j
)γ ∑

α,s

(|u j |2 − a2)m−2
+ |u j

α|2 · |Dxs (u j
α)|2 dx ≥ 0.
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Therefore, estimate (3.19) implies

I2 ≤ |I1| + |I4| + |I5| + |I6|. (3.21)

ByCauchy-Schwarz’ inequality, Young’s inequality and the right inequality in assumption
(F2), we have

|I1| = 2

∣∣∣∣∣∣
∫

�

η
(Dku j

)γ ∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dx�xs (u j
β)ηxi Dxs (u j

α) dx

∣∣∣∣∣∣

≤ 2
∫

�

η
(Dku j

)γ
⎧⎨
⎩

∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )ηxi ηx j Dxs (u j
α)Dxs (u j

β)

⎫⎬
⎭

1/2

×
⎧⎨
⎩

∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dxs xi (u j
α) Dxs x�

(u j
β)

⎫⎬
⎭

1/2

dx

≤ C
∫

�

(Dku j
)γ ∑

i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )ηxi ηx j Dxs (u j
α)Dxs (u j

β) dx

+1

2

∫
�

η2
(Dku j

)γ ∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dxs xi (u j
α) Dxs x�

(u j
β) dx

≤ C( j)
∫

�

|Dη|2 (Dku j
)γ

(1 + |Du j |2)
p
2 dx

+1

2

∫
�

η2
(Dku j

)γ ∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dxs xi (u j
α) Dxs x�

(u j
β) dx, (3.22)

where the last bound is due to the first inequality in (3.5). We can estimate I4 and I5 by
Cauchy-Schwartz’ inequality togetherwith the first inequality at (3.6) andYoung’s inequality,
as follows

|I4| ≤ 2
∫

�

η
(Dku j

)γ ∑
i,α,s

∣∣∣F j
ξα

i xs
(x, Du j )ηxi Dxs (u j

α)

∣∣∣ dx

≤ C( j)
∫

�

ηh(x)
(Dku j

)γ
(1 + |Du j |2)

p−1
2
∑
i,α,s

|ηxi Dxs (u j
α)| dx

≤ C( j)
∫

�

η|Dη|h(x)
(Dku j

)γ
(1 + |Du j |2) p

2 dx

≤ C( j)
∫

�

|Dη|2 (Dku j
)γ

(1 + |Du j |2) p
2 dx (3.23)

+C( j)
∫

�

η2h2(x)
(Dku j

)γ
(1 + |Du j |2)

p
2 dx .

Moreover

|I5| =
∣∣∣∣∣∣
∫
�

η2
(Dku j

)γ ∑
i,α,s

F j
ξα
i xs

(x, Du j )Dxs xi (u j
α) dx

∣∣∣∣∣∣

≤ C( j)
∫
�

η2 h(x)
(Dku j

)γ
(1 + |Du j |2)

p−1
2

∣∣∣∣∣∣
∑
i,α,s

Dxs xi (u j
α)

∣∣∣∣∣∣ dx

≤ C( j)
∫
�

η2h(x)
(Dku j

)γ
(1 + |Du j |2)

p−1
2 |D2u j | dx
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= C( j)
∫
�

[
η2

(Dku j
)γ

(1 + |Du j |2)
p−2
2 |D2u j |2

] 1
2 [

η2h2(x)
(Dku j

)γ
(1 + |Du j |2)

p
2
] 1
2

dx

≤ ε

∫
�

η2
(Dku j

)γ
(1 + |Du j |2)

p−2
2 |D2u j |2 dx (3.24)

+Cε( j)
∫
�

η2h2(x)
(Dku j

)γ
(1 + |Du j |2)

p
2 dx,

where ε > 0 will be chosen later. Finally, similar arguments give

|I6| = γ

∣∣∣∣∣∣
∫

�

η2χ{|Du j |≤k}
(Dku j

)γ−2 |Du j |
∑
i,α,s

F j
ξα

i xs
(x, Du j )Dxi (|Du j |)Dxs (u j

α) dx

∣∣∣∣∣∣
≤ γ

∫
�

η2χ{|Du j |≤k}
(Dku j

)γ−1

·
∑
i,α,s

∣∣∣F j
ξα

i xs
(x, Du j )Dxi (|Du j |)Dxs (u j

α)

∣∣∣ dx

≤ C( j) γ

∫
�

η2χ{|Du j |≤k}
(Dku j

)p−2+γ
h(x)

n∑
i,α,s

Dxi (|Du j |)Dxs (u
α
j ) dx

≤ C( j) γ

∫
�

η2χ{|Du j |≤k}
(Dku j

)p−1+γ |D2u j | h(x) dx

≤ ε

∫
�

η2
(Dku j

)γ |D2u j |2(1 + |Du j |2)
p−2
2 dx (3.25)

+Cε( j)γ 2
∫

�

η2h2(x)
(Dku j

)γ
(1 + |Du j |2) p

2 dx,

where the constants C and Cε( j) are independent of γ and where in the third inequality we
used the Cauchy-Schwarz’ inequality and (3.20). Plugging (3.22), (3.23), (3.24), (3.25) in
(3.21) we obtain∫

�

η2
(Dku j

)γ ∑
i,�,α,β,s

F
ξα

i ξ
β
�

(x, Du j )Dx�xs (u j
β)Dxs xi (u j

α) dx

≤ 1

2

∫
�

η2
(Dku j

)γ ∑
i,�,α,β,s

F
ξα

i ξ
β
�

(x, Du j )Dx�xs (u j
β)Dxs xi (u j

α) dx

+2ε
∫

�

η2
(Dku j

)γ
(1 + |Du j |2) p−2

2 |D2u j |2 dx

+Cε( j)(1 + γ 2)

∫
�

η2h2(x)
(Dku j

)γ
(1 + |Du j |2) p

2 dx

+C( j)
∫

�

|Dη|2 (Dku j
)γ

(1 + |Du j |2) p
2 dx .

Reabsorbing the first integral in the right hand side by the left hand side, we get

1

2

∫
�

η2
(Dku j

)γ ∑
i,�,α,β,s

F
ξα

i ξ
β
�

(x, Du j )Dx�xs (u j
β)Dxs xi (u j

α) dx

≤ 2ε
∫

�

η2
(Dku j

)γ
(1 + |Du j |2) p−2

2 |D2u j |2 dx

+Cε( j)(1 + γ 2)

∫
�

η2h2(x)
(Dku j

)γ
(1 + |Du j |2) p

2 dx
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+C( j)
∫

�

|Dη|2 (Dku j
)γ

(1 + |Du j |2)
p
2 dx .

Using (3.4) in the left hand side of previous estimate, we obtain

ν̄

∫
�

η2
(Dku j

)γ
(1 + |Du j |2)

p−2
2 |D2u j |2 dx

≤ 2ε
∫

�

η2
(Dku j

)γ
(1 + |Du j |2)

p−2
2 |D2u j |2 dx

+Cε( j)(1 + γ 2)

∫
�

η2h2(x)
(Dku j

)γ
(1 + |Du j |2)

p
2 dx

+C( j)
∫

�

|Dη|2 (Dku j
)γ

(1 + |Du j |2)
p
2 dx .

Choosing ε = ν̄
4 , we can reabsorb the first integral in the right hand side by the left hand

side thus getting ∫
�

η2
(Dku j

)γ
(1 + |Du j |2)

p−2
2 |D2u j |2 dx

≤ C( j)(1 + γ 2)

∫
�

η2h2(x)
(Dku j

)γ
(1 + |Du j |2)

p
2 dx

+C( j)
∫

�

|Dη|2 (Dku j
)γ

(1 + |Du j |2)
p
2 dx, (3.26)

with a constantC dependent on j but independent of m and γ . Let 0 < r < R, with BR � �′
and fix η ∈ C1

0 (BR) such that η = 1 on Br and |Dη| ≤ C
R−r so that (3.26) implies

∫
BR

η2
(Dku j

)γ
(1 + |Du j |2)

p−2
2 |D2u j |2 dx

≤ C( j)(1 + γ 2)

∫
BR

h2(x)
(Dku j

)γ
(1 + |Du j |2)

p
2 dx

+ C( j)

(R − r)2

∫
BR

(Dku j
)γ

(1 + |Du j |2) p
2 dx .

The higher integrability result of Theorem 3.4, recalling the assumption h ∈ Lr
loc(�) and

choosing γ such that (p + γ ) r
r−2 < m

m+1 (p + 2), i.e. γ < r−2
r

m
m+1 (p + 2) − p, allows us

to pass to the limit as k → +∞ in both sides of previous estimate thus getting∫
BR

η2(1 + |Du j |2)
p−2+γ

2 |D2u j |2 dx

≤ C( j)(1 + γ 2)

∫
BR

h2(x)(1 + |Du j |2)
p+γ
2 dx

+ C( j)

(R − r)2

∫
BR

(1 + |Du j |2)
p+γ
2 dx,

since the sequenceDku j convergesmonotonically to (1+|Du j |2) 1
2 . Note that, by assumption

(1.10), we may choose m >
r p

2(r−p−2) in order to have γ > 0. Using the Sobolev inequality
in the left hand side of the previous estimate, we get

(∫
BR

η2
∗
(1 + |Du j |2)

(
p+γ
4

)
2∗

dx

) 2
2∗
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≤ C( j)(1 + γ 2)

∫
BR

η2h2(x)(1 + |Du j |2)
p+γ
2 dx

+ C( j)

(R − r)2

∫
�′

(1 + |Du j |2)
p+γ
2 dx, (3.27)

where we used the customary notation

2∗ =
{

2n
n−2 if n > 2

any finite exponent if n = 2.
(3.28)

Since h ∈ Lr
loc(�) with r > n, there exists ϑ ∈ (0, 1) such that

ϑ + 2(1 − ϑ)

2∗ + 2

r
= 1 ⇐⇒ ϑ = 1 − 2

r

2∗

2∗ − 2

and therefore we use the interpolation inequality to estimate the first integral in the right hand
side of (3.27), as follows∫

BR

η2h2(x)(1 + |Du j |2)
p+γ
2 dx

=
∫

BR

η2h2(x)(1 + |Du j |2)
(

p+γ
2

)
ϑ
(1 + |Du j |2)

(
p+γ
2

)
(1−ϑ)

dx

≤
(∫

BR

hr dx

) 2
r
(∫

BR

η2(1 + |Du j |2)
p+γ
2 dx

)ϑ

·
(∫

BR

η2
∗
(1 + |Du j |2)(

p+γ
4 )2∗

dx

) 2(1−ϑ)
2∗

.

Inserting previous inequality in (3.27), by virtue of Young’s inequality we obtain

(∫
BR

η2
∗
(1 + |Du j |2)

(
p+γ
4

)
2∗

dx

) 2
2∗

≤ 1

2

(∫
BR

η2
∗
(1 + |Du j |2)

(
p+γ
4

)
2∗

dx

) 2
2∗

+C( j, ϑ)(1 + γ 2)
1
ϑ

(∫
BR

hr dx

) 2
rϑ
∫

BR

η2(1 + |Du j |2)
p+γ
2 dx

+ C( j)

(R − r)2

∫
�′

(1 + |Du j |2)
p+γ
2 dx .

Reabsorbing the first integral in the right hand side by the left hand side, we get

(∫
BR

η2
∗
(1 + |Du j |2)

(
p+γ
4

)
2∗

dx

) 2
2∗

≤ C( j)(1 + γ 2)
1
ϑ

(∫
BR

hr dx

) 2
rϑ
∫

BR

η2(1 + |Du j |2)
p+γ
2 dx

+ C( j)

(R − r)2

∫
�′

(1 + |Du j |2)
p+γ
2 dx . (3.29)

At this point it is quite standard to start the usual Moser iteration procedure to conclude
with the desired Lipschitz continuity. ��
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3.4 A Caccioppoli type inequality

This subsection is devoted to the proof of a second order Caccioppoli type inequality for the
approximating minimizers. It is worth mentioning that such inequality is available in [23]
and it is also the first part of the proof of Theorem 3.5, but the main point here is that we
are going to establish it with constants independent of the approximation parameters. More
precisely, we have the following

Lemma 3.6 Let u j ∈ W1,p(�′;RN ) ∩ L2m(�′;RN ) be a local minimizer of the functional
F j (u,�′). Then, the following second order Caccioppoli type inequality∫

�′
η2(1 + |Du j |2)

p−2+γ
2 |D2u j |2 dx

≤ C(1 + γ 2)

∫
�′

η2h2(x)(1 + |Du j |2)
2q−p+γ

2 dx

+C
∫

�′
|Dη|2 (1 + |Du j |2)

q+γ
2 dx, (3.30)

holds true for every γ ≥ 0 and for every η ∈ C1
0 (�), with a constant C independent of j .

Proof For η ∈ C10(�′) and γ ≥ 0, by the Lipschitz regularity of u j proven in Theorem 3.5
and the higher differentiability result of Theorem 3.4, we can test (3.17) with the function

ϕα = η2
(
1 + |Du j |2

) γ
2 Dxs (u j

α). Arguing exactly as done in Theorem 3.5 until inequality
(3.21), we arrive at

| Ĩ2| ≤ | Ĩ1| + | Ĩ4| + | Ĩ5| + | Ĩ6|, (3.31)

where

Ĩ2 =
∫

�

η2
(
1 + |Du j |2

) γ
2

∑
i,�,α,β

F j

ξα
i ξ

β
�

(x, Du j )Dx�xs (u j
β)Dxs xi (u j

α) dx

Ĩ1 = 2
∫

�

η(1 + |Du j |2)
γ
2

∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dx�xs (u j
β)ηxi Dxs (u j

α) dx

Ĩ4 = 2
∫

�

η(1 + |Du j |2)
γ
2
∑
i,α,s

F j
ξα

i xs
(x, Du j )ηxi Dxs (u j

α) dx

Ĩ5 =
∫

�

η2(1 + |Du j |2)
γ
2
∑
i,α,s

F j
ξα

i xs
(x, Du j )Dxs xi (u j

α) dx

and

Ĩ6 = γ

∫
�

(1 + |Du j |2)
γ
2 −1

∑
i,α,s

F j
ξα

i xs
(x, Du j )η

2|Du j |Dxi (|Du j |)Dxs (u j
α) dx .

By the Cauchy-Schwartz inequality, Young’s inequality and the second inequality in (3.5),
we have

| Ĩ1| = 2

∣∣∣∣∣∣
∫

�

η(1 + |Du j |2)
γ
2

∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dx�xs (u j
β)ηxi Dxs (u j

α) dx

∣∣∣∣∣∣
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≤ 2
∫

�

η(1 + |Du j |2)
γ
2

⎧⎨
⎩

∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )ηxi ηx j Dxs (u j
α)Dxs (u j

β)

⎫⎬
⎭

1/2

×
⎧⎨
⎩

∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dxs xi (u j
α) Dxs x�

(u j
β)

⎫⎬
⎭

1/2

dx

≤ C
∫

�

(1 + |Du j |2)
γ
2

∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )ηxi ηx j Dxs (u j
α)Dxs (u j

β) dx

+1

2

∫
�

η2(1 + |Du j |2)
γ
2

∑
i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dxs xi (u j
α) Dxs x�

(u j
β) dx

≤ C(L̃)

∫
�

|Dη|2 (1 + |Du j |2)
q+γ
2 dx

+1

2

∫
�

η2(1 + |Du j |2)
γ
2
∑

i,�,α,β,s

F j

ξα
i ξ

β
�

(x, Du j )Dxs xi (u j
α) Dxs x�

(u j
β) dx . (3.32)

We can estimate the fourth and the fifth term by Cauchy-Schwartz’ inequality together
with the second inequality in (3.6), and Young’s inequality, as follows

| Ĩ4| =
∣∣∣∣∣∣2
∫

�

η(1 + |Du j |2)
γ
2
∑
i,α,s

F j
ξα

i xs
(x, Du j )ηxi Dxs (u j

α) dx

∣∣∣∣∣∣
≤ C

∫
�

ηh(x) (1 + |Du j |2)
q−1+γ

2
∑
i,α,s

|ηxi Dxs (u j
α)| dx

≤ C
∫

�

η|Dη||Du j | h(x) (1 + |Du j |2)
q−1+γ

2 dx

≤ C
∫

�

|Dη|2(1 + |Du j |2)
p+γ
2 dx (3.33)

+C
∫

�

η2h2(x)(1 + |Du j |2)
2q−p+γ

2 dx .

Moreover

| Ĩ5| =
∣∣∣∣∣∣
∫

�

η2(1 + |Du j |2)
γ
2
∑
i,α,s

F j
ξα

i xs
(x, Du j )Dxs xi (u j

α) dx

∣∣∣∣∣∣

≤ C
∫

�

η2 h(x)(1 + |Du j |2)
q−1+γ

2

∣∣∣∣∣∣
∑
i,α,s

Dxs xi (u j
α)

∣∣∣∣∣∣ dx

≤ C
∫

�

η2h(x)(1 + |Du j |2)
q−1+γ

2 |D2u j | dx

= C
∫

�

[
η2(1 + |Du j |2)

p−2+γ
2 |D2u j |2

] 1
2
[
η2(1 + |Du j |2)

2q−p+γ
2 h2(x)

] 1
2

dx

≤ ε

∫
�

η2(1 + |Du j |2)
p−2+γ

2 |D2u j |2 dx (3.34)

+Cε

∫
�

η2h2(x)(1 + |Du j |2)
2q−p+γ

2 dx,
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where ε > 0 will be chosen later. Finally, we have

| Ĩ6| = γ

∣∣∣∣∣∣
∫

�

∑
i,α,s

F j
ξα

i xs
(x, Du j )η

2(1 + |Du j |2)
γ
2 −1|Du j |Dxi (|Du j |)Dxs (u j

α) dx

∣∣∣∣∣∣
≤ γ

∫
�

η2(1 + |Du j |2)
γ−1
2

·
∑
i,α,s

∣∣∣F j
ξα

i xs
(x, Du j )Dxi (|Du j |)Dxs (u j

α)

∣∣∣ dx

≤ Cγ

∫
�

η2 h(x) (1 + |Du j |2)
q+γ−2

2

n∑
i,α,s

∣∣∣Dxi (|Du j |)Dxs (u
α
j )

∣∣∣ dx

≤ C γ

∫
�

η2 h(x) (1 + |Du j |2)
q+γ
2 |D2u j |dx

≤ ε

∫
�

η2|D2u j |2(1 + |Du j |2)
p−2+γ

2 dx (3.35)

+Cεγ
2
∫

�

η2h2(x)(1 + |Du j |2)
2q−p+γ

2 dx,

where all the constants C and Cε are independent of γ , of j and m and where in the third
inequality we used Cauchy-Schwarz’ inequality and (3.20). Plugging (3.32), (3.33), (3.34),
(3.35) in (3.31) we obtain∫

�

η2(1 + |Du j |2)
γ
2

∑
i,�,α,β,s

F
ξα

i ξ
β
�

(x, Du j )Dx�xs (u j
β)Dxs xi (u j

α) dx

≤ 1

2

∫
�

η2(1 + |Du j |2)
γ
2

∑
i,�,α,β,s

F
ξα

i ξ
β
�

(x, Du j )Dx�xs (u j
β)Dxs xi (u j

α) dx

+2ε
∫

�

η2(1 + |Du j |2)
p−2+γ

2 |D2u j |2 dx

+Cε(1 + γ 2)

∫
�

η2h2(x)(1 + |Du j |2)
2q−p+γ

2 dx

+Cε

∫
�

|Dη|2 (1 + |Du j |2)
q+γ
2 dx .

Reabsorbing the first integral in the right hand side by the left hand side we get

1

2

∫
�

η2(1 + |Du j |2)
γ
2

∑
i,�,α,β,s

F
ξα

i ξ
β
�

(x, Du j )Dx�xs (u j
β)Dxs xi (u j

α) dx

≤ 2ε
∫

�

η2(1 + |Du j |2)
p−2+γ

2 |D2u j |2 dx

+Cε(1 + γ 2)

∫
�

η2h2(x)(1 + |Du j |2)
2q−p+γ

2 dx

+Cε

∫
�

|Dη|2 (1 + |Du j |2)
q+γ
2 dx .

Using Eq. 3.4 in the left hand side of previous estimate, we obtain

ν̄

∫
�

η2(1 + |Du j |2)
p−2+γ

2 |D2u j |2 dx dx
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≤ 2ε
∫

�

η2(1 + |Du j |2)
p−2+γ

2 |D2u j |2 dx

+Cε(1 + γ 2)

∫
�

η2h2(x)(1 + |Du j |2)
2q−p+γ

2 dx

+Cε

∫
�

|Dη|2 (1 + |Du j |2)
q+γ
2 dx .

Choosing ε = ν̄
4 , we can reabsorb the first integral in the right hand side by the left hand

side thus getting
∫

�

η2(1 + |Du j |2)
p−2+γ

2 |D2u j |2 dx dx

≤ C(1 + γ 2)

∫
�

η2h2(x)(1 + |Du j |2)
2q−p+γ

2 dx

+C
∫

�

|Dη|2 (1 + |Du j |2)
q+γ
2 dx,

with a constant C = C(ν, L̃, n, N , p, q) independent of γ , j and m. This concludes the
proof. ��

4 The higher integrability

Here, we establish an higher integrability result for the approximating minimizers with con-
stants independent of the parameter of the approximation. This is the main point in achieving
the proof of our main result.

Lemma 4.1 Let u j ∈ L2m(�′;RN ) ∩ W1,p(�′;RN ) be a local minimizer of the functional
F j in (3.7). Setting

mr := 2rm

2m + r
.

Then
|Du j | ∈ Lmr (p−q+1)

loc (�)

with the following estimate

∫
Bρ

|Du j |mr (p−q+1) dx ≤ C�
mr
2

R

(R − ρ)r

(∫
BR

|u j |2m dx

)mr
2m + C |BR |, (4.1)

for every balls Bρ ⊂ BR � �′ with a constant C depending at most on K0, ν, n, N , p, q, r
but independent of j and of m and where we set

�R = ‖1 + h‖2Lr (BR).

Proof By Theorem 3.5, we have that u j ∈ W1,∞
loc (�′) and the Caccioppoli inequality at

Lemma 3.6 yields that

(1 + |Du j |2)
p−2
2 +γ |D2u j |2 ∈ L1

loc(�
′),
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for every γ > 0. Hence, we are legitimate to apply Lemma 3.3 with p replaced by p + 2γ ,
thus getting∫

�′
η2|Du j | m

m+1 (p+2+2γ ) dx

≤ (p + 2 + 2γ )2
(∫

�′
η2|u j |2m dx

) 1
m+1

(∫
�′

η2|Dη|2|Du j |p+2γ dx

) m
m+1

+nN (p + 2 + 2γ )2
(∫

�′
η2|u j |2m dx

) 1
m+1

(∫
�′

η2|Du j |p−2+2γ |D2u j |2 dx

) m
m+1

,

for every non negative η ∈ C1
0 (�

′) such that 0 ≤ η ≤ 1. Using Eq. 3.30 to estimate the last
integral in the right hand side of the previous inequality, we obtain∫

�′
η2|Du j | m

m+1 (p+2+2γ ) dx

≤ (p + 2 + 2γ )2
(∫

�′
η2|u j |2m dx

) 1
m+1

(∫
�′

η2|Dη|2|Du j |p+2γ dx

) m
m+1

C(p + 2 + 2γ )4
(∫

�′
η2|u j |2m dx

) 1
m+1

(∫
�′

η2h2(x)(1 + |Du j |)2q−p+2γ dx

) m
m+1

+C(p + 2 + 2γ )2
(∫

�′
η2|u j |2m dx

) 1
m+1

(∫
�′

|Dη|2(1 + |Du j |)q+2γ dx

) m
m+1

,

≤ C(p + 2 + 2γ )4
(∫

�′
η2|u j |2m dx

) 1
m+1

·
(∫

�′

(
η2 + |Dη|2)(1 + h2(x)

)
(1 + |Du j |)2q−p+2γ dx

) m
m+1

where we used that 1 + γ ≤ p + 2 + 2γ and that p + 2γ ≤ q + 2γ ≤ 2q − p + 2γ . By
virtue of the assumption on h(x), we use Hölder’s inequality in the right hand side of the
previous estimate thus getting∫

�′
η2|Du j | m

m+1 (p+2+2γ ) dx

≤ C(p + 2 + 2γ )4
(∫

�′
η2|u j |2m dx

) 1
m+1

(∫
�′

(
η2 + |Dη|2)(1 + h(x)

)r
dx

) 2m
r(m+1)

·
(∫

�′

(
η2 + |Dη|2)(1 + |Du j |)

r(2q−p+2γ )
r−2 dx

)m(r−2)
r(m+1)

(4.2)

Fix concentric balls Bρ ⊂ Bs ⊂ Bt ⊂ BR � �′ and let η ∈ C1
0(Bt ) be a standard cut off

function between Bs and Bt i.e. 0 ≤ η ≤ 1, η = 1 on Bs and |Dη| ≤ c(n)
t−s . Without loss of

generality, we shall suppose that |BR | ≤ 1.
With such a choice, estimate (4.2) yields∫

Bs

|Du j | m
m+1 (p+2+2γ ) dx

≤ C�
m

m+1
R

(t − s)
2m

m+1

(p + 2 + 2γ )4
(∫

Bt

|u j |2m dx

) 1
m+1
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·
(∫

Bt

(1 + |Du j |)
r(2q−p+2γ )

r−2 dx

)m(r−2)
r(m+1)

(4.3)

Note that we used the following

η2 + |Dη|2 ≤ 1 + c

(t − s)2
≤ c′

(t − s)2
,

since t − s ≤ 1.Choose now γ such that

r(2q − p + 2γ )

r − 2
= m

m + 1
(p + 2 + 2γ ) ⇐⇒ 2γ = 2mr(p − q + 1) − 2m(p + 2) − r(2q − p)

2m + r
,

which yields

m

m + 1
(p + 2 + 2γ ) = 2rm

2m + r
(p − q + 1) = mr (p − q + 1)

Note that by virtue of (1.11), we have γ > 0. Indeed

γ > 0 ⇐⇒ 2mr(p − q + 1) − 2m(p + 2) − r(2q − p) > 0

⇐⇒ 2m[r(p − q + 1) − (p + 2)] > (2q − p)r

The last inequality can be satisfied for a suitable m ∈ N if

r(p − q + 1) − (p + 2) > 0 ⇐⇒ q < p + 1 − p + 2

r
,

that holds true by virtue of assumption (1.11).
With this choice of γ , observing that

m + 1

r + 2m
≤ 1

2
, ∀m ∈ N (4.4)

we have that

p + 2 + 2γ = 2r(m + 1)

2m + r
(p − q + 1) ≤ r(p − q + 1),

and so estimate (4.3) becomes∫
Bs

|Du j |mr (p−q+1) dx

≤ C�
m

m+1
R

(t − s)
2m

m+1

(∫
Bt

|u j |2m dx

) 1
m+1

(∫
Bt

(1 + |Du j |)mr (p−q+1) dx

)m(r−2)
r(m+1)

(4.5)

with C = C(K0, ν, n, N , p, q, r) independent of j and m. Using Young’s inequality with
exponents (

r(m + 1)

m(r − 2)
; r(m + 1)

r + 2m

)

in the right hand side of the previous inequality, we obtain∫
Bs

|Du j |mr (p−q+1) dx ≤ 1

2

∫
Bt

(1 + |Du j |)mr (p−q+1) dx

+ 2
m(r−2)
r+2m C

r(m+1)
r+2m �

mr
2

R

(t − s)
2rm

r+2m

(∫
Bt

|u j |2m dx

) r
r+2m
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≤ 1

2

∫
Bt

|Du j |mr (p−q+1) dx + |BR |

+ C�
mr
2

R

(t − s)r

(∫
BR

|u j |2m dx

) r
r+2m

, (4.6)

where, in order to control the constants, we used the bound at (4.4), that C ≥ 1 and that
R − ρ ≤ 1. Since the previous estimate holds true for every ρ < s < t < R, we can apply
Lemma 2.1 thus obtaining

∫
Bρ

|Du j |mr (p−q+1) dx ≤ C�
mr
2

R

(R − ρ)r

(∫
BR

|u j |2m dx

) r
r+2m + c|BR |,

i.e. the conclusion. ��

Corollary 4.2 Let u j ∈ L2m
loc (�;RN ) ∩ W1,p

loc (�;RN ) be a local minimizer of the functional
F j in (3.7). Then

|Du j | ∈ Lmr (p−q+1)
loc (�)

with the following estimate

∫
Bρ

|Du j |mr (p−q+1) dx ≤ C�
mr
2

R

(R − ρ)r

(
1 + a2m) r

r+2m ,

for every balls Bρ ⊂ BR � �′, with R ≤ 1 and with a constant C depending at most on
K0, p, q, r but independent of j and of m.

Proof It suffices to use (3.14) in the right hand side of estimate (4.1). ��

5 Proof of Theorems 1.2 and (1.3)

We are now in position to establish the proof of our main result, that will be divided in two
steps. In the first onewe establish an uniform a priori estimate for the L∞ norm of the gradient
of the minimizers of the approximating functionals while in the second we show that these
estimates are preserved in passing to the limit.

Proof of Theorem 1.2 Let us fix a ball BR0 � � and radii R0
2 < ρ̄ < ρ < t1 < t2 < R <

R̄ < R0 ≤ 1 that will be needed in the three iteration procedures, constituting the essential
steps in our proof.
Step 1. The uniform a priori estimate. Let us choose η ∈ C1

0(Bt2) such that η = 1 on Bt1

and |Dη| ≤ C
t2−t1

, so that (3.30) implies

∫
Bt2

η2(1 + |Du j |2)
p−2
2 +γ |D2u j |2 dx

≤ C
(1 + γ 2)

(t2 − t1)2

∫
Bt2

(1 + h2(x))(1 + |Du j |2)
2q−p
2 +γ dx .
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Using the assumptions on h(x) and Hölder’s inequality, we arrive at∫
Bt2

η2(1 + |Du j |2) p−2
2 +γ |D2u j |2 dx

≤ (1 + γ 2)
C�

(t2 − t1)2

[∫
Bt2

(1 + |Du j |2)
(2γ+2q−p)r

2 dx

] 1
r

(5.1)

for any 0 < t1 < t2, where the constantC is independent of γ, ofm and of ε, where� = �R0 ,
and where we set

r = r

r − 2
.

The Sobolev inequality yields
(∫

Bt2

η2
∗
(1 + |Du j |2)( p

4 + γ
2 )2∗

dx

) 2
2∗

≤ C
∫

Bt2

|D(η(1 + |Du j |2) p
4 + γ

2 )|2 dx

≤ C(1 + γ 2)

∫
Bt2

η2(1 + |Du j |2)
p−2
2 +γ |D2u j |2 dx + C

∫
Bt2

|Dη|2 (1 + |Du j |2)
p
2 +γ dx,

where 2∗ is the exponent defined at (3.28). Using estimate (5.1) to control the first integral
in the right hand side of the previous inequality, we obtain

(∫
Bt2

η2
∗
(1 + |Du j |2)(

p
4 + γ

2 )2∗
dx

) 2
2∗

≤ C
�(1 + γ 4)

(t2 − t1)2

[∫
Bt2

(1 + |Du j |2)
(2γ+2q−p)r

2 dx

] 1
r

+ C

(t2 − t1)2

∫
Bt2

(1 + |Du j |2)
p
2 +γ dx

≤ C
�(1 + γ 4)

(t2 − t1)2

[∫
Bt2

(1 + |Du j |2)
(2γ+2q−p)r

2 dx

] 1
r

, (5.2)

where we used that p ≤ 2q − p and that Lr ↪→ L1.
Now, setting

V (Du j ) = (1 + |Du j |2) 1
2 ,

we can write (5.2) as follows
(∫

BR

η2
∗
V (Du j )

(p+2γ ) 2
∗
2 dx

) 2
2∗

≤ C
�(1 + γ 4)

(R − ρ)2

[∫
BR

V (Du j )
[2(q−p)r+(p+2γ )r] dx

] 1
r

≤ C
�(1 + γ 4)

(R − ρ)2
||V (Du j )||2(q−p)

L∞(BR)

[∫
BR

V (Du j )
(p+2γ )r dx

] 1
r

and so
(∫

Bρ

V (Du j )
[r(p+2γ )] 2∗2r dx

) 2r
2∗
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≤ C

[
�(1 + γ 4)

(R − ρ)2

]r
||V (Du j )||2r(q−p)

L∞(BR)

∫
BR

V (Du j )
(p+2γ )r dx, (5.3)

where we also used that η = 1 on Bρ .
With R0

2 ≤ ρ̄ < R̄ ≤ R0 fixed at the beginning of the section, we define the decreasing
sequence of radii by setting

ρi = ρ̄ + R̄ − ρ̄

2i
.

Let us also define the following increasing sequence of exponents

p0 = pr pi = pi−1
2∗

2r
= p0

(
2∗

2r

)i

Noticing that, since u j ∈ W1,∞
loc (�), estimate (5.3) holds true for γ = 0 and for every

ρ̄ < ρ < R < R̄, we may iterate it on the concentric balls Bρi with exponents pi , thus
obtaining

(∫
Bρi+1

V (Du j )
pi+1 dx

) 1
pi+1

≤
i∏

h=0

(
C

�r p4rh

(ρh − ρh+1)2r
||V (Du j )||2r(q−p)

L∞(BR)

) 1
ph
(∫

Bρ0

V (Du j )
p0 dx

) 1
p0

=
i∏

h=0

(
C
4h+1�r p4rh

(R̄ − ρ̄)2r
||V (Du j )||2r(q−p)

L∞(BR)

) 1
ph
(∫

Bρ0

V (Du j )
p0 dx

) 1
p0

=
i∏

h=0

(
4h+1 p4rh

) 1
ph

i∏
h=0

(
C�r

(R̄ − ρ̄)2r
||V (Du j )||2r(q−p)

L∞(BR)

) 1
ph

·
(∫

Bρ0

V (Du j )
p0dx

) 1
p0

(5.4)

Since

i∏
h=0

(
4h+1 p4rh

) 1
ph = exp

(
i∑

h=0

1

ph
log(4h+1 p4rh )

)
≤ exp

(+∞∑
h=0

1

ph
log(4h+1 p4rh )

)
≤ c(r)

and

i∏
h=0

(
C�r

(R̄ − ρ̄)2r
||V (Du j )||2r(q−p)

L∞(BR)

) 1
ph =

(
C�r

(R̄ − ρ̄)2r
||V (Du j )||2r(q−p)

L∞(BR)

)∑i
h=0

1
ph

≤
(

C�r

(R̄ − ρ̄)2r
||V (Du j )||2r(q−p)

L∞(BR)

)∑+∞
h=0

1
ph =

(
C�r

(R̄ − ρ̄)2r
||V (Du j )||2r(q−p)

L∞(BR)

) 2∗
p0(2∗−2r)

,

we can let i → ∞ in (5.4) thus getting

||V (Du j )||L∞(Bρ̄ ) ≤ C

(
�

(R̄ − ρ̄)2

) 2∗r
p0(2∗−2r) ||V (Du j )||

2·2∗r(q−p)

p0(2∗−2m)

L∞(BR̄)

(∫
BR̄

V (Du j )
p0 dx

) 1
p0

,
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since
∑∞

h=0
1
ph

= 2∗
p0(2∗−2r) . Therefore, using the fact that p0 = pr, we deduce

||V (Du j )||L∞(Bρ̄ ) ≤ C

(
�

(R̄ − ρ̄)2

) 2∗
p(2∗−2r) ||V (Du j )||

2·2∗(q−p)

p(2∗−2r)

L∞(BR̄)

(∫
BR̄

V (Du j )
pr dx

) 1
pr

.

Using the higher integrability at Lemma 4.1 we deduce that

||V (Du j )||L∞(Bρ̄ ) ≤ C

(
�

(R̄ − ρ̄)2

) 2∗
p(2∗−2r) ||V (Du j )||

2·2∗(q−p)

p(2∗−2r)
− 2m

2m+r
r(p−q+1)

pr +1

L∞(BR̄)

·
(∫

BR̄

V (Du j )
2mr
2m+r (p−q+1) dx

) 1
pr

. (5.5)

Now, we note that

2 · 2∗(q − p)

p(2∗ − 2r)
+ 1 − r(p − q + 1)

pr
< 1 ⇐⇒ 2 · 2∗(q − p)

2∗ − 2r
< (r − 2)(p − q + 1)

⇐⇒ (q − p)

[
2 · 2∗

2∗ − 2r
+ r − 2

]
< r − 2 ⇐⇒ q − p <

r − 2
2·2∗
2∗−2r + r − 2

(5.6)

where we used that r = r
r−2 . Since

2 · 2∗

2∗ − 2r
= 2 · 2n

n−2
2n

n−2 − 2r
r−2

=
2n

n−2
n

n−2 − r
r−2

=
2n

n−2
2(r−n)

(n−2)(r−2)

= n(r − 2)

r − n
,

last inequality is equivalent to

q − p <
r − 2

n(r−2)
r−n + r − 2

= 1
n

r−n + 1
= r − n

r
= 1 − n

r

that is of course satisfied under our assumption on the gap at (1.11). Note that in case n = 2,
the bound (1.11) reads as

q < p + 1 − max

{
2

r
,

p + 2

r

}
,

and one can easily check that inequality (5.6) is fulfilled provided that we choose 2∗ < 2.
By the inequality

2 · 2∗(q − p)

p(2∗ − 2r)
<

r(p − q + 1)

pr
,

we can determine m large enough so that

2 · 2∗(q − p)

p(2∗ − 2r)
<

2m

2m + r

r(p − q + 1)

pr
.

Indeed it suffices to choose

m >
2∗rr(q − p)

r(2∗ − 2r)(p − q + 1) − 2∗2r(q − p)
(5.7)

For m satisfying the previous inequality, to simplify the notation we set

χm = 2m

2m + r

r(p − q + 1)

pr
− 2 · 2∗(q − p)

p(2∗ − 2r)
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so that estimate (5.5) can be expressed as

||V (Du j )||L∞(Bρ̄ ) ≤ C

(
�

(R̄ − ρ̄)2

) 2∗
p(2∗−2r) ||V (Du j )||1−χm

L∞(BR̄)

·
(∫

BR̄

V (Du j )
2mr
2m+r (p−q+1) dx

) 1
pr

, (5.8)

with 1 − χm ∈ (0, 1). Hence, we can use Young’s inequality with exponents

1

1 − χm
and

1

χm

in the right hand side of (5.5), we get

||V (Du j )||L∞(Bρ̄ ) ≤ 1

2
||V (Du j )||L∞(BR̄) (5.9)

+
(

C�

(R̄ − ρ̄)2

) 2∗
χm p(2∗−2r)

(∫
BR̄

V (Du j )
2mr
2m+r (p−q+1) dx

) 1
prχm

.

Since the previous estimate holds true for every R0
2 < ρ̄ < R̄ < R0, by Lemma 2.1 we

get

||V (Du j )||
L∞

(
B R0

2

) ≤
(

C�

R2
0

) 2∗
χm p(2∗−2r)

(∫
BR0

V (Du j )
2mr
2m+r (p−q+1) dx

) 1
prχm

and by Corollary 4.2

||V (Du j )||
L∞

(
B R0

2

) ≤ C

(
�

R2
0

) 2∗
χm p(2∗−2r) (�

mr
2

Rr
0

(
1 + a2m) r

r+2m

) 1
prχm

with a constant C independent of m and j .
Step 2. The passage to the limit. Recalling (3.16), taking the limit as j → ∞ in the
previous estimate, we have

||V (Du)||
L∞

(
B R0

2

) ≤ lim inf
j→∞ ||V (Du j )||

L∞
(

B R0
2

)

≤ C

(
�

R2
0

) 2∗
χm p(2∗−2r) (�

mr
2

Rr
0

(
1 + a2m) r

r+2m

) 1
prχm

.

Now, we observe

lim
m→∞ χm = r(p − q + 1)

pr
− 2 · 2∗(q − p)

p(2∗ − 2r)
=: χ1(p, q, r , n)

lim
m→∞

2mr(p − q + 1)

(2m + r)
= r(p − q + 1)
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Since the previous estimate holds for everym large enough to satisfy Eq. 5.7 with constant
independent of m, we now take the limit as m → ∞ thus getting

||V (Du)||
L∞

(
B R0

2

) ≤ C(�, R0)
χ̃ (1 + a)χ̂ (5.10)

with constant � depending on p, q, r , n, ||h||Lr , R0 and positive exponents χ̃ , χ̂ depending
on p, q, r , n. The conclusion follows taking the limit as a → ||u||L∞ . ��

We are now in position, using the Caccioppoli inequality of Lemma 3.6, to give the

Proof of Theorem 1.3 Using 5.10 in the right hand side in (3.30) with γ = 0, we have
∫

B R0
2

|D2u j |2 dx ≤
∫

B R0
2

(1 + |Du j |2) p−2
2 |D2u j |2 dx

≤ C ||V (Du j )||2q−p
L∞(BR0 )

∫
BR0

h2(x) dx + C

R2
0

||V (Du j )||qL∞(BR0 )

≤ C
(
1 + ||u||L∞(BR0 ;RN )

)χ̂

,

where C ≡ C(n, N , ν, L̃, ||h||Lr (�), R0). The conclusion now easily follows taking the

limit as j → +∞ in the previous estimate and recalling that u j → u in W1,p
loc (�;RN ). ��

We conclude mentioning that the same argument leads to the following second order
regularity result

∫
B R0

2

(1 + |Du j |2)
p−2+γ

2 |D2u j |2 dx ≤ Cγ

(
1 + ||u||L∞(BR0 ;RN )

)χγ

,

where now both the constant and the exponent depend on γ .
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