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Abstract: Logic-in-memory (LIM) circuits based on the material implication logic (IMPLY) and
resistive random access memory (RRAM) technologies are a candidate solution for the development
of ultra-low power non-von Neumann computing architectures. Such architectures could enable
the energy-efficient implementation of hardware accelerators for novel edge computing paradigms
such as binarized neural networks (BNNs) which rely on the execution of logic operations. In this
work, we present the multi-input IMPLY operation implemented on a recently developed smart
IMPLY architecture, SIMPLY, which improves the circuit reliability, reduces energy consumption,
and breaks the strict design trade-offs of conventional architectures. We show that the generalization
of the typical logic schemes used in LIM circuits to multi-input operations strongly reduces the
execution time of complex functions needed for BNNs inference tasks (e.g., the 1-bit Full Addition,
XNOR, Popcount). The performance of four different RRAM technologies is compared using circuit
simulations leveraging a physics-based RRAM compact model. The proposed solution approaches
the performance of its CMOS equivalent while bypassing the von Neumann bottleneck, which gives
a huge improvement in bit error rate (by a factor of at least 108) and energy-delay product (projected
up to a factor of 1010).

Keywords: implication logic; logic-in-memory; memristor; Boolean algebra; RRAM; BNN

1. Introduction

With the number of connected devices in use exceeding 17 billion, the volume of
exchanged data rapidly rises. From this standpoint, edge computing ensures a decrease
in the amount of data to be exchanged, relaxing data transfer and power constraints with
obvious benefits for consumer and industrial Internet of Things (IoT), smart cities, artificial
intelligence (AI), machine learning, and 5G industry. Still, its implementation requires
ultra-low power hardware solutions, mainly hindered by the von Neumann bottleneck
(VNB) [1–3], i.e., the slow and energy-hungry data transfer between CPUs and off-chip
non-volatile memories. As suggested in the latest IRDS report [4], logic-in-memory (LIM)
architectures that allow executing Boolean operations directly inside the memory could
circumvent the VNB. Developing LIM hardware accelerators would enable the deployment
at the edge of powerful and data-intensive computing paradigms such as binarized neural
networks (BNNs) [5–7] and hyperdimensional computing [8–10], which strongly rely on
the energy-efficient execution of logic operations. Among LIM solutions [11–17], circuits
based on resistive memory (RRAM) technology and the implication logic (IMPLY) offer
ultra-dense back end of line (BEOL) integration. Currently, the main showstoppers [12,18]
hindering the introduction of RRAM-based LIM circuits are the high energy per operation
(as compared to CMOS gates), the degradation of the logic values of RRAMs during
circuit operation, and the need to apply very precise voltage pulses (mV accuracy may be
required [12,18,19]). Moreover, while in CMOS logic multiple operations can be computed
in parallel on the same inputs, in IMPLY-based LIM circuits operations are carried out
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sequentially. Thus, reducing the execution time is critical. Recently a novel low-power non-
von Neumann LIM solution, called smart-IMPLY (SIMPLY) [20], was introduced and shown
to reduce the energy per operation, to solve the problem of logic state degradation of RRAM
cells, and to eliminate the need for very precise voltage pulses. Moreover, active research
interest has been directed towards the study of circuit implementations of the multi-input
IMPLY operation, as Siemon et al. [21] proposed the three-input IMPLY operation (named
ORNOR by the authors). However, studies on circuit implementations considering the
IMPLY operation generalized to more than three inputs have never been presented.

In this paper, we demonstrate the multi-input IMPLY logic scheme in the framework
of SIMPLY architecture by exploiting multi-input (>2) operations, strongly reducing the
execution time of complex logic functions (e.g., the set of logic operations to implement
BNN inference tasks). We experimentally verify the correct circuit functionality of the
core operation used in SIMPLY on TiN/Ti/HfOx/TiN devices from SEMATECH [22]
(technology 4 in this work, electrical characteristics shown in Figure 1d,h). Then, for
accurate and trustable results circuit simulations are performed using a fully physics-
based RRAM compact model from [23,24] that includes thermal effects (also self-heating),
variability, and multilevel random telegraph noise (RTN). We demonstrate the feasibility
of the proposed architecture by comparing the performance obtained with three RRAM
technologies from the literature (a multi-layer Pt/TiOx/HfOx/TiOx/HfOx/TiN RRAM
referred to in this work as technology 1 [25,26], a TiN/HfO2/Ti/TiN RRAM technology
2 [27,28], and a TiN/HfOx/AlOx/Pt RRAM technology 3 [29]). The results obtained with
all the technologies show how combining the proposed innovations allows realizing LIM
circuits that outperform both existing LIM solutions and CMOS gates performance when
the VNB time and energy overhead is considered, coming close to CMOS gates performance
alone (excluding the VNB). Finally, we benchmark the performance improvement brought
by the introduction of the multi-input IMPLY operation when executing a BNN inference
task with respect to the previous IMPLY-based implementation from [30].
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Figure 1. (a,e) Simulated (lines) and experimental (symbols) results of a multi-layer Pt/TiOx/HfOx/TiOx/HfOx/TiN RRAM
formed at IC = 1 mA, technology 1 in this work. (a) DC I-V curves at different reset voltages. (e) Pulsed reset curves using a
train of 10 ns pulses with different voltages. Data from [25]. (b,f) Simulated (lines) and experimental (symbols) results of a
mono-layer TiN/HfO2/Ti/TiN RRAM formed at IC = 200 µA, technology 2 in this work. (b) DC I-V curves at different
reset voltages. (f) Pulsed reset curves using a train of 1 µs pulses with different voltages. Data from [27]. (c,g) Simulated
(lines) and experimental (symbols) results of a bi-layer TiN/HfOx/AlOx/Pt RRAM formed at IC = 100 µA, technology 3
in this work. (c) DC I-V curve. (g) Pulsed reset curves using a single 50 ns pulse with different voltages. Data from [29].
(d,h) Simulated (lines) and experimental (symbols) results of a TiN/Ti/HfOx/TiN from SEMATECH [22] RRAM formed at
IC = 500 µA, technology 4 in this work. (d) DC I-V curve. (h) Pulsed reset curves using a train of 10 µs pulses with different
voltages. Data collected experimentally.



Micromachines 2021, 12, 1243 3 of 17

2. Materials and Methods
2.1. RRAM Physics-Based Compact Model for Circuit Simulations

To study LIM circuits, physics-based compact models that include device non-idealities,
such as device-to-device and cycle-to-cycle variability, RTN, self-heating, and thermal ef-
fects, represent a very important tool that enables achieving accurate results [18] through
circuit simulations. Neglecting RRAMs nonidealities can easily result in poor circuit de-
signs [12,18,31] with low reliability or circuits that do not work at all. In this work, we use
the Verilog-A RRAM compact model from [23], which is fully physics-based and supported
by the results of advanced physical multi-scale simulations. The total device resistance is
modeled as the sum of a conductive filament (CF) and a dielectric barrier contribution. The
barrier thickness is modeled dynamically with differential equations that reproduce the
device behavior during the reset operation by considering the field-driven oxygen ions
drift and recombination, and during the set operation by considering the field-accelerated
bond breaking and related defect generation [23,24]. Moreover, thermal effects are modeled
dynamically, considering both the thermal conductance and thermal capacitance of the CF
and the barrier, thus enabling accurate predictions also when using very short pulses [18].
The model includes the intrinsic variability of both resistive states and the effects of mul-
tilevel RTN and its statistical variations [24]. In particular, to introduce cycle-to-cycle
variability we add appropriate zero-mean normally distributed random noise sources on
the dielectric barrier thickness during reset, and on the CF cross-section while performing a
set transition [23,24]. The model, for all the four different RRAM technologies [22,25,27,29]
(see Figure 1a–h) explored in this work, correctly reproduces the quasi-static IV, the re-
sponse to fast reset pulses, and the experimental cycle-to-cycle variability using a single
set of parameters per technology (see Figures 1 and 2), thus highlighting the quality of the
modeling approach and avoiding the need to design multiple parameter calibrations to
reproduce the device behavior under different operating conditions. Technology 4 was
experimentally characterized using the Keithley 4200-SCS parameter analyzer.
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Figure 2. Probability plots showing the experimental (cyan and grey bands) and simulated (blue and black squares) cycle to
cycle variability. Cyan and grey areas indicate the range µ± 3σ of the experimental LRS and HRS distributions. For each
technology, the simulations replicate the available experimental conditions, and the reset and set voltages are reported.
Specifically, (a) reports the variability obtained with technology 1 under quasi-static DC conditions (simulation variability
parameters σx = 0.35 nm, σS = 2.7 nm2). Data from [26]; (b) reports the variability obtained with technology 2 under quasi-
static DC conditions and IC = 20 µA, as for this technology experimental variability data [28] are available only at IC = 20 µA
(variability parameters σx = 0.8 nm, σS = 24.9 nm2). The inset shows the experimental (square symbols) and simulated
(lines) DC IV curves, where only kcf (kcf 20µA = kcf 200µA/100), kex (kex 20µA = kex 200µA/10), and S (S20µA = S200µA/10)
parameters were changed to account for the different characteristic of the very narrow CF obtained with such low current
compliance; (c) reports the variability obtained with technology 3 [29] under quasi-static DC conditions (variability
parameters σx = 0.81 nm, σS = 0.7785 nm2); (d) reports the variability experimentally measured on technology 4. HRS
variability data are obtained using 10 µs reset voltage pulses, while LRS data with a quasi-static positive voltage ramp as
this was the only way to provide an accurate current compliance with our test setup. (Variability parameters σx = 0.7 nm,
σS = 0.350 nm2).
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The calibrated compact model was used to perform circuit simulations with the
Cadence Virtuoso® software, to determine the performance and reliability of different
LIM solutions.

2.2. Logic-in-Memory with RRAM Devices and the Material Implication Logic

The material implication logic is a functionally complete logic that can be effectively
implemented with RRAM devices [11]. In fact, RRAMs enable its efficient implementation
using a circuit architecture like the one in Figure 3a. A control logic equipped with analog
tri-state buffers is needed to deliver appropriate voltages at the top electrode (TE) of each
RRAM device of the array, with the devices in the array having their bottom electrodes
(BE) connected to the same resistor RG. Differently from traditional logic gates, in RRAM-
based LIM schemes, the logic values are not encoded as voltages at circuit nodes, but
as nonvolatile resistive states of RRAMs (HRS for logic 0, LRS for logic 1). All possible
logic gates can be defined with two fundamental operations [32,33], namely the IMPLY
(2-input 1-output operation, truth table in Figure 3d) and the FALSE (1-input 1-output
operation always yielding logic 0). The COPY function (realized with IMPLY and FALSE)
allows cascaded operations [12]. FALSE is executed by applying a negative voltage pulse
to the RRAM (i.e., the “classical” reset operation), see Figure 3c. IMPLY between two
logic values (stored in RRAMs P and Q) is executed by simultaneously applying two
different positive voltage pulses at P (VCOND) and Q (VSET), see Figure 3b. The result
is stored in Q, while P must preserve its state. These requirements introduce several
constraints that make the design space for the definition of VSET and VCOND values very
narrow [12,18], requiring a fine control down to the tens of mV, which is hard to achieve
without huge overheads [12,18]. Further, the choice of RG suffers from trade-offs [12].
Moreover, the repeated execution of IMPLY causes state drifts in P and Q, eventually
causing bit corruption, as reported in [12,18]. Upon this, a refresh is needed that requires
moving all data back and forth to a new memory location, wasting energy and time [12,18].
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2.3. The “SIMPLY” Architecture

To overcome the issues of the traditional IMPLY architecture, SIMPLY was introduced
in [20]. SIMPLY is based on the implication logic and originates from the observation that
Q must change its state only when P = Q = 0 (case 1 of the truth table in Figure 3d). SIMPLY
detects this condition by applying a small VREAD voltage pulse (200 mV in this work)
to both P and Q, Figure 4b. The voltage at node N (VN, Figure 4a) is compared against
a threshold (VTH) to determine if P = Q = 0. If so, the control logic which is equipped
with tri-state buffers, as in the IMPLY architecture, pulses VSET on Q, keeping the driver
of P at high impedance; Figure 4b, blue lines. Otherwise, both P and Q are kept at high
impedance; Figure 4b, dashed red lines. The condition P = Q = 0 is easily detectable since
VN is lower in this case than in all other cases, ensuring a sufficient margin (i.e., read



Micromachines 2021, 12, 1243 5 of 17

margin—RM) also when considering RTN and variability, as shown in Figure 4e. Moreover,
the RM increases with VREAD, Figure 4e, which allows trading a higher RM (i.e., lower Bit
Error Rate—BER) for power, thus setting precise parameter tradeoffs. SIMPLY requires
no VCOND and no fine control of the voltage pulses, overcoming the tradeoff between
VSET and VCOND and the need for very precise voltage control. The problem of logic state
degradation is virtually resolved, as only VREAD is applied to the devices that must retain
their logic state. In fact, no degradation is observed up to (at least) 108 cycles, reducing
BER by at least 108 compared to IMPLY, with no energy penalty (see Figure 5). Besides,
SIMPLY needs significantly less energy as, for 3 out of 4 input combinations, only the two
VREAD pulses are delivered instead of the much larger VSET and VCOND pulses, Figure 4b.
To ensure high energy efficiency, we use the low-power and compact comparator design
from [30], implemented in a 45-nm technology [34] (Figure 4d), which consumes 8fJ per
comparison when T is in the range 0 to 85 ◦C and VDD is 2 V. The energy breakdown,
including the comparator contribution, for all input combinations for IMPLY and SIMPLY,
stresses the remarkable performance improvement, as SIMPLY reduces the energy per
operation by 4× on average and up to 57× for the P = 0 Q = 1 input configuration, when
considering technology 3 as an example (see Table 1). Depending on the RRAM technology,
the energy consumption of the FALSE operation may be higher or lower than that of the
IMPLYoperation (see Tables 1 and 2). So, it is important to also reduce the energy of the
FALSE. This can be easily done in the SIMPLY architecture, by preventing the use of the
high |VFALSE| when a device is already in HRS. The state of the device is read using the
same VREAD and comparator threshold used for the IMPLY operation, and the analog
buffers are enabled by considering the inverted output of the comparator, see Figure 4c.
This smart FALSE (sFALSE [30]) operation results in relevant energy savings (see Table 2).
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Figure 4. (a) Schematic of the SIMPLY architecture implemented on a linear RRAM array. (b) Pulses applied to the top
electrodes of P (VP) and Q (VQ) to execute the IMPLY operation in SIMPLY architecture when the comparator detects
P = Q = 0 (blue lines) and in all other cases (dashed red lines). (c) Pulse applied at the top electrode of P to perform
the sFALSE P operation in SIMPLY architecture when P = 0 (dashed blue lines) and P = 1 (red lines). (d) Comparator
implementation from [30] that is used in this work (45 nm technology [34]—MOSFETs W/L are shown). (e) Distribution of
VN (technology 3 [29]) resulting from circuit simulations including variability and RTN (50 trials) when P = Q = 0 (violet
bands) and P 6= Q (grey bands) for a the 2-SIMPLY operation at different VREAD. The read margins (RM—blue arrows) and
associated threshold voltages (VTH—orange stars) for the comparator are evidenced. Black whiskers indicate the extreme
points of the distributions. Red crosses indicate outliers due to RTN. VN when P = Q = 1 is always much higher than in all
other cases (thus is not reported in these box plots).
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Figure 5. Degradation profiles of RP (dashed black line) and RQ (solid black line) over time during
the repeated execution of IMPLY (technology 3 [29]). RP degrades when repeating IMPLY for input
combination P = Q = 0; RQ degrades when repeating IMPLY for input combination P = 1 and Q = 0.
The degradation depends on the initial values of RQ and RP, (worst-cases for RQ and RP shown
here, considering variability and RTN). Bit corruption occurs potentially after only 7 cycles (solid
black line). No noticeable degradation occurs using SIMPLY (only worst-case reported) up to at least
108 cycles, also when performing multi-input operations (i.e., n-SIMPLY when n = 2, 3, 4—dotted red
line, red triangles, and red squares, respectively).

Table 1. Energy consumption comparison of the 2-IMPLY operation in IMPLY and SIM-
PLY architectures with technology 3. The use of SIMPLY enables the use of a lower VSET

voltage (VSET, IMPLY = 3.2 V, VSET, SIMPLY = 3 V). In all cases, 1ns voltage pulses are considered
(t2-IMPLY = 2·tPULSE, t2-SIMPLY = 4·tPULSE), VREAD = 0.2 V, the effects of variability, RTN, and compara-
tor energy overhead are included. Energy consumption data are from [30].

Input
Combination

Energy 2-IMPLY
(Min–Avg–Max)

Energy 2-SIMPLY
(Min–Avg–Max)

2-SIMPLY Average
Energy Improvement

P = 0 Q = 0 533–626–669 fJ 498–532–557 fJ 1.2
P = 0 Q = 1 657–672–691 fJ 11.7–11.8–11.9 fJ 57
P = 1 Q = 0 251–266–287 fJ 11.7–11.8–11.9 fJ 23
P = 1 Q = 1 660–678–699 fJ 12.6–12.6–12.6 fJ 54

Table 2. Energy consumption of FALSE operation in IMPLY and SIMPLY architectures for different
RRAM technologies.

Parameters Technology 1 Technology 2 Technology 3 Technology 4

Energy FALSE
(min-avg-max) * 294–541–953 fJ 160–660–1162 fJ 90–278–492 fJ 463–736–1471 fJ

Energy sFALSE
(min-avg-max) * 17–355–932 fJ 10–406–1224 fJ 9–175–492 fJ 23.8–523–1446 fJ

* The comparator overhead, variability, and RTN are included in the simulations. The average (avg) energy per
operation is determined considering equiprobable initial conditions.

In addition, both the traditional IMPLY and the SIMPLY architectures can be imple-
mented in a crossbar array [12,30]. An example of the SIMPLY crossbar implementation
is shown in Figure 6. FET devices in the array periphery are used to implement RG, to
connect adjacent columns on-demand to realize COPY between any two devices, and to
enable specific columns of the array. The parallel computation of SIMPLY or sFALSE opera-
tions can be implemented by increasing the number of comparators in the architecture as
discussed in [30] and shown in Figure 6.
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3. Results and Discussion
3.1. Multi-Input Operations: “n-SIMPLY”

In traditional static complementary CMOS logic gates, the computation of more com-
plex operations (e.g., large fan-in operations), involves the use of additional transistors,
therefore an increase in the required circuit area and complexity. In IMPLY-based architec-
tures, the computation of complex operations instead translates to an increased number
of steps of IMPLY and FALSE operations. Therefore, in these architectures, minimizing
the number of steps is critical to improve the circuit performance. As suggested by the-
oretical works, the IMPLY logic can be extended to multi-input (>2) operations [32,35]
by simultaneously applying VSET to one device (Q) and VCOND to many devices (P, S,
T, . . . ). It is only recently that the three input IMPLY operation (i.e., equivalent to the
OR(Q, NOR(P, S)) has been demonstrated by performing circuit simulations of a conven-
tional IMPLY architecture using a physics-based compact model calibrated on a Pt/TaOx/Ta
RRAM technology [21] and was shown to reduce the number of steps required for im-
plementing a full adder. However, the reliability of the traditional IMPLY architecture
worsens when the number of inputs of the IMPLY operation is increased [21]. Nevertheless,
generalizing the IMPLY operation to more than three inputs allows further reducing the
number of computing steps, by executing in a single step the more complex function
OR

(
Q, AND

(
P, S, T, . . .

))
= OR(Q, NOR(P, S, T, . . .)), hereafter called n-IMPLY (n be-

ing the number of inputs) generalizing the IMPLY with 2 inputs (henceforth 2-IMPLY).
Just like in 2-IMPLY, also in n-IMPLY Q must change its state to logic 1 only if all inputs
are concurrently 0, that is exactly the condition detected by SIMPLY. So, n-IMPLY can
be implemented in SIMPLY (henceforth n-SIMPLY) by applying VREAD to all n devices
simultaneously with no architectural changes. We simulated the n-SIMPLY (with n = 2, 3, 4)
for the 4 RRAM technologies explored in this work using the Cadence® Virtuoso software
and verified its correct functionality by comparing the circuit parameters and energy per
operation (see Table 3), including variability and RTN. While the minimum and maximum
energy per n-SIMPLY operation do not change considerably for increasing values of n, the
RM decreases when the number of RRAMs read in parallel increases. Nevertheless, the
RM with n = 2, 3, 4 was verified to be always large enough, experimentally on technology
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4 (see Figure 7a), and by using simulations on the other three technologies, as shown in
Figure 7b. Moreover, in all cases, no logic state degradation is observed (see red curves in
Figure 5).

Table 3. Circuit parameters and energy consumption of n-SIMPLY operation (n = 2, 3, 4) with
tpulse = 1 ns.

Parameters Tech. 1 Tech. 2 Tech. 3 Tech. 4

RG 2 kΩ 6 kΩ 10 kΩ 1.5 kΩ
VSET 1.9 V 1.7 V 3 V 1 V

VREAD 0.2 V 0.2 V 0.2 V 0.2 V
VFALSE −1.55 V −2 V −2.8 V −1.54 V

Energy 2-SIMPLY
(min–max) * 29 fJ–2.1 pJ 13 fJ–370 fJ 12 fJ–571 fJ 35.4–462 fJ

Energy 3-SIMPLY
(min–max) * 30 fJ–2.2 pJ 18 fJ–371 fJ 13 fJ–568 fJ 32.6–462 fJ

Energy 4-SIMPLY
(min–max) * 29 fJ–2.2 pJ 12 fJ–380 fJ 12 fJ–567 fJ 38.7–465 fJ

* The comparator overhead, variability, and RTN are included in the simulations by repeating the simulation
50 times for each input configuration.
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3.2. Full Adder Implementation with n-SIMPLY

Exploiting n-SIMPLY, we propose a novel implementation of a LIM 1-bit full adder
(FA). The schematic of the array and the sequence of operations are shown in Figure 8a,d.
We simulated the FA at 0.5 GHz (see the example in Figure 8c) using the 4 RRAM tech-
nologies and compared the total energy consumption (including the comparator and the
effects of variability and RTN) in Figure 8b. Not surprisingly, technology 3 [29], which is
the technology with the lowest current compliance (IC = 100 µA, see Figure 1c), results
in the lowest energy consumption. We considered the worst-case result (i.e., Energy FA
max column in Figure 8b) obtained with technology 3 and benchmarked it in detail against
existing LIM solutions in the literature and its CMOS counterpart in Tables 4 and 5, respec-
tively. Considering the worst-case energy contribution for each 1-bit FA operation results
in an energy consumption overestimation, that, as a first-order approximation, provides
enough room to account for additional energy dissipated by components in the peripheral
circuitry that were not included in the circuit simulations (i.e., the analog tri-state buffers).
The proposed FA outperforms all existing IMPLY-based LIM solutions (both simulation
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and experimental works [12,20,36–38]), in terms of the number of steps (delay) and en-
ergy consumption, using few devices and lowering the energy-delay product (EDP) by
a factor >103, bringing it much closer to the CMOS one. We compare the performance of
the proposed solution vs. CMOS (with and without considering the VNB energy and time
overhead) in Table 5 considering the parallel execution of 512 32-bit FA operations (simple
ripple carry architecture), which entails 4 kB data, which is the common memory page
size [39].
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Figure 8. (a) Schematic of the proposed full adder (FA). A, B, CIN are input devices (bits), X, Y, Z additional RRAMs, S and
COUT output devices (bits). (b) FA total energy consumption for the 4 RRAM technologies used in this work, including
variability and RTN, and considering all possible input bits’ combinations. (c) Resistance of devices A, B, CIN, S, and COUT

during the FA sequence of operations (corresponding steps are reported in (d)) with A = 1, B = 0, CIN= 1 (technology 3).
Input values keep unaltered. (d) List of operations required to compute the complete 1-bit full-addition.

The proposed solution strongly outperforms different CMOS FA solutions [40–42]
(>106 improvement in EDP) when VNB data exchange overhead [39] is included. Projec-
tions show that substantial improvements are obtained by using devices formed at lower
IC [43] and shorter pulses [44], as in Table 5, achieving the performance of CMOS gates
without the huge VNB penalty (up to a ≈2.4 × 1010 improvement in EDP as compared to a
CMOS FA that suffers from VNB).
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Table 4. Detailed comparison among the proposed and existing FAs in the literature. SIMPLY, IMPLY, and Hybrid-CMOS
LiM solutions (both experimental and simulation works).

Author(s)
Type of
Logic

(exp/sim)

Physics-
Based
Model

# Devices Feasible in
Crossbar

Energy *
(Estimated/
Reported)

# Elementary
Steps

Delay *
(Estimated/
Reported)

Retains
Input

Values

Endurance
before

Refresh **

Siemon et al.
[21]

IMPLY
(sim) YES 8 RRAM YES 202 pJ

(estimated) 19 3.61 µs
(estimated) NO ?

Lehtonen
et al. [32]

IMPLY
(sim) NO 8 RRAM YES - 136 - YES ?

Kvatinsky
et al. [12]

IMPLY
(sim) NO 9 RRAM YES - 23 9.1 µs

(estimated) NO
≈300 up to
105 (trades

with energy)

Kvatinsky
et al. [12]

IMPLY
(sim) NO 6 RRAM YES - 29 11.5 µs

(estimated) NO
≈300 up to
105 (trades

with energy)
Cheng et al.

[36]
IMPLY
(exp) - 8 RRAM YES 19.5 pJ

(reported) 27 54 µs
(reported) NO ?

Zanotti et al.
[20]

IMPLY
(sim) YES 9 RRAM YES 6.4 nJ

(reported) 43 345 ns
(reported) YES 67

Zanotti et al.
[20]

IMPLY
(sim) YES 8 RRAM YES 518 pJ 28 560 ns YES ≈ 30

Zanotti et al.
[20]

SIMPLY
(sim) YES 8 RRAM YES 172 pJ 28

920 ns
(reported at

0.05GHz)
YES

>4.5·106

(no energy
trade-off)

This Work n-SIMPLY
(sim) YES 8 RRAM YES 4.2 pJ 11 42 ns YES

>4.5·106

(no energy
trade-off)

Junsangsri
et al. [37]

CMOS
LIM (sim)

YES (FET)
NO

(RRAM)

41 FET +
4 RRAM NO

2.2 fJ
(reported—

excludes
RRAM energy)

-

52 ps
(reported—

excludes
RRAM delay)

YES

?
(Limited by

FET
Reliability)

* Reported means that the value was explicitly reported by the authors in the paper. Estimated means that the corresponding value has been
inferred from data in the paper, although not explicitly reported by the authors. ** This information can be trusted only if a physics-based
model is used.

Table 5. Comparison between the proposed FA and a CMOS FA when executing 512 parallel 32-bit FA operations (4 kB data).

Number of
Computing Devices Energy Delay Energy-Delay

Product (EDP)

EDP Improvement
Normalized

to CMOS w/VNB

CMOS w/ VNB * 163840–458752 FET ≈85.5 µJ ≈ 2.6 ms ≈ 2.2 × 10−7 J·s 1

CMOS w/o VNB ** 163840–458752 FET ≈8.8 × 10−7–107 nJ ≈ 0.2–1.2 × 105 ns ≈ 2.5 × 10−25–1.4 ×
10−11 J·s 1.6 × 104–8.9 × 1017

This Work *** 18944 RRAM ≈68.8 nJ ≈1.3 µs ≈8.9 × 10−14 J·s 2.4 × 106

Projections
IC = 10 nA f = 1 GHz

****
18944 RRAM ≈6.88 pJ ≈ 0.65 µs ≈4.5 × 10−18 J·s 4.9 × 1010

*, **, estimates with (w/) and without (w/o) including the VNB energy and delay overhead for reading and writing 4 kB data [39]. ** CMOS
FA performances were estimated projecting the time and energies for different 1-bit FA schemes and different CMOS technologies (i.e.,
0.18 µm, 45 nm, and 10 nm) from [40–42] combined in a ripple carry configuration. ***, **** Worst-case energy estimates considering
the maximum energy for each single 1-bit FA operation using Technology 3, see Figure 8b. This results in an energy overestimation
that approximately accounts for additional energy overhead possibly introduced by the peripheral circuit (i.e., analog tri-state buffers
contributions). **** Projections using optimized devices with IC = 10 nA [43] and f = 1 GHz [44].

3.3. Binarized Neural Networks Applications

As the adoption of deep learning and neural networks is becoming more and more
pervasive, the demand for energy efficient hardware accelerators is rapidly growing. When
considering neural networks, the most effective way to improve energy efficiency is to avoid
the VNB by performing computations in-memory [45–48]. A common approach exploits
resistive memory crossbar arrays to implement in analog the vector matrix multiplication
in a single step [45]. However, reliability issues affecting RRAM devices, such as the large
cycle-to-cycle variability, limit the number of bits that can be reliably stored in a single
device [49] thus suggesting that low-bit precision neural networks are a more suitable
solution for the current state of the art RRAM devices. The extreme case of low-bit precision
neural networks are BNNs, which have been shown to retain high classification accuracy
despite the use of single-bit neuron weights and activations [5,50,51]. While the in-memory
computation of the analog vector matrix multiplication is extremely attractive [6,7,50,52], it
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has some limitations and tradeoffs. In fact, this approach lacks the possibility to reconfigure
the type of operation to be computed in-memory.

Since neurons in BNNs perform logic operations, the BNNs inference can be imple-
mented in the SIMPLY architecture, as shown in [30] where a BNN was implemented using
the 2-SIMPLY. Compared to an analog implementation, the SIMPLY architecture trades
reconfigurability for larger computation latency. To address the higher latency issue, the
multi-input IMPLY operation can be used as discussed below.

As shown in [30], in BNNs, multiplications between the inputs and each neuron’s
weights are implemented with bitwise XNOR operations, the accumulation as the popcount
operation, and the activation as a comparison with a trained threshold. In addition, batch
normalization layers can be implemented with full adders for which we have already
discussed the optimized n-SIMPLY implementation. The effectiveness of the multi-input
IMPLY operation in reducing the number of computing steps is analyzed for each logic
function since it is strongly dependent on the associated specific sequence of operations.
As shown in Figure 9, by using the 3-SIMPLY the XNOR operation is computed in 5 steps
while using a single additional device, instead of requiring 9 steps and 2 additional support
devices when using only the 2-SIMPLY. For the popcount and activation function opera-
tions, different optimization strategies that minimize the number of computing steps for
different fan-in (i.e., n) of the n-SIMPLY operation can be employed. As shown in [30], the
accumulator can be implemented as a chain of log2(#input bits) 1-bit half adders (HAs)
where the first HA receives in input the bit that needs to be accumulated and its current
output (i.e., S0 in Figure 10a), while the following HAs receive at their inputs the carry-out
from the previous HA and their current output (i.e., as in in Figure 10a but also for more
than two HAs). When accumulating a sequence of bits, all the bits are input sequentially
to the HA representing the LSB. The operations of the subsequent HAs are performed
only after a number of input bits equal to their relative bit position have been summed
(e.g., HA with bit position 3 is activated only after 23 input bits have been summed). Thus,
the length of the HA chain grows as more input bits have been summed. By using the
3-SIMPLY operation, the number of steps for each HA operation is reduced from 13 to
11, see Supplementary Figure S1. An effective strategy that can further reduce the total
number of computing steps involves the use of the n-SIMPLY operation to compute the
equivalent logic function resulting from a sequence of more than one 1-bit HAs. Thereby,
the equivalent carry-out of a sequence of more than 1 HA (output C in Figure 10a), can be
computed in a single step by exploiting the n-SIMPLY operation (with n = #HAs + 2). For
instance, the carry-out can be computed with a 4-SIMPLY or a 5-SIMPLY when a sequence
of 2 or 3 HAs is considered, respectively. Moreover, the number of intermediate computing
steps required to calculate the output bits Si (see Figure 10a) is reduced using the n-SIMPLY,
as shown in Figure 10b and Supplementary Figure S2–S4, where the sequence of operations
computing the result of a sequence of 2, 3, and 4 HAs are reported. Specifically, 19 (see
Figure 10c), 28 (see Supplementary Figure S3), and 37 computing steps (see Supplementary
Figure S4), for a sequence of 2, 3, and 4 HAs, respectively, are required instead of 26, 39,
and 52 steps when using only the 2-SIMPLY. The overall number of computing steps scales
rapidly with the number of output bits, but the use of n-SIMPLY with n up to 3 (i.e., only the
chain of 2 HAs is optimized) provides a saving of around 15% of steps while for n > 3 leads
to a step saving above 25%. However, most of the reduction in the number of computing
steps is achieved when using n-SIMPLY with n up to 4 while the use of n > 4 provides only
a limited improvement, as shown in Figure 10d, that does not justify the risk of reducing
the reliability of the circuit due to the smaller available RMs.
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Figure 10. n-SIMPLY-based accumulator for implementing the popcounting operation used in BNNs. (a) Two serially
connected half-adders (HAs) used to implement the popcount operation. (b) Truth table of the sequence of two serially
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For the activation (i.e., comparison with a trained threshold), we improved the 2-
SIMPLY implementation from [30], by removing unnecessary computing steps. The re-
sulting sequence of computing steps can be built using the flowchart reported in Supple-
mentary Figure S5, which consists in the computation of a bitwise XNOR between the
input and the trained threshold, and additional AND/OR operations. By following this
method, the number of computing steps scales exponentially with the number of com-
pared input bits (i.e., 2-SIMPLYbaseline in Figure 11). Thus, we also consider an alternative
approach in which the number of computing steps scales linearly with the number of
input bits, reducing the number of computing steps when more than 9 bits are compared
(see 2-SIMPLYOpt.WideWords in Figure 11 and Supplementary Figure S6). The same two
approaches can be optimized with the 3-SIMPLY operation (see 3-SIMPLYOnlyXNOROpt.
and 3-SIMPLYOpt.) providing a considerable reduction in the number of computing steps
(see Supplementary Figures S7 and S8). While the use of the 4-SIMPLY operation enables
additional step savings (see 4-SIMPLYOpt. in Figure 11 and Supplementary Figure S9),
n-SIMPLY with larger n values would not provide any additional step reduction.
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Thus, some applications, such as the BNN inference, can largely benefit from a limited
increase in n-SIMPLY operation parallelism. In fact, most of the step reduction for a 1-bit FA,
the bitwise XNOR operation, the popcounting operation, and the activation function are
achieved by using only up to the 4-SIMPLY operation. Further increasing the parallelism
of the n-SIMPLY operation would not provide relevant additional energy savings while
causing a reduction in the available RM, thus potentially reducing the circuit reliability,
and increasing the instruction set complexity.

To benchmark the latency improvement brought by the n-SIMPLY operation when
performing an inference task, we consider the results of the 2-SIMPLY implementation
of a BNN reported in [30], which consists of a single fully connected hidden layer with
1000 neurons performing a handwritten digit recognition task, achieving an accuracy of
91.4%. The use of n-SIMPLY reduces the number of computing steps from 190,657 to 135,539,
therefore resulting in a remarkable 29% latency reduction leading to a 542 µs inference
time at 0.5 GHz, which further highlights the advantages of the SIMPLY architecture as a
solution for ultra-low power devices for edge computing applications.

Additionally, unlike conventional IMPLY architectures, SIMPLY is not constrained
to employ bipolar RRAM devices [18] and can use unipolar RRAM devices as well as
other memory technologies such as phase change memories (PCM) [53], ferroelectric FETs
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(FeFETs) [54], ferroelectric tunnel junctions (FTJs) [54], and virtually any 2- or 3-terminal
non-volatile memory. Therefore, device/circuit co-design strategies can be implemented
easily to further improve performance. For instance, memory technologies with ultra-
low power consumption like FeFETs and FTJs [54] may be targeted to improve power
consumption. Further, devices with higher endurance than most RRAM technologies, such
as PCM [54] and STT-MRAM [53], could be evaluated on the SIMPLY architecture.

4. Conclusions

In this work, we presented the advantages of the multi-input IMPLY operation per-
formed on SIMPLY (n-SIMPLY), a new LIM edge computing architecture that overcomes all
the relevant issues of traditional IMPLY solutions. The advantages of multi-input SIMPLY
operations were analyzed in detail using a comprehensive physics-based RRAM compact
model calibrated on three different RRAM technologies in the literature and validated by
the experimental analysis carried out on fabricated devices. The performance comparison
of a 1-bit full adder based on n-SIMPLY and state-of-the-art LIM alternatives present in
the literature shows that n-SIMPLY allows realizing a LIM solution that approaches the
performance of CMOS gates while bypassing VNB, with a huge improvement in BER (by a
factor of at least 108) and EDP (up to a factor 1010). Moreover, we analyze the advantages
brought by n-SIMPLY on a BNN inference task and show that it enables a latency reduction
of 29% with respect to previous studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12101243/s1, Figure S1: 1-bit HA sequence of computing steps using (a) 2-SIMPLY only
and, (b) up to 3-SIMPLY. The use of 3-SIMPLY reduces the number of computing steps from 13
to 11. Figure S2. 4-SIMPLY-based implementation of two concatenated 1-bit HAs that are used to
implement the popcounting operation for BNNs. (a) Sketch of the two serially connected half-adders
(HAs). (b) Sequence of IMPLY and FALSE operations implementing the result of the operation. The
use of 4-SIMPLY reduces the number of computing steps from 26 (when using only the 2-SIMPLY
Figure S1a) to 19. Figure S3. 5-SIMPLY-based implementation of three concatenated 1-bit HAs that
are used to implement the popcounting operation for BNNs. (a) Sketch of the three serially connected
half-adders (HAs). (b) Sequence of IMPLY and FALSE operations implementing the result of the
operation. The use of 5-SIMPLY reduces the number of computing steps from 39 (when using only
the 2-SIMPLY Figure S1a) to 28. Figure S4. 6-SIMPLY-based implementation of four concatenated
1-bit HAs that are used to implement the popcounting operation for BNNs. (a) Sketch of the four
serially connected half-adders (HAs). (b) Sequence of IMPLY and FALSE operations implementing
the result of the operation. The use of 6-SIMPLY reduces the number of computing steps from 52
(when using only the 2-SIMPLY Figure S1a) to 37. Figure S5. Flowchart building the sequence
of computing steps required for implementing the activation function of a BNN neuron, i.e., the
comparison with a threshold (TH), when using the 2-SIMPLY operation (i.e., 2-SIMPLY-baseline in
Figure 11). The formula for the comparison operation is reported together with the scaling of the
number of computing steps (i.e., #steps) as a function of the number of compared input bits (n).
Figure S6. Flowchart building the sequence of computing steps optimized for large number of input
bits, that is used to implement the activation function of a BNN neuron, i.e., the comparison with a
threshold (TH), when using the 2-SIMPLY operation (i.e., 2-SIMPLY Opt. Wide Words in Figure 11).
The formula for the comparison operation is reported together with the scaling of the number of
computing steps (i.e., #steps) as a function of the number of compared input bits (n). Figure S7.
Flowchart building the sequence of computing steps that is used to implement the activation function
of a BNN neuron, i.e., the comparison with a threshold (TH), when using the 3-SIMPLY operation and
optimizing only the steps required for computing the intermediate XNOR operations (i.e., 3-SIMPLY
Only XNOR in Figure 11). The formula for the comparison operation is reported together with the
scaling of the number of computing steps (i.e., #steps) as a function of the number of compared input
bits (n). Figure S8. Flowchart building the optimized sequence of computing steps that is used to
implement the activation function of a BNN neuron, i.e., the comparison with a threshold (TH), when
using the 3-SIMPLY operation (i.e., 3-SIMPLY Opt. in Figure 11). The formula for the comparison
operation is reported together with the scaling of the number of computing steps (i.e., #steps) as a
function of the number of compared input bits (n). Figure S9. Flowchart building the optimized
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https://www.mdpi.com/article/10.3390/mi12101243/s1


Micromachines 2021, 12, 1243 15 of 17

sequence of computing steps that is used to implement the activation function of a BNN neuron, i.e.,
the comparison with a threshold (TH), when using the 4-SIMPLY operation (i.e., 4-SIMPLY Opt. in
Figure 11). The formula for the comparison operation is reported together with the scaling of the
number of computing steps (i.e., #steps) as a function of the number of compared input bits (n).
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