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1. INTRODUCTION AND RESULTS

In this paper we deal with mountain-pass solutions for a system of Schrödinger–
Poisson equations of the form

(1)

{
−∆u+ V (x)u+ φu = K(x)up, x ∈ RN ,

−∆φ = u2.

Precisely, we will find solutions having the following properties:

(2) u ∈ H 1(RN ), u > 0, lim
|x|→∞

u = 0.

Here and hereafter N ∈ {3, 4, 5} (see Section 3), 1 < p < (N + 2)/(N − 2) and
V,K : RN

→ R+ are radial and smooth. For (1), existence, non-existence [12] and
multiplicity results [4] have been found in the case V = K = 1. On the other hand,
we do not know any results on (1) in the presence of external potentials. V,K in (1)
are assumed to satisfy the same conditions introduced in [1] in the frame of Nonlinear
Schrödinger Equations (NLS). Precisely:

(3)
a

1+ |x|α
≤ V (x) ≤ A

for some α ∈ (0, 2], a,A > 0, and

(4) 0 < K(x) ≤
b

1+ |x|β
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for some β, b > 0. The purpose of this paper is to extend these existence results to (1).
It is convenient to introduce the following quantities:

(5) σ = σ(N, α, β) :=


N + 2
N − 2

−
4β

α(N − 2)
if 0 < β < α,

1 otherwise,

and

(6) α∗ :=
2(N − 1)(N − 2)

3N + 2
.

DEFINITION 1. Saying that (u, φ) is a non-trivial positive solution of (1) we mean
that both u and φ are non-trivial, positive and radial. Furthermore, u satisfies (2).

In order to find positive solutions of (1), we will distinguish between 2 < p < 3
and p ∈ [3, 2∗ − 1). In the latter case we have the following

THEOREM 1. Let α < α∗ and p ∈ (σ, 2∗ − 1) ∩ [3, 2∗ − 1). If V and K are radial,
smooth, and satisfy (3) and (4), then (1) has a non-trivial positive classical mountain-
pass solution (u, φ) ∈ H 1(RN )×D1,2(RN ).

Moreover, we also have existence of positive classical solutions for p in the interval
(2, 3) if we assume that V and K satisfy:

(7)

{
(x,∇V ) ≤ c

(1)
V V (x) and c

(1)
V ∈ (0, 2),

(x,∇K) ≥ c
(1)
K K(x) and c

(1)
K ∈ [2,∞),

where ( ·, · ) denotes the scalar product in RN . We assume that K is such that the
following condition holds:

(8) ∃ε ≥ 0, q ≥ 1 such that (x,∇K) ∈ Lq(RN ) with q ′(p+1−ε) ∈ [2+α/γ , 2∗],

where
1
q
+

1
q ′
= 1 for q ∈ R, q ′ := 1 for q = ∞

and

γ :=
2(N − 1)− α

4
is a parameter related to inclusions of weighted Sobolev spaces and Lp spaces.
Furthermore, assuming V is such that the following condition holds:

(9) ∃ε ≥ 0, r ≥ 1 such that (x,∇V ) ∈ Lr(RN ) and r ′(2− ε) ∈ [2+ α/γ , 2∗],

where r ′ is defined as for q ′, we can state the following
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THEOREM 2. Let α < α∗ and p ∈ (σ, 2∗−1)∩(2, 3). If V andK are radial, smooth,
and satisfy (3), (4), (7)–(9), then (1) has a non-trivial positive classical solution
(u, φ) ∈ H 1(RN )×D1,2(RN ).

If instead of (7), we assume

(10)

{
(x,∇V ) ≥ c

(2)
V V (x) and c

(2)
V > 0,

(x,∇K) ≤ c
(2)
K K(x) and c

(2)
K ∈ (0, 2),

then, dealing with the case p ∈ (2, 3), we can state another existence result.
Introducing

(11) δ := 2+ c(2)K /2,

we have

THEOREM 3. Let α < α∗ and p ∈ (σ, 2∗ − 1) ∩ (δ, 3). If V and K are radial,
smooth, and satisfy (3), (4), (8)–(10), then (1) has a non-trivial positive classical
solution (u, φ) ∈ H 1(RN )×D1,2(RN ).

REMARK 1. We observe that the decaying property in (2) is due to the radiality of the
solutions found, while the property u ∈ H 1(RN ) is proven in Lemma 6, by adapting
an argument from [1].

In the case p ∈ (1, 2], the previous theorems are completed by some non-existence
results in Section 4. In spite of those results, we can also have existence for p ∈ (1, 2)
if we consider the Poisson term as a small perturbation. Indeed, as in [12], we can state
the following

PROPOSITION 1. For α < α∗, p ∈ (σ, 2∗ − 1) ∩ (1, 2) and λ > 0 small enough,
under the assumptions (3) and (4) the problem

(12)

{
−∆u+ V (x)u+ λφu = K(x)up, x ∈ RN ,

−∆φ = u2

has at least two different non-trivial positive classical solutions (u, φ), one of which
is a mountain-pass solution.

Before proving the existence results we focus on giving the variational formulation
of (1). So the next two sections deal with some functional preliminaries.

2. NOTATION AND FUNCTIONAL SETTING

Our aim is to use critical point theory, so let us introduce some functional spaces. We
denote respectively by D1,2(RN ), H 1(RN ) and HV (RN ) the Hilbert spaces defined
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as the closure of C∞c (RN ) with respect to the following norms:

‖φ‖2D1,2(RN ) :=
∫

RN
|∇φ|2 dx,

‖u‖2
H 1(RN ) :=

∫
RN
(|∇u|2 + |u|2) dx,

‖u‖2
HV (RN ) :=

∫
RN
(|∇u|2 + V (x)|u|2) dx.

In particular, we will work with the closed subspaceH ⊂ HV defined as its restriction
to radial functions:

‖u‖2H := SN

∫
∞

0
(ϕ′(r)2 + Ṽ (r)ϕ(r))2rN−1 dr,

where ϕ(|x|) = u(x), Ṽ (|x|) = V (x), and SN is the Lebesgue surface measure of the
unit sphere SN−1 in RN . Denoting by Lp+1

K (RN ) the weighted Lp+1 space with norm

(13) ‖u‖
p+1

L
p+1
K (RN )

:=
∫

RN
K(x) |u|p+1 dx,

we have

LEMMA 1. The space HV (RN ) is embedded (resp. compactly embedded) in
L
p+1
K (RN ) if σ ≤ p ≤ (N + 2)/(N − 2) (resp. if σ < p < (N + 2)/(N − 2)).

(For the proof see e.g. [11].) Due to the radiality, we can find that H is compactly
embedded in Lq(RN ) under suitable conditions on q. More precisely, we have the
following extension of the Strauss compactness theorem (see [13]) that we give
together with its proof for the sake of completness. See also [14] for a more general
case.

LEMMA 2. Let γ := (2(N − 1)− α)/4. The space H is compactly embedded in
Lq(RN ) for any q such that 2+ α/γ < q < 2N/(N − 2).

PROOF. If N ≥ 2 and u ∈ H , then there exist two positive constants C, R̄ such that
for a.e. |x| > R̄,

(14) |u(x)| ≤ C|x|−γ ‖u‖H .

By density we can test the inequality on C∞0,rad(RN ). Define ϕ by ϕ(|x|) = u(x). An
integration by parts gives

ϕ(r)2 = −2
∫
∞

r

ϕ′(s)ϕ(s) ds

≤ 2
∫
∞

r

s−(N−1)

√
1+ sα

a

√
a

1+ sα
|ϕ′(s)ϕ(s)|sN−1 ds

≤ Cr−2γ
‖u‖2H
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for some C > 0 and r large enough, where in the last step we have used

2
√

a

1+ sα
|ϕ′(s)ϕ(s)| ≤ ϕ′(s)2 + ϕ(s)2

a

1+ sα

and s−(N−1)√1+ sα ↘ 0 as s →∞, because we are focusing on α ∈ (0, 2].
Let

un ⇀ 0 in H.

Since on spheres we control theH 1 norm by theH norm, and the Rellich–Kondrashov
theorem holds, it is enough to show that, passing to a subsequence, and for R large,
the integral ∫

|x|>R

|un|
q dx

can be smaller than an a priori fixed ε > 0 uniformly for n ≥ n0 for some n0 > 0. In
the following, c1, . . . , c5 are suitable positive constants. Taking into account that

|un(x)|
q−2
≤ c1|x|

−γ (q−2)
‖un‖

q−2
H ≤ c2|x|

−γ (q−2)

and |x|α−γ (q−2)
↘ 0, we have∫

|x|>R

|un|
q dx ≤ c3

∫
|x|>R

|un|
q−2
|x|α

a

1+ |x|α
|un|

2 dx

≤ c4R
α−γ (q−2)

‖un‖
2
H ≤ c5R

α−γ (q−2)
↘ 0

as R ↗∞. 2

REMARK 2. It is worth pointing out that the space H is embedded in Lq for any
q ∈ [2+ α/γ , 2∗] (see e.g. [14]).

3. VARIATIONAL FORMULATION OF THE PROBLEM

Solutions of (1) are the critical points of the functional

I (u) :=
1
2

∫
RN
(|∇u|2 + V (x)u2) dx +

1
4

∫
RN
φuu

2 dx −
1

p + 1

∫
RN
K(x)|u|p+1 dx

(which turns out to be well defined, C1(H,R) and weakly lower semicontinuous, see
below).

This is due to the fact that, given u ∈ H , thanks to the Riesz representation
theorem, there exists a unique solution φu of the problem∫

RN
∇φ∇v dx =

∫
RN
u2v dx, ∀v ∈ D1,2

rad (R
N ).
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Moreover, since u2
∈ L1

loc, the following representation formula holds for φu:

(15) φu(x) = ωN

∫
RN

u(y)2

|x − y|N−2 dy,

where ωN is the usual normalization factor of the Green function.
Now recall Remark 2 and observe that, because of the embedding of HV (RN ) in

Lq(RN ), if u ∈ H , then u ∈ L4N/(N+2), provided α ≤ α∗ ⇔ 4N/(N + 2) ≥ 2+α/γ .
Actually, the strict inequality has been used in order to have the compactness property
stated in the following lemma. For the same reason the restriction on N is necessary,
because it ensures that 4N/(N + 2) < 2∗.

The Hölder and Sobolev inequalities imply that, given u ∈ H , the operator

(16) Lu : v 7→
∫

RN
u2v dx

is continuous in D1,2(RN ):∣∣∣∣∫
RN
u2v dx

∣∣∣∣ ≤ ‖u2
‖L2N/(N+2)‖v‖L2N/(N−2) = C(u)‖v‖D1,2 .

Introducing the notation

(17) M(u) :=
∫

RN
φu(x)u

2 dx

we have

LEMMA 3. If α < α∗, then M is a compact operator on H , i.e., if un ⇀ u, then, up
to a subsequence, M(un)→ M(u).

PROOF. Summing and subtracting
∫

RN φunu
2 dx, by the Hölder and Sobolev

inequalities we have

|M(un)−M(u)| =

∣∣∣∣∫
RN

[φu(x)u2
− φun(x)u

2
n] dx

∣∣∣∣
≤ ‖φun‖L2N/(N−2)‖u

2
n − u

2
‖L2N/(N+2) + ‖φun − φu‖L2N/(N−2)‖u

2
‖L2N/(N+2)

≤ ‖φun‖D1,2(RN )‖u
2
n − u

2
‖L2N/(N+2) + ‖φun − φu‖D1,2(RN )‖u‖

2
L4N/(N+2) .

Since

‖u2
n − u

2
‖

2N/(N+2)
L2N/(N+2) =

∫
RN

[|un − u| |un + u|]2N/(N+2) dx

≤ ‖un − u‖
2N/(N+2)
L4N/(N+2) ‖un + u‖

2N/(N+2)
L4N/(N+2)
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it follows that

|M(un)−M(u)|

≤ ‖φun‖D1,2(RN )‖un−u‖L4N/(N+2)‖un+u‖L4N/(N+2)+‖φun−φu‖D1,2(RN )‖u‖
2
L4N/(N+2) .

Since
α < α∗ ⇔

4N
N + 2

> 2+
α

γ
,

Lemma 2 implies H ↪→↪→ L4N/(N+2)(RN ), hence, passing to a subsequence, we
obtain ‖un − u‖L4N/(N+2) → 0 and therefore

|M(un)−M(u)| ≤ ‖φun‖D1,2(RN )o(1)+ C‖φun − φu‖D1,2(RN ).

In order to estimate ‖φun − φu‖D1,2 we argue as follows. One has

‖Lun − Lu‖ ≤ sup
‖v‖D1,2(RN )=1

‖u2
n − u

2
‖L2N/(N+2)‖v‖L2N/(N−2) .

Since ‖un − u‖L4N/(N+2) → 0, passing to a subsequence, we have un → u a.e. and
|un|

2
≤ g for some g ∈ L2N/(N+2). Hence, the dominated convergence theorem

implies ‖u2
n − u

2
‖L2N/(N+2) → 0, and therefore Lun → Lu. The Riesz representation

theorem implies that Lu ∈ D1,2∗
7→ φu ∈ D1,2 is an isometry, therefore φun → φu in

D1,2(RN ). 2

Lemma 3 and the compact embedding of H in Lp+1
K imply the weakly lower

semicontinuity of I. It is standard to check also that I is a C1(H,R) functional.
We conclude this section with a Pohozaev-like identity which will be useful later

on. For the proof see the Appendix.

LEMMA 4. Assume that V and K satisfy (3), (4), (8) and (9). If u ∈ HV (RN ) ∩

H 2
loc(RN ) is a radial solution of the problem (1), then u satisfies the following identity:

N − 2
2

∫
RN
|∇u|2 dx +

N

2

∫
RN
V (x)u2 dx

+
1
2

∫
RN
(x,∇V (x))u2 dx +

N + 2
4

∫
RN
φuu

2 dx

=
N

p + 1

∫
RN
K(x)|u|p+1 dx +

1
p + 1

∫
RN
(x,∇K(x))|u|p+1 dx.

4. PROOFS

Because we will use the mountain-pass theorem (see [3], [2]), we will need the
following

LEMMA 5. I has the mountain-pass geometry for p > 2.
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PROOF. The continuous embedding of H in Lp+1
K gives

(18) I (u) =
1
2
‖u‖2H + o(‖u‖

2
H ), u→ 0,

which shows that I has a strict local minimum at the origin. Furthermore, let us show
that I attains negative values on the curves ut (x) := tλu(tµx) for a suitable choice of
u ∈ H , positive λ,µ and large values of t. The case 3 < p < 2∗− 1 is standard and it
can be checked taking any u ∈ H \ {0} and putting µ = 0, λ = 1. The case p ∈ (2, 3]
can be treated as follows. Fix u ∈ H ∩ L2

∩ Lp+1. Because of the integrability of
u and the boundedness of V and K , the dominated convergence theorem yields the
following asymptotics for t →∞:

‖ut‖
2
H = t

2(λ+µ)−µN
‖∇u‖2

L2 + t
2λ−µN

∫
RN
V (t−µx)|u|2 dx ≈ t2(λ+µ)−µN ,(19) ∫

RN
K(x)|ut |

p+1 dx = tλ(p+1)−µN
∫

RN
K(t−µx)|u|p+1 dx ≈ tλ(p+1)−µN .(20)

Moreover, since

φut (x) = ωN

∫
RN
t2λu2(tµy)

tµ(N−2)

|tµx − tµy|N−2 dy = t
2λ+µ(N−2)−µNφu(t

µx),

we have

(21)
∫

RN
φut (x)ut (x)

2 dx = t4λ+µ(N−2)−2µN
∫

RN
φu(x)u(x)

2 dx ≈ t4λ−µ(N+2).

Summing up (19)–(21) we get

I (ut ) ≈ t
2(λ+µ)−µN

+ t4λ−µ(N+2)
− tλ(p+1)−µN .

With the choice λ = 2µ we get (19) ≈ (21), and for p > 2, we have (20)� (21), so
I (ut )→−∞ as t →∞, hence the functional has the mountain-pass geometry. 2

PROOF OF THEOREM 1.

STEP 1: For p ≥ 3, I satisfies the Palais–Smale condition. Take a sequence such that

I (un) < C, I ′(un)→ 0.

We write

(p + 1)I (un)− (I ′(un), un) =
p − 1

2
‖un‖

2
H +

p − 3
4

∫
RN
φun(x)u

2
n

≥
p − 1

2
‖un‖

2
H
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iff p ≥ 3. This shows that un is bounded in H. Hence, passing to a subsequence, we
have

un ⇀ u ∈ H and un→ u in Lp+1
K , p ∈ (σ, 2∗ − 1).

So we write

(22) o(1) = (I ′(un), (un − u)) = ‖un‖2H − ‖u‖
2
H + o(1)

+

∫
RN
φun(x)un(un − u) dx +

∫
RN
K(x)|un|

p(un − u) dx.

For the Poisson term we have∣∣∣∣∫
RN
φun(x)un(un − u) dx

∣∣∣∣ ≤ ‖φun‖D1,2‖unu− u
2
n‖L2N/(N+2) .

Now notice that, because of Lemma 3, φun is bounded in D1,2. Moreover, because of
the compact embedding in L4N/(N+2), passing to a subsequence we have un→ u a.e.
and |unu − u2

n| ≤ u
√
g + g ∈ L2N/(N+2) for some g ∈ L2N/(N+2). Now, using the

dominated convergence theorem we infer that ‖unu− u2
n‖L2N/(N+2) → 0, and thus∣∣∣∣∫

RN
φun(x)un(un − u) dx

∣∣∣∣→ 0.

In the same fashion, using Lemma 1, we see that the p-term tends to zero. From this
and (22), it follows that ‖un‖H − ‖u‖H → 0 and hence un→ u strongly in H .

STEP 2: Conclusion. Now set Γ := {γ ∈ C([0, 1], H) : γ (0) = 0, I (γ (1)) < 0}.
The previous steps and Lemma 5 show that the hypotheses of the mountain-pass
theorem are satisfied, hence

c := inf
γ∈Γ

max
t∈[0,1]

I (γ (t))

is a critical level of I corresponding to a non-trivial weak solution inH. The bootstrap
process can be performed (see the lemma below) and by a maximum principle
argument it can be shown that we can actually get a positive classical solution. 2

Because we will use Lemma 4, we need to show that H -solutions actually belong
to H 2

loc. More precisely, we state the following

LEMMA 6. Let u be a weak solution in H of the problem (1). Then u ∈ H 2
loc(RN ).

Moreover, u ∈ L2(RN ), i.e. u ∈ H 1(RN ).

PROOF. For convenience we write the first equation in (1) as −∆u = a(x)u, with
a(x) := K(x)up−1

− V (x)− φ(x). By standard elliptic regularity theory it is enough
to show that a(x)u ∈ L2

loc. We now claim that u ∈ Lqloc for any 2 ≤ q <∞. In order
to prove that, we use the Brezis–Kato result (see e.g. [9, p. 48]), since a−u ∈ L1

loc
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and a+ ∈ LN/2. Observe that the former claim is trivial, while dealing with the latter
simply observe that (p − 1)N/2 < 2∗ ⇔ p < 2∗ − 1. As a consequence, φ ∈ W 2,q

loc
and by the Morrey embedding theorem, φ ∈ C0,α

loc . Thanks to the local boundedness of
V,K and φ, the L2

loc regularity of a(x)u follows, hence the conclusion.
Now we prove that, actually, u ∈ H 1. In order to do that, first observe that φ is a

positive continuous radial function vanishing at infinity. This is a consequence of the
fact that φ ∈ C0,α

loc plus the following decay estimate (see [5, p. 340]):

(23) |φ(x)| ≤ CN |x|
(2−N)/2

‖φ‖D1,2(RN ), |x| ≥ 1.

This observation allows us to define the auxiliary potential Vu(x) = V (x) + φu(x),
satisfying the condition

(24)
a

1+ |x|α
≤ Vu(x) ≤ A

′,

which is identical to (3). Observe now that u is a solution of the equation

−∆u+ Vu(x)u = K(x)u
p,

which is formally the same as the one studied in [1]. More precisely, it can be shown
that

(25)
∫

RN\BR(0)
Vu(x)u

2 dx ≈ exp(−cR1−α/2), R � 1, c > 0,

where Br(y) := {x ∈ RN : |x − y| < r}. Now observe that as a consequence of (24)
we have

(26)
∫
B1(y)

u2 dx ≤ c1|y|
α

∫
B1(y)

Vu(x)u
2 dx.

By repeating the same argument in [1, proof of Theorem 16], the equations (25) and
(26) yield the existence of a partition {Brk (yk)}k≥1 of RN

\ B2(0) such that∫
RN\B2(0)

u2 dx ≤
∑
k

∫
Brk (yk)

u2 dx ≤ c2
∑
k

|yk|
α exp(−C|yk|1−α/2) <∞,

completing the proof. 2

PROOF OF THEOREM 2. We point out that, for p ∈ (2, 3), the PS condition is not
known for I , even in the case V = K = 1, although the mountain-pass geometry
holds. This is due to the difficulty in proving the boundedness for Palais–Smale
sequences. In order to overcome this obstacle, we use a method introduced by Struwe
(see e.g. [15] and also [4], [8]).
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Let us consider a perturbation of I :

Iµ(u) :=
1
2

∫
RN
(|∇u|2 + V (x)u2) dx(27)

+
1
4

∫
RN
φuu

2 dx −
µ

p + 1

∫
RN
K(x)|u|p+1 dx

for µ ∈ [1/2, 1].
Following [4, Proposition 2.3], it is possible to define min-max levels for Iµ, which

we denote by cµ, such that the following properties are satisfied:

(i) µ 7→ cµ is non-increasing (hence differentiable a.e. in [1/2, 1]) and left-
continuous.

(ii) Denote by I the set of µ for which cµ is differentiable; then for each µ ∈ I there
exists a Palais–Smale seqence for Iµ at the level cµ.

(iii) For almost every µ ∈ [1/2, 1], cµ is a critical level for Iµ.

We remark that thanks to Lemma 5, I has the mountain-pass geometry and we are
allowed to use this argument.

We denote by C the set of values of µ for which cµ is a critical level for Iµ. Now
take a sequence µn ↗ 1 in C and a sequence un ∈ H of critical points for Iµn . It is
easy to see that, if this sequence is bounded, then Theorem 2 follows. Actually, we can
now repeat the same argument carried out in Step 1 above: up to a subsequence, we
have un ⇀ u in H and

un→ u in Lp+1
K , p ∈ (σ, 2∗ − 1);

hence, from I ′(un)(un − u) = ‖un‖
2
H − ‖u‖

2
H + o(1) and µn ↗ 1, we find again that

un→ u in H and thus I ′(u) = 0.
To prove that the sequence un is bounded we use Lemma 4. First we define the

following quantities:

χ1,n :=
∫

RN
|∇un|

2, χ2,n :=
∫

RN
V (x)u2

n,

χ3,n :=
∫

RN
φunu

2
n, χ4,n := µn

∫
RN
K(x)|un|

p+1,

ξV,n :=
∫

RN
(x,∇V (x))u2

n, ξK,n := µn

∫
RN
(x,∇K(x))|un|

p+1.

Notice that un are solutions of the problem (1)µn , obtained by replacing K with
µnK in (1). Now we can use Lemma 4, having already checked the H 2

loc regularity
in Lemma 6, to obtain

(28)
N − 2

2
χ1,n +

N

2
χ2,n +

N + 2
4

χ3,n −
N

p + 1
χ4,n =

1
p + 1

ξK,n −
1
2
ξV,n.
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By definition, we have

(29)
1
2
χ1,n +

1
2
χ2,n +

1
4
χ3,n −

1
p + 1

χ4,n = cµn .

Eliminating χ3,n in the system (28)–(29) we obtain

(30) 2χ1,n + χ2,n −
1
2
ξV,n = (N + 2)cµn +

1
p + 1

(2χ4,n − ξK,n).

Using (7), (30) implies

(31) 2χ1,n +
2− c(1)V

2
χ2,n ≤ (N + 2)cµn +

1
p + 1

(2− c(1)K )χ4,n.

Since 2 − c(1)V > 0, 2 − c(1)K ≤ 0, and cµn is bounded, (31) now implies that χ1,n and
χ2,n are bounded, so that ‖un‖H ≤ C, hence the conclusion. 2

PROOF OF THEOREM 3. The proof is the same as the previous one, being reduced to
checking the boundedness of un. Multiplying the first equation of the problem (1)µn
by u and integrating by parts, we find that

(32) χ1,n + χ2,n + χ3,n − χ4,n = 0.

Let us solve the system (29)–(32) with respect to the quantities χ3,n and χ4,n. If D =
(3 − p)/[4(p + 1)] denotes the determinant of the system (since we are considering
p ∈ (2, 3), D is positive), we obtain

(33)


χ3,n =

1
D

[
p − 1

2(p + 1)
(χ1,n + χ2,n)− cµn

]
,

χ4,n =
1
D

[
1
4
(χ1,n + χ2,n)− cµn

]
.

Using (10) in (28), we have

(34)
N − 2

2
χ1,n +

(
N

2
+
c
(2)
V

2

)
χ2,n +

N + 2
4

χ3,n −

(
N

p + 1
+

c
(2)
K

p + 1

)
χ4,n ≤ 0.

Substituting (33) into (34) we get[
N − 2

2
+
N + 2

4D
·
p − 1

2(p + 1)
−

1
4D

(
N

p + 1
+

c
(2)
K

p + 1

)]
χ1,n

+

[
N

2
+
c
(2)
V

2
+
N + 2

4D
·
p − 1

2(p + 1)
−

1
4D

(
N

p + 1
+

c
(2)
K

p + 1

)]
χ2,n

≤

[
N + 2

4D
−

1
D

(
N

p + 1
+

c
(2)
K

p + 1

)]
cµn .
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It is easy to check that, since p > δ := 2+c(2)K /2, the coefficient of χ1,n is positive. For
the same reason the coefficient of χ2,n is also positive. Furthermore, it can be verified
that the coefficient of cµn is positive for p > (4c(2)K + 3N − 2)/(N + 2), which is less
than δ. Hence we get the boundedness of un as above. 2

PROOF OF PROPOSITION 1. The proof is based on the mountain-pass theorem and
the Ekeland variational principle and it is almost the same as for Theorem 4.3 and
Corollary 4.4 in [12]. Precisely, it can be shown that:

(i) I > −∞,
(ii) I satisfies the Palais–Smale condition.

In order to do that, since we work on H , (14) and Lemma 1 must be used instead of
the Strauss inequality and the Strauss embedding theorem. The restriction on α is also
needed in order to use the continuity property stated in Lemma 3. 2

For λ large enough, Proposition 1 does not hold anymore. Indeed, we have the
following

PROPOSITION 2. Assume σ ∈ (1, 2], p ∈ [σ, 2], α ≤ α∗ and suppose V and K are
radial, smooth and satisfy (3) and (4). Then:

(i) For p = 2: if K(x) ≤ 1, then (1) has no non-trivial positive solution (u, φ) ∈
H ×D1,2(RN ).

(ii) For p ∈ [σ, 2): if
V (x) ≥ (CpK(x))

1/(2−p),

where Cp = (p − 1)p−1(2− p)2−p, then (1) has no non-trivial positive solution
(u, φ) ∈ H ×D1,2(RN ).

PROOF. Here we follow [10] and [12]. By the assumptions on p and α, H is
continuously embedded in Lp+1

K and L4N/(N+2), hence all the following integrals are
well defined. Now observe that, by the trivial inequality ab ≤ a2

+ b2/4, it follows
that

(35)
∫

RN
u3 dx =

∫
RN
∇φ∇u dx ≤

∫
RN

(
|∇u|2 +

1
4
|∇φ|2

)
dx.

Now we argue by contradiction, assuming that (u, φ) ∈ H ×D1,2(RN ) is a non-trivial
positive solution. Then we have

0 = (I ′(u), u) =
∫

RN
(|∇u|2 +

∫
RN
(V (x)u2

+ φuu
2 dx −K(x)|u|p+1) dx

≥

∫
RN

(
u3
−

1
4
|∇φ|2

)
dx +

∫
RN
(V (x)u2

+ φuu
2
−K(x)|u|p+1) dx.
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Since
∫

RN φu
2 dx =

∫
RN
|∇φ|2 dx we infer that

0 ≥
∫

RN
u3 dx +

∫
RN

(
3
4
|∇φ|2 + V (x)u2

−K(x)|u|p+1
)
dx(36)

≥

∫
RN
(u3
+ V (x)u2

−K(x)up+1) dx

=

∫
RN
u2(u+ V (x)−K(x)up−1) dx.

Now define f (u) := u + V (x) − K(x)up−1. If p = 2, then since K(x) ≤ 1,
the function f is strictly increasing, hence strictly positive for u > 0. Therefore, (36)
implies that u ≡ 0 and this is a contradiction. Now consider the case p ∈ (1, 2).
Observe that f has an absolute minimum point um = (K(x)(p − 1))1/(2−p). Now
defining Cp = (p − 1)p−1(2− p)2−p and observing that

f (u) ≥ f (um) = V (x)− (CpK(x))
1/(2−p)

≥ 0

we get a contradiction as above. 2

REMARK 3. We remark that the condition V (x) ≥ (CpK(x))1/(2−p) is compatible
with the case σ ∈ (1, 2]. Therefore, under this condition, we have non-existence
although we also have compactness.

As a final remark we also consider

(37)

{
−∆u+ V (x)u+ λφu = K(x)up, x ∈ RN ,

−∆φ = u2.

For λ ≥ 1/4, by repeating the same proof, it is easy to see that Proposition 2 holds true,
extending the result of Theorem 4.1 in [12] to the case of NLSP with radial potentials
vanishing at infinity.

5. APPENDIX

PROOF OF LEMMA 4. The proof of this identity follows the standard method in the
literature, therefore we only sketch the main steps. Consider {ηs(x)}s>0 ⊂ C

∞

rad(RN )

with the following properties:

0 ≤ ηs(x) ≤ 1, |∇ηs(x)| ≤
C

s
, ηs(x) =

{
1, x ∈ B(0, s/2),

0, x ∈ RN
\ B(0, s),

where B(0, s) := {x ∈ RN : |x| < s}, for some positive constant C. Multiply the first
equation in (1) by xi∂iu(x)ηs(x), integrate on B(0, s) and sum up over i. Observe
that, since supp ηs is contained in {x : |x| ≤ s}, we have |∇ηs(x)| ≤ C/s ≤ C/|x|.
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By the dominated convergence theorem there exists a sequence sn → ∞ (we simply
write s →∞) (see e.g. [5]–[7], [9, Section 3]) such that

(38) −

∑
i

∫
B(0,s)

∆uxi(∂iu)η
s dx =

2−N
2

∫
B(0,s)

|∇u|2 dx + o(1).

In order to perform the calculation for the K-term, integrating by parts, observe that∫
B(0,s)

K(x)upxi(∂iu)η
s dx =

1
p + 1

∫
B(0,s)

K(x)(∂iu
p+1)xiη

s dx

= −
1

p + 1

∫
B(0,s)

ηsup+1K(x) dx −
1

p + 1

∫
B(0,s)

xi(∂iη
s)up+1K(x) dx

−
1

p + 1

∫
B(0,s)

ηsup+1xi∂iK(x) dx.

In the last step the boundary term has been neglected since ηs(∂B(0, s)) = 0. Since
0 ≤ ηs ≤ 1 and ηs → 1, |xi∂iηs | ≤ C and ∂iηs → 0, by the dominated convergence
theorem the second integral in the last step tends to zero. Hence∫

B(0,s)
K(x)upxi∂iuη

s dx = −
1

p + 1

∫
B(0,s)

ηsup+1K(x) dx(39)

−
1

p + 1

∫
B(0,s)

ηsup+1xi∂iK(x) dx + o(1).

We now consider the last integral in (39). Since u is a radial function in HV (RN ) the
Strauss type inequality (14) holds:

(40) |u(x)| ≤ c|x|−γ ‖u‖HV

a.e. in RN
\ Bc(0, s) for large s. Since 1− ηs = 0 on B(0, s) and using (40) we get

(41)
∣∣∣∣∫

RN
up+1xi∂iK(x) dx −

∫
RN
ηsup+1xi∂iK(x) dx

∣∣∣∣
≤ c′s−(N−1)ε/2

∫
RN\B(0,s)

(1− ηs)up+1−ε
|xi∂iK(x)| dx.

Notice that, because of (8), since q ′(p+1−ε) ∈ [2+α/γ , 2∗], there exists a constant
Cp,q ′,ε such that ‖u‖

Lq
′(p+1−ε)(RN ) ≤ Cp,q ′,ε‖u‖HV (RN ). Therefore, as 0 ≤ 1−ηs ≤ 1,

using the Hölder inequality we have

(42)
∫

RN\B(0,s)
(1− ηs)up+1−ε

|xi∂iK(x)| dx ≤

∫
RN\B(0,s)

up+1−ε
|xi∂iK(x)| dx

≤ ‖u‖
Lq
′(p+1−ε)(RN )‖(x,∇K)‖Lq (RN ) ≤ Cp,q ′,ε‖u‖HV (RN )‖(x,∇K)‖Lq (RN ) <∞.
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Observe that (41) and (42) imply that
∫

RN u
p+1(x,∇K) dx <∞ and

(43)
∫
B(0,s)

ηsup+1xi∂iK(x) dx =

∫
B(0,s)

up+1xi∂iK(x) dx + o(1).

Finally, from (39), (43) and summing up over i we have∑
i

∫
B(0,s)

K(x)upxi(∂iu)η
s dx = −

N

p + 1

∫
B(0,s)

K(x)up+1 dx(44)

−
1

p + 1

∫
B(0,s)

(x,∇K)up+1 dx + o(1).

In the same fashion as in (44), because of the assumptions on V , we can use the
dominated convergence theorem to get

(45)
∑
i

∫
B(0,s)

V (x)u2xi(∂iu)η
s dx

= −
N

2

∫
B(0,s)

V (x)u2 dx −
1
2

∫
B(0,s)

(x,∇V )u2 dx + o(1).

Moreover, as in (39),

(46)
∑
i

∫
B(0,s)

φuuxi(∂iu)η
s dx

= −
N

2

∫
B(0,s)

φuu
2 dx −

1
2

∫
B(0,s)

(x,∇φu)u
2ηs dx + o(1).

From the first equation in (1) and (38), (44), (45), (46), we finally have, as s →∞,

(47)
2−N

2

∫
B(0,s)

|∇u|2 dx −
N

2

∫
B(0,s)

V (x)u2 dx −
1
2

∫
B(0,s)

(x,∇V )u2 dx

−
N

2

∫
B(0,s)

φuu
2 dx −

1
2

∫
B(0,s)

(x,∇φu)u
2ηs dx + o(1)

= −
N

p + 1

∫
B(0,s)

K(x)up+1 dx −
1

p + 1

∫
B(0,s)

(x,∇K)up+1 dx.

In the same way as above, we now multiply the second equation in (1) by (x,∇φu)ηs

and integrate on B(0, s), obtaining

(48)
2−N

2

∫
B(0,s)

|∇φu|
2 dx =

∫
B(0,s)

(x,∇φu)u
2ηs dx + o(1).

Eliminating
∫
B(0,s)(x,∇φu)u

2ηs dx from (47) and (48), letting s → ∞ and using∫
RN |∇φu|

2 dx =
∫

RN φuu
2 dx, we get the conclusion. 2
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problèmes elliptiques. Springer, Paris, 1993.

[10] P.-L. LIONS, Solutions of Hartree–Fock equations for Coulomb systems. Comm.
Math. Phys. 109 (1984), 33–97.

[11] B. OPIC - A. KUFNER, Hardy-Type Inequalities. Pitman Res. Notes in Math. Ser.
219, Longman Sci. Tech., Harlow, 1990.

[12] D. RUIZ, The nonlinear Schrödinger–Poisson equation under the effect of a
nonlinear local term. J. Funct. Anal. 237 (2006), 655–674.

[13] W. A. STRAUSS, Existence of solitary waves in higher dimensions. Comm. Math.
Phys. 55 (1977), 149–162.

[14] J. SU - Z. Q. WANG - M. WILLEM, Weighted Sobolev embedding with unbounded
and decaying radial potentials. J. Differential Equations 238 (2007), 201–219.

[15] M. STRUWE, Variational Methods: Applications to Nonlinear Partial Differential
Equations and Hamiltonian Systems. 3rd ed., Springer, Berlin, 2000.

Received 5 March 2008,
and in revised form 21 May 2008.

S.I.S.S.A./I.S.A.S.
Via Beirut 2-4

34013 TRIESTE, Italy
mercuri@sissa.it


	Introduction and results
	Notation and functional setting
	Variational formulation of the problem
	Proofs
	Appendix

