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Simple Summary: In surgical pathology, the assessment of the presence of lymph node metastases
is a key aspect in terms of the staging and prognosis of cancer patients. This type of work is time-
consuming and prone to error. Owing to digital pathology, artificial intelligence (AI) applied to
whole slide images (WSIs) of lymph nodes can be exploited for the automatic detection of metastatic
cells, so this task can be automated and standardized, increasing diagnostic quality. This manuscript
aims to systematically review the published literature regarding the application of various artificial
intelligence systems for the assessment of metastases in lymph nodes in whole slide images.

Abstract: One of the most relevant prognostic factors in cancer staging is the presence of lymph node
(LN) metastasis. Evaluating lymph nodes for the presence of metastatic cancerous cells can be a
lengthy, monotonous, and error-prone process. Owing to digital pathology, artificial intelligence (AI)
applied to whole slide images (WSIs) of lymph nodes can be exploited for the automatic detection of
metastatic tissue. The aim of this study was to review the literature regarding the implementation
of Al as a tool for the detection of metastases in LNs in WSIs. A systematic literature search was
conducted in PubMed and Embase databases. Studies involving the application of Al techniques to
automatically analyze LN status were included. Of 4584 retrieved articles, 23 were included. Relevant
articles were labeled into three categories based upon the accuracy of Al in evaluating LNs. Published
data overall indicate that the application of Al in detecting LN metastases is promising and can be
proficiently employed in daily pathology practice.

Keywords: digital pathology; artificial intelligence; lymph nodes; metastases

1. Introduction

The incidence of cancer has been increasing worldwide due to a growing and aging
population coupled with the adoption of screening programs [1]. One of the most rele-
vant prognostic factors for cancer patients is the presence of lymph node (LN) metastasis.
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Metastatic disease is an important feature that impacts patient clinical staging and treat-
ment decisions [2]. However, having pathologists manually review LNs microscopically
for the presence of metastatic tumor cells is a tedious, time-consuming, and potentially
error-prone process. Additionally, many hospitals require intraoperative examinations
of sentinel LNs on frozen sections for guiding surgical procedures (Figure 1) [3]. Cur-
rently, pathologists may be required to screen a large number of slides of lymph nodes,
often including additional immunohistochemical (IHC) stains to conventional hematoxylin
and eosin (H&E)-stained sections. As a result, this has increased the workload for surgi-
cal pathologists.

Figure 1. Compared WSIs of frozen (a) and permanent sections (b,c) of a sentinel lymph node
with a micrometastasis from breast carcinoma showing up only at deeper section examination of
formalin-fixed paraffin-embedded material (c). Reproduced with permission from Girolami I et al. [3]
(original magnification x25 (a) and x50 (b)).

Recently, whole slide imaging (WSI) has made digital pathology (DP) more useful
for primary diagnosis [4,5] and non-clinical purposes (e.g., education and research) [6-8].
By transforming glass slides into WSIs, it has now become possible to use computerized
digital image analysis systems including artificial intelligence (Al)-based deep learning
(DL) algorithms to analyze digital slides [9]. DP has demonstrated a strong performance
in various tasks in different fields, including pathology applications, some of which have
already been approved by the Food and Drug Administration (FDA) [10]. In recent years,
many Al-based algorithms have been created for the automatic detection of metastases in
LNs in WSIL. Such novel technology exhibits the potential to reduce pathologists” workload
and increase diagnostic accuracy. The aim of this manuscript is to systematically review the
published literature regarding the application of various Al systems for the assessment of
metastases in LNs in WSIs. In the next sections of the paper, the search strategy, along with
the main characteristics of the retrieved studies, are, respectively, reported in the Material
and Methods and the Results. Hence, the included papers are further analyzed in specific
paragraphs of the Discussion section according to the following fields of application: (i) the
value of Al in lymph node metastases of breast cancer, (ii) the results of public challenges
employing and comparing different Al tools, (iii) the value of Al in lymph node metastases
detection during intraoperative consultation, and (iv) the role of Al in identifying nodal
metastases of tumors apart from breast cancer.

2. Materials and Methods

A systematic review of the literature was conducted, without language restrictions,
according to the guideline for Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) [11] and Meta-Analysis of Observational Studies in Epidemiology
(MOOSE) [12]. The databases, Pubmed and Embase, were systematically searched until
August 2022 to identify any study regarding the application of image analysis and/or Al
for the detection of lymph node metastases. The search strategy comprised a combination

aw /a7

of terms including “image and analysis”, “artificial and intelligence”, “morphometry”, “his-
tomorphometric”, “neural network”, “convolutional”, “computational”, “deep learning”,
“automated”, “machine learning” “lymph node”, “metastasis”, “WSI”, and their spelling

variations. The complete search strategy for these databases is detailed in Table S1. Two
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authors reviewed all article titles and abstracts with the aid of Rayyan QCRI reference
manager web application [13]. Eligibility of published studies was determined indepen-
dently by two reviewers with disagreement resolved through consensus. Full texts of
the articles fulfilling the initial screening criteria were acquired and reviewed. Inclusion
criteria encompassed the application of any kind of Al as a tool for automatic detection of
metastasis in LNs. Only full texts of the articles fulfilling the initial screening criteria were
acquired and reviewed. Any disagreement with respect to inclusion of a particular article
was resolved by consensus.

Studies represented only by abstracts were excluded, as well as reviews and published
letters to the editor with no original data. Two investigators independently extracted data
from the included studies with a standardized form. Data extracted included author(s),
publication year, country of origin for the research, type of metastatic cancer, type of Al
employed, main results, and limitations of the study. As for the performances of the Al
systems, three cut-offs were chosen based on whether the precision, accuracy, sensitivity,
specificity, or area under the curve (AUC) of the receiver operating curves (ROC) was higher
or lower than 95%. This threshold was chosen because it is equivalent to two standard
deviations (o). A shade of green was assigned according to the results achieved by the
algorithm proposed by the authors. As the color gradation intensifies, the accuracy of
Al for the identification of LN metastases increases as follows: (i) light green for every
parameter <95%, (ii) medium colored green for at least one parameter >95%, and (iii) dark
green: all parameters >95%.

3. Results
A flow diagram of the screening and exclusion of all the articles is shown in Figure 2.

Records identified through

T database searching
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=
8
-
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% through other sources (n = 3)
a
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:
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Figure 2. Flow diagram of the screening and exclusion articles according to PRISMA’s guidelines [11].

A total of 4584 records were retrieved and screened, with only 23 suitable articles finally
included in the analysis. An overview of the included studies is provided in Tables 1 and 2.
Publication dates range from 2000 to 2022 and were geographically distributed mainly in
the USA (5/23, 22%) and Europe (5/23, 22%), followed by Taiwan (3/23, 13%), China (3/23,
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13%), Canada (2/23, 9%), Japan (2/23, 9%), India (1/23, 4%), Bangladesh (1/23, 4%), and
South Korea (1/23, 4%).

In more than half of the included studies (16/23, 70%), the investigated LNs were
from breast cancer series. Nineteen (19/23, 83%) of the included studies relied only on
H&E stains, while three (3/23, 13%) of them used only IHC for cytokeratin and one
study coupled H&E with deep UV excitation fluorescence microscopy [14]. As for the
employed Al technology, it is worth mentioning that three studies (3/23, 13%) employed a
combination (ensemble) of DL algorithms, ranging from four to thirty-seven, for improving
the evaluation of breast cancer metastases in LNs. For these reasons, the authors divided so-
called ‘challenge’ studies in a different table (Table 2). DL-based computational pathology
approaches required either manual annotation of regions of interest (ROI) on WSIs in fully
supervised settings or large datasets with slide-level labels in a weakly supervised setting.
Both methods required a training dataset. Nineteen (19/23, 87%) of the included studies
used a fully supervised approach, while the remaining four (4/23, 13%) algorithms utilized
weak supervision [15-18]. Most of the studies (21/23, 91%) had a WSI training set, whereas
two (1/23, 4%) [19,20] studies did not employ a training set as the algorithm was directly
able to recognize neoplastic cells stained by the IHC cytokeratin assay. A WSI validation
(hold-out) data set was available in three of the papers (3/23 13%). The number of slides
used for the training set ranged from 36 to 1963. In the weakly supervised setting, the
number of slides of the training set was much higher than in algorithms that relied upon
pixel-level annotations.

In terms of Al efficiency, 11 (11/20, 55%) algorithms achieved a performance of
>95% across all parameters (precision, accuracy, sensitivity, specificity, or area under the
curve of the receiver operating curves) with all four of the weekly supervised studies
reaching this goal. As for the detection of isolated tumor cells (ITC), the 95% cut-off was
almost never reached; rather, for these settings the AUC rates ranged from 0.575 [21] to
0.9228 [18]. Only one study reached 100% detection rate for ITC, but with the cost of
0% specificity [22]. Among the different employed Al systems, three (3/20, 15%) were
programmed to recognize IHC cytokeratin stains, while the others analyzed only H&E
slides. Twelve of the latter studies (12/20, 60%) used Convolution Neural Network (CNN)
algorithms built on pre-existing platforms, including Googlenet, AlexNet-GRU, Resnet,
Densenet, MobileNetV2, and LYNA, among others, and five (5/20, 25%) were ex novo
designed algorithms. Finally, three of the included studies (3/20, 15%) simultaneously
tested different Al algorithms utilizing the same dataset of H&E stained WSIs [14,23,24].
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Table 1. Characteristics of the included studies.

Author, Year, Country Organ N. of WST * Stain AT Employed Scanner Main Results Limitations
Weaver, 2003, USA BC LNS NA CKAE1-AE3 NA ChromaVision Automated Al-based identification of 19/20 Use of IHC
100 (20+, 80—) Cell Imaging and Medical micrometastatic cases
System
Clarke, 2011, Canada BC LNS 36/ CK 8-18, CAM5.2 CAD algorithm Mirax slide scanner Sensitivity detection of ITCs, micro-, and Use of IHC
102 (43+, 59—) macrometastases of 57.5%, 89.5%, and 100%
Litjens, 2016, Holland BC LNS 98, (48+, 50—) H&E In house CNN 3DHistech Pannoramic 250 Identification of 90% of all micro- and NA
/(42+,56—) Flash II slide scanner macrometastases
Valkonen, 2017, Finland BC LNS 170 (70+, 100) H&E In house CNN # Mean AUC 0.970-0.839 NA
/100 (40+, 60—)
Holten-Rossing, 2017, BC LNS NA CK7, CAM5.2 Visiopharm APP 10104 Hamamatsu Sensitivity and specificity of 100% and NA
Denmark /900(139+, 761—) CKAE1-AE3 NanoZoomer-XR 68.9%
Campanella, 2019, USA BC LNS 9864/NA H&E Resnet 34 Philips IntelliSite Ultra Fast ~ AUC of 0.966 Big amount of data for the
testing set
Liu, 2018, USA BC LNS 270(170—, 110+) H&E LYmph Node Assistant, or 3DHISTECH Pannoramic AUC of 99.6%, no influence by artifacts No ITC slides
/129(49+, 80—) LYNA 250 Flash II; Hamamatsu (overfixation, poor staining, and air
Aperio bubbles)
Steiner, 2018, USA BC LNS 70 (24—, 46+) H&E LYmph Node Assistant, or Leica AT2 system at a Shorter turn-around times with Al for NA
/NA LYNA resolution of 0.25 micrometastases and negative images
pum/ pixel
Matsumoto, 2019, Japan Gastric cancer 56 (18—, 38+) H&E, UV excitation VGG16, INCEPTION V3, Nanozoomer C9600-02, Mean accuracy in fluorescence patch Technology not available
27 (26+,1-) fluorescence Inception ResNet V2 Hamamatsu Photonics classification of 97.4%, 98.2%, and 97.9%, in all laboratories
microscopy respectively.
Pham, 2019, Japan Lung cancer 233,10/106 H&E HALO-based AI (CNN Aperio Scanscope CS2 Sensitivity of 100% Limited setting parameters,
VGG network) digital slide scanner (macro-micro metastases, and ITC) low specificity
Pam, 2020, China ESCC, lung cancer 242(110—,132+) H&E DeepLab model V3 with NA Accuracy of 94% and 90% in ESCC and No data about digital
/795(222+,573—) ResNet-5026 lung cancer acquisition process
Jin, 2020, Canada BC LNS # H&E ConcatNet # AUC of 0.924 NA
Hu, 2021, China Gastric cancer 594/327 H&E Xception, DenseNet-121, Leica Aperio Versa Negative Predictive Value 97.99% in Lot of work to classify at
and fused networks patients given neoadjuvant chemotherapy pixel level
Chuang, 2021, Taiwan Colon rectal cancer 1963, 219/1000 H&E ResNet 50 NanoZoomer S360 with a AUC of 0.99 and 0.99 with macro- and Worse performance with
40x magnification micrometastases ITC (AUC 0.78)
Ming, 2021, USA BC LNS CAMELEON 16-17 dataset =~ H&E Multiple instance learning Average AUC of 0.953 £ 0.029 at x40 Big amount of data for the
magnification training set
Shahab, 2022, BC LNS 270/54 H&E AlexNet-GRU Kaggle dataset Accuracy, precision, sensitivity, and NA
Bangladesh specificity of 99.50%, 98.10%, 98.90%, and
97.50
Tang, 2022, China HNSCC 85 (38+,47—) H&E GoogLeNet, MobileNet-v2, Pannoramic MIDI, Overall accuracy, sensitivity, and specificity NA
/50 (21+,29—) ResNet50, and ResNet101 3DHISTECH Ltd. of 86%, 100%, and 75.9%
Vulli, 2022, India BC LNS CAMELEON 16 dataset H&E Fine-tuned DenseNet 169 # Overall accuracy >97.4% No ITC slides
Khalil, 2022, Taiwan BC LNS 68 (54+, 18—)/26 (124, H&E, CK AE1-AE3 Modified FCN based on 3DHISTECH Pannoramic Including ITC overall precision 89.6%, NA
14-) Shelhamer model recall 83.8%, F1-score 84.4%, and mIoU
74.9%
Huang, 2022, Taiwan Gastric cancer 983,110/201 H&E ResNet50 architecture NanoZoomer S360 digital AUC of 0.9936, improvement of ITC and Big amount of data for the

slide

micrometastasis identification in a shorter
turn-around time (—31.5%, p < 0.001)

training set

* testing/ training. # data from references [25] and [26]. Abbreviations: Al artificial intelligence, BC: breast cancer, NA: not available, LNS: sentinel lymph node, IHC: immunohistochem-
istry, ITC: isolated tumors cells, CNN: convolutional neural network, H&E: hematoxylin and eosin, AUC: Area under the curve mloU: mean intersection over union, ESCC: esophageal
squamous cell carcinoma, HNSCC: head and neck squamous cell carcinoma. Color legend: (i) light green: all parameters <95%, (ii) medium colored green: at least one parameter >95%,

(iii) dark green: all parameters >95%.
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4. Discussion

Al development is progressing rapidly, with the introduction of several models that can
perform various tasks such as the detection and the segmentation of various malignancies
such as breast, pharynx, and thyroid carcinoma [27-30], and non-tumoral specimens,
among others [31,32].

LN metastases are one of the most important prognostic factors for staging malignan-
cies [2]. The histological evaluation of nodal specimens must be performed with care and
precision. However, this work, conducted manually by pathologists, is often a protracted,
tedious, and possibly error-prone process that could benefit from the aid of digital pathol-
ogy and Al-based algorithms designed to assist with screening LNs for metastatic disease.
Indeed, the application of digital techniques to help detect LN metastases may allow pathol-
ogists to reduce turn-around times and increase their diagnostic accuracy. Several Al-based
tools have been developed in the last decades for addressing this relevant issue, which are
further discussed in the following sections, according to their fields of application.

Table 2. Characteristics of the three studies testing several types of algorithms.

Author, Year, Organ N. of WSIs * Stain N. of Algorithms Scanner Limitations
Country
Pannoramic 250 Flash
Bejnordi, 2017, II,3ADHISTECH, NanoZoomer-XR
Holland BCLNS 160—, 110+/80—, 49+ H&E 32 Digital slidescanner C12000-01 NolTC
Hamamatsu Photonics
Bandi, 2018, 3D Histec P250; Philips IntelliSite
Holland BCLNS 899 (558 — 341+)/500 H&E 37 Ultra Fast; Hamamatsu XR C12000 NA
Kim, 2020 South Pannoramic 250 FLASH,
Korea BCLNS 197/100 H&E 4 3DHISTECH Ltd. L

* training /testing. Abbreviations: BC: breast cancer, LNS: sentinel lymph node, ITC: isolated tumors cells, H&E:
hematoxylin and eosin, TL: transfer learning.

4.1. Al and Nodal Breast Cancer Metastases

The majority (70%) of the included studies in our systematic review focused on the
evaluation of sentinel LNs in breast cancer patients. While localized breast cancer has a
five-year survival rate of >95%, the presence of LN metastases drops the survival rate to
85% [33]. Based on the diameter of clusters of tumor cells, metastases can be divided into
three categories: macrometastases, micrometastases, or isolated tumor cells (ITC), which
reflect the “N” classification of breast cancer staging according to the eighth edition of the
TNM staging criteria [2]. The biological significance of an ITC is debated and, according
to the WHO, LN just containing 1TC are currently excluded from the total positive nodal
count for the purposes of the N classification [33].

In 2003, Weaver et al. [19] were among the first investigators to use an automatic
LN metastasis detection system on WSIs. Their system was based on a sensor capable
of recognizing cells stained by IHC for cytokeratins. Those authors showed that their
tool identified 19 of 20 (95.0%; 95% CI 75% to 100%) cases with micrometastases. In the
only case where micrometastases were missed, the cancer cells were placed outside the
physical limits of slide scanning for the instrument. It is also important to note that slides
with excessive stain debris could not be analyzed by the system [19]. The use of IHC
stained WSIs was reported by Clarke et al. [21] and Holten-Rossing et al. [20]. Clarke’s [21]
models reached sensitivities of 57.5% for ITCs (<0.200 mm), 89.5% for micrometastases,
and 100% for larger metastases, while Holten-Rossing and colleagues [20] achieved a
sensitivity of 100% without any false negative. Despite the advantage of this IHC-based
method, it requires longer stain times and is subject to increased complexity. However, this
method could be particularly useful in specific settings such as patients that underwent
neoadjuvant chemotherapy where nodal tissue may have drug-induced changes or an
inflammatory /fibrotic response.
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Undoubtedly, a turning point in the research of Al-based tools for detecting LN
metastases was in 2016, represented by the CAMELYON16 challenge (CancerMetastases in
Lymph Nodes Challenge) [25]. As a result, several improvements in computer program-
ming resulted in Al capable of analyzing large WSI files. Several Al-based algorithms were
developed for detecting metastases of various tumors. Among these was an interesting
algorithm owned by Google called LYNA (LYmph Node Assistant), which highlights areas
suspicious for the presence of metastatic cells. LYNA was reported in two different arti-
cles [34,35]. Steiner et al. [34] designed a fully crossed, intermodal, multi-reader study to
evaluate the performance metrics for both assisted and unassisted reads. The pathologists
in this study interpreted all the images in both modalities, with or without assistance, in two
sessions separated by a wash-out period of at least four weeks. The results stated that all
pathologists performed better than the algorithm alone with regard to both sensitivity and
specificity; however, when they reviewed the images with Al assistance, the average time
of review per image was significantly shorter, especially in negative and micrometastatic
LNs. Of note in the study by Steiner et al. is that the researchers also examined WSI for
ITC. Liu et al. [35] reached similar results with the algorithm that performed best in the
CAMELEON16 challenge (slide level AUC 99.3 vs. 99.4). Relying on the LYNA, through an
exhaustive screen for each slide at a high-power magnification, the authors propose the
application of this Al in screening LNs highlighting ROIs. In a second phase, these areas
could be evaluated by single pathologists, ignoring false positives, and interpreting only
the true positive regions. Another algorithm proposed by Khalil et al. [36] took between
2.4 and 9.6 min per WSI to detect metastasis depending on the amount of the graphics
processing unit (GPU) used.

As highlighted in Table 1, most of the algorithms in our review appeared to struggle
with the task of detecting isolated tumor cells. In order to achieve high sensitivity for
small ITCs, Al-based digital tools likely have to allow for a higher rate of false positive
results. Indeed, examples of misdiagnosed tissue as micrometastasis could be hypertrophic
lymphoid follicles, reactive venules or capillaries, and macrophages. Non-histological
pollutants such as paraffin debris, bubbles, or stains can also be incorrectly interpreted as
a metastasis by the algorithm. Such errors, however, can be addressed by incorporating
oversight of the results by an experienced pathologist. For discrepant cases, additional
Hé&E-stained sections or IHC can be performed. In the future, novel technology such as
non-destructive 3D pathology may be used and coupled with the application of AI [37].

4.2. Public Challenges

One mechanism that has facilitated the development of Al algorithms has been through
public challenges for specific tasks. Since the first challenges in 2007, the number of
challenges per year has steadily been increasing [38]. As noted, a key turning point in this
field occurred due to the CAMELYON16 challenge [25] where humans were compared with
Al models to detect LN metastases by measuring the time required for reaching a correct
diagnosis. The algorithms developed for this public challenge performed better than the
11 involved pathologists in identifying micrometastases. For example, when there was a
time limit imposed for the detection of a tumor cell cluster of a diameter 0.2 to <2 mm, the
AUC for the best algorithm was 0.994 (95% CI, 0.983-0.999) versus a mean AUC for the
pathologists of 0.810 (range, 0.738-0.884; p < 0.001). Nevertheless, the Al models did not
surpass the pathologists if no time restriction was applied (AUC = 0.943). A limitation of
the CAMELYON16 competition was that WSI with ITCs were not provided. Further efforts
were made with the CAMELYON17 challenge [26]. For this subsequent public challenge,
the dataset of slides was divided into 100 artificial patients representing different pN stages
for assessing the ability of the participating algorithms to perform automatic pN staging
and getting closer to a real-world simulation. In general, the Al systems created were not
only able to detect the presence of metastases, but were also able to measure their extent,
including ITC, and hence better determine an accurate pN-stage.
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However, even the best combination of algorithms only correctly classified 77% of
patients at the slide level, where the best ranked team wrongly classified 13,4% of the slides
in the test set. Overall, ten slides containing micrometastases and four slides containing
macrometastases were missed [26], which would of course be unacceptable in clinical
practice. One putative strategy to overcome such a problem would be to increase the
sensitivity of these Al systems, even though this could increase the number of false positives.
These early results imply that perhaps algorithms developed for research purposes to
automatically detect LN metatastatic disease are not yet ready to be fully adopted in
daily practice.

4.3. Intraoperative Consultation

Only a few studies investigated the implementation of Al to assist with frozen sections.
The intraoperative evaluation of a sentinel LN is particularly demanding in this clinical
setting, even for an experienced pathologist, because of artifacts such as tissue compression,
nuclear ice crystals, sections with folds, and stain nuances which differ from formalin-
fixed paraffin-embedded (FFPE) material, overall leading to inferior image quality [39].
Kim et al. [40,41] proposed a transfer learning to effectively train their CNN model for
the identification of metastatic breast cancer cells on frozen tissue section digital slides.
Transfer learning relies on the re-utilization of a model trained on one task to a second,
related task by adding modifications. The authors exploited data of annotated WSIs from
FFPE samples to train CNNs working on frozen sections. The best algorithms detected
metastasis with an AUC of 0.805 and a processing time of 10.8 min. In conventional (human)
frozen section examinations, the time between sample receipt and a rendered pathological
diagnosis typically spans from 20 to 30 min, including gross specimen inspection, tissue
freezing, sectioning, staining, and microscopic examination [42]. For a digital workflow,
the time for scanning frozen sections may vary depending on the size, type of scanning
machine, magnification, and focus z-stacking, but it generally ranges from 3 to 9 min [42,43].
Therefore, the application of an efficient Al system in the intraoperative consultation
setting, despite increased diagnostic times, could be useful in particularly demanding cases,
especially when a second opinion by a remotely located colleague is required. For these
reasons, this technology is likely suitable for use in routine practice.

4.4. Tumors Other Than Breast Cancer

Our review identified seven studies where metastatic disease in LNs was from non-
breast cancer series including gastric cancer (3/7), squamous carcinoma (2/7), colorectal
carcinoma (1), and lung cancer. For gastric cancer metastatic LN series, Matsumoto et al. [14]
combined H&E with deep UV excitation fluorescence microscopy and tested different Al
models on both types of images acquired. Their results were excellent (AUC = 98.8)
and these authors also demonstrated that automated analysis with fluorescence images
achieved rates of detection of LN metastasis as accurately as that with H&E images. In
the 222 patient cohort of Hu et al. [23], 51 were treated with neoadjuvant chemotherapy
(NACT). In this particular study, these researchers demonstrated that their Al model was
effective and can accordingly be confidently used for LN screening after NACT. Huang et al.
obtained a slide-level [18] AUC curve of 0.9936 for gastric LN metastasis using a weakly
supervised algorithm, based on ResnNet50 architecture. Moreover, their proposed method
significantly enhanced the sensitivity of ITC recognition and micrometastases identification
while shortening the review time per slide. In 2020, Pan et al. [44] employed an algorithm
developed on a slide set of metastatic esophageal squamous cell carcinoma to screen LNs
suspicious for metastases from the throat and lung. By relying on transfer learning, the
applied Al tool reached an accuracy of 96.7% and 90%, respectively, for each type of cancer.
Nodal metastases from head and neck squamous cell carcinoma cases were also tested by
the algorithm developed by Tang et al. [24] in 2020, gaining ever higher sensitivity rates
(100%), but with less specificity (75.9%). Chuang et al. [16], exploiting a ResNet50 model,
built a weakly supervised algorithm that performed well in identifying both macro- and
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micrometastases from colorectal cancer with an AUC of 0.9993 and 0.9956, respectively, at
the slide level. However, when focusing on ITC, these values dropped to 0.7828. Finally, in
2019, Pham et al. [22] employed an Al tool called HALO to recognize metastases of nearly
all subtypes of lung carcinoma (excluding small cell lung cancer), achieving very high
sensitivity rates but with lower specificity.

4.5. Limitations

One key limitation of all the herein studied Al systems is that they were designed
to detect just one main pathological lesion (i.e., the detection of metastatic cells), so that
they were unable to recognize other rare, but still relevant, key histological features such
as co-occurring pathologies (e.g., lymphoma or infection) involving LNs. Secondly, the
reported Al tools frequently faced difficulties when metastatic foci were particularly small
in size (e.g., ITCs). Finally, DL-based algorithms were often expensive to develop and
deploy, therefore hindering the widespread use of this technology.

5. Conclusions

The published data overall indicate that the application of Al in detecting LN metas-
tasis, with due care, is feasible for routine clinical practice in the near future. Ideally,
Al-based automated analysis of LNs would assist pathologists by screening these samples
and thereby augment diagnostic pathology reporting and tumor staging. A high sensitivity
rate is ideally required for these novel Al systems to reach this goal. Further studies are
warranted to improve the performance and workflow of this promising technology, in
order to validate their adoption in the routine workflow of pathology laboratories.
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